American Journal of Computational Linguistics microficne 35 : 50

AN APPROACH TO THE ORGANIZATION oF MUNDANE WORLD KNOWLEDGE:
THE GENERATION AND MANAGEMENT OF SCRIPTS

R. E. CULLINGFORD

Yale University
New Haven, Connecticut 06511

ABSTRACT

In understanding stories or natural-language discourse,
hearers draw upon an enormous base of shared world knowledge
about common situations like going to restaurants, theaters or
supermarkets to help establish the needed context. This paper
presents an approach to the management of this type of knowledge
based wupon the concept of a situational script [Schank and
Abelson, 1975]. The application of scripts in story
understanding is illustrated via a computer model called SAM

(Script Applier Mechanism).

In simple one-script stories, SAM constructs a trace
through a preformed data structure containing the input, other

events not mentioned but commonly assumed, the important

The research described in this paper was supported in part
by the Advanced Research Projects Agency of the Department of

Defer.se and monitored under the Office of Naval Research under
contract N@@Al14-75-C-1111.

51

inferences asspciated with the events, and the interconnecting
causal 1links. In more complicated stories, SAM handles the
invocation and closing of parallel, nested and sequential

scripts.

1.8 Introduction

Natural-language processing research 1in recent years has
increasingly focussed upon the modeling of human world knowledge
and management of the resulting data base (1l). This has c¢come
about largely because of the enormous problems encountered in the
processing of texts, as opposed to single sentences, by
traditional methods based upon syntactic analysis and low-level
semantics. This state of affairs should not be surprising, since

it 1is qguite clear that people draw upon a huge store of shared,

extra~linguistic world knowledge in understanding even the
simplest stories or engaging in the most rudimentary
conversation.

Much of the knowledge that hearers utilize to establish the
background or context of a story appears to be episodic in
hature, distilled from many experiences in common situations like
going to restaurants, football games and supermarkets. This
paper presents an approach to the representation and handling of
this type of mundane world-knowledge based upon the concept of a

situational script [Schank and Abelson, 1975]. The application

(1)_ See, for example, the emphasis on this area in
"Theoretical 1Issues in Natural Language Processing", Proceedings

of the Interdisciplinary Workshop in Computational Linguistics,
10-13 June 1975, Cambridge, Mass.

52

of scripts in story understanding will be illustrated via a

computer model called SAM (Script Applier Mechanism) devised for

a PDP-10 computer at Yale University.

l.1 Examples of Story Understanding in SAM

Before attacking the various aspects of scripts and the
particular activities <carried. on by SAM’s script applier, it
seems appropriate to give some examples of input and the various
outputs that SAM produces. This will give the reader some
feeling for the kinds of heavily script-based stories SAM can

handle and the understanding tasks it performs.

We present three different types of story input. The first
story makes references to a common script, the restaurant script,
then stops the script in midstream:

Story I
John went to a restaurant. He sat down. He got mad.
He left.

A “long paraphrase’ output generated by SAM for this story is as

follows:

Long Paraphrase

John was hungry. He decided to go to a restaurant.
He went to one. He sat down in a chair. A waiter
did not go to the table. John became upset. He

decided he was going to leave the restaurant. He
left it.

Next is a typical boring restaurant story conforming closely

to expected scriptal data:

Story II
John went to a restaurant. The hostess seated John.
The hostess gave John a menu. John ordered a

lobster. He was served quickly. He left a large
tip. He left the restaurant.

53

SAM has generated summary and question-answering output for this

story:

Summarz

John went to a restaurant and he ate a lobster.

Question-Answering

Q: Why did the hostess give John a menu?
A So John could ask the waiter for a meal.

Q: Why did John go to a restaurant?

A: So John could eat a meal.

Q: Did the waiter give John a menu?

A: John got the menu from the hostess.

Q: Why did John leave the waiter a large tip?

A: Probably John remembered the waiter served a
lobster to him quickly.

Q: Did John pay the bill?

A: John paid the check.

The system has also provided long-paraphrase outputs for +this

story, not shown here, in both English and Chinese.

The final example invokes several scripts, and calls up an

unusual path in one script because of an odd occurrence in an

earlier one:

Story III

John went to New York by bus. On the bus he talked
to an old lady. When he left the bus, he thanked the
driver. He took the subway to Leone’s. On the
subway his pocket was picked. He got off the train
and entered Leone’s. He had some lasagna. When the
check came, he discovered he couldn’t pay. The
management told him he would have to wash dishes.

54

Long Paraphrase

John went to a bus stop. He wailted at it a few
minutes. He entered a bus. The driver got the
ticket from John. He went to a seat. He sat down in
it. While John was on the bus an 0ld lady and John
talked. The driver took John to New York. He went

to the driver. While getting off the bus John
thanked the driver. John got off it.

He entered a station. He put a token in the
turnstile. He went to the platform. He waited at it
a few minutes. He entered a subway car. A thief
went to John. The thief picked John’s pocket. He
went. John went to the seat. He sat down in it.

The driver took John to Leone’s. He left the subway
car. He left the station.

He entered Leone’s. He looked around inside it.
He saw he could go to a table. He went to it. He
sat down in the seat. He ordered some lasagna. The
waiter indicated to the chef John would like him to
prepare something. The chef prepared the lasagna.
The waiter got it from the chef. The waiter went to

the table. He served the lasagna to John. He ate
it. He became full.

He asked the waiter for the check. John got it
from the waiter. John read the check. John
discovered he was unable to pay the check. He
indicated to the waiter he was _unable to pay the
check. The management told John he would have to

wash dishes. He entered the kitchen. He washed
dishes. He left Leone’s.

[paragraphing has been added to the
computer output for ease of reading]

In these example stories, SAM analyzes each input sentence

into a Conceptual Dependency (CD) representation. If this
representation fits a script, that script is called into memory
and successive inputs are matched in the script and linked up by
a SAM program called the script applier. The script applier
output 1is processed by other SAM programs depending on the type
of final output desired, and English or, for Story II, Chinese is

generated. The point to be stressed 1is that all the

55

‘understanding’ processing is done on a single data structure,
the story representation constructed by the script applier. We
discuss in particular the scriptal data base, the script applier
and the story representation in succeeding sections. Additional

details on the other parts of SAM can be found in [Schank et al,

1975].

2.0 Situational Scripts

As implemented in SAM, a situational script is a network of
CD patterns describing the major paths and turning points
commonly understood by middle-class Americans to occur in
stereotyped activities such as going to theaters, restaurants and
supermarkets. The script idea is very similar to the
independently developed “frame system for story understanding
described in [Charniak, 1975], which is itself based 1loosely on

the ‘frame® concept ([Minsky, 1974] currently, used in vision

research.

The patterns provided in scripts are of two general kinds:
events, which we will construe broadly as including states and

state-changes (2) as well as mental and physical ACTs; and

cauwsal relations among these events [Schank, 1973 and 1974].

(2) Certain actions like driving a car or preparing food
involve complex, learned sensory~-motor skills as well as scriptal
knowledge. Such actions are summarized within a script as a
causal relation terminating in the chief state-change effected by
the action. For example, the sentence "The cook prepared the
meal" is represented in LISP CD format as:

((CON ((ACTOR (*COOK*) <=> (*DO*)))
LEADTO
((ACTOR (*MEAL*) LEAVING (*COOKSTATE* VAL (0))))))

56
Patterns are used in scripts not only because of the variety of
possible fillers for the roles in scripts, but also to constrain
the amount of information needed to identify a story input.
Thus, for example, the script provides a LISP CD template like:

((ACTOR (X) <=> (*PTRANS*) OBJECT (X) TO (*INSIDE®
PART (RESPAURANT))))

to identify inputs like:

John went into Leone’s.

John walked into Leone s.

John came into Leone’s from the subway.
(X and RESTAURANT are dummy variables). This allows the script
applier to ignore 1inessential features of an input (like the

Instrument of the underlying ACT or the place John came from in

the examples given above), and thus provides a crude beginning

for a theory of forgetting.

In the present implementation, SAM possesses three ‘regular’
scripts, for riding a bus, for riding a subway, and for going to
a restaurant (3). These scripts have been simplified in wvarious
ways. For example, all of them assume that there is only a
single main actor. The bus script has been restricted to a
single track® for a long-distance bus ride, and the restaurant
script does not have a “McDhonald’s” or a ‘Le Pavillon® track.
This was done primarily to have a data base capable of handling
specific stories of interest available in a reasonable time,

secondarily to 1limit the storage needed (4). Nevertheless, as

(3) The data base also contains script-like structures for
‘weird’ or ‘unusual’ happenings like the main actor s becoming
ill, or, as in Story III, having his pocket picked. Such
activities could be handled by a generalized inferencing program
like the one described in [Rieger, 1975].

57

the examples of Section 1.1 indicate, the current scripts are a
reasenable first pass at the dual problems of creating and

managing this type of data structure.

2.1 Goals, Predictions and Roles in Scripts

Each situational script supplies a default goal statement
which is assumed, 1in the absence of input from higher level
cognitive processes like °‘planning’ [Schank and Abelson, 1975],
to be what a story referring to a script is about. The
restaurant script for example, defines the INGEST and the
resulting state-change in hunger as the central events of a story
about eating in restaurants. Closely related to the goal
statement is the sequence of mutual obligations that many scripts
seem to entail. Invoking the bus script, £for example, implies
the contract between the rider and the bus management of a PTRANS
to the desired location in return for the ATRANS of the fare.
Such obligations have a powerful influence on the predictions the
system makes about new input. 1In the restaurant context, for
example, an input referring to an event beyond ordering or eating
is not initially expected, because these events form the initial
statement of obligation. Thus the system takes 1longer to
identify a story sequence like:

John went to a diner. He left a large tip.

Once an input about ordering has been processed, SAM is prepared

(4) The text for the restaurant script, presently the

1§rgest of the scripts, occupies roughly 1080 blocks of PDP-10
disk storage, or about 64,008 ASCII characters.

58

to hear about the preparation and serving of food, actions

associated with eating, or paying the bill, but not about leaving
the restaurant. This is because the main actor has not fulfilled

the other half of the obligation.

The binding of nominals in the story input to appropriate
fillers in the script templates is accomplished in SAM by means
of script variables with associated features. In the rather
crude system of features presently used, each script variable is
assigned a superset menibership class: e. g., a hamburger 1is a
“food’, while a waiter is a “human’+- certain variables are also
given roles: e. g., a hostess or a waiter can fill the
‘maitre’d” role. The former property would enable the system to
distinguish between "The waiter brought Mary a hamburger" and
"The waiter broyuyght Mary the check". The latter property
identifies important roles in script contexts, primarily those to
which it is possible to make definite reference without previous
introdunction, like “the driver’, “the cook’ or “the check”’. For
stories in which certain script variables are not bound, the
system provides a set of default bindings for the roles not
mentioned: thus, SAM fills in ‘meal” for a story in which the
food ordered 1is not aexplicitly named. Variables without

distinguished roles default to an indefinite filler, 1like

“someone’ for the main actor.

2.2 ScriEt Structure

Each SAM script 1is organized in a top-down manner as

follows: into tracks, consis%ing of scenes, which are in turn

59

composed of subscenes. Each track of a script corresponds to a

manifestation of the situation differing in minor features of the
script roles, or in a different ordering of the scenes. So, for
example, eating in an expensive restaurant and in McDonald’s
share recognizable seating, ordering, paying, etc., activities,
but contrast in the price of the food, type of food served,
number of restaurant personnel, sequence of ordering and seating,
and the like. Script scenes are organized around the main
top-level acts, occurring in some definite sequence, that
characterize a scriptal situation. The giving of presents, for
example, would be a scene focus in a birthday party script, but
putting on a party hat would not be. The latter would correspond
to a subscene, perhaps within the “preparing-to-celebrate’ scene
of that script. 1In general, subscenes are organized around acts
more or less closely related to the main act of the scene, eitHer
contributing a precondition for the main act, as walking to a
table precedes sitting down; or resulting from the main act, as
arriving at the desired location follows from the driver ‘s act of
driving the bus. An intuitive way of identifying scene foci and
scene boundaries is to visualize a script network of interwoven
paths. In such a network, the scene foci would correspond to
points of maximum constriction; scene boundaries to points of
most constriction between foci. This essentially means that all
paths through a scene go through the main act (except abort

paths, discussed below), and relatively few events are at scene

edges.

60

It is necessary, therefore, to distinguish certain events in
a script: scripts, their tracks, scenes and subscenes all have
‘main’, ‘initial’ and °“final® events. For example, the main
event of the ‘ordering’ event in a restaurant is the ordering act
itself; an initial event is reading the menu; and a final event
is the waiter telling the cook the order. Additionally, scripts
and tracks have associated ‘summaries’, which refer to a script
in general terms. Consider, for example, the following sentence
from Story III: "John went to New York by bus". This sentence
is marked in the underlying meaning representation by the SAM
analyzer as a summary because of the presence of:

((ACTOR (*JOHN*) <=> (*SDO*) OBJECT (S$SBUS)))

in the Instrument slot (5). Such sentences have two cocmmon
functions in simple stories. They may indicate that a script was
invoked and completed, and no further input should be expected
for this instance of the script. This function of the summary
often occurs with scripts (like those associated with travelling)
which tend to be used as “instruments’ of other scripts (as in
getting to a restaurant or store). Alternatively, they may
signal that a wider range of possible next inputs is to be
expected than would be predicted if the script were entered via
an initial event. For example, the story seguence initiated with

a summary:

John took a train to New York. While 1leaving the
train, he tipped the conductor.

(5) The primitive ACT SDO is an extension of the primitive
dummy CD ACT DO, and stands for an actor performing his script
for a given situation, in this case the bus script ($BUS).

61

sounds more natural than a sequence beginning with an initial

event:

John got on a train. While 1leaving the train, he
tipped the conductor.

These two functions of the summary contrast widely in the range
of predictions they invoke. However, additional inputs after a

summary, as in the example above, often give the psychological

feeling of “afterthoughts’.

Scenes are built up out of subscenes, which usually contain
a single chunk of causal chain or “path’. In SAM scripts, these
paths are assigned a “value’ to indicate roughly their normality

in the scriptal context. Several pathvalues have been found

useful in setting up the story representation. At one end of the
normality range is ‘default’, which designates the path the
script applier takes through a scene when the input does not
explicitly refer to it. For example, the input seqguence:

John went to Consiglio’s. He ordered lasagna.
makes no mention of John’s sitting down, which would commonly be
assumed in this situation. The system, following the default
path, would fill in that John probably looked around 4inside the
restaurant, saw an empty table, walked over to it, etc. Next on
the normality scale is ‘nominal’, designating paths which are
usual in the script, not involving errors or obstructions in the
normal flow of events. The sentenc¢es in Story II which refer to
the hostess are examples of nominal inputs. Finally, there are
the “interference/resolution’ paths in a script. These are

followed when an event occurs which blocks the normal functioning

62

of the script. 1In a restaurant, for example, having to wait for
a table is a mild interference; its resolution occurs when one
becomes available. More serious because it conflicts directly
with the goal/obligation structure of the script is the main
actor s discovery that he has no money to pay the bill. This is
resolved in Story III by his doing dishes. An extreme example of
an interference is the main actor’s becoming irritated when a
waiter fails to take his order, as in Story I, followed by his

leaving the restaurant. When this happens, the script is said to

have taken an ‘abort’ path.

In addition to the above, certain incomplete paths, i. e.,
paths having no direct consequences within the script, have been
included in the scriptal data base. The most important of these
incomplete paths are the inferences from, and preconditions for,
the events in the direct causal paths. Lumped under the
pathvalue ‘inference’, these subsidiary events identify crucial
resultative and enabling links which are useful in particular for
question-answering [Lehnert, 1975]. For example, the main path
event ‘John entered the train’ has attached the precondition that
the train must have arrived at the platform, which in turn is
given as a result of the driver s bringing the train to the
station. Similarly, a result of the main path event ‘John paid
the bill’ is that he has less money than previously. Both of
these types of path amount to a selection among the vast number
of inferences that could be made from the main path event by an

inferencing mechanism 1like Rieger s Conceptual Memory program

[Rieger, 1975].

63

A special class of resultative inferences' are those common
events which are potentialized by main path events, though they
may not occur in a given story. Labelled with the pathvalue
‘parallel’, these events may either occur often in a specific
context without having important consequences, as in "The waiter
filled John’'s water glass"; or they may happen in almost any
context without contributing much to the story, as in the
sentence "On the bus, John talked to an old lady", from Story
ITI. Since such parallel paths often lead nowhere’, they are

good candidates for being forgotten.

3.0 The Script Applier

Construction of a story representation from CD input
supplied by the SAM analyzer is the job of the script applier
(6). Under control of the SAM executive, the applier locates
each new input in its collection of situational scripts, links it
up with what has gone before, and makes predictions about what is
likely to happen next. Since the SAM system as a whole is
intended to model human understanding of simple, script-like
stories, the script applier organizes its output into a form

suitable for subsequent summary, paraphrase and

question-answering activities.

In the course of fitting a new input into the story

(6) The current version of the applier is programmed in
MLISP/LISP 1.6 and runs in an 85K core image on a PDP-10
computer. Processing of Story III, the longest story attempted

to date, took approximately 8 minutes with SAM as the single user
of the timesharing system.

64

representation, the applier performs several important subtasks.
Identifying an input often requires an implicit job of reference
specification. For example, in the sentence from Story III
beginning "When the check came...", there is surface ambiguity,
reflected in the parser’s output, regarding donor and recipient.
This ambiguity is settled in the restaurant context. by the
assumption that the recipient is the main actor and that the
donor is a member of the restaurant staff, preferably thée waiter.
An allied problem arises whem the applier, in placing a new
conceptualization in the story representation, determines the
relevant time relations. Certain types of time data are computed
from the output conceptualization itself: for example, the
relation between an MTRANS and its MOBJECT, which may determine
whether ‘remember® or “ask for 1is appropriate in the final
output. Other time relations are defined by the causal structure

of the script itself: thus ‘eating’ follows ‘ordering’.

More complex time-order computations have to be made when
the applier identifies two or more °“simple’ conceptualizations in
a compound input derived from sentences containing ambiguous
words like ‘during’ or ‘when’. Examples of this were encountered
during the processing of Story III, for example, in the sentence
‘When he 1left the bus, he thanked the driver’. The system
resolves this compound input into the plausible sequence of a

PTRANS to the driver, the MTRANS of the “thanking , and the
PTRANS off the bus.

65

3.1 Story Representation

The output of the script applier consists of 1linked story
segments, one per script invoked, giving the particular script
paths traversed by the input story. The backbone of the story

representation is the eventlist of all the acts and state-changes

that took place. The eventlist is doubly 1linked, causally and

temporally, with the type of causation and time relations filled

in within a story segment by the applier.

Attached to the eventlist are the appropriate, instantiated
preconditions, inferences and parallel events for each main path
event. As discussed above, the inferences and preconditions have

been selected for their expected utility in question-answering.

Each story segment is identified by a 1label which gives
access to important properties of the segment: what script it
came from; what the particulars were of the script summary,
maincon, entrycon, and exitcon this time through; and what
interference/resolution cycles were encountered. Additionally,
pointers are provided to extra-scriptal ‘weird’ events that
happened in the story. At the top, the global identifier STORY
gives the gross structure of the story in terms of seguential,
parallel and nested scripts and the weird things. This
hierarchical organization facilitates summary and short
paraphrase processing, while retaining the fine structure needed

for extended paraphrasing and question-answering.

66

Story III illustrates most of the present capabilities of
the SAM script applier 1in story understanding. The applier
accepts a CD representation of the nine sentences in turn from
the analyzer and builds an eventlist consisting of 56 main path
conceptualizations and 39 associated preconditions/inferences.
The ‘parallel’” events of John talking to the o0ld lady and the bus
driver also appear in the eventlist. The eventlist 1is divided
into four story segments, one each for the bus, subway and
restaurant scripts and one for the “weird’ robbery event. The
identifier for the subway segment is marked as containing the
weird event, as is the global STORY. The restaurant segment
contains the interference/resolution pair ‘unable to pay/wash
dishes’. Additionally, the lack of money encountered during the
paying scene was checked with the SAM executive during the
processing of Story III, since it violates one of the prime
preconditions of the restaurant script. Since the executive
found that the loss of money was a consequence of the stealing
event that occurred earlier, this event is not marked as weilrd.
Appropriate summaries are provided for each story segment. At
the top, STORY contains the information that the four segments
are organized as a sequence of bus, subway and restaurant, with

the pickpocket event nested inside the subway segment.

4.0 Future Work

As the examples show, SAM is capable of handling fairly
complex stories in 1its present state of development. However,

several extensions and additions to the scriptal data base and

the script applier appear to be needed before SAM can achieve its

67

ultimate potential.

First, a more flexible method of pattern-matching is
required so that the full diversity of input role-fillers can be
accommodated. A method of comparing features of nominals in the
parser output to the appropriate script variables is needed so
that over- or underspecified inputs can be correctly identified.
For example, the applier should be able to recognize the phrase

“the restaurant’ as a partially specified instance of ‘Leone’s’,

found earlier.

As an extension of this, input conceptualizations of a
descriptive nature (e. g., "The restaurant was of red brick")
need to be processed in a way that allows the system to update
its ‘image” of the role-fillers in a script. The facilities
needed are similar to those provided by the “occurrence set’ in

Rieger ‘s Conceptual Memory program [Rieger, 1975].

The most important problem to be faced, however, 1is the
generalization of the story representation to handle stories with
several main actors, or with non-synchronous events. It is clear
that the simple linear eventlist structure described in Section
3.1 would not be adequate for even such a simple story sequence

as:

"The cook made the 1lasagna. Meanwhile the wine
steward poured the wine.”

4.1 Acknowledgement

The programs discussed here are only a part of the SAM

system, and a great deal of credit is due to my co-workers in the

68
Yale AI Project: to Professors Roger Schank and Bob Abelson for
the theory on which SAM is based and for their overall guidance;
to Dr, Chris Riesbeck for valuable discussion and criticism, as
well as a substantial part of the programming effort; and to
Gerry DedJong, Leila Habib, Wendy Lehnert, Jim Meehan, Dick

Proudfoot, wally Stutzman and Bob Wilensky.

References

Schank and Abelson 1975
R. cC. Schank and R. P. Abelson, "Scripts, Plans and

Knowledge”, Proceedings of the Fourth International Joint
Conference on Artificial Intelligence, Tbilisi, USSR, 1975.

Schank 1973

R. C. Schank, "Causality and Reasoning"”, Technical. Report No.

1, Instituto per gli studi semantici e cognitivi, Castagnola,
Switzerland, 1973.

Schank 1974

R. C. Schank, "Understanding Paragraphs", Technical Report No.

6, Instituto per gli studi semantici e cognitivi, Castagnola,
Switzerland, 1974.

Schank et al 1975

R. C.. Schank and the Yale AI .Project, , "SAM--A Story
Understander", Research Report No. 43, Yale University
Department of Computer Science, 1975

Lehnert 1975

W. P. Lehnert, "Wwhat makes SAM run? Script-Based Technigues
for Question Answering"”, Proceedings of the Conference on
Theoretical Issues in Natural Language Processing, edited by R.
Schank and B. Nash-Webber, 1975.

Charniak 1975

E. Charniak, "Organization and Inference in a Frame-Like System
of Common Sense Knowledge", Proceedings of the Conference on
Theoretical Issues in Natural Language Processing, edited by R.
Schank and B. Nash-Webber, 1975.

69

Minsky 1974
M. Minsky, "Frame-Systems", MIT AI Memorandum, 1974.

Rieger 1975

cC. Rieger, "Conceptual Memory”, in Conceptual Information
Processing, R. Schank (ed.), North Holland, 1875.

