American Journal of Computational Linguistics ricrofiche 33 : 45

GENERATION AS PARSING FROM A NETWORK INTO A LINEAR STRING

STUART C. SHAPIRO

Computer Science Department

Indiana University

Bloomington 47401

ABSTRACT

Generation of English surface strings from a semantic network

is viewed as the creation of a llinear surface string that describes
a node of the semantic network. The form of the surface string is
gontrolled by a recursive augmented transition network grammar,
which is capable of examining the form and content of the semantic
network connected to the semantic node being described. A single
node of the grammar network may result in different forms of sur-
face strings depending on the semantic node it is given, and a
single semantic node may be descrlbed by different surface strings
depending on the grammar node it 1s glven to. Since generation
from a semantic network rather than from disconnected phrase markers,,

the surface string may be generated directly, left to right.
Introduetion

In thls paper, we discuss the approach being taken in the Engllish
generation subsystem of a natural language understanding system
presently under develorment at Indiana University. The core of
the understander 1s a semantlc network processing system, SNePS
(Shapiro, 1975), which is a descendant of the MENTAL semantic sub-
system (Shapiro, 1971a, 1971b) of the MIND system (Kay, 1973).

The role of the generator 1s to describe, in Engllish, any of the

nodes in the semantic network, all of which represent concepts of

the understanding system.

46
and other computations are required in the process of pasting these

trees tog ther in appropriate piaces until a single phrase marker
is attained which will lead to the surface string. Since we are
generating from a semantic network, all the pasting together 1is
already done. Grabbing the network by the node of interest and
letting the network dangle from it gives a structure which may be
searched appropriately in order to generate the surface string
directly in left to right fashion.

Our system bears a superficial resemblance to that described
in Simmons and Slocum, 1972 and in Simmons, 1973. That system,
however, stores surface information such as tense and voice in its
semantic rnietwork and its ATN takes as input a linear 1list contain-
ing the semantic node and a generation pattern consisting of a
"series of constraints on the modality" (Simmons et al., 1973, p. 92

The generator described in Schank et al., 1973, translates from
a "conceptual structure" into a network of the form of Simmons'
network which is then given to a version of Simmons generation
program. The two stages use different mechanisms. Our system
amounts to a unificatio of these two stages.

The generator, as described in this paper, as well as SNePS,
a parser and an inference mechanism have been written in LISP 1.6

and are running Iinteractively on a DEC system~10 on the Indiana

University Computing Network.

Representation in the Semantic Network

Conceptual information derived from parsed sentences or deduced

from other information (or input directly via the SNePS user's lan-

guage) is stored in a semantic network. The nodes in the network

represent concepts which may be discussed and reasoned about. The

edges represent semantic but non-conceptual binary relations

between nodes. There are also auxiliary nodes which SNePS can

use or which the user can use as SNePS variables. (For a more

complete discussion of SNePS and the network sec Shapiro, 1975.)

The semantic network representation belng used does not in- 47
clude 1nformation considered to be features of the surface string
such as tense, voice or main vs. relative clause. Instead of tense,
temporal information 1s stored relative to a growing time line

in a manner similar to that of Bruce, 1972. From this information
a tense can be generated for an output sentence, but it may be a

different tense than that of the original input sentence if time
has progressed in the interim. The volice of a generated sentence
is usually determined by the top level call to the generator func-
tion. However, sometlimes it is determined by the generator gram-
mar. FIFor example, when generating a relative clause, volce is
determined by whether the noun being modifled .is the agent or ob-
Ject of the action described by the relatlve clause. The nmain
clause of a generated sentence depends on which semantic node is
given to the generator in the top level call. Other nodes con-
nected to it may result in relative clauses being generated. These
roles may be reversed in other top level calls to the generator.

The generator is driven by two gets of data: the semantic net-
work and a grammar in the form of a recursive augmented transition
network (ATN) similar to that of Woods, 1973. The edges on
our ATN are somewhat different from those of Woods since our view
1s that the generator 1s a tranducer from a network into a linear
string, whereas a parser 1s a transducer from a linear string into
a tree or network. The changes this entalls are discussed below.
During any polnt in generation, the generator 1s working on some
particular semantic node. PFunctions on the edges of the ATN can
examine the network connected to this node and fall or succeed
accordingly. In thils way, nodes of the ATN can "decide" what sur-
face form is most appropriate for describlng a semantie¢ node, while
different ATN nodes may generate different surface forms to des-
cribe the same semantic node.

A common assumption among linguists 1s that generation begins

with a set of disconnected deep phrase markers. Trans format long

48

%% % 3'&0003 ‘MOOOB
¥ = MOO1T7{
Y, a 37 HIOA,
M0009 . ¥... TM0012 </ MOOLI™~\
MOO.Ll 0) AT
] WHICH m0020 MO013 % mogos
Moo16§f 3 M *
<XM0018
LEX LEX |LEX |LEX LEX |LEX LEX LEX
3 3 3 : 3 6 . 3
DOG KISS YOUNG SWEET LUCY PERSON CHARLIE BELIEVE

Figure 1: Semantlc Network Representation for "Charlie belleves
that a dog kilssed sweet young Lucy," "Charlie is a person," and
"Lucy is a person."

~«f2rmation considered to be features of surface strings are not
stored in tire semantic network, but are used by the parser in con-
structing the network from the lnput sentence and by the generator
for generating a surface string from the network. For example,
tense 1s mapped into and from temporal relations between a node
representing that some action has, is, or will occur and a growing
time line. Restrictive relative clauses are used by the parser
to identify a node belng discussed, while non-restrictive relative
clauses may result in new information being added to the network.
The example used in thils paper is designed to illustrate the
generation 1ssues being discussed. Although it also illustrates

our general approach to representational issues, some details will

49

¥ (SNEG MQOZ2b)

(CHARLIE IS BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY):
* (SNEG M0023)

(A DOG KISSED SWEET YOUNG LUCY)

% (SNEG M000T7)

(CHARLIE WHO IS BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY)

% (SNEG MO00J4)

(CHARLIE IS A PEKSON WHO IS BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY)
(SNEG MOO006)

(CHARLIE WHO IS BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY IS A PERSON)
¥ (SNEG M0008)

(THE BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY BY CHARLIE
* (SNEG M0011l)

(A DOG WHICH KISSED SWEET YOUNG LUCY)

% (SNEG M0010)

(THAT WHICH KISSED SWEET YOUNG LUCY IS A DOG)
* (SNEG M0012)

(THE KISSING OF SWEET YOUNG LUCY BY A DOG)

% (SNEG M0020)

(SWEET YOUNG LUCY WHO WAS KISSED BY A DOG)
% (SNEG MOO1lH)

(LUCY IS A SWEET YOUNG PERSON WHO WAS KISSED BY A DOG)
*(SNEG M0015)

(SWEET YOUNG LUCY WHO WAS KISSED BY A DOG IS A PERSON)
¥ (SNEG M0OO017)

(SWEET LUCY WHO WAS KLSSED BY A DOG IS YOUNG)
* (SNEG M0019)

(YOUNG LUCY WHO WAS KISSED BY A DOG IS SWEET)

Figure 2: Results of calls to the generator with nodes from
Figure 1l- User input 1s on lines beginning with ¥.

certalnly change as work progresses. Figure 1 shows the semantic

network representation for the information in the sentencess, "Charlie

believes that a dog kissed sweet young Lucy," "Charlie is a person,"

and "Lucy is a person." Converse edges are not shown, but

1n all cases the label of a converse edge is the label of the for-
ward edge with '*' appended except for BEFORE, whose converse edge

1s labelled AFTER. LEX pointers point to nodes contalning lexical

entries. STIME polnts to the starting time of an action and ETIME
to its ending time. Nodes representing instants of time are re-
lated to each other by the BEFORE/AFTER edges. The auxiliary node
NOW has a :VAL pointer to the current instant of time.

Figure 2 shows the generator's output for many of the nodes of

Figure 1. Filgure 3 show3 the lexlicon ugsed in the example.

50

(BELIEVE((CTGY.V) (INF.BELIEVE)
(PRES.BELIEVES) (PAST.BELIEVED) (PASTP .BELIEVED) (PRESP.BELIEVING)))
(CHARLIE((CTGY.NPR)(PI.CHARLIE)))
(DOG{ {CTGY.N) (SING.DOG) (PLUR.DOGS)))
(KISS{(CTGY.V) (INF.KISS)

(PRES.KISSES) (PAST.KISSED) (PASTP.KISSED) (PRESP.KISSING)))
(LUCY.((CTGY.NPR) (PI.LUCY)))

(PERSON({CTGY.N (SING.PERSON) (PLUR.PEOPLE)))
(SWEET({CTGY .ADJ) (PI.SWEET)))
(YOUNG{(CTGY.ADJ) (PI.YOUNG)))

Figure 3: The lexicon used in the example of Figures 1 and 2.

Generation as Parsing

Normal parsing involves ftaking input from a linear siring and

producing a tree or network structure as output. Viewing this

in terms of an ATN grammar as described in Woods, 1973, there is a
well-defined next input functlon which simply places successive
words into the: ¥ register. The output function, however, is more
complicated, using BUILDQ to build pieces of trees, or, as in our
parser, a BUILD function to build pieces of network.

If we now consider generating in these terms, we see that there
is no simple next input function. The generator will focus on
some semantic node for a while, recursively shifting its attention
to adjacent nodes and back. Since there are several adjacent nodes,
connected by variously labelled edges, the grammar author must
specify which edge to follow when the generator is to move to another
semantic node. For these reasons, the same focal semantic node
is used when traversing edges of the grammar network and a new se-
mantic node is- specified by giving a path from the current semantic
node when pushing to a new grammar node. The register SNODE is
used to hold the current semantic node.

The output functlion of generatlion is straightforward, simply
being concatenation onto a growing string. Since the output string

is analogous to the parser's input string, we store it in the reg-

51

gare ::= (TEST test [action]*(TO gnode))
(JUMP [eaction]*(TO gnode))
(MEM wform (word*) test [action]*(TO gnode))
(NOTMEM wform (word*) test [action]*(TO gnode))
(TRANSR ([regname] regname regname) test [action]¥* (TO gnode))
(GEN gnode sform [actlon]®*regname [actlion]*¥(TO gnode))
sform ::= wform
SNODE

wform ::= (CONCAT fqorm form*)
(GETF sarc [sform])
(GETR regname)
(LEXLOOK 1feat [sform])

sexp
form.::= wform
sform
action ::= (SETR regname form

(ADDTO regname form¥)
(ADDON regname form¥)
sexp

test ::= (MEMS form form)

(PATH sform sarc¥* sform)
form

sexp

gnode ::= <any LISP atom which represents a grammar node>
word ::= <any LISP atom>

regname ::= <any non-numeric LISP atom used as a register name>
sarc ::= <any LISP atom used as a semantic arc label>
1feat ::= <any LISP atom used as a lexical feature>

sexp ::= <any LISP s-eXxpression>

Figure 4: Syntax of edgesd of generator ATN grammars

ister *. When a pop occurs, 1t is always the current value of #*
that is retiurned.

Figure U4 shows the syntax of the generator ATN grammar. Object
language symbols are), (, and elements 1n capltal letters. Meta-
language symbols are in lower case, Square brackets enclose op-
tional elements. Elements followed by * may be repeated one or more
times. Angle brackets enclose informal English descriptions.

Semantics of Edge Functions

In this section, the semantics of the grammar arcs, forms and

tests are presented and compared to those of Woods' ATNs .+ The

A it

t All comparisons are with Woods, 1973.

s2

TEST(GETF_VERB) ZREG
TEIT(GETF _ADJ) —w(SADT D)

- . SADJ
TEST(GETF NAME)

TEST (GETF MEMBER) SMEM

TEST{GETF VERB)(SETR REF NIL)
J

; =m + *
G1 JUMP NCLND TEST(GETF_VERB*) _@
TME

JUMP(SETR * @(//// NO GRAMMAR NODE FOUND))

Figure 5: The default entry into the grammar network.

essential differences are those requlired by the differences between

generating and parsing as discussed in the previous section.

(TEST test [action]¥*(TO gnode))
If the test 1s successful (evaluates to non-NIL), the actions
are performed and generation continues at gnode. If the test

fails, this edge is not taken. TEST-is the same as Woods' TST,
while TEST(GETF sarc) is analogous to Woods' CAT.

(JUMP [action]*(TO gnode))

Equivalent to (TEST T [action]*(TO gnode)). JUMP is similar

in use to Woods' JUMP, but the difference from TEST T disappears

since no edge "consumes" anything.

(MEM wform (word¥®) test [action]*(TO gnode))

If the value of wform has a non-null intersection with the
list of words, the test 1s performed. If the test is also success~
ful the actions are performed and generation continues at gnode.

if either the intersection 1s null or the test fails, the edge

53

MEM(GETR VC)(PASS)T_.%EE}‘GEN NCLNP (GETF OBJECT)
(ADDTO DONE SNODE)#*

_GEN NCLNP (GETF AGENT)(ADDTO DONE SNODE)*

Figure 6: Generation of subject of subject-verb-object sentence.

(_SREG) PRED

is not taken. This is similar in form to Woods' MEM, but malnly

used for testing registers.

(NOTMEM wform (word*) test [action]*(TO gnode))

This 1s exactly llke MEM except the 1ntersection must be null.

(TRANSR ([regnamelj regname., regname3) test [action]*{TO gnode))
If regname is present, the contents of regname2 are added

on the end of regname, . It regname3 is empty, the edge is not

taken. Otherwise, the first element in r'eg;name3 is removed and

placed in regname., and the test 1s performed. If the test fails,

the edge 1s not taken, but if it succeeds, the actions are performed

and generation continues at gnode. TRANSR 1is used to 1lterate through

several nodes all in the same semantlie relation with the main se-

mantic node.

(GEN gnodel sform [action]¥regname [action]*(TO gnode2))

The first set of actions are performed and the generation 1s
called recursively with the semantic node that 1s the value of sform
and at the grammar node gnodel. If this generatlon 1s successful
(returns non-NIL), the result is placed in the register regname,
the second set of actions are performed and generation continues
at gnodez. If the generation falls, the edge 1s not taken. This
is the same a8 Woods' PUSH but requires a semantic node to be speci-
fied and allows any register to be used to hold the result. In-

stead of having a POP edge, a return automatically occurs when

54

TEST(Palid Gl b Lk) ot URE(* GhOW)) »(VPASTD

TEST(PATH(GETF STIME)AFTER(* Q@NOW))

JUMP (SETR REF(STRIP(FIND AFTER{4(GETF STIME))

(PRED) BEFORE (+(GETF ETIME)))))

TEST(PATH(GETF ETIME)BEFORE AXTER(* «04)) T
(ADDON * Q@WILL Q@HAVE)

TEST(PATH(GETF ST1ME)AFTER BEFORE(¥ @NOW)) T
(ADDON * @WOULD)

JUMP (ADDON ¥ @(///CANNOT COMPUTE TENSE))

(TFROGR)-LEST(GETR REF) e(VPROGRTTS)
TEST(MEMS (GETR REF) (* @NOW)) (ADDON * RIS)

E E(#¥ W ® 3
@PROGRTNS%TES‘E(PATH(GETR REF)BEFCRE (¥ @NOW)) (ADDON '_WAS)
TEST(PATH(GETR REF)AFTER(*‘@NOW))(ADDON ¥ QWILL ZBE) 4

MEM(GETR VC) (PASS)T(ADDON ¥* @BEEN)

JPE_) JUMP
MEM(GETR VC) (PASS)T(ADDON ¥ @BE)
VFP JUMP

MEM(GETR VC) (PASS)T(ADDON * @WILL @§E)‘\\

(WFUT_)__juMP (ADDON * @WILL) -

MEM(GETR VC) (PASS)T(ADDON * QWAS)

JUME :
MEM(GETR VC)(PASS)T(ADDON * @BEING) _/

(EROGRLI ;yMp (ADDON *# (LEXLOOK PRESP(GETF VERB)))

AST1)

575, JUMP(ADDON * (LEXLOOK PASTE(GETF VERB)))
JUMP (ADDON * (GETF VERB))) SUROB
@E D LEXLOOK INF(E) -
—— JUMP (ADDON * (LEXLOOK PAST(GETF VERB)))

Figure 7: Tense generation network.

transfer is made to the node END. At that point, the contents of

the register named ¥ are returned.

(CONCAT form form¥)
The forms are evaluated and concatenated 1n the order given.

Performs a role analogous to that of Woods' BUILDQ.

(GETF sarc [sform])
Returns a list of all semantic nodes at the end of the seman-

tic¢ ares labelled sarc from the semantic node which is the value

55

Tenge Actilve Passive

past broke was broken

future will break will be broken
present progressive| 1s breaking is being broken

past progressive was breakling was belng broken
future progréssive will be breaking| will be being broken
past in future will have broken}| will have been broken
Future in past would break would be broken

Pigure 8: The tenses of "break" which the network of Figure 7
can generate.

of sform. If sform is missing, SNODE is assumed. Returns NIL if

there are no such semantic nodes. It is similar in the semantic

domain to Woods' GETF in the lexical domain.

(GETR regname)

Returns the contents of register regname. It 1s essentially

the same as Woods' GETR.

(LEXLOOK 1lfeat [sform])

Returns the value of the lexical feature, 1lfeat, of the lexical
entry associated with the semantic node which is the value of sform.
If sform is missing, SNODE is assumed. If no lexical entry is asso-
ciated with the semantic node, NIL is returned. LEXLOOK is similar

to Woods' GETR and as also in the lexical domain.

(SETR regname form)

The value of form is placed in the register regname. It is

the same as Woods' SETR.

(ADDTO regname form*)
Equivalent to (SETR regname (CONCAT (GFTR regname) form¥*)).

(ADDON regname form*)

Equivalent to (SETR regname (CONCAT form* (GETR regname))).
(MEMS form form)

Returns T i1f the values of the two forms have a non-null intersec-
tion, NIL otherwilse.

TEST(GETF AGENT) (ADDON * @BY) srree
MEM(GETR VC) (PASS)T
JUMP

UROB TEST{GETF OBJECT PREDOBJ
UMP

*
C:)PBEDAGI GEN_NCLNP (GETF AGENT) REG (ADDON *(GETR REG))

(::::::2; *
PREDOB GEN NCLNP(GETF OBJECT) REG (ADDON *(GETR REG))

Figure 9: Generating the surface object.

(PATH sform, sarc®* sformz)

1
Returns T if a path described by the sequence of semantic arcs
exists between the value of sforml and sformz. If the sequence
is sarcl sarc, ... sarc., the path described is the same as that
indicated by sarcl* sarcz* cee sarcn*. If no such path exists,

NIL is returned. (Remember, ¥ means repeat one or more times.)

Discussion of an Example Grammar Network

The top level generator function, SNEG, is given as arguments
a semantlc node and, optionally, a grammar node. If the grammar
node 1is not given, generation begins at the node Gl which should
be a small discrimination net to choose the preferred description
for the given semantic node. This part of the example grammar is
shown 1In Flgure 5. JIn it we see that the preferred description
for any semantic node 1s a sentence. If no sentence can be formed
a noun phrase wlll be tried. Those are the only presently avail-
able options.

Semattic nodes with an outgoing VERB edge can be described by
a normal SUBJECT-VERB-OBJECT sentence. (For this example, we

have not used additional cases.) First the subject is generated,

57

3E57 GEN NP(CETF WHICH) (ADDTO DONE SNODE)*
(ADDON * QIS(LEXLOOK PI(CETF ADJ)))

SHAVE GEN NP(GETF NAMED) (ADDTOQ DONE SNODE)*
(ADDTO *(LEXLOOX PI(GETF NAME)) @QIS)

END

SWEM GEN NP(GETF MEMBER) (ADDTO DONE_SNODE) ¥
(ADDON * @IS @A(LEXLOOK SING(GETF CLASS)))

Figure 10: Generating the three "non-regular" sentences.

which depends on whether the sentence is to be in active or passive
voice. Alternatively, the choice could be expressed in terms of
whether the agent or obJect 1s to be the toplic as suggested by Kay,
1975. Figure 6 shows the network that generates the subject. The
register DONE holds semantic nodes for which sentences are being
generated for later checking to prevent infinite recursion. Without
it, node M0023 of Figure 1 would be described as, "A dog which kissed

young sweet Lucy who was klssed by a dog which klssed..."

The initlal part of the PRED network is concerned with generat-
ing the tense. This depends on the BEFORE/AFTER path between the
starting and/or endine time of the actlon and the current value of
NOW, which.1s given by the form (¥ @NOW). TFigure 7 shows the tense
generation network. Figure 8 shows the tenses this network is able
to generate.

After the verb group l1ls generated, the surface objJject is gener-
ated by describing elther the semantic agent or objJect. Figure 9
shows this part of the network

The other three kinds of sentences are tor describing nodes
representing: (1) that something has a particular adjective attribu-
able to 1t, (2) that something has a name, (3) that something is a
member of some class. The networks for these are shown in Pigure
10. Agaln, the DONE register 1s used to prevent such sentences as

"Sweet young Lucy 1s sweet," "Charlie 18 Charlie," and "A dog 1s a dog."

58

%
@l’UMP (ADDON * @THE(LEXLOOK PRESP))(ADDTO DONE(GETF VERB*))

GEN S (GETF OBJECT(GETF VERB¥*))REG(ADDON * @THAT(GETR REG))

VO GEN NP(GETF OBJECT(GETF VERB¥*))REG(ADDON ¥ @OF(GETR REG))

NVA
UMP .
GEN NP(GETF AGENT(GETF VERB*¥*))REG(ADDON * @BY(GETR REG))
HVA
JUMP CEND)

cﬁgzngN SREG_SNODE ¥ (ADDTO * QTHAT)

Figure 11: Generating nominalized verbs and sentences.

Fugure 5 showed three basic kinds of noun phrases that can be
generated: the noun clause or nominalized sentence, such as "that
a dog kissed sweet young Lucy"; the nominalized verb, such as "the
kissing of sweet young Luecy by a dog"; the regular noun phrase.

The first two of these are generated by the network shown in Figure

11. Here DONE is used to prevent, for example, "the kissing of sweet

young Lucy who was kissed by a dog by a dog."

The regular noun phrase network begins with another descrimina-
tion net which has the following priorities: use a name of the objJect;
use a class the objJect belongs to; use something else known about
the object. A lower priority description will be used if &all higher
priority descriptions are already in DONE. PFigure 12 shows the be-
ginning of the noun phrase network. AdjJectives are added before the

name or before the class name and a relative clause 1s added after.

59
TEST(AND (GETF WAMED?) (NUT (MEMS (UTF NAMED*) {GETR DONE))) NPNA

T N ER#* EMS ' MENMHER¥*
B EST(AND(GETF MEMBER*) (NOT (MEMS (GETF MENBER*) (GETF DONE))))
TEST(OR(GETF AGENT*)(GETF OBRJECT*))(SETR * MTHAT)

GEN ADJS SNODE *

ToMp 3@ JUMP (ADDON *
(LEXLOOK PI(GETF NAME(GETF NAMED*))))

GEN ADJS SNODE_*(ADDTO * @A)

UMP (SETR * @A)

T JUMP (ADDON *
(LEXLOOX SING(GETE CLASS(GETF MEMBER%*))))

Figure 1l2: The beginning of the noun phrase network.

Figure 13 shows the adjectlve string generator and Figure 14 shows
the relative clause generator. Notice the use of the TRANSR edges
for iterating. At this time, we have no theory for determining the
number or whilch adjectives and relative clauses to generate, so
arbitrarily we generate all adjectives not already on DONE but only
one relative clause. We have not yet implemented any ordering of

adjectives. It is merely fortuitous that "sweet young Lucy" is

generated rather than "young sweet Lucy". The network is written
80 that a relative clause for which the noun is the deep agent 1s
preferred over one In which the noun 1s the deep object. Notice
that this cholice determines the voice of the embedded clause. The
form (STRIP(FIND MEMBER (4 SNODE) CLASS (FIND LEX PERSON))) is a
call to a SNePS function that determines if the obJect is known to
be a person, in which case "WHO" 1s used rather than ™WHICH". This
determination is made by referring to the semantic network rather

than by including a HUMAN feature on the lexical entrles for LUCY
and CHARLIE.

60

*
ADTS JUMP (SETR ADJS (GETF WEICH

TEST(NOT(MEMS (GETR ARJ) (GETR DONE)))
* -
TRANSR(”DJ ADJS)T A (ADDON *(LEXLOOK PI(GETF ADJ(GETR ADJ))))

ADJ
JUMP_

Figure 13: The network for generating a string of adjectives.

Notice that any information about the object being described
by a noun phrase may be used to construct a relative clause even
if that information derived from some main clause. Also, whille
the generator is examining a semantic node all the information about
that node 1s reachable from it and may be used directly. There
is no need to examine disjoint deep phrase markers to discover where

they can be attached to each other so that a complex sentence can be

derived.

Future Work

Additional work needs to© be done 1n developing the style of
generation described in this paper. Experience with larger and
richer networks will lead to the following issues: describing a node
by a pronoun when that node has been described earlier in the string;
regulating verbosity and complexity, possibly by the use of resource
bounds simulating the limitations of short term memorys keeping sub-
ordinate clauses and descriptions to the point of the conversation
possibly by the use of a T0-DO register holding thenodes that are
to be included in the string.

In this paper, only indefinite descriptions were generated. We
are working on a routine that will identify the proper subnet of the
semantic network to justify a definite description. This must be
such that it uniquely lidentifies the node being described.

61
REL JUMP (SETR CLZ (GETP AGENT*

TEST (NOT (MEMS (GETR CL) (GETR DONE)))

TRANSR(CL CLS)T (SETR VC @ACT)
R

JUMP

RELPASS)JUMP (SETR CLS(GETF OBJECT*))

TEST(NOT(MEMS (GETR GL)(GETR DONE)))

/ (SETR Ve @PASS)
»(RELPASS2)

JUMP JUMP

TRANSR(CL CLS)T

TEST(STRIP(FIND MEMBER(4 SHIDE)CLASS(FIND LEX PERSON)))
RELADD (ADDON * @WHO)

RELADD1
JUMP (ADDON * QWHICH
RELADDT)CEN PRED(GETR CL) (ADDTO DONE(GETR CL))REG NG
(ADDON * (GETR REG))

Figure 14: The relative clause generator.

Acknowledgements

The author is Iindebted to John Lowrance, who implemented the
generator, Stan Kwasny, who implemented the parser, Bob Bechtel,
who worked dut the temporal representation, Nich Vitulll and Nick
Eastridge, who implemented versions of SNePS, and Jim McKew for
general software ~upport. Computer service was provided by the

IUPUI Computing Facilities. Typing and graphics were done by
Christopher Charles.

62

References

Bruce, B.C. 1972. A model for temporal references and its appli-
cation in a question answering program. Artificial Intelli-

gence 3, 1, 1-25.

Kay, M. 1973. The MIND system. Natural Language Processing, R.
Rustin (Ed.), Algorithmics Press, New York, 155-180.

Kay, M. 1975. Syntactic processing and functional sentence per-
spective. Theoretical Issues in Natural Language Processing

R. Schank and B.L. Nash-webber (Bds.), Bolt Beranek,& Newman,
Inc., Cambridge, Massachusetts.

Schank, R.C.3; Goldman, N.; Rieger, C.Jd., III; and Riesbeck, C. 1973.
MARGIE: memory, analysis, response generation, and inference
on English. Proc. Third International Joint Conference on Arti.
ficial Intelligence, Stanford University, August 20-23, 255-261.

Shapiro, S.C. 1971a. The MIND system: a data structure for seman-
tic information processing. R-837-PR. The Rand Corp., Santa
Monica, California.

Shapiro, S.C. 1971b. A net structure for semantic information
storage, deduction and retrieval. 2nd International Joint Con-
ference on Artificlal Intelligence: Advance Papers of the Con-
ference, British Computer Society, London, 512-523.

Shapiro, S.C. 1975. An introduction to SNePS. Technicdal Report

No. 31, Computer Science Department, Indiana University, Bloom-
ington,

Simmons, R.F. 1973. Semantic networks: their computation and use
for understanding English sentences. Computer Models of Thought

and L e, R.C. Schank and K.M. Colby (Eds.), W.H. Freeman
and Co., %an Francisco, 63-113.

Simmons, R.F., and Slocum, J. 1972. Generating English discourse
from semantic nets. Comm. ACM 15, 10, 891-905.

Woods, W.A, 1973. An experimental parsing system for transition

network grammars. Natural Language Processing, R. Rustin (Ed.),
Algorithmics Press, New YOTK, %Tigiﬁu.

