American Journal of Computational Linguistics wmicrofiche 33 : 33

A LexicaL Process MopeL oF NoMINAL COMPOUNDING IN FNGLISH

JAMES R. RHYNE

Department of Computer Science
University of Houston
Houston, Texas 77004

ABSTRACT

A theoretical model for nominal compound formation in English
is presented in which the rules are representations of lexical
processes. It is argued that such rules can be generalized to
account for many nominal compounds with similar structure and
to enable new compounds to be produced and understood. It is
shown that nominal compounding depends crucially on the existence
of a "characteristic" relationship between a nominal and the
verb which occurs in a relative clause paraphrase of a compound
which contains the nominal. A computer implementation of the
model is presented and the problems of binding and rule selection
are discussed,

34
Linguistic Issues.

Nominal compounds are sequences of two or more nominals
which have the semantic effect of noun phrases with attached
relative clauses. The rightmost nominal is generally the primary
referent of the compound the other nominals restrict the
reference of the rightmost nominal in much the same fashion that
a relative clause does. There are, of course, exceptions in
which the rightmost nominal is figurative or euphemistic
(e.g. family jewels). Compounds occur frequently in English and
Germanic languages, but infrequently in the Romance languages
where their function is largely performed by nominal-preposition-
nominal sequences (e.g. chemin de fer, agent de change).

The syntactic structure of nominal compounds is quite simple
--the three variants are N-N, N-participle-N, and N-gerund-N.

In the N-N form, either of the two nominals may in fact be yet
another nominal compound, giving a structure like (N-N)-N or
N- (N-N); the first of these forms seems to occur much more often

than the second (examples of each type are: typewrite: mechanic,
liquid roach'gpison).

I assume that the process of nominal compounding is syntac-
tically a process in which a relative clause is reduced by delet-
ing all elements of the relative clause but one and preposing the
single remaining element ir front of the antecedent nominal. In
addition, the clause verb may be nominalized .nd preposed. Other
linguists have proposed different derivations for nominal
compounds; Lees [3], for example, derives nominal compounds from
nominal-preposition-nominal sequences. There are two reasons why
I feel that Lees approach is wrong: (1) there are English
compounds for which no reasonable equivalent nominal-preposition-
nominal paraphrase can be given (e.g. windmill), and (2) there
are subtle meaning differences between the nominal compounds and
their nominal-preposition-nominal counterparts (county clerk vs.
clerk for the county). If nominal compounds and nominal-
preposition-nominal sequences are derived from forms like

relative clauses, then the differences in meaning can be accounted

35

for by deriving each form from a distinct relative clause; the
relative clauses may, of course, be quite closely related to
each other.

I have spoken rather loosely about deriving nominal compounds
from relative clauses; I am not proposing a derivation system
which operates on surface forms of the language, and what I
intend that the reader should understand is that an underlying
form for a nominal compound is derived from an underlying form
for a relative clause by a language process which I term a
lexical ruleée because, as we shall see, the operation of such
rules depends crucially on the specific lexical items which are
present in the underlying structures. Linguists have identified
a number of lexical processes in English; some examples of such
processes may be found in [1] and [2].

The underlying forms associated with relative clauses and
nominal compounds in the model of nominal compounding being
preésented here are networks (trees for the most part) defined
in terms of a case grammar which is closely related to that
used by Simmong [5]. The cases which appear in this swystem fall
into two gemeral categories: (1) cases of the clause verb, which
are the following -- Performer, Object, Goal, Source, Location,
Means, Cause, and Enabler -- and (2) structural cases, which are
REICL (relative clause) and COMP (compound). I will not explain
these cases in detail, as that is the subject of a forthcoming
paper. But the following observations will illuminate the case
system for verb cases. The case system distinguishes the
immediate performer of an act from a remote cause or agent of
the act. The reason for this distinction lies in an intimate
connection between verbs and the assumed or habitual performer
of the act which is the reference of the verb. The case sSystem
also distinguishes an active causative agent of an act from
an agent which merely permits the act to occur; this distinction
in the case system permits two classes of verbs to be distinguished

according to whether the surface subject commonly causes the act
or permits the act to occur.

36

The case system used in the present model of nominal
compounding is not a deep case system; on the contrary, it seems
that nominal compounding is a lexical process which occurs
rather near the surface in a derivatidnal grammar model. An
example which can be given to support this is the compound
ignition key; this is a key ‘'which turns a switch which enables
a complex sequence of events to take place that ultimately result
in the ignition of a fuel/air mixture in an engine, &r one may
describe it equivalently as a key which causes ignition. The
first description corresponds to a deep case level of description
while the second corresponds to the level at which the compound
ignition key is formed. I would argue that if cne takes the
deep case approach, then one is forced to include a great deal
of structure in the rules for nominal compounding; in particular,
the rule for ignition key must remove all of the links in the
causal chain leading to the ignition act. The deletion of this
intermédiate information must be done to obtain the description
given in the second case, and to include the deletion procedure
in both a compounding rule and in the rule process which leads
to the shorter description means unnecessarily duplicating the

procedure. Moreover, if one derives compounds from paradigm
relative clauses of the second sort, e.g. key whieh causes an
action to occur, then it is possible to generalize compound
forming rules so that a single rule may produce several
compounds, It will not be possible to do this if deep cases are

used as the deep case structure 0f firing key will be quite
different from that of ignition key.

In order to understand the model of compounding which is
being presented here, it is essential to consider the function
of compounding in language. 1In my view, compounding is a process
which allows a speaker to systematicdlly delete information from
an utterance just when the speaker has reason to expeet that the
hearer can reconstruct that information. 1In effect, I consider
compounding {(and a great many other linguistic processes) to be
examples of linguistic encoding which are used to speed up

37

communication, and the grammar shared by the speaker and hearer
must include the encoding and decoding functions.

Consider the nominal compound steam distillation, which
refers to the distillation of some substance with steam; the
hearer of the compound steam distillation knows that distillation
is the derived nominal form of distill. The hearer also knows
what the common or characteristic cases of the verb distill are:
the agent is invariably a person or machine (this would be the
occupant of the Cause case slot in my system), +the instrument
(or Means) may be an apparatus or a heated medium such as steam
and the Goal is a liquid which is missing seme of the constituents
that it entered the distillation process with.

It happens that in English, whenever a derived nominal of an
act is the right element in a compound, then the left element is
almbst always an occupant of one of the case slots of the verb.

In order to recreate the underlying relative clause structure, it
is only necessary for the hearer to properly choose the case for
the nominal steam. A great deal of lexical information can be
brought to bear on this question; for example, steam is not a
liquid, it is water vapor and thus it cannot be the starting
substance or the end product of a distillation process. Steam
might be the Cause of the act of distillation except that there

do not seem to be any compounds in English which have distillation
as the right element and a Cause as the left element. Thus the
hearer can assign steam to the Means case with some assurance.

In another example, shrimp boat, the hearer can ascertain
by lexical relations involving the word boat, that boats are
characteristically used to catch marine life. One choice Eor the
main verb in a synonymous relative clause is catch, which will
have boat as an element of the Means case. The Cause for catch
is commonly a person or perhaps a sophisticated machine designed
to catch things (i.e. a trap). The Object. is characteristically
an animal. There is a strong characteristic relation between
the animal being caught and the means used to catch it, for example
mink is trapped, calves are roped, birds are netted, and fish are
caught with a boat. This relation exists as a rule in the lexicon

38

of both the speaker and the hearer and it enables the speaker to
produce the nominal compound and the hearer to understand it.
Furthermore, shrimp boat is one member of a class of
closely related nominal compounds which includes lobster boat,
whale boat, tuna boat amd many others. It would be most
interesting if a single rule could be formulated which would
generate all of these compounds. A lobster boat is a boat
which is used to catch lobster, a tuna boat is a boat which is
used to catch tuna, and so forth. All of these examples are
identical except for the particular marine animal being caught.
The logical next step is the creation of a rule which generalizes
the individual marine animals to the common category of marine
animal. This rule will state that a marine animal boat is a boat
which is used to catch marine animals,

In making this generalization, I have given the rule the
power to help interpret novel compounds and to generate then,
With this power comes a difficulty, which is constraining the
rule so that it does not generate bad compounds or produce
incorrect interpretations. The key to this constraint lies
in what I will term the characteristic or habitual aspect of
nominal compounds. In the case of the boat compounds, a boat
will only be a shrimp boat if it is characteristically, usually,
habitually or invariably used to catch shrimp. So the operation
of a compounding rule is enabled only if a characteristiec aspect
is associated with the verb; in English, this is usually indicated
by an adverb or an adverbial phrase. If the speaker is willing
to assert that a boat is characteristically used to catch turtles,
then the nominal compound turtle boat may be used. The hearer
will use the general rule to place turtle and boat in the proper
case slots, and because a compound was used by the speaker, the

hearer will infer that the boat is one which is characteristically
used to catch turtles.

There are other problems which arise with the generalization
of rules; for example, compounding never produces a compound in
which the leit element is a proper noun, unless the proper noun
is the name of a process (e.g. Markov grocess) or is a Source,

39

Performer, or Goal of an act of giving. It also seems to be true
that compounds are not generally formed when a lexical item is
several levels below the genéral term which appears in the rule
(e.g. repairmidget) or when a cross-classificatory term is used
(e.g. automobile Indian as an Indian who repairs automobiles).
With all of the preceding discussion in mind, I would now like to

turn to the model of nominal compounding which I have presently
implemented and running.

The Computer Model

The computer model of compounding accepts relative clause
structures as input and produces nominal compound structures as
output when the input is appropriate. It is written in a language
with many parentheses the language was chosen for its program
development facilities, i.e. built-in editor, rather than for its
interpretive capabilities. The program which produces nominal
compounds is a pattern matching interpreter; it applies a rule
of compound formation by matching one side of the rule with the
input structure, and if certain criteria are satisfied by the
match, items from the input structure are bound into the rule,
transferred to the other side of the rule, and a copy is then
mage cf the other side of the rule. The result is a nominal
compound structure.

The model has two components: a rule interpreter and a
lexicon of rules for compounding. There is nothing tricky
about rule application. Consider the nominal compound flower
market and its associated relative clause paraphrase market
where flowers are characteristically sold. These phrases have

in my system the underlying structures shown in Figure 1.
The notation in square braces means that the verb sell has the
characteristic aspect in this instance.

market market
RELCL CoMP
sell [+char] flower
LOC \\\\QPJ
market flowers

Figure 1.

40

These two structures can be made into a rule by linking them
together. Whenever a relative clause structure identical to
that in Figure 1 is received, the rule applies and a copy is
created of the nominal compound flower market. The matching

procedure is a relatively straightforward, top down, recursive
process which has backtracking capability in the event that

a structure or case occurs more than once at any given level of
the structure. There are two problems which arise; however:

if the rule is generalized to account for compounds other than
flower market, then the lexical items in the rule will behave as
variables and some provisions must be made for binding of values
to these variables; also, the rule interpreter must have some
heuristics for selecting appropriate rules if the time required

to produce a compound is not to increase exponentially with the
size of the lexicon.

The present version of the model only partly solves the
binding problem. Consider the rule given in Figure 2 which is a
generalization of that given in Figure 1.

market market
RELCL , COMP
sell [+char]
LOC,//// OBJ
market goods

goods

Figure 2.

If this rule is to apply to the relative cirause structure given in
Figure 1 and generate the compound flower market, then the rule
interpreter must recognize that the relative clause in Figure 1

is an instance of that given in Figure 2. The matching procedure
does this by determining that the reference set of the nominal
flowers is a subset of the reference set of the nominal goods.

In addition, the nominal flowers must be carried across to
the other side of the rule and substituted there for goods before
the other side of the rule is copied. Thus market and goods must
be bound across the rule so that whatever lexical item matches

either of these nominals becomes the value associated with these

41

nominals on the other side of the rule.

In the initial version of the model, this binding was
established explicitly when the rule was entered into the lexicon,
but this seemed unsatisfactorily ad hoc. 1In a subsequent version,
the identity of the lexical items on both sides of the rule was

the relation used to establish binding relationships. Consider,
however, the structure shown in Flgure 3.

person thief
RELCL comp
steal [+char] valuables
PERF OBJ

person valuables
Figure 3

Here person should be bound to thief but the previous technique
is not able to establish this binding. The reason that we know
that person and thief should be bound is because we know that a
thief is a person who steals characteristically. In the most
recent version of the model, this information is used to find the
binding relationships when the rule of identity does not work.
The lexicon is searched for a rule which can be used to establish
this binding. The rule which is used in the example shown in
Figure 3 is displayed below in Figure 4.

person thief
RELCL

steal [+char]
PERF

person

Figure 4

From the structures given in Figure 4, one can see that person
shéuld be bound to thief because the rule states that the reference

set of thief is the same as the reference set of person as
restricted by the relative clause.

The technique of using lexical rules to establish bindings
works in virtually every instance, but it has the defect of

42

requiring that the information that a thief is a person who steals
things be represented in the lexicon twice at least. A new model
is under construction which attempts to reduce this redundancy

by allowing the rules to have multiple left and right parts.

The problem of selecting appropriate rules is rather easier
to solve. In most compounds in English, there is a characteristic
association between the right element of the nominal compound and
the main verb of the associated relative clause paraphrase. These
two elements which occur on opposite sides of the compounding rule
supply a great deal of information about the possibilities for
application of the rule. $So, in the model, each rule in the
lexicon is indexed by the main verb of the relative clause and
by the right element of the nominal compcund. This index actually
contains some environmental information as well; for the clause
verb, this environmental information is the case frame of the verb
and the fact that it is the main verb of the relative clause --
for the compound nominal, the environmental information is just
the fact that the nominal is the rightmost one in a nominal
compound.

The basic model has been tested with a set of several
hundred nominal compounds and is very successful in coping with
a wide variety of compound types. The productivity of the rules
varies greatly; some rules may produce hundreds of compounds while
other rules may only result in one or two compounds. Frozen forms
such as keel boat are handled by a rule which generates only
one compound:; there is a rule for each frozen form. The rule
structures contain exclusion lists associated with each lexical

item in the rule, and these exclusion lists prevent the rule from
operating whenever a lexical item matches one 6f the items on an
exclusion list if the items occur at corresponding lecations in
the structures.

The model is quite quick in operation; on a high speed
display console, it will generally produce compounds much faster.
than a person sitting at the console can conveniently read them.
This is mainly due to the rule selection heuristic, but the match
procedure has been carefully optimized as well.

43

Conclusions

The model program is an excellent demonstration of the
appropriateness of the basic theory; moreover, the rules
themselves can be generalized to deal with syntactic processes,
so there is no discontinuity in the grammar model between the
lexical processes and the syntactic processes. It seems clear
that the rules could also be used to represent other lexical
processes in language and this is currently being pursued.

There is no reason why the rules could not be used for
recognition as well as for the production of nominal compounds.
The bindings are not one-way, and the matching procedure will
work equally well for compound structures. The reasons why the
computer model is a production model are: (1) that the computer
model assumes the semantic correctness of the input relative
clause structures, and (2) that compounds are often ambiguous
and may be paraphrased by two or more relative clauses, while the
converse of this is almost never true. A recognition model would
have to generate underlying relative clause structures for each
ambiguity and a semantic component would have to-screen the
relative clauses for semantic errors.

I hope that the reader has noticed the avoidance of rule
procedures in this model. When I began working on the design of
the computer programs, I had in mind the creation of a model which
once implemented in LISP could be extended merely by adding new
Tules without having to construct any additional LISP programs.

I ultimately wanted to have a model which could "learn" new rules
by systematic generalization and restriction of existing rules.

I feel that this would be relatively easy with rule structures and
extremely difficult with rule procedures written in a programming
language. Furthermore, I subscribe to Karl Popper's ideas of
scientific endeavour, and rule structures appealed because it
would be more difficult to bury flaws or ill understood aspects

of compounding and rule processes im structures than in procedures
where the computational power of the programming language permits
and even encourages ad hoc solutions to be found to problems.

44

Acknowledgements

I would like to here acknowledge the suggestions made by

Robert F. Simmons, Carlota Smith, Mary Ross T. Rhyne, Laurent
Siklossy, and Stanley Peters which have helped improve my
understanding of nominal compounding.

1-

Chomsky, N. "Remarks on Nominalization," in Readings in
English Transformational Grammar, Jacobs, R. and Rosenbaunm,

P. eds. Ginn, Waltham, Massachusetts, 1970.

Gruber, J. '"Studies in Lexical Relations."” Ph. D. thesis,
MIT, 1965.

Lees, R, The Grammar of English Nominalizations. Mouton,
The Hague, 1968.

Rhyne, J. '"Lexical Rules and Structures in a Computer Model
of Nominal Compounding in English." Ph. D. thesis, The
University of Texas at Austin, 197S5.

Simmons, R. "Semantic Networks: Their Computation and Use
for Understanding English Sentences,'" in Computer Models of
Thought and Language, Schank, R. and Colby, K. eds. VW. H.

Freeman, San Francisco, 1973.

