American Journal of Computational Linguistics microriche 33 : 18

INCREMENTAL SENTENCE PROCESSING

RODGER KNAUS
Systems Software Division
Social and Economic Statistics Administration

Bureau of the Census
Wwashington, D. C. 20233

A human whd learns a language can both parse and generate
sentences in the language. In contrast most artificial lan-
guage processors operate in one direction only or require
separate grammars for parsing and generation. This paper
describes a model for human language processing which uses

a single lanquage description for parsing and generation.
1. Choice of Parsing Strategy

A number of constraints 1imit the processors suitable as
models of human language processing. Because short term
memory is limited, the listener must absorb incoming words
into larger chunks as the sentence is heard. Also because
he is expected to reply within a couple seconds after the
speaker finishes, regardless of length of the speaker's
utterance, the listener must do much of the semantic proc-

essing of a sentence as he hears it.

19
Bever and Watt point out that the difficulty in under-

standing a sentence S is not predicted by the number of
transformations used to generate S. Furthermore the process
of detransformation appears too time-consuming (Petrick) for
the approximately two seconds before a listeaer is expected
to reply.

A depth first transition network parser (Woods, Kaplan),
in which parsing difficulty is measured by the number of arcs
traversed, correctly predicts the relative difficulty of
active and passive sentences progressive and adjectival present
participle sentences and the extreme difficulty of multiple
center embeddings. However a syntactically directed depth
first parser does not explain why syntactically similar
sentences such as

(5A) The horse sold at the fair escaped.

(5B) The horse raced past the barn fell.
vary in difficulty, nor does it explain experiments on the
completion and verification of ambiguous sentences (MacKay,
Olsen and MacKay) which suggest that a pruned breadth first
strategy is used to parse sentences. Sentences with two
equally plausible alternatives touk longer to process than
sentences wWith only one likely interpretation. This extra
processing time may be attributed to the construction of two
alternate interpretations over a longer portion of the sentence
when more than one interpretation is plausible,.

In addition subjects sometimes become confused by the two
interpretations of an ambiguous sentence. Finally in experi-
ments in which subjects hear an ambiguous sentence in ore ear
and a disimbiguating sentence simultaneously in the other ear
(Garrett) the interpretation of the ambiguity actually per-
ceived by the subject may be switched between the possibilities
by changing the disambiguating sentences.

21

Step 3 (a): (S ENP (N majl) (N Boxes))
V 1ike) (‘NP) (PP*))
(b): (S (NP (NP (N mail) (N Boxes))
(PP (PREP 1ike) NP) (PP*))
VINP) (PP*))
(c): (S (NP (N mail)) (Vv Boxes)
éPP (PREP 1ike) NP) (PP¥*))
(d): (S (V mail) (NP (N Boxes))
(PP (PREP 1ike) NP) (PP*))
(e): (S (V mail)
(NP (NP (N Boxes))
(PP (PREP 1like) NP) (PP*))
(PP*))

After completing the sentence after Step 4, the parser
produces phrase markers from a, ¢, d and e by adding the last
word and deleting unfilled optional nodés. The phrase marker
obtained from 4B is rejected because it contains an unfilled
obligatory V node.

The incremental parser adds each successive sentence word
to the partially completed phrase markers built from the earlier
part of the sentence. The new word is added at the leftmost oblig
unfilled node of each partial phrase marker and at all optional
nodes to the Teft of this node.

Three different operations are used to add a new word to
a partial parse. The word may be directly added to an unexpanded
node, as in Step 3a above. Alternatively, a new word may be

attached to an unfilled node with a Teft branching acyclic tree

built from the grammar such as (PP PREP NP) or (S (NP N (N*)) V
(NP) (PP*)). Attaching occurs in steps 1 and 3c.
Finally a subtreée of an existing partial phrase marker

may be Jeft embedded in a larger structure of the same gram-

matical category, as in steps 3b and 3e above. The embedding

operation uses at most two left branching trees built from the

22

grammar: a tree T1 with a single cycle on the 1éft branch is
used to replace the existing subtree E being embedded. In
step 3e, for example, the structure (S (V mail) (NP NP (PP*))
(PP*)) would be obtained. The E is used to expand the left-
most unexpanded node of T1§ for 3 b this results in:

3e. (S (V mail) (NP (NP (N Boxes) (N*)) PP*) (PP*)).
Finally to the resulting structure the new sentence word is
added through direct node expansion or attaching with an
acyclic left branching tree; in the example above this produces
3e from 3e.

Using direct expansion attaching and embedding, the
incremental parser finds all the phrase markers of sentences
in context free or regular expression language; a formal
definition of the parser and a proof of its correctness appear
in [10].

Sometimes, as at steps 3b and 3e, the same structure (a
prepositional phrase in step 2) is used in more than one partial
parse. Following Earley's Algorithm, the incremental parser
builds a single copy of the shared substructure SP and maintains
pointers linking SP to nodes in Targer structures which 5S¢
expands.

For all its tree building operations the incremental parser
uses a finite set of trees. i.e., the trees with only left sub-
nodes expanded and at most one:cycle on the leftmost branch.
These trees may be computed directly from the grammar and ref-

erenced by root and leftmost unexpanded node during the parse.

23

Using these precenstructed trees, the incremental parser requires
only a fixed number of operations to add a new word to a partial
parse: a retrieval on a doubly indexed set, copying the left
branching tree, and at most four structure changing operations
to paste words and trees together.

Like Earley's Algorithm, IP processes each word proportion-
ally to sentence length. However on sentences satisfying a depth

difference bound, the parsing time per word is constant. Because

humans can't remember large numbers of sentence words but must,
process speech at an approximately constant rate, a constant
parsing time per word i$s a necessary property of any algorithm
modeling human language processing.

Let the depth of constituent C in phrase marker P be
defined as the length of the path from the root of C to the root
of P. If T1 and T2 are two adjacent terminals with T1 preceding
T2, the depth difference from T1 to T2 is defined as the dif-
ference in dgpth between T1 and the root of the smallest tree
containing T1 and T2. For example in the phrase marker

(9) (S (NP iNP (DET the) (N telephone))
PP (PREP IN) (NP (DET the) (N room)))
(V rang) (ADV loudly))
the depth difference between "the" and "telephone™ is 1 and
between "room" and "rang" is 3.

The depth difference between T1 and T2 is the number of
nodes from T1 to the node expanded when adding T2 on a postorder
traversal from T1 in the partial phrase marker containing T1 but

not T2. The depth difference between T1 and T2 also represents

the number of constituents of which T1 is the rightmost wdrd.

24

A proof (requiring a formal definition of the incremental
parse) that parsing time per word is constant in depth difference
bounded sentences appears in [10]. Informally the depth dif-
ference bound places a bound both on the number of next nodes to
expand which may follow a given terminal and on the amount of
tree traversal which the parser must perform to find each next
uneéxpanded node. Since each modification requires only a fixed
number of operations, each of which is bounded on the finite set
of at most once cyclic left branching trees, the computation
adding a new word to existing partial parses is bounded inde
pendently of sentence length.

Natural language sentences tend to have small depth dif-
ferences. Both rijght branching sentences and left branching
sentences (found in Japanese for example) have an average depth
difference over each three or four word segment of two or less,.
On the other hand sentences are difficult to understand when
they have two consecutive large depth differences, suth as the
multiple center embedding

(10) The rat the cat the dog bit chased died.
or the complex noun phrase in
The pad on a clarinet in the tast row whichn 1|
fixed earlier for Eb fell out.
Furthermore in ambiguous sentences such as
(11) Joe figured that it was time to take the cat out.
Kimball observes that subjects prefer the reading with the
smaller depth difference. Finally, Blumenthal found that subjects

tended to understand a multiple center embedded sentence as a

25

conjunctive sentence. The conjunctive sentence contains a re-

arrangement. with lower depth differences of the constituents of

the center embedded sentence.

3. Sentence Generation

The syntactic form given to a sentence depends on the infor-
mation being communicated in a sentence and on the cultural con-
text in which the sentence appears. Clark and Haviland show that
a speaker uses various syntactic devices sentences to place the

"given" information known to the listener before the information

"new" to the listener. Particular syntactic structures are also

used to emphasize or suppress particular kinds of information;
for example newspaper traffic accident reports usually begin
with a passive sentence such as
(12) An elderly Lakewood man was injured when...,
presumably to emphasize the result of the
accident.
To capture the dependence of syntax on semantic content and

socijal context, the sentence generator uses function-like grammar

rules of the form

(Rulewame Cat Variables Predicate Forms).
Rulename 1is the name of the rule and c¢at is the grammatical
category of the constituent generated by the rule.

Variables is a 1ist of formal parameters. Usually the
variabTe 1ist contains a vartable bound during rule execution
to a node in a semantic network and another variable bound to

a control asseciation 1ist containing information about the con-

text in which the generated constituent will appear and possibly

26

the syntactic form the constituent should have.

Predicate is a Boelean-valued form on the parameters in
Variables. A rule is used only when Predicate is true.

Forms is a list of forms depending on Variables which
generate terminals or calls to the grammar for subconstituerits
of CAT.

An example of a generation rule is

(SPI S»(X Y) (Equal (Voice Y) (Quote Passive))

(NP (Object X) Y)

éBeverb X)

Pap (Action X))

(M* X Y))
which generates simple passive sentences. The variable X 1is
bound to a node in a semantic network and Y to a control
association 1ist. The rule is applied only if the control
alist contains a passive flag and if the semantic node has an
object and action; in general a rule is applied only if the
semantic subnodes called in the rule body appear in the
semantic net. The form (NP (Obj X) Y) generates a form (NP
X ¥YP), where X is the semantic node on the object indicator
from X, and Yp is the value of Y. Beverb and Pap are procedures
which generate respectively a form of the verb "to bé&" and a
past participle form of the verb Action(X). M* is a procedure
which generates a list depentiing on X and Y such as (PP<Value
of Time(X)> <Value of Y>) for generating optional prepositional
phrases or relative clauses.

As each rule is applied, the 1ist of terminals and calls to

grammar rules generated by the rule is added to a phrase marker

representing the structure of the sentence being generated.

27

Grammar calls in the phrase marker are expanded top down-and
left to right, in a preorder traversal of the growing phrase
marker. As terminals are generated they are printed out.

As an example, jllustrating the effect of semantic and
social contest on sentence generation, an initial sentence of
a traffic accident report,

(13). A man was killed when a car hit him in Irvine.

was generated from the semantic nodes

Al: Agent Ap A2: Agent Ap: Class magn
Object ve Action hit
Action Kill Object VO
Place Irvine Instrument Car
Cause AZ

and the control alist,

Purpose: Introduction;cases: object, cause, place
using a grammar built for generating traffic accident report
sentences. To summarize a trace of the generation, a call to
the sentence rule with purpose = introduction generates a sentence
call with voice = passive. The passive rule applies and a noun
phrase on A@ is called for. Because Purpose = Introduction a
NP rule applies which calls for a NP to be generated on the
semantic class to which A@ belongs. Because CASES contains
TIME and CAUSE, the passive rule generated calls far modifying
structures of these CASEs. Because the cause semantic node A?
has an action, the modifier rule M => Relative conjunction S
generates the cause while the time is described by a preposi-
tional phrase. The pronoun "him" is generated by a noun phrase
rule NP-1 which generates a pronoun when the first semantic

argument to the left of the NP-1 call in the generation phrase

28

marker which is described by the same pronoun as the semantic

argument A of NF-1 is in fact equal to A.
4, Finding Semantic Preimages

While the generator described in section 3 produces sentences
from semantic and contextual information, the incremental parser
described in section 2 recovers merely the syntactic structure
of a sentence. To obtain the semantic arguments from which a
sentence might have been generated a procedure to invert the
generation rule forms must be added to the incremented parser.

While the incremental parser begins the construction of con-
stituents top down, it completes them syntactically in a bottom
up direction. In fact IP executes postorder traversals on all
the syntactic parse trees it builds; of course if a particular
partial phrase marker can not be finished, the traversal is not
completed. However each node not a tree terminal of a syntactic
phrase marker visited by the incremental parser is a syntactically
complete constituent.

When the parser visits a syntactically complete constituent
C, it applies a function INVERT to find the semantic preimages
of C. In finding the semantic structure of C, INVERT has avail-
able not only the syntactic structure of C, but also the semantic
preimages which it found for subcenstituents of C. ‘INVERT finds
the set of generation rules which might profuce a constituent
having the same syntactic form as C. For each such rule R,
INVERT constructs all the possible parings between each output-

generating form F of R and the constituents of C which F might

29

produce. For example if C is
(S (NP Man) (Beverb is) (PAP Injured))

the pairing established for the passive sentence rule would be

(NP (Object X) Y) (NP the man)
(Beverb X) (Beverb 1is)
(Pap {Action X)) (Pap Injured)
(M* X Y) NIL

The pair ((Equal (Voice Y) PASSIVE) T) is also created, since
the rule predicate is true whenever a rule applies.

Each indicidual pair P in such a pairing of a rule form and
rule form outputs is processed by a function FIND which returns
an association 1ist containing possible values of the rule
parameters (X and Y in the example above) which would produce

the output appearing in P. For the example above FIND would

produce
(g X ((Object Man);; zY NIL))
((X ((Time Past) Y NIL))
((X NIL) (Y ((Cases Nil)))).
((X NIL) (Y ((Voice Passive))))

Using an extension to association lists of the computational
logic Unification Algorithm, these association 1ists are unified
into a single association list, which for the example is

({ X ((Agent man) (Time Past) (Action Injure))
((¥ ((Cases Nil) (Voice Passive))))

Finally INVERT creates a grammar rule call,

(S ((Agent man)(Time Past)(Action Injure))
((Cases Nil)(Voice Passive))))

from the association 1list and stores the result in the inverse
image of C.

In finding a semantic preimage, the INVERT function must

20
know which grammar rules might produce a particular grammatical
constituent. This information is computed by symbolically eval-
uating the grammar rules to produce the strings of regular
expression grammar nonterminals (as opposed to grammar calls)
representing the possible output of each rule. The resulting
relation from rules to strings is inverted into a table giving
possible rules generating each string.

The heart of this symbolic evaluator is a function ETERM on
the output generating forms of a rule which returns a Tist all
lTists of regular expression nonterminals representing the out-
put of a form. ETERM takes advantage of the similar syntax of
most grammar rule forms, and is defined in simplified form
(with comments in angle brackets) as

Eterm (form) =
if atom (form) then NIL
<terminates recursion>
else if car (form) is a grammatical category
then list (1ist (car (form))))
<these forms generate a single grammar call>
else if car (form) = FUNCTION ar LAMBDA
then ETERM (cadr (form))
else if car (form) = LAMBDA
then ETERM (caddr (form))
else if car {(form) = LIST
if form is not properly contained in a LIST
expression
then Mapcar((Function Concatenate)
(Cartesian
((Mapcar (Function ETERM)
cdr (form))))
<outer LISTS are used to create lists of grammar callss>
else if form is inside a LIST expression
ETERM (cadr (form))
<inner lists are used to create grammatically>
else if car (form) = MAPCONC then make optional
and repeatable all the nonterminals returned
in ETERM ([function argument of MAPCONC])

31

else if car (form) = COND
then MAPCONC((LAMBDA(X) ETERM ([1ast form in X])
(cdr form)
<returns alternatives from each branch of the COND>
else if car (form) is a user-defined function
then ETERM ([definition of function])

else if there is a stored value for ETERM (form)
then that value

else ask the the user for help
The function FIND which returns possible bindings for rule
variables when given a rule form and its output is defined below.
The variable ALIST holds the value of the association list being

hypothesized by FIND; this variable is NIL when FIND is called
from INVERT.

Like ETERM, the definition of FIND is based on the rules

for evaluating recursive functions.

FIND (Alist form value)=
if eval(form alist)=valué then Jist (Alist)
else if recursion depth exceeded, then NIL
else if atom (form) then 1ist (Merge (list (cons
(form Value)) Alist)
else if car (form)= COND
let L = clauses which might be entered by
evaluating form
then Mapconc (FM 1) where
FM (clause) = 1ist (Merge Find (Alist Car (clause)T)
Find (Atlist last (clause)))
else if car (form) = Quote then if cadr (form) = value
then Alist else NIL
else if car (form) is a defined function
then FIND (Alist (Substitute cdr (form) for
formal parameters im definition
of car (form))
Value)
else if car (form) = MAPCONC (fn 1st)
then Merge (Find (Alist 1st value)
For each X in 1st, Merge (Alist for X))
<this clause makes the assumption, which works in

practice, that fn generates either one-element
or empty lists>
else NIL

ol tmed cnd ad w——d cad

32

With a definition of FIND similar to the one above, the
parser found the preimage

(8 (((place ((class (park))
(agent ((class (man)))
(action (walked]

[the extra parentheses denote lists of alternatives] for the
sentence

(13) The man walked in the park.
generated by the grammar '

))
)

[SP S (X) T (NP (Agent X)) (V(Action X))

(Optional g(PP (Place X) ((Case Place]
[NPP NP (X) T (Det X) (N (Class X
[PPP PP (XY) T (Prep XY) (NPX]

and the preposition function

Prep (XY) = Selectq (Assoc CASE Y)
(Place IN)
(Instrument WITH)
(Source FROM]

5. Implementation

The processors described in this paper have been programmed

in University of California, Irvine, LISP and run in about 45K on
a PDP-10 computer.

References

Bever, Thomas G. 1970. 1In [7] and [5].

Clark, Herbert H. and Haviland, Susan E. 1975 Social Sciences
Working Paper, 67. U.C. Irvine.

Colby, Benjamin N. 1973. American Anthropologist 75, 645-62.
Florres d'Arcaio and lLevalt, eds. 1970 Advances in Psycholin-
guistics, North Holland, Amsterdam.

Garrett, Merrill, F. 1970. in [5].

Haynes, John R. 1970. Cognition and the Development of lLanguage.

John Wiley.
E?pga?i Rgn:ld]M.4 1972. A.I1. 3, 77-100

mball, John 1974. Cognition 2,1,15-47.
Knaus, Rodger. 1975. Ph.D Thesis. U.C. Irvine.
MacKay, Donald G. 1966. Perception and Psychophysics. 426-36.
Olson, James N. and MacKay, Donald G. JVLVB 13, 45770.
Petrick, S. R. In [14].
Rustin, Randall. 1973. Natural Lanquage Processing.
Watt, Wm. 1970. 1In [7].
Woods, Wm. 1973. In [14].

» -

NMPWN=OWON (= N8} & W N =~

