
American Journal of Computational Linguis ties Microfiche 32 : 7 2

P. MEDEMA, W . J. BRONNENBERG, H. C. BUNT. 5. P. J. LANDSBERGEN,

R , J. H. SCHA, W . J. SCHOENMAKERS, AND E . P . c. V A N UTTEREN

Philips Research L a b o r a t o r i e s
E indhoven , The Netherlands

ABSTRACT

This paper outlinee a recently implemented que~tion answering system , called

PHLIQA 1 , which answers English questions about a data base .
Unlike other existing aysteme , that directly tramlate a syntactic deep structure

into a program to be executed, PHLIQA 1 leads a question through several

intermediate etages of semantic analysis . In every stage the question is repre-

sented a0 an expression of a formal language, The paper describes aome features

of the Languages that are &uc~essivelg used during the analyeis process : the

English-oriented Formal Language , the World Model Language and the Data Base

Language . Next , we ahow the separate conversion steps that can be distinguished

in the process. We indicate the problems that are handled by these conversions ,
and that are often neglected in other systems.

1. Introduction

PHLIQA 1 is an experimental ~ y e t e m for answering isolated English questions

about a data base . We have singled this out as the central problem of queation

anawerlng , and therefore postponed the treatment of declaratives and imperrt

tives , as well aa the analyak of discourse untll a later vereion of the system .
The data baee is about computer installations in Europe and their users . At

the moment, it is small and resides in core- but its structure and content

are those of a realistic Codagyl format data base on disk (CODASYL Data

Base Task Group [1971 'J)

Only one module of the system , the wevaluation componenVT , would have to be

chmqpd in order to handle a lha l t f data base .

2, PELIQA 1 ' e top level design

Like other recent QA systems (e,g, Petrick 1 1973] , Plath 1 1973] ,
Winograd 1 1972] , Woo& [1972]) , the PHLIQA 1 system can , on the

most global level , be divided into 3 parts (aee fig. 1) :

-- Underetandtng the question : Translating the question into a formal expree-

sion which represents its meaning with respect to the world model of the

- Computing the answer : Elaborating this expreseion , thereby finding the

answer, it is repreeented in the system' s internal formalism.

-- Formulating the answer : Translating this answer into a form that can be

more readily under8 toad .

questlon in English

I
formal expression , representing
the meaning of the question

I
Answer
Computation

I answer In internal format

Answer
Formulation

answer in external format

Fig . 1. Global subdivision of PHLIQA 1,

The interface between the Question understanding component and the Answer

Computation component 1s a formal language , called the World Model Language

(WML) . Expressions of this language represent the meaning of questions with

respect to the world model of th@ system. Its conrrtants correspond to the concepts

that canstitute the universe of discourse . The language is independent of the input

language that ie udled (in this case English) , and also independent of the storage

structure of the data base.

If we now look at a further subdivierion of the component& , the difference between

PHLIQA 1 and other systems becornea apparent . Both above and below the World

Model level, there is an intermediate stage of analysis , characterized by a

formal language , resp r

- The Engliaboriented Formal Language (EFL) , which containa constant^ that

correspond to the terms of English, This language is wed to represent the

semantic deep structure of the question , That divides the Question U n d e ~

standing component into two succes~ive subcomponents I

a. Constructing an EFL expression . using only linguistic knowledge .
b, Translating the EFL expression into a WML expression, by taking

knowledge about the structuf.e of the world into account.

- The Data Base Language (DBL) , which contains conatants that correspond

to data base primitives . (The World Model constants do not correspond to

daW base primitives , because we want to handle a realfs tic " data base :

one that was designed to be stored efficiently , rather than to reflect neatly the

structure of the world .)
This splits the Answer Computation component into two successive subcomp*

nenta :

a. Translating a WML expression into a DBL expression taking knowledge

abut the data base structure into account,

b. Evaluating the DBL expre~sion .
The aebup of the system that one arrives at in this way, is shown in fig, 2.

In section 3 , we gay eamething more about PHLIQAq s formal languagqs in

general . How the three succeesive translation modules are further divided into

smaller modules , c a U d ftconvertorsw , is dfscu~sed fn the sections 4 , 5 and 6,

Section 7 treats the evaluation component . The Answer Formulation component

is very primitive , and will not be considered further .

question in English
I

Question
Under0 tanding

Answer
Computation

expreabion of Englisboriented Formal Langua$te

I (Semantic Deep Structure)

EFL- WML - - - - - owledge of
tsanslation - - - - - World Structure

expre $ sion of World Model Language
I

-
WML- DBL - - t - -

translation f - - -

[expredsion of Data Base Language
1

I
answer in internal format

Formulation

anrswer in external format

Fie 2, PHLIQA 1 main components .

3. PHLIQA 1' B formal laxlguages

3. 1, sylitax

The three PHLIQA languages (the English-oriented Formal Language , the
World Model Language and the Data Base Language) have largely identfcal

syntactic definitions . A s pointed out already, their moat important difference

is in the constants they contain . T h y share most , but not all , syntactic

COIlJ3 t~C!tf~Ils ,

PHLIQA expresgions are rt trees TT that conaists of terminal nodes (conetants

and variables) and syntactic constructions . A syntact'ic construction is an

unordered collection of labeled branches , departing from one node .
The branches of a PHLIQA fl tree " can converge to a common subtree .
Using a system of semantic types , the syntax of a PHLIQA language defines

how expressions c m be combined to form a larger expressfan. For every

syntactic conetruetion, there ie a rule which specffies :

- What the semantic types of it8 Immediate sub-expressions are allowed to be .
(There is never a restriction on the syntactic form of the sub-expressions ,)

- How the semantic type of the remitting expression is derived from the

semantic types of the immediate sub-expressions .
Given the types of the elementary expressions (the constants and variables) ,
this def'lnes the language, (Sources of inspiration f o r the syntax of our formal

languages were the Vienna Definition Language- (Wegner [1972]) , and a

formulation of Higher - Order Lo@c by J.A. Robinson [1969] .)
Some ~imple examples of semantic types are the foXlowing :

A comtant reprersenting a single object has a simple type . E.g, , 6 has

the type " integer " , A c6nstant representing a collection of objedta of type oc

has a type of the form <d> . E,g. , companies has the type "(company)

" intagera has the type "(integer) .

A constant representing a function that can have arguments of type and

values of type ('3 has the type + . E.g. , the function

Tt IL-cornpany-sites TI has the type ?? company* &il%y: the function &sum "
has the type t v (integer) integerw.

The syntactic rule for the construction function - application t' could state

that the emreasion

is well -- formed if T is a well-formed expre~lsion of type and T i s a
2 1

well - formed expression of type 6 -+ /3 , where oC and may be

any type ; the whole expression then has the type P
The PHLIQA languages contaln a wide variety of syntactic constructions , e,g.

constructions for different kinds of quantification , for selecting elements from

a list, for reordering a list, etc ,

3. 2, Semantics

The PaIQA language8 have a formal semantics which recursively defines the

values of the expressions, This definition assumes as primitive nations the

denotatian~ of the conetants of the language : function - constants denote

procedures , and the other canstants denoh value - expressions , This means

that if we know the denotations of the constants occurring in an expreesion , the

value of the expression fs defined by the semantic rules of the language , For

t b Data Base Language , we indeed know the denotations of the constants ; what

we call the data base is nothing but the implementation of the " primitive

procedure8 ", t e. : the procedures corresponding to DBL functions , and

the procedures for finding the value - expres~ions of the other DBL constants .

Therefore , the DBL expressione are actually evaluable .
For the World Model Language and the English-orientad Formal Language , such
a data base does not exiat , but one could be imagined . We express thls by saying

t4&t the WML and EFL expressions are * evaluable with respect to a virtual data

base

4, Constraction of the semantic deep structure of a question.

A s we have seen, the EnglfsMriented Formal L m a g e differ8 from the other

tfttu, languagee in two respect8 :

1, It has different constants , of'whieh the most important are t

a names of sets corresponding to noune (e.g. * computers ") , to verbs
(" buy - sitrtatiane *) and to ssme of the prepoeitions

(in - place - situations) .
b. grammatical functions t subject, object, etc .

2, It Borne different constructione . Here the most striking difference is that

EFL conekuctinns contain eemantic and syntactic featurea . The semantic

features influence the formal semagtfca of the constructlorn (e,g, the definite-

nees or indefiniteness of a noun phrase influences the choice of the kfnd of

quantification for that noun phrase) . The syntactic features only play a role

during the tranaiormatian process from English to EFL .
T t should be noted that Ln general two eynonymoue eenteqes need not be represented

by tho same semantic deep structure in EFL . For example , the synonymy of

A buys B from C and C sells B to A is not accounted for at tbia level .
Hwever ,at the level of the World Model Language synonymous sentences are

mapped onto equivalent (not necesaarilg identical) WML emrerssr iom .
The construction of the semantic deep structure in EFL consists of three main

phanes r

phase 1: a lexicon , providing for each word one o r more interpretations ,
represented by pairs (CATi, SEM \ , where CAT I s a syntactic category

i i
and SEM an EFL expression .

i

phase 2: a set of rules that enables to combine the sequence of pairs (CAT SEM1) , i t
corresponding to the original sequence of words , into higher level categories and

more complex structures , until we have ultimately the pair (SENTENCE , SEM) ,
S

where SEM is the EFL expression for the bomplete sentence .
S

A rule of phase 2 is a combination of a context free rule and a set of rules on EFL

expressions , that show when and how a sequence of pairs

can be reduced fo a pair (CAT , SEMR) . R
The general format of theae rules i s :

- context free reduction rule :

........ CATl +. + CATk -> CAT
R

- EFL rules :

The C O N D ~ ' s are conditions on the EFL expressions SEM . . , , ,
1'

SEMk .
The ACTION ' s ahow how a new EFL expression SEM can be constructed with the

i R
helpofSEM

I'
SEMk . The rule i s applicable if at least one of the

conditions COND is true . Then SEM ia constructed according to ACTION and
I a i

the aequence of pairs i s reduced to (CAT SEM) . If more than one of the
R' R

COND is true , we have a local ambiguity.
i

phase 3: transformation rules that transform the semantic surface structure into

an EFL expression that I s called the semantic deep structure . ~ h e e e t r & m f ~ r

mation rules handle aspecte of meaning that could not be resolved locally , during

phase 2. This applies for Instance to anaphoric references and elllptic clauses

in comparative cons-ctlons .
A ~impler example is the specification of the subject in a clauae like ' to uee a
computer ', The eemantic surface structure of this clause means: there is a

usesituation , with ~ a m e computer as its object , and an unspecified subject .
Phase 2 can be said to ' disambiguate ' thi@ expression in a context like

' when did Shell start to q e a computer 3 .
A transformation specifies the subject of the use-situation as Shell '. This

transformation would not apply if we had the verb propose instead of start ' .

The condition8 of phase 2 and phase 3 contain a rkhortcuV' to the world model1

the semantic types of the world model interpretations of the EFL congtants are

inspected in order to avoid the construction of semantic deep e tructures that

have no interpretation in the world model . This blocks many unfruitful parsing

paths.

5 . Translation from semantic deep structure to unambiguous World Model

Language expression

The translation from a semantic deep structure (EFL expraseion) into an un-

arnbiguoua World Model Language expmsarion proceeds in 3 phases1

phase 1s Translation from EFL expression Into ambiguous WML expression.

b tbls phase , traneformations are applied which replace expressions containing

EFL conetants by expreiseiolu containing WML canatants . Their most conspip

uow effect is the elimination of "situations" and rTgrarnrnatical functionst1. It is

important to note that the resulting expreseion often contains several "ambig-

uous constantsW, These ariae from polyeemous brms in English r words that

have a "range1? of posaible meanings . Such terms lead now to expressions with

ambiguous constants8 constants that stand for a whole class of possible "insta*

cesT' . An expression containing such constants , stands for the class of wellr

formed expressions that can be generated by 'Ymtantlating" the ambiguous c o w

stants .

phase 2% Disambiguation of quantification^ .
Many sentences are ambiguous with respect to quantification ,

E .g . Were the largest 3 computers bought by 2 French companies ? can either

ask whether there are 2 French companies such that they both bought each of

these computers , o r , perhaps more plausibly , it can ask whether there are 2

French companies such that together they bought these computers .
Until thie stage in the process , the representation of such questions contains

constructions which stand for both interpretatiow at once . But now that the

system' 8 assumptions about the structure s f the world are reflected In the ex-

pression, some such interpretations may be ruled out as implausible , because

they would lead to the same answer , independent of what the atate of affairs in

the world is . E ,g ., the first interpretation of the above example question

has the value 'YalseW , independently of the values of the constants in the ex-

preaeion . (Because the assumption that a computer can only be bought by one

company wapJ Introduced by a previous traneformatfon) . Therefore , the second

interpretation is chosen,

phase 32 Di~arnbiguation of WML conestants .
The ambiguous WML constants can be instantiated in a very efficient manner by

using the semantic type system: The possible interpretations of an ambiguous

comtant are severely restricted by the semantic types of the other constants

that appear in it8 context,

6. Tramlation from World Model L a n w g e expression to Data Base

Laqpage expression
-

In the World Model Language , constants correspond to the concepts of the universe

of discourse, In the Data Base Language, conatants correspond to primitive

logical and arithmetical procedures and to primitives of the data base . The choice

of these primitives was governed by coneiderations of efficiency, rather than by

the wish to represent neatly the structure of the univeree of discourse. Therefore ,
WML and DB conb fn different conatants .
The translation from a WML expression to the DBL expression that will be evalu-

ated, proceeb in three stages :

1, Paraphrase of the WML expression, in order to eliminate * infinite notions ".
WML contains conrrtanb representing infinite sets or infinite continua , like

integer8 * , * moaey~amounts and ?' time ' l . Such comtants can not be

directly or hidirectly represented in the data base , and hence have no D B b

tramlation. By paraphrasing the expression, the infinite notions can of*n

be elirntnated .
2, Translation of expressions conklning WML constants into expressions con-

&ining DBL cow tanh ,

This tranalatlon is required by phenomena like the following :

- it Ls poasible that a class of objects is not represented explicitly in the data

baee , while propertlee of ib elementa are represented indirectly, as

properties of other , related objects , (E.g. , cities do not occur in the

PHLIC&Il data base , but their names are represented as the ciwnarnes

of sites .)
A special case of this phenomenon ie the representation of a continuum by a

class of diacrete objects (E.g. , core ie represented by rr core

memories ") t

-- objects may be represented more than once in the data base. E.g. , in the

PHLIQA 1 database, the flle of computer users and the file of manufacturers

can contain records that represent one and the same f i rm.

-- the data baee is more limited than the world model . Some questions that

can be expreased in WML can be answered only partially or not a t all r

the WML expresrition has no DBL translation. The present convertor detects

such expressions and can generate a message which specifies what informa-

tion ia lacking .
Examples of this caae are r the se t '' integers '* (if the attempt of the previous

convertor to eliminate it has been umuccesr~ful) , and the date-ottaking-

o u t - - o w e ?* of a computer (which happens to be not in the data base) .
3. Paraphrase of the DBL exprenr~ion , in order to improve the efficiency of its

evaluation .
The DBL expression produced by the previous convertor can already be evalu-

ated, but i t may be possible to paraphrase it in such a way, that the evaluaii~n

of the paraphrase expression is more efficient, This conversion is worthwhile

because , even with our small data base , the evaluation is often the most

time-consuming part of the whole process ; compared to thie , the time that

transformations take is negligible .

7. The evaluation of a Data Base Language expression

The value of a Data Base Language expression is completely defined by the sernaxl-

tic rules of the Data Base Language (see section 3 . 2 .) , and one could cohceive

of an algorithm that corresponds exactly to these rules . For reasons of efficiency,

the actual algorithm differs from such an qlgorithm in some major respects r

- in evaluating quantlficatiom over sets , it does not evaluate more element0 of

the sat than ie necessary for determining the value of the quantification .
- if (e-g. during the evaluation of a quantification) , a variable assumes a new

value , this doe8 not cause the, re-evaluation of any subexpressions that don* t

contain this variable .
Currently , evaluation occurs with respeet to a small data base in Core , To handle

a real data base on dierk , only the evaluation of constantn would have to change .

8, PELIQA I ' s Control Smckrrc3

The sections 4 thmugh 7 sketched what the basic modulea of the system (the

convertors ") do . W e shall now make some very general rernarh about the

way they were implemented . These r e m a r k apply to all convertors except the

parser, whioh is described in some detail by Medema [1975] .
The convertors can be viewed as functiong which map an input expression into a set

of zero or more output expressions . Such a function fa defined by a collection, of

transformations , acting on subexpresslons of the input expression . Each tr&aa-

formation wnrrists of a condition and an action , The action ie applied to a sub-

expression if the condition holde for it . The action can either be a procedure

transformfngra subexpression to its * lower level equivalent '' or it can be the

decbian this subexpressfon cannot be translated to the next lower level '' ,
"I1 convertore are implemented as procedures which operate on the tree that

repregents the whole f~uestion . The procedures cooperate in a " deptb-first ?'

m m r : a conversion procedure finds suc~es s ive ly all interpretations that the input

expression haa on the next lower level . Far each of theae Interpretations , as soon

as it is found, the next convertbr ie called. If no interpretation can be found, a

message Bving the reason for this dead end is buffered , and control fe returned

to the calling convertor ,

If the answer fs found, it is displayed. If requested, the ayatem can continue its

search for more interpretatlorn . If the answer level is not reached , it displays

the buffered message from the " lowest " convertor that was reached ,

Colophon

The PHLIQA 1 program was written in SPL (a PL/1 dialect) , and runs under the
MDS time sharing system on the Philips Pl.400 computer of the Philips Research
Laboratories a t Eindhoven .
The quantfflcatio~i~lambiguation ghaae of the EFG-WML translation, the effi-
ciency-conVersion (step 3) in the WML-DBL translation , as well a s some parts
of the grammar , are not yet part of the running system , though the convertors
are complekly coded and the grammar is elaborately specified.
During the design of PHLIQA 1 , the PHLIQA project was coordinated by Piet
Medema . He and Eric van Utteren deaigned the algorithmic structure of the aye-
tern and made decisions about many general aspectxi of implsrnentatlon .
The formal languages and related transformation rules were designed by Harry
Bunt . Jan Landabergen and Remko Scha . Wijnand Schoenmakera deaigned the evalu-
ation component. Jan Landsbergen wrote a grammar for an extensive subset of English
A l l author6 were involved in the implementation of the system .
During the design of PHLIQA 1 , exteneiva discussione with members of the SRI
Speech Understanding team have helped us in making our ideasl more explicit,

References

CODASYL Data Base Task Group
April 71 report. A C M , New York, 1971 .

P. Medema A control structure for a question answering sys tern .
Proceedings of the 4th Inte~national Joint C~nferen~ce on
Artificial Intelligence . Tbilisi , USSR , 1975. Vol. 2 .

S,RPetrick SemanticInterpretaticmintheREQUESTsystem.
Proceedings of the International Conference on Computational
Linguistice , VoL 1 , Pisa , 1973 .

W, J. Plath Transformational Grammar and Transformational Pars fng in
the REQUEST system,
Proceedings of the International. Conference on Computational
Linguistics , Vol. 2 , Pisa , 1973 .

J. A. Robinson Mechanizing HighexLQrdelr Logic ,
In : B, Meltzer and D. Michie (eds.) ,
Machine Intelligence 4 , Edinburgh University Pres~l , 1969.

P. Wegner The Vienna Definition Language .
Computing Surveys , Vol, 4 , no. 1 , 1972 .

T, Winograd Understanding Natural Language .
Cognitive Psychology , VoL 3 , no. 1 , 1972 ,

W. A, Woode , R. M. Kaplan and B. Nash-Webber
The Lunar Sciences Natural Language Information System :
Final Report . BBN , Cambridge , Masa, 1972 .

