American Journal of Computational Linguistics w:croricne 32 : 72

PHLIQAI1: MUuLTILEVEL SEMANTICS IN QUESTION ANSWERING

P. MEDEMA, W. J. BRONNENBERG, H. C. BUNT, S. P. J. LANDSBERGEN,
R. J. H. SCHA, W. J. SCHOENMAKERS, AND E. P. C. VAN UTTEREN

Philips Research Laboratories
Eindhoven, The Netherlands

ABSTRACT

This paper outlines a recently implemented question answering system , called
PHLIQA 1 , which answers English questions about a data base .

Unlike other existing systems , that directly translate a syntactic deep structure
into a program to be executed , PHLIQA 1 leads a question through several
intermediate stages of semantic analysis . In every stage the question {8 repre—
sented as an expression of 4 formal language, The paper describes some features
of the languages that are successively used during the analysis process : the
English—oriented Formal Language , the World Model Language and the Data Base
Language . Next , we show the separate conversion steps that can be distinguished
in the process. We indicate the problems that are handled by these conversions ,

and that are often neglected In other systems .

73

1. Introduction

PHLIQA 1 is an experimental system for answering 1solated English questions
about a data base . We have singled this out as the central problem of question
answering , and therefore postponed the treatment of declaratives and impera—
tives , as well as the analysis of discourse untll a later version of the gystem .
The data base 18 about computer installations in Europe and their users . At
the moment, it is small and resides in core — but its structure and content
are those of a realistic Codagyl format data base on disk (CODASYL Data
Base Tagk Group[1871]).

Only one module of the system , the "evaluation component’, would have to be
changed in order to handle a "real” data base .

2. PHLIQA 1 '8 top level design

Like other recent QA systems (e.g, Petrick[1973] , Plath[19731] ,
Winograd[1972] , Woods [19721), the PHLIQA 1 8ystem can, on the
most global level , be divided into 3 parts (see fig. 1) :

— Understanding the question : Translating the question into a formal expres—
sion which represents its meaning with respect to the world model of the
system.

— Computing the answer : Elaborating this expression, thereby finding the

answer, as it {8 represented in the system!' s internal formalism.

— Formulating the answer ; Translating this answer into a form that can be

more readily understood .

74

question in English

y

Question
Understanding

formal expression, nepresenting
the meaning of the question

)

Answer = |- —=-- - - > Data
Computation € - - — - - - Base

answer in Internal format

v

Answer
Formulation

!

answer in external format

Fig . 1. Global subdivision of PHLIQA 1,

The interface between the Question Understanding camponent and the Answer
Computation component 18 a formal language , called the World Model Language

(WML) . Expressions of this language represent the meaning of questions with
respect to the world model of the system. It constants correspond to the concepts
that constitute the universe of discourse . The language i8 independent of the input

language that 18 used (in this case English) , and also independent of the storage
structure of the data base .

75

If we now look at a further subdivision of the components , the difference between

PHLIQA 1 and other systems becomes apparent. Both above and below the World

Model level , there is an intermediate stage of analysis , characterized by a

formal language , resp :

The English-oriented Formal Language (EFL) , which contains constants that
correspond to the terms of English . This language {8 used to represent the
" gemantic deep structure " of the question. That divides the Question Under—
starding component into two successive subcomponents :
a, Constructing an EFL expression, using only linguistic knowledge .
b. Translating the EFL expression into a WML expression, by taking
knowledge about the structure of the world into account,

— The Data Base Language (DBL) , which contains constants that correspond

to data base primitives . (The World Model constants do not correspond to
data base primitives , because we want to handle a " realistic " data base :
one that was designed to be stored efficiently , rather than to reflect neatly the

structure of the world.)

This splits the Answer Computation component into two succeseive subcompo—
nents :

a, Translating a WML expression into a DBL expression taking knowledge
about the data base structure into account.

b. Evaluating the DBL expression,

The set—up of the system that one arrives at in this way , ig shown in fig, 2,

In gection 3 , we say something more about PHLIQA' 8 formal languages in

general . How the three succegsive translation modules are further divided into
smaller modules , called "convertors", is discussed in the sections 4, 5 and 6,

Section 7 treats the evaluation component . The Answer Formulation component

is very primitive , and will not be considered further .

76

question in English

English— EFL| ~~~~ "~ ? [Linguistic
translation €--—=-= Knowledge
Question
Understanding expression of English-oriented Formal Language
(Semantic Deep Structure)
EFL-WML [— -~~~ ?[Knowledge of
translation - — = — —— World Structure
expression of World Model Language
Answer WML-DBL |~~~ ~ 7 Knowledge of
Computation translation |& —— —« —- Data Base

Structure

expression of Data Base Language

" -—-- -
Ewvaluation Data

sy

answer in internal format

2

Answer
Formulation

!

answer in external format

Fig, 2, PHLIQA 1 '8 main components .

77

3. PHLIQA 1' s formal languages

3. 1, Syntax

The three PHLIQA languages (the English-oriented Formal Language , the

World Model Language and the Data Base Language) have largely identtfcal

syntactic definitions . As pointed out already , their most lmportant difference

is in the constants they contain , They share most, but not all, syntactic

consfructions .

PHLIQA expressions are " trees " that consists of terminal nodes (constants

and variables) and syntactic constructions , A syntactic construction i8 an

unordered collection of labeled branches , departing from one node .

The branches of a PHLIQA ' tree " can converge to a common subtree .

Using a system of semantic types , the syntax of a PHLIQA language defines

how expressions can be combined to form a larger expression . For every

syntactic construction, there is a rule which specifies :

— What the semantic types of its immediate sub—expressions are allowed to be ,
(There is never a restriction on the syntactic form of the sub-expressions .)

— How the semantic type of the resulting expression is derived from the
semantic types of the immediate sub—expressions .

Glven the types of the elementary expressions (the constants and variables) ,

this defines the language . (Sources of inspiration for the syntax of our formal

languages were the Vienna Definition Language (Wegner [1972]), and a

formulation of Higher — Order Logic by J.A. Robinson|[19691] .)

Some simple examples of semantic types are the following :

A constant representing a single object has a simple type . E.g., "6 " has

the type " integer " . A constant representing a collection of objects of type «

hae a type of the form <> . E.g., " companies " has the type "{company>",

" integers " has the type "{integer>".

78

A constant representing a function that can have arguments of type (and
values of type (% has the type oA (A . E.g., the function

" £-company—sites " has the type " company—> {site)", the function " f~sum "
has the type " <integer)> -> integer ",

The syntactic rule for the construction " function — application " could state
that the expression

is well — formed if T2 is a well-formed expression of type A and T1 is a
well — formed expression of type A —> [3 , where of and 1’3 may be

any type ; the whole expression then has the type [3,

The PHLIQA languages contain a wide variety of syntactic constructions , e.g.
constructions for different kinds of quantification , for selecting elements from

a list, for reordering a 1list, etc.

3. 2. Semantics

The PHLIQA languages have a formal semantics which recursively defines the
values of the expressions., This definition assumes as primitive notlons the
denotations of the constants of the language : function — constants denote
procedures , and the other constants denote value — expressions . This means
that if we know the denotations of the constants occurring in an expression., the
value of the expression i8 defined by the semantic rules of the language . For
the Data Base Language , we Indeed know the denotations of the constants ; what
we call the data base i8 nothing but the implementation of the " primitive
procedures ", i.e. : the procedures corresponding to DBL functions , and

the procedures for finding the wvalue — expressions of the other DBL constants .

79

Therefore , the DBL expressions are actually evaluable .

For the World Model Language and the English-oriented Formal Language , such
a data base does not exist, but one could be imagined . We express this by saying
that the WML and EFL expressions are " evaluable with respect to a virtual data

base " .

4, Construction of the semantic déep structure of a question .

As we have seen, the Englishoriented Formal Language differs from the other

two languages in two respects :

1. It has different constants , of which the most important are :

a. names of sBets corresponding to nouns (e.g. " computers ") , to verbs
(™ buy — situations ") and to seme of the prepositions
(" in— place — situations ") .

b. grammatical functions ;1 subject, object, etc.

2. It has some different constructions . Here the most striking difference is that
EFL constructinns cortain semantic and syntactic features . The semantic
features influence the formal semantics of the constructions (e.g. the definite—
ness or indefiniteness of a noun phrase influences the choice of the kind of
quantification for that noun phrase) . The syntactic features only play a role
during the transiormation process from English to EFL .

Tt should be noted that in general two synonymous sentenges need not be represented

by the same semantic deep structure in EFL . For example , the synonymy of

'* Abuys Bfrom C?! and' C sells B to A" is8 not accounted for at this level ,

However , at the level of the World Model Language synonymous sentences are

mapped onto equivalent (not neceesarlily identical) WML expressions .

The construction of the semantic deep structure in EFL consists of three main
phases ;

80

phase 1: a lexicon, providing for each word one or more interpretations ,

represented by pairs (CATi » SEM i\ , Where CATi is a syntactic category
and SEMi an EFL expression,

phase 2: a set of rules that enables to combine the sequence of pairs (CAT L SEM i) ’
corresponding to the original sequence of words , into higher level categories and
more complex structures , until we have ultimately the pair (SENTENCE , SEMS) s
where SEMS is the EFL expression for the complete sentence .
A rule of phagse 2 is a combination of a context free rule and a set of rules on EFL
expressions , that show when and how a sequence of pairs

(CATl, SEMl), cesesey (CAT
can be reduced to a pair (CATR s SEMR) .

.+ SEM,)
The general format of these rules is :

— context free reduction rule :

CAT +oo¢-¢oo.l+CATk — CAT

1 R

— EFL rules:

CONDI:.........
ACTIOle........

+ 9 ¢ o 9

s 4 & & 8 0

COND : 4 @ & ° 9§ > g *» 9
n
ACTION :........
n
The CONDi's are conditions on the EFL expressions SEM_ , « ..., SEM

1 k
The ACTION 1’ 8 show how a new EFL expression SEMR can be constructed with the

help of SEM1 $ sao ey SEMk . The rule is applicable if at least one of the
conditions COND i is true . Then SEMR is constructed according to ACTION { and
the sequence of pairs is reduced to (CATR s SEMR) . If more than one of the

COND { is true , we have a local ambiguity ,

81

phase 3: transformation rules that transform the semantic surface structure into
an EFL expression that is called the semantic deep structure . These transfor—
mation rules handle aspects of meaning that could not be resolved locally , during
phase 2, This applies for instance to anaphoric references and elliptic clauses
in comparative constructions ,

A simpler example 18 the specification of the subject in a clause like 'to use a
computer '. The semantic surface structure of this clause means: ' there is a
use—situation , with some computer as its object, and an unspecified subject'.
Phase 2 can be sald to " disambiguate ' thig expression in a context like

! when did Sheli start to uge a computer ?' .

A transformation specifies the subject of the use—situation as ' Shell ', This
transformation would not apply if we had the verb ! propose ' Instead of ' gtart’.

The conditions of phase 2 and phase 3 contain a "shortcuf" to the world model:
the semantic types of the world model interpretations of the EFL constants are
inspected in order to avoid the construetion of semantic deep structures that

have no interpretation in the world model . This blocks many unfruitful parsing
paths .

5 . Translation from semantic deep structure to unambiguous World Model

Language expression

The translation from a semantic deep Btructure (EFL expression) into an un—

ambiguous World Model Language expression proceeds in 3 phases:

phase 1: Translation from EFL expression into ambiguous WML expression,
In this phase , transformations are applied which replace expressions containing
EFL constants by expressions containing WML constants , Their most conspio-

uous effect is the elimination of "situations" and "grammatical functions" . It is

82

important to note that the resulting expression often contains several "ambig-
uous constants" , These arise from polysemous terms in English 1 words that
have a "range" of possible meanings , Such terms lead now to expressions with
ambiguous constants: constants that stand for a whole clasa of possible "instan—
ces" , An expression containing such constants , stands for the class of well-

formed expressions that can be generated by "instantiating" the ambiguous con—
stants .

phase 2: Disambiguation of quantifications .

Many sentences are ambiguous with respect to quantification .

E .g . "Were the largest 3 computers bought by 2 French companies ?" can either
ask whether there are 2 French companies such that they both bought each of
these computers , or , perhaps more plausibly , it can ask whether there are 2
French companies such that together they bought these computers .

Until this stage in the process , the representation of such questions contains
constructions which stand for both interpretations at once . But now that the
system' s assumptions about the structure of the world are reflected in the ex—
pression, some such iInterpretations may be ruled out as implausible , because
they would lead to the same answer , independent of what the state of affairs in
the world is . E .g ., the first Interpretation of the above example question

has the value "false" , independently of the values of the constants in the ex-
pre=gion . (Because the assumption that a computer can only be bought by one

company wag introduced by a previous transformation) . Therefore , the second

interpretation is chosen .

phase 3: Digambiguation of WMI, constants ,
The ambiguous WML constants can be instantiated in a very efficient manner by

using the semantic type system: The possible interpretations of an ambiguous

constant are severely restricted by the semantic types of the other constants

that appear in its context.

83

6. Translation from World Model Language expression to Daia Base

Language expression

In the World Model Language , constants correspond to the concepts of the universe
of discourse . In the Data Base Language , constants correspond to primitive
logical and arithmetical procedures and to primitives of the data base . The choice
of these primitives was governed by considerations of efficiency , rather than by
the wish to represent neatly the structure of the universe of discourse, Therefore,
WML and DB contain different constants .
The translation from a WML expression to the DBL expression that will be evalu—
ated , proceeds in three stages :
1, Paraphrase of the WML expression, in order to eliminate ™ infinite notions ",
WML contains constants representing infinite sets or infinite continua , like
" integers " , " money-amounts ™ and " time " . Such constants can not be
directly or indirectly represented in the data base , and hence have no DBL—
translation . By paraphrasing the expression, the infinite notions can often
be eliminated .

2, Translation of expressions containing WML constants into expressions con—

taining DBIL constants .

This translation is required by phenomena like the following :

— it is possible that a class of objects is not represented explicitly in the data
base , while properties of its elements are represented indirectly , as
properties of other , related objects . (E.g. , cities do not occur in the
PHILIQA 1 data base , but their names are represented ag the city—names
of sites .)

A special case of this phenomenon is the representation of a continuum by a
class of discrete objects (E.g. , " core " is represented by " core
memories ")

— objects may be represented more than once in the data bage . E.g., in the

PHLIQA 1 data base , the flle of computer users and the file of manufacturers

84

can contain records that represent one and the same firm .
— the data base is more limited than the world model . Some questions that
can be expressed in WML c¢an be answered only partially or not at all ¢
the WML expression has no DBIL translation . The present convertor detects
such expressions and can generate a message which specifies what informa—
tion is lacking .
Examples of this case are : the set " Integers "™ (if the attempt of the previous
convertor to eliminate it has been unsuccessful) , and the " date—of-taking—
out—of-use " of a computer (which happens to be not in the data base).
3. Paraphrase of the DBL expression, in order to improve the efficiency of its
evaluation .
The DBI. expression produced by the previous convertor can already be evalu—
ated , but it may be possible to paraphrase it in such a way , that the evaluation
of the paraphrase expression is more efficient, This conversion is8 worthwhile
because , even with our emall data base , the evaluation is often the most

time—consuming part of the whole process ; compared to this , the time that

transformations take is negligible .

7. The evaluation of a Data Base Language expression

The value of a Data Base Language expression is completely defined by the seman—
tic rules of the Data Base Language (see sectlon 3. 2.), and one could conceive
of an algorithm that corresponds exactly to these rules . For reasons of efficiency ,
the actual algorithm differs from such an glgorithm in some major respects :

— in evaluating cquantifications over sets , it does not evaluate more elements of
the set than is necessary for determining the value of the quantification .

— if (e.g. during the evaluation of a quantification) , a variable assumes a new
value , this does not cause the re—evaluation of any subexpressions that don't
contain this variable .

Currently , evaluation occurs with respect to a small data base in ¢ore . To handle

a real data base on disk , only the evaluation of constanis would have to change .

85

8. PHLIQA 1 '8 Control Structure

The sections 4 threugh 7 sketched what the basic modules of the systern (the

" convertors ") do . We shall now make some very general remarks about the

way they were implemented . These remarks apply to all convertors except the
parser , which i8 described in some detail by Medema [1975]

The convertors can be viewed as functions which map an input expression into a set
of zero or more output expressions , Such a function i8 defined by a collection of
transformations , acting on subexpressions of the input expression . Each trans—
formation consists of a condition and an action. The action is applied to a sub-
expression if the condition holds for it . The action can either be a procedure
transforming a subexpression to its " lower level equivalent™ or it can be the
decigion ™ this subexpression cannot be translated to the next lower level ™.

ATl convertors are implemented as procedures which operate on the tree that
represents the whole question . The procedures cooperate in a " depth—first™"
manner : a conversion procedure finds succesgively all interpretations that the input
expression has on the next lower level . For each of these interpretations , as soon
as it is found , the next convertdr is called. If no interpretation can be found, a
message glving the reason for this " dead end " i8 buffered , and control {8 returned
to the calling convertor .

If the answer is found, it is digplayed . If requested , the system can continue its
search for more interpretations . If the answer level i8s not reached, it displays

the buffered message from the " lowest™ convertor that was reached .

86

Colophon

The PHLIQA 1 program was written in SPL (a PL/] dialect) , and runs under the
MDS time sharing system on the Philips P1400 computer of the Philips Research
Laboratories at Eindhoven .

The quantification-disambiguation phase of the EF1~WML translation, the effi-
ciency—conversion (step 3) in the WMIL~DBL translation, as well ag some parts
of the grammar , are not yet part of the running system , though the convertors

are completely coded and the grammar is elaborately specified .

During the design of PHLIQA 1 , the PHLIQA project was coordinated by Piet
Medema . He and Eric van Utteren designed the algorithmic structure of the sys—
tem and made decisions about many general aspects of implementation .

The formal languages and related transformation rules were designed by Harry

Bunt . Jan Landsbergen and Remko Scha , Wijnand Schoenmakers designed the evalu-
ation component. Jan Landsbergen wrote a grammar for an extensive subset of English.
All authors were involved in the implementation of the system .

During the design of PHLIQA 1 , extensive discussions with members of the SRI
Speech Understanding team have helped us in making our ideas more explicit.

References

CODASYL Data Base Task Group
April 71 report. ACM, New York, 1971 .

P, Medema A control structure for a question answering system .
Proceedings of the 4th International Joint Conference on
Artificial Intelligence . Thbilisi, USSR, 1975. Vol. 2,

S. R. Petrick Semantic Interpretation in the REQUEST system .
Proceedings of the International Conference on Computational
Linguistics , Vol.1, Pisa, 1973 .

W. J. Plath Transformational Grammar and Transformational Parsing in
the REQUEST system .
Proceedings of the International Conference on Computational
Linguistics , Vol, 2, Pisa, 1973.

J. A. Robinson Mechanizing Higher—Order Logic .
In : B. Meltzer and D. Michle (eds.) ,
Machine Intelligence 4 , Edinburgh University Press , 1969,

P. Wegner The Vienna Definition Language .
Computing Surveys , Vol. 4, no. 1, 1972,

T. Winograd Understanding Natural Language .
Cognitive Psychology , Vol, 3, no. 1, 1972.

W. A. Woods , R. M, Kaplan and B. Nash-Webber
The Lunar Sciences Natural Language Information System :
Final Report . BBN , Cambridge , Mass, 1972.

MICROCOPY RESOLUTION . TEST CHART.
//:;:\ NATIONAL BUREAU OF - STANCARDS-1963-A

