American Journal of Computational Linguistics wsicroriche 32 :ss

SEMANTIC-BASED PARSING AND A NATURAL-LANGUAGE INTERFACE
FOR INTERACTIVE DATA MANAGEMENT

JOHN F. BURGER, ANTONIO LEAL, AND ARIE SHOSHANI

System Development Corporation
Santa Monica, California 90406

ABSTRACT

We describe a natural-language recognition system having both applied and
theoretical relevance. At the applications level, the program will give a
natural communications interface facility to users of existing interactive
data management systems. At the theoretical level, our work shows that the
useful information in a natural-language expression (its "meaning") can be
obtained by an algorithm that uses no formal description of syntax. The
construction of the parsing tree is controlled primarily by semantics in the
form of an abstraction of the "micro-world" of the DMS's functional capabil-
ities and the organization and semantic relations of the data base content
material. A prototype is currently implemented in LISP 1.5 on the IBM

370/145 computer at System Development Corporation.

INTRODUCTION

In a recent article in Scientific American, Dr. Alphonse Chapanis says, "Tf

truly interactive computer systems are ever to be created, they will somehow
have to cope with the...errors and violationsz of format that are the rule

rather than the exception in normal human communication"([1l]. An example

59

dialogue produced by two persons interacting with each other by teletype-
writer to solve a problem assigned to them by experimenters showed that "not

one grammatically correct sentence appears in the entire protocol.”

Many existing language processors (Woods, Kellogg, Thompson, etc.) [2,3,4]
are limited to what Chapanis calls "immaculate prose,” that is, "the sen-
tences that are fed into the computer are parsed in one way or another so
that the meaning of the ensemble can be inferred from conventional rules of
syntax," which are a formal description of the language. In pffect, users
are required to interact with these systems in some formal language, or at
least in a language that has a formal representation in the computer system
that a user's expression must conform to (we are thinking, in the latter
instance, of Thompson's REL, which has an extensible formal representation
facility). In addition, most natural-language question-answering systems,
including all referenced above, require that a user's data be restructured

and reorganized according to the particular data base requirements of the

natural-langnage system to be used.

At the level of artificial intelligence research [5,6,7], there is some
interest in systems that recognize meaning in natural-language expressions
by methods that d¢ not require compiler~like syntactic analysis of an
expression prior to semantic interpretation. We believe it is possible,
practical, and feasible, using new linguistic processing strategies, to

design a natural-lanquage interface system that will permit flexible, intu-

itive communication with information management systems and other computer

programs already in existence. This interface is open-ended in that it has

60

no prejudice about the user's system functions and can be joined to almost
any such system with relatively little effort. It is, in addition, able to
infer the meaning of free-form English expressions, as they pertain to the

host system, without requiring any formal description or representation of

English.

THE SEMANTIC INTERFACE ALTERNATIVE

The syntactic inflexibiiity of existing natural-language processors limits
their usefulness in interactive man-machine tasks. Our approach does not
use a collection of syntax rules or equations as they are normally defined.
Instead, we construct a dictionary in which we define words in terms of their
possible meanings with regpect to the particular data base and data manage-
ment system (DMS) we want to use and according to the possible relations
that can exist between data-base and DMS elements (e.g., an averaging func-
tion on a group of numbers) in the limited "micro~world" of this precisely
organized data collection. Words appearing in a user's expression that are
not explicitly defined are ignored by the system in processing the expres-
sion; an example would be the word "the," which is usually not meaningful in
a data management environment. We thus avoid the expressive rigidity that
formal syntactic methods impose on the user and the excessive time and
resource consumption that results from the combinatorial explosions usually

produced by such methods.

We distinguish in their definitions between two types of words: content

words and function words (or "operators"). Content words are words whose

61

"meanings" are the objects, events, and ¢oncepts that make up the subjects
being referred to by users. More precisely, for data management systems,
these meanings (or "concepts") are the field names and entry identifiers for
the data base and the names for available DMS operations such as averaging,
sumning, sorting, comparing, etc. Function words serve as connectors of
content words. Their use in natural language is to indicate the manner in
which neighboring content words are intended to relate to one another. 1In
the example "the salary of the secretary,”" used below, "salary" and

"gecretary,” are content words, and "of" is a function word used to connect

them.

Many content words are context sensitive. In a particular data base, for
instance, the word "salary" may refer to the data-base field name SECSAL if
the salary is "of a secretary,"” but may also indicate the field name CLKSAL
if it is a "salary of a clerk." 1In recpgnition of this we therefore define
each content word by a set of one or more pairs of the form

((X1 v1) (X2 ¥2) ... (Xn ¥Yn))
where the Xi and Yi are "concepts" (that is, field names, etc.) as described
above. This expression may be interpreted as, "if the word so defined is
contextually related in a sentence to X1, its particular meaning in this
context is Y1, if it is so related to X2, it means Y2, and so forth." This
particular contextual meaning of the word is called its sense. Two content
words are considered to be semantically related if the intersection of the

Xi's from the definition of one word with the Yi's from the definiticn of

the other is not empty.

62

To get a more intuitive understanding of this process, suppose, again, that
a data base contains entries for both secretaries and clerks with salaries
for each. Suppose "Suzie" is an instance of a secretary and "Tom" is an

instance of a clerk. We then have three words defined as follows:

Suzie ((SUZIE SECY))
Tom ((TOM CLK))
Salary ((SECY SECSAL) (CLK CLKSAL))

Processing the phrase "Suzie's salary" would intersect the Yi (" (SECY)")
from the definition of "Suzie” with the Xi's ("SECY" and "CLK") from the
definition of "salary." The intersection is non-empty (" (SECY)"), and, in
discovering the semantic relationship, the sense "SECSAL" is assigned to the,

word "salary." Similarly, "Tom's salary" assigns the sense "CLKSAL" to

"salary."

A particular implementation of the natural-language interface processor
operates for a particular IMS/data-base target system. It contains a
particular dictionary created for that target system. For a particular dic-
tionary, the set of all lists of pailrs as described above, therefore,

constitutes the equivalent of a concept graph or network for the particular

data bage analegous to those used by many of the more conventional parsers

for semantic analysis following (or during) the syntactic phase of parsing.

In the analysis of a particular input by our system, two words in context
are tested using the "intersection" method described above and, if they are
found to be semantically related, they are considered candidates for

"connection" as described below. Two words so connected form a phrase.

63

Function words are defined as operatoxs or processors that perform this
semantic test. The definition of one function word differs from that of
another according to its slope (see below) and also in that the operational
definition of a function word can reject a connection even though the two
words may be semantically related. In the operational definition of the
function word may be a list of acceptable concepts or a rejection list of
unacceptable concepts. In most conceivable data bases, the phrase "salary

in the secretary" would be thus rejected by the function word "in."

As the analysis of an input expression proceeds, a "clumping" of word and
phrase meanings is more and more explicitly connected until, normally, the
processing of the entire sentence results in a tree structure made up of the
connected senses of all the content words froam the sentence. This result we

term the sentence graph even though the input expression may not be a

grammatically complete sentence. Thig sentence graph will be translated

into a formal DMS statement.

We recognize that the linear orxdering of the words in an input expression
is not entirely random and that certain aspects of the function of syntax
must be taken into account. Thisg is done by means of a new and powerful

algorithm based on what we call the syntactic~semantic slope. Linguists

generally recognize that whenever two units of meaning are combined, one is
semantically dominant and the other subordinate, as a modifier is sub-
ordinate to the modified word. After combination, the dominant word may be

used in most cases to refer to the conjoined pair. Thus, a “red herring"

is a "herring” (not a "red"), and the "salary of the gecretary" is a

64

"galary." 1If this relationship of dominance is represented vertically on a
rectangular graph (i.e., dominance on the Y-axis), and if the linear order-
ing of the words in the expression is represented on the X-axis in normal
left-to=-right order, then the connection of an adjacent pair of content
words or phrases will describe a linear slope on the graph. The slope is
positive or negative as the dominating sub-unit is, respectively, to the
right or to the left of the subordinate sub-unit. For example, the phrase

"red herring" makes a positive slope, thus:

HERRING
RED
and "the salary of the secretary" makes a negative slope:
SALARY
SECRETARY

Thus, the operational meanings of function words operate on the meanings of
nearby content words. Dominance is assigned, semantic relationships are
verified, and the relationships so discovered are accepted or rejected. If
accepted, the two word-meanings are connected, and the acceptable sense is

assigned to the dominant word.

Function words may connect content words in "positive," "nhegative," or
"peak" connections. The following are examples of each manner of connection:
1. "Of" is a negative operator, as in "the salary of the
secretary":
SALARY

N

SECRETARY

the rule

65

"'g" ig a positive operator, as in "the secretary's salary”:
SATARY
SECRETARi///
"And" is a peak operator, as in "Atlantic and Pacific.”" 1In

contrast with positive and negative operators, peak operators add
a representation of their own semantics into the structures they
build:
AND
7\
ATLANTIC PACIFIC

Between any two adjacent content words there is an implicit "empty"
operator that is a positive operator, as in "red herring”:

HERRING

/

RED

In general, all prepositions are defined as negative operators. This is

equivalent to the rule

NP - NP PREP NP

used by syntactic processors., The positive empty operator is equivalent to

NF + ADJ NP

and others, while verbs and conjunctions are defined as peak operators,

giving our statemrnt of rules such as

S * NP VP NP

NP -+ NP CONJ NP.

66

Each operator has the facllity to accept or reject any semantic relation

according to the precise definition of the function word for the host data

management system.

Progressive connection of word meanings and previously connected groups or

"phrase meanings" results in a tree graph that we call the sentence graph.

For example, the question "What is the surface displacement of U,S. diesel
submarineg?" could, for a particular data base, produce from the dictionary
a string of content-word and function~-word definitions that might be rep-
resented typographically like this:

((SUB SURF-DISC)) <OF> ((U.S. LOC)) ((DIESEL TYPE)) ((LOC SUBS)
(TYPE SUBS))

As a result of processing, these will assemble into a tree structured (using

the senses of the words) like this:

SURF~-DISP
/ T

WHAT fﬁﬂﬂ‘—”‘i::::;;:SUBS
LOC TYPE
| |
| |
U.S. DIESEL

Even though this tree, or sentence graph, is created as a result of semantic
relationships instead of formal rules of grammar, it still closely resembles
the "parse tree" produced by most conventional syntactic language processors.
With respect to the user's target data management system, the sentence graph

is precigse and unambiguous and contains enough information for a

67

straightforward translation into the formal query language of the DMS. 1In
SDC's DS/3 language, for example, the above question would be expressed as
PRINT SURF-DISP WHERE TYPE EQ DIESEL AND LOC EQ U.S.

The response to the user's question will thus be the response from his DMS

to the formal query statement.

The user's input in this hypothetical example is proper in form and grammar.
However, it need not have been. The request

OBTAIN SURFACE DISP FOR US SUBS SUCH AS HAS TYPE EQ DIESEL.
would produce exactly the same sentence graph and therefore, exactly the

same formal query statement with the same response from the DMS.

It is not likely that a syntax-based parser would have anticipated the odd
language-use and grammar of this last request. Without a syntax rule that
would allow for the phrase "such as has" such a parser would not lock at the
semantics involved and would be unable to interpret the request. Our syntax
algorithm gets the same results that would be expected from the application

of syntax rules without the need to anticipate each grammatical construct

expected from the user.

In overview, the parsing algorithm makes a series of positive, negative, and
peak connections based on the operational meanings of the function words
(including the "empty" operator) and on the relations between meanings of the
content words. The algorithm adheres to the following rules:

Rule 1: Connections between content words are possible only if

the result of the intersection test described above is non-empty

Rule

68

and if this result is not rejected by the operation of the function
word performing the test. The function word definition also deter-
mines which word supplies itgs X's and which its ¥'s for the test.
It thus controls which word has its sense determined if the test
ig successful. Most often (though there are exceptions), positive
operators use the X's from the word to the right and the Y's from
the word to the left of the operator. Positive operators, there-
fore, determine the sense of the word to the right. This is
illustrated using, agdain, the secretary and her salary. Consider
the definition of "Suzie" and "salary" as shown on page 5. The
phrase "Suzie's salary" has two content words, "Suzie" and
"salary," separated by the function word, “"'s." This function
word is a positive operator and, hence, applies the intersection
test to the Xi from the definition of "salary" with the Yi from
the definition of "Suzie." These values are, respectively,

"(SECY CLK)" and " (SECY)." The intersection yields " (SECY),"
which is acceptable to the "'s" operator, and the connection is
made with "salary"” as the dominant word. The sense of "salary"

is the Yi associated with "SECY" in the definition of "salary,"
hence, "SECSAL." This selection process is reversed for negative
operators, while peak operators employ both kinds of tests, one

on each side of the peak.

2: No node in a sentence graph may have more than one dominating
node. That is to say, all connections must result in trees. This

is a common assumption consistent with conventional syntax-driven

parsers.

69

Rule 3: Given a subtree, a constituent on its left has the possibility
of connection only to nodes of the subtree's positive adjacent
slope, and a constituent on the right can connect only to the nodes
in the adjacent negative slope. Intuitively, this means that if
the nodes of a subtree are connected by "lines" that are "opague
barriers,"” then a constituent on either side of the subtree may
connect to it only on those nodes that it can "see.” It may not
connect to nodes on the "inside" or the "far side" of the subtree.
This is a powerful heuristic rule that eliminates the need to try
connections to many syntactically impossible portions of the sub-
tree. In effect this one rule, together with the definitions of
the function words, replaces all the syntax rules used by most
conventional parsers.,

Rule 4: In order to minimize disconnection of existing subtree
structures (backup) and still consider all possible connections,
the system should, whenever possible, construct,subtrees starting
from the top and make new connections from below. This rule leads
to the following algorithm: Scan the constituents from left to
right making negative connections, then scan from right to left
making positive comnections. Scan thus back and forth until no
more connections can be made. Then make any possible peak connec-
tions and repeat the algorithm. Continue this process until all

constituents have been connected into a single tree.

We have observed that if ambiguities exist under these conditions, they will

be semantic and, in all probability, not resolvable by any further processing

70

or analysis of the expression. Therefore, there is no need to carry along
temporary multiple construction possibilities. The algorithm may either

gquery the user at this point for disambiguation or ahort the processing and

inform the user of the reason.

REFERENCES

1. Chapanis, Alphonse. Interactive human communicatiaon. Scientific

American, May, 1975.

2. Woods, W. A, Transition network grammars for natural language analysis.

Communications of the ACM, October 13, 1970.

3. Kellogg, C. H., et al. The CONVERSE natural language data management

system: current status and plans. ACM Symposium on Information Storage

and Retrieval, University of Maryland, 1971.

4. Thompson, F. B.; Lockman, P. C.; Dostert, B.; Deverill, R. S. REL:

a raplidly extensible language. Proceedings of 24th National Conference,

ACM, New York, 1969, 399-417.

5. Riesbeck, C. K. Computational understanding. Theoretical Issues in

Natural Language Processing: Proceedings of an Interdisciplinary

Workshop in Computational Linguistics, Psycholoqy, Linguistics and

Artificial Intelligence. Cambridge, Massachusetts, June 10-13, 1975.

6. Waltz, D. L. On understanding poetry. Theoretical Issues in Natural

Language Processing, Proceedings of an Interdisciplinary Workshop in

Computational Linguisticsg, Psychology, Linguistics and Artificial

Intelligence. Cambridge, Massachusetts, June 10~13, 1975.

7.

Schank, Roger, and Tesler, L. G.

71

A Conceptual Parser for Natural

Language. Stanford Artificial Intelligence Project. Memo No. AI-76,

January, 1969.

