American Journal of Computational Linguistics icroricne 32 : 9

PEDAGLOT AND UNDERSTANDING NATURAL LANGUAGE PROCESSING

WILLIAM FABENS

Computer Science Department

Rutgers University

New Brunswick, New Jersey 08903

ABSTRACT

PEDAGLOT is a programmable parser, a 'meta-parser.' To program it, one
describes not just syntax and some semantics, but also--independently--its
modes of behavior. The PEDAGLOT formulation of such modes of behavior follows
a categorization of parsing processes into attention-control, discovery, pre-
diction and construction. Within these overall types of -activities, control
can be specified covering a number of syntax-processing and semantics-process-
ing operations. While it is not the only possible way of programming a meta-
parser, the PEDAGLOT mode-specification technique is suggestive in itself of
various new approaches to modeling and understanding some language processing

activities besides parsing, such as generation and inference.

This work was sponsored by through NIH Grant #RR643.

10
Introduction

It is well known that to process natural language, one needs both a
syntactic description of possible sentences, blended in some way with a semantic
description of a certain domain of discourse, and a rather detailed description
of the actual processes used in hearing or producing sentences.

An augmented transition network (Woods, 1970) 1is an example of the blending
of syntactic and quasi-semantic descriptions. Here registers would be reposi-
tories of, or pointers to, semantics. When used in conjunction with a semantic
natwork, an ATN can be used to parse or to generate (Simmons and Slocum, 1972)
sentences. The issue of changing the description of the actual processes used
in such systems has been touched on by Woods (in using a 'generation mode'), to
some extent by Simmons and Slocum (using decision functions to control style of
generation), and to a larger extent by Kaplan (1973), in his General Syntactic
Procéssor, GSP. GSP indeed is one example of a system in which syntax, semantics
and to some extent processes can each be usefully defined.

If we look at syntax, semantics and processes as three describable components,
these systems just mentioned illustrate how thoroughly intertwined they can become--
to the extent that theorists from time to time deny the existence or at least the
importance of some one of them. Ignoring that dispute, I would like to concentrate
on the question of being able to comprehensively describe one's theory of language
in terms of its syntax, semantics and processes in a way that allows for their
necessary and extensive intertwining connections, but at the same time allows one
to describe them independently,

I came to the need for doing this while designing a 'relaxation parser,' a
parser which can make grammatical relaxations if it is given an ill-formed string,
so as to arrive at a 'closest' possible parse for the string. This problem involved

describing a 'correct' grammar and then (in some way) describing a space of deviations

11
that might be allowed by the parser. Thus the syntax would be fixed and the way

the parser uses it would separately have to be described. It was soon noticed
that efficiency could be greatly enhanced if some rudimentary notion of semantic
plausibility could also be used. It would have to be described in a way related
to the correct syntax but still be usable by the parser. Thus, for my purposes,
the descriptions had to be independent of one another.

One feature of a relaxation parser is that it can 'fill in the gaps' of a
string that is missing various words. If one could, which my relaxation parser
did not, specify the semantic context of a sentence, the generated sentence might
be semantically rather plausible. In any case, the relaxation parser operatés in
various respects like an actual parser or like a generator, and it was this rela-
tionship between parsing and generating that became of interest.

Out of the design of the relaxation parser, the notation (independent of syn-
tax) which to some extent describes various processes and choices of alternate ways
of processing was developed. Thus, one may take a set of syntax and semantic de-
scriptions and then through describing the processing 'modes' involved, define a
processor which uses the particular algorithm that the individual processes together
define. One may call the parser that is programmable in its processes a meta-parser,
of which various existing parsers and generators appear to be special cases.

A closer examination of the parser I have developed (called PEDAGLOT*) may show
some such aspects of meta-parsing, especially as regards the relationship between
parsing and generating. I will describe the syntactic and semantic parts of the
parser first: by noting its resemblances to the parser of J. Earley (1970) and the
ATN system of Woods. Then I will describe the process-type specifications that are
available, and the use of meta-parsers as a basis for defining general language be-

haviors. Further detail can be found in the PEDAGLOT manual (Fabens, 1972 and 1973).

*for pedagogic polyglot

12

1. The Core of the Parser

The fundamental operation of the parser is very similar to the operation
of Earley's parser, with augmentations for recording the results of parses
(e.g., their tre structure, and various of their attributes, which I call
'tags'). It is given a grammar as a set of context-free rules with various
extensions, most important of which are that LISP functions may be used as
predicates instead of terminals, and thap each rule may be followed by opera-
tions that are defined in térms of the syntactic elements of the rule in question.
An example of this notation is as follows:
S+ NP VP
=> [AGREE [REF NP][VB VP]]
[SUBJ = [REF NP]][OBJ = [REF VP][VB = [VB VP]]
S » NP [BE][VPASS] BY NP
=> [AGREE [REF NP][VB[BE]]]
[SUBJ = [REF NP']][OBJ = REF NP]][VB = [VB[VPASS]]]
NP - [DET][N]
=> [REF = [N]]
VP + [V]NP
=> [VB = [V]][REF = [REF NP]]
Here, each bracketed symbol is the name of a recognition predicate (e.g.,
[N] recognizes nouns, [BE] recognizes forms of '"to be'). Following the => are
the post-recognition functions. For instance [AGREE [REF NP][VB VP]] specifies
a call to the AGREE function which is given, as arguments, the REF attribute (tag)
of the sub-parse involved in that rule and the VB attribute of the VP part of
the rule.
Following is a parse tree for 'The Man Bites the*Dog' and values of tags

' after the parse.

13

S = (SUBJ=Man, OBJ=Dog, REF={Man,Dog},VB=Bites)

.NP= (REF=Mah) VP=(REF=Dog, VB=Bites)

[DET] [N] (V] NP
The Mln Bites [DET] [N]
The Dog

The general flow of the parser is from top-down, and as the lowest compo-
nents (symbols in the string) are found, the post-recognition functions that are
associated with the rule that recognized them are applied. Tags become associated
with sub-parses when the post-recognition operation uses the form [x = y] (in which
the value referenced by y is stored as the x tag of the sub-parse). In the example,
[DET] and [N] recognize 'The Man' and 'Man' is used as the REF attribute of the
first NP. In the second S rule, the operation of [SUBJ = [REF NP']] would be to
retrieve the REF tag of the second NP (thus the prime), and to store that as the
SUBJ tag of the final parse.

As in most top-down parses, this parser begins with S and its two rules,
since S is non-terminal. S is expanded into the two sequences of matches it should

perform. This expansion results in various (in this case, two) predictions of what

to find next. When the initial symbol in some rule is a terminal or a predicate,
a discovery is called for (in which a match is performed, possibly involving the
known values of the tags). When some complete sequence of elements is found (here,

for instance, when NP + [DET][N] has matched the [N]). Construction invokes the

post-recognition operations and then usually. completes some earlier part of a rule

(here, the 'NP' pf S + NP VP) so further predictions (involving VP) or discoveries

14
are then specified.

I have broken up the parsing process into these three parts so as to similarly
catalog the 'parsing modes,' turning this parser into a meta-parser. Before doing
so, I should note that this parser stores each result under construction in a
'chart' as is done by Kaplan in his GSP, so that, for instance, the NP 'test'

will only have to be evaluated once for each place one is wanted in the string.

S+ NP VP v VP » [V] NP <
J r\ v\g\

s + NP [BE] [VPASS] BY NP| |1 |NP » [DET] [N]

g —

NP~ [DET] [N]

\i

[DET] [N] [BE] [DET] [N]
Tgé Man B1tes The Dog

I1lustration of PEDAGLOT's Parsing Chart

Simple Arrows indicate 'Predictions.’
Double Head Arrows indicate 'Discoveries.'
Dotted Arrows indicate "Construction.'
Also, for various well known reasons of efficiency, Earley's concept of
independent processing of syntactic events is used (combined conceptually with
the chart), so that a main controller can evaluate the individual syntactic 'tests!'

in almost any order, and not just in a backtracking sense (cf. Woods, 1975). The

efficiency is realized here since many 'partial parses' (partially recognized forms)

15

are effectively abandoned if other results can complete the parse, or a sub-
parse, first.

2. Meta-Parsing Modes

One can see that, except for the notational inefficiencies of the context:
free formalism (as opposed to the augmented transition network form), this parser
is very much like other standard parsers (especially ATN's). It differs in that
there is a way-of specifying how to proceed.. Currently, this system has approxi-
mately a dozen 'modes' and I will present some of them here. Each mode specifies
how to handle a certain part of the parsing process. They can be classified into
four categories: attention control, prediction, discovery and construction.

a. Attention Control Modes:

Since the parser operates on a chart of independent events ('parsing
questions'), one must give the parser a method of sequencing through them.
Thus, one may specify 'breadth-first' or 'depth-first' and the appropriate
mechanism will be invoked (this merely involves the way the processor stacks
its jobs). A 'best-first' option is -under development, which, when given an
evaluation function to be applied to the set of currently active partial
parses, allows the system to operate on the 'best' problem next. Experi-
ments with this mode have so far been inconclusive.

One also can specify when to stop (i.e., at the first complete parse,
or to wait until all other ambiguous parses have been discovered). The dis-
ambiguation routine (which is described as a part of the construction modes)
defines which parse is 'best'. Further, one may specify a left-to-right or
right-to-left mode of how to progress along the string.

b. Discovery Modes:

The starting point of building a relaxation parser 1is to specify what
to do when an exact match is not made. If the parser is expecting one word

and finds another it can look around the indicated place in the string to find

16

what it is looking for, or it can in certain other circumstances simply
insert the expected word into the string. Thus, under discovery. modes,
there are various options: either the parser is allowed to attempt matches
in out-of-sequence parts of the string, or not. And if not, or if no such
match is found, the parser may or may not be allowed to make an insertionm.

So in PEDAGLOT, there is an INSERT mode (and various restricted versions
of it) and a 'where to look' mode which is used to control the degree to which
the parser can try to find out-of-place matches. There are tags associated
with these two specifications, the INSERT tag and the OMIT tag, which are
associated with the parses involving insertions and omissions that contain
the number of insertions made and the number of input symbols omitted in
building the parse.

There is also a rearrangement mode. Thus, given certain constraints,
the parser could be given 'The Bites Man Dog' and produce a parse for *The
Man Bites the Dog' since it would have found 'Man,’' by temporarily omitting
'Bites,' but then it looks for and finds 'Bites' and finally, finding no se-
cond 'the,'the,' inserts one (or some other determiner because of the [DET] func-
tion]) and finds 'Dog. In a similar way it would try to produce a passive
form (i.e., the Man Is Bitten By the Dog) but since this involves more inser-
tions, etc. it would not be chosen.

These heuristics are controlled by recording numerical summary tags

with each sub-parse that participate in, and are 'judged' by the disambiguaticu
routines. Similar ideas are used by Lyon (1974).

c. Prediction Modes:
As Woods (1975) has pointed out, the extent to which a parser's prediction
increases efficiency varies with the quality of the expected input. This fact

affects greatly our discoviéry procedures, since, if insertions are to be made,

one ought to be rather sure of one's predictions, or risk a combinatorial ex-

17

plosion. In PEDAGLOT, there is a programmable 'choice' function that” con-
trols predictions. Specifically, when the parser encounters a non-terminal
symbol, that symbol is the left-hand side of various rules. An uncontrolled
prediction (used by a canonical top-down parser) is to select each such rule
as the expansion., Intuitively, however, people do not seem to do this. In-
stead, as in an ATN, they try one and only if that fails, go into the next.
In PEDAGLOT, the choice of which rule to try can be defined as the result of
the call to a 'choose' fﬁnction (or it can be left uncontrolled). We have
designed various approaches to such predictions (e.g., a limited key-word
scan of the incoming string, and the use of 'language statistics' such as the
set of rules which can generate the next symbol in the string as their left
most symbol).

The prediction is currently made once for any given choice point; its

outcomes are expected to be an ordered set of rules to try next.

d. Construction Modes:

The phase of parsing in which the parts of the parse tree and associated
tag values are formed, is a place where most of the non-syntactic information

(tags) about the string being parsed can come into play.

In the first place, new tags can be formed as functions of lower level
parse tags through a process called melding. Thus, 'nonsense' can be discovered

and pronoun references can sometimes be tied down. In the second place, it is

a result of construction that ambiguity is discovered and dealt with,

Since these features of parsing deal primarily with semantics (and since,
if anywhere, semantic representations of the string reside in the tags), most
of the PEDAGLOT construction modes involve tags.,

One may explicitly meld tag values by using post-recognition operators, or

one may define an 'implicit' melding routine that is associated with the tag

18

names themselves instead of with individual rules. In our example we use
this device to implicitly form a simple list of the two REF tags that be-
come associated with the S rule. This implicit melding operation can also
include a blocking function, or some reference to a data base. The tags

that contain INSERT and OMIT information are used in this way to keep running
totals of, and to minimize the number of such heuristics in the relaxation
parsing modes. One may also associate a LIFT function which, when the par-
tial parse becomes complete, specifies a transformation of that tag to be
msed as the tag of the next higher level parse.

Ambiguity is discovered when two parses from the same symbol, cdvering
the same string segment are found. For this case, an AMBIG function is asso-
ciated with tag names, and it makes a 'value judgement' of which tag is 'better,
hence which interpretation to use. (Other types of criteria can also come into
play here such as user interaction, (cf. Kay, 1973).

3. The Uses of Meta-Parsers

I have just catalogued some of the parsing modes available in PEDAGLOT. Others,
such as Bottom-Up (instead of Top-Down) or Inside-Out (instead of Left-to-Right, etc.),
are envisionedybut not implemented. Since PEDAGLOT is an interactive program, the
user can change modes at will, just as he can change syntax or introduce new tags.
Thus, the obvious first use of meta-parsers is that one may use them to design
language processors without having to tie oneself down from the start to say, a
depth-first parser.

Meta-parsers also have a certain amount of tractibility that parsers that
blend all activities into one huge network may not. One may see at a rather high level
what is going to be happening (i.e., all tags of a certain name will meld together
in a certain way, unless the grammar specifies otherwise). If one, however, wants
certain forms of local behavior, one may use predicates or functions on individuat

rules. Further, if one wants to change the order in which predictions are evaluated,

19

one can program a 'choose' function which will make that global change. To a
large extent, the language designer may specify much of the processor in broad
terms and still be able to control local events where necessary.

In a more general sense, a meta-parser allows one to understand and build
higher order theories about how people might represent and process language.

For instance, while it may be true that generating is the inverse of parsing,
there is more than one way to do such inverting, One could start from a semantic
network, using the thoose function along with the INSERT mode to restrict means of
expression consistent with the intended message, and using AMBIG functions to weed
out all but reasonable messages from among the many the parser may produce or one
might simply take from the semantic network a simple string of meaningful words,
and then use a less tightly programmed 'relaxation parser' to rearrange these words
to be syntactically correct. We are now considering using a crude 'backwards' mode
which begins with the operation part of a rule and, by using predicates (e.g., AGREE)
to yield inverses, specifies what the context-free pattern must produce, Thus there
are many variations of how to generate using a meta-parser.

In the area of language inference, to take another example of language processing,
PEDAGLOT suggests various differing ways of approaching the problem., First, ohe may
use it as a 'relaxation-parser,' the ‘'parse tree' can be pattern-matched against
the new sentence, and hypotheses can be formed. Or, one could place a more rudimentary
inference system on the 'prediction' part of the processor itself, and using other
controls, the predictions that are successful could be rewritten as a new grammar.
These two learning paradigms could each be strengthened by way of the use of tags
to contain (in a sense) the meaning of the sentences to be learned. Each of these
paradigms can be modeled using a meta-parser like PEDAGLOT. Thus, a meta-parser can

raise (and be prepared to answer) a number of interesting questions.

20

References

Earley, J. (1970), "An Efficient Context-Free Parsing Algorithm," Comm. ACM 13,
number 2, (February 1970), pp. 94-102.

Fabens, W. (1972), PEDAGLOT Users Manual, Rutgers University CBM-TR-12,
Oct. 1972,

Fabens, W. (1973), PEDAGLOT Users Manual: Part II, Rutgers University CBM-TR-23,
Nov. 1973.

Kaplan, R.M. (1973), "A General Syntactic Processor," in R. Rustin (ed.)
Natural Language Processing, New York: Algorithmics Press, (1973), pp. 193-242.

Kay, M. (1973), "The MIND System," in R. Rustin (ed.) Natural Language Processing,
New York: Algorithmics Press, (1973), pp. 155-188.

Lyon, G. (1974), "Syntax-Directed Least-Errors Analysis for Context-Free

Languages: A Practical Approach." Comm. ACM 17, number 1, (January 1974),
pp. 3-13.

Simmons, R. and Slocum, J. (1972), "Generating English Discourse from Semantic
Networks." Comm. ACM 15, number 10, (October 1972), pp. 891-905.

Woods, W.A. (1970), '"Transition Network Grammars for Natural Language Analysis."
Comm. ACM 13, number 10, (October 1970), pp. 591-606,

Woods, W.A., (1975), Syntax, Semantics, and Speech, BBN Report No. 3067, A.l.
Report No. 27. Bolt Beranek and Newman Inc., to appear in D.R. Reddy (ed.)
Speech Recognition, Academic Press (1975).

