American Journal of Computational Linguistics Wicrofiche 26

JUNCTION GRAMMAR

AS A BASE FOR
NATURAL LANGUAGE PROCESSING

ELDON G. LYTEL

DENNIS ,PACKARD

DARYL GIBB

ALAN K. MELBY

FLoyp H. BILLINGS, JR.

Brigham Young University
Provo, Utah

Copyright 1975 by the Association for Computational Linguistics

Abstract

Junction Grammar, a model of language structure developed by
Eldon Lytle, is being used to define the interlingua for a machine-
assisted translation project. Junction Grammar representations
(called junction trees) consist of word sense information inter-
related by junctions, which contribute syntactic and semantic in-
formation. The first step of the current translation system is
interactive analysis. During this step, the program interacts with
the human operator to resolve ambiguities and then produces a junc-
tion tree representation of the meaning of the input text. The
second and third steps of the translation process are automatic
transfer and synthesis into one or more target languages. For
each target language the transfer step makes adjustments on each
junction tree, if needed, before sending it to the synthesis pro-
gram for that language. This translation system is currently
under development at Brigham Young University in Provo, Utah. Pre-
sent lexicons for English analysis and Spanish, German, French, and

Portuguese synthesis contain about 10,000 word senses each.

TABLE OF CONTENTS

Page
I. Overview 5
II. Introduction to Junction Grammar--by Eldon Lytle 7
Dennis Packard

A. Basic relative modifiers 7

B. Noun complements 10

C. Other modifiers as relative statements 15

III. Implementation 24
A. Analysis--by Daryl Gibb 24

B. Transfer--by Alan Melby 41

C. Synthesis--by Floyd Billings 62

IV. Conclusion 69

PN
SN

PA
SA

PV
SV

PP
SP

Adv
PA.
J
PA
PX
SX

LIST OF SYMBOLS

Noun

Predicate with a noun nucleus

Predication with a noun nucleus

Adjective or adverb

Predicate with an adjective or adverb nucleus

Predication with an adjective or adverb nucleus

Verb

Predicate with a verb nucleus
Predication with a verb nucleus
Preposition

Predicate with a preposition nucleus
Predication with a preposition nucleus
Empty node

Junction Grammar

Adjective

Adverb

Adjective predicate

Adverb predicate

Any predicadte

Any predication

I. An overview.

Assuming that semantics must be taken into account in a trans-
lation system, there are at least two major classes of intermed-
iate representations to choose from for use in a translation sys-
tem. One class of representations is non-linguistic. In this
class syntax is ignored and use is made of various conceptual
units and relations (e.g. Schank's conceptual dependency). Ano-
ther class of representations is linguistic. In this class syntax
and semantics are combined into a syntacto-semantic representation
which is connected to surface structure in a fairly direct fashion
(e.g. Montague grammars [l] and Junction Grammar [2]).

We have chosen to test Junction Grammar as the interlingua
for a machine-assisted translation project. The basic concepts of
this model of language were developed by Eldon Lytle in the late
1960's, but, as with many theories, it has been under continual
development ever since.

For subject-verb-object sentences, junction trees look much
like the familiar phrase markers. Let us then preview the steps
of the Junction Grammar translation process using an extremely
simple sentence.

Given the English surface string, "He needs it", English

analysis would produce the junction tree:

SV
PV + N
N m(he)
Vv + N

m(needs) m(it)

Note that the tree has an order independent of the surface word
order of the input text. The function m(x) produces the word
sense Or sememe of its argument. The values of this function
have been implemented as positive integers called semantic in-
dices. The plus signs under the categories PV {verbal predicate)
and SV (verbal sentence) stand for adjunction, one of the basic
types of junction recognized by Junction Grammar.

Suppose we want to synthesize this junction tree into French.
Transfer would adjust this tree because French expresses the mean-
ing of 'need' as 'have need of'. Then French synthesis would per-
form lexical selection and ordering to produce the string "Ila
besoin de ca'", or "I1 en a besoin".

The following chapters will discuss junction trees in more
detail and then explain how the analysis, transfer, and synthesis

steps are currently implemented.

II. Introduction to Junction Grammar.
A. Basic Relative Modifiers.

Consider the following sentence:
(1) Every monkey that swallows that, gets indigestion.
Utilizing a modification junction * called subjunction, consider
the following as a junction marker for (1): (Consider the term-

inal words as names of sememes and consider quantifiers to be of

a noun-type category).

SV
+
/\
N PV
* +
/\ N
N N V N
Every ’///1\\\\ gets indigestion
N SV
monkey +
/\
N PV
that

+
N
\' N

swallows that

The problem with the above junction marker is that it is not

clear which that is the relative pronoun. ¥ullowing Montague (see also

Partie [3] and Gabbay [4]) we could subscript the subjunction

operation and the appropriate that with respect to which the

modification occurs;:

SV
+
/ —
N PV
* +
/\ /-\
N N v N
Every N gets indigestion
N * SV
monkey +
/\\
N PV
\Y N

swallows that

The above tree would then be lexicalized as sentenc (1). If we

had subscripted just the other that then the marker would be lex-

icalized not as sentence (1) but rather as:
(1A) Every monkey that that swallows gets indigestion.
A readable way of handling such clauses is the method used
in Junction Grammar: The proform with respect to which the modi-
fication occurs is directly joined to the noun being modified.

Thus the structure takes the place of subscripts.

Sentence (1) Sentence (1A)
SV SV
/\ / —
N + PV N PV
/\ N SV "\
N V+ N N V+N
Every ,/“\\~,.S gets indigestion * N N+ PV gets indi-

Every ,/\\that,/’\\ gestion

monkey that swallows

+
monkey that ,/’N\\

swallows that
The reader will notice that the above diagrams are not normal bin-

ary trees, but we call them trees or intersecting trees because

they can be drawn as sets of cross-referenced trees.

The following tree illustrates the notational variations of
(a) drawing intersecting trees as cross-referenced sets of normal,
trees, (b) drawing the junction symbol between the brothers (sub-
ordinate nodes) instead of next to the father (superordinate) node,
and (c) optionally leaving out the junction symbol when it is

adjunction (+).

SV SV
/\ /\
N PV N1 + PV
N * N V + N v N
Every -\ gets indigestidn swallows that
N % N
1

It is interesting to note that one simple method of generating
in a context-free way such intersecting trees as those used in
Junction Grammar is to employ context-sensitive rules as node
admissability conditions. This method is essentially in harmony
with McCawley's [5] proposal. For example, the rule A—>»BC allows
the well-formed structure A Further, the rule

ﬁ/”ﬂ\\\t
A—»BC/F__ G is construed as saying that a subtree with A immediate-
ly dominating the sequence BC is a well-formed subtree provided
that elsewhere in the tree a node F immediately precedes A and A
immediately precedes a node G. Thus, as an example, the following

tree is well-formed from the rules indicated.
D‘ﬂDF/7_B
D A E E —» GH/C
| N N A-» BC/F__

10

Though the tree is well-formed if the rules are node admissability
conditions, FBCGH cannot be derived from this grammar in a stan-
dard rewrite derivation way.
Intersecting trees are of the form: W Z
Y
If such production rules were to be used, their form would be:
W—> XY
WZ—>Y

Such production rules are type 0 and not type 1.

B. Noun Complements.

It is instructive to contrast the above Junction Grammar
treatment of relative clauses with its treatment of noun comple-
ments.

It would seem that there are serious theoretical problems
associated with the phrase structure rules NP—>NP S and
NP—>N S of Transformation Grammar [6].

RELATIVE CLAUSE RULE: NP—> NP S
COMPLEMENT RULE: NP—> N S

(2) The embarrassing fact that John was able to learn frus-
trated his adversaries.

A~ A~

NP VP NP VP
2 VAN
NP S N S
fact fi fact C
which John was John was able
able to learn to learn

TG Treatment of Noun Complements and Relative Clauses.

11

These rules propose to account for restrictive relative clauses
and noun complements, respectively, both embedding an entire sen-
tence to a nominal antecedent, encompassing both constituents with
brackets labelled NP. It seems clear that the two structures in
question are in fact related, i.e. in some sense similar, but not
in tle way suggested by the P-rules proposed to generate them.
Specifically, in each case there seems to be an overlapping of
constituents in the main clause with those in the subordinate
clause: In the relative clause, an NP of the main clause coincides
referentially with an NP of the dependent clause; in the comple-
ment, a noun, or potentially, a noun phrase, of the main clause

is equated referentially with the entire dependent clause. Thus
sentence (2) is ambiguous over the relative clause and the com-

plenent readings. (Notice that one can replace that with which

for the relative clause reading but not for the complement read-
ing.) There is nothing in the P-rule formulation to make this
overlapping of constituents explicit, however. Hence, a mechanism
for checking the coreference of NP's is required so that the rela-
tive clause transformation could apply to sentences embedded by
NP—NP S and produce the appropriate relative pronoun. It is not
clear, however, whether this mechanism is supposed to establish a
coreference relation between the head N and the complement S in

NP —N S, since no T-rule seems to depend upon such a check. More-
over, there is no clear justification for using N rather than NP
to the right of tlie arrow in the complement rule, since the head

of a complement can have articles and modifiers too.

12

Still more serious is what appears to be implied by the rela-
tive clause rule. Namely, the entire clause is bracketed with a
nominal category (NP), suggesting that it, like the complement,
is functioning in its entirety as a nominal constituent. The
structural symmetry of these two rules results in a false general-
ization (the illusion that both clauses were nominalized) while
failing to make explicit the generality which actually exists and
is semantically crucial (the referential overlap between consti-
tuents in the main and dependent clauses). What is needed are
structural representations which reflect the overlapping of con-
stituents without violating what seem to be the correct categori-

zations.

The Junction Grammar solution is as follows:

N N
N N N * SV (that)
fact which fact ii
Relative Clause Noun Complement

In the case of the relative clause, the intersection occurred on
categorially homogeneous nodes (on N's), whereas in the comple-
ment structure the intersection occurred on heterogeneous nodes
(N /S) so that the entire subordinate clause intersected with an
NP of the main clause.

Subjunction can thus be seen to be of two basic types--full-
subjunctions, as in noun complements, and interjunctions, as in
relative clauses. In full-subjunction the modifying constituent

node is completely subjoined, e.g. number five, or the boy John as

13

boy John

or the fact John came as

N * SV (that)

fact ii

John came

On the other hand, in interjunction the modifying constituent is

just interjoined, e.g. the book (that) I read as

SV
N /\

PV + N

the book that * v
read

or John failed, which surprised me as

SV S
sy = N + PV

which "~
N\ v+ N

John failed surprised me

In both cases, however, the nodes which intersect referentially
are directly joinmed to each other.
The schematic expression for full-subjunction is Z—>X*Y.

The following are representative members of this schema:

14

N—>N * SV (the fact) John came surprised us.

N (the fact John came)

John came

N—N * PV Speaking Russian is difficult.

(Speaking Russian)

N * PV

ing i}

speak Russian

N—>N * V The speaking of Russian is difficult.

N (speaking)

N ® Vv
-ing speak
Adj—Adj * SV Children such that they hate candy are rare.

Adj (such that they hate candy)
Adj * SV (that)

such i}

they hate candy

Adj—> Adj * PV The boy reading the book is John.

Adj (reading the book)
Adj * PV

“ing /\

read the book

15

C. Other Modifiers as Relative Statements.

Returning now to the discussion of relative modifiers, we
continue our description of interjunction, which, as the reader

will recall, entails intersecting trees corresponding to the fol-

lowing schema: Z D
/\/
X * Y

Basic relative modifiers are defined to be relative clauses
of which the modifying node is of noun category, the relative mark-
er for such clauses being in some cases null (e.g. the boy I saw

was crying), or such words as which, who, and that. Non-basic

relative modifiers are defined to be all others which entail in-
terjunction. Some of these relatives have not in some cases been
recognized in the literature as relative constructions at all,

but were identified during the elaboration of junction theory by
deducing from the interjunction schema specific possibilities not
hitherto noted by observation of random data. This deduction was
done in terms of the constituent categories extant in the junction
grammar system of diagramming at that time. Sentences (3-8) below
illustrate some of the non-basic relative modifiers in question.
Notice that one might search available data a long time before
finding an instance of some of the types exemplified, as each
would require a special context., Yet, any grammar of English
would be incomplete without them. The fact that some rules are
used less in no way invalidates them; in a number of cases, de-
ductions which at first seemed most ridiculous were found to have

instances that were perfectly acceptable. The perspective deriving

16

from this experience suggests that any grammar which is based on
rules arrived at inductively, i.e. simply set down in a list as
available data suggests them, will be incomplste at best, and
most probably not motivated by any significant generalizations.

Diagrams for sentences (5) - (8) will be supplied in the
discussion of non-verb cored relatives.

(3) Verb phrase. I hate war, like you.

SV
/\
N PV SV
I P N
PV * PV N
///ﬂ\\\ like you
\'A N

hate war

(4) Verb. I peeled the peach, like you the apple.
SV

T

N gv

PVA
YQEv//’/\\\fhe peach
peeled 11ke iz

the apple

(5) Prepositional Phrase. My kite is on the roof, like your
ball.

(6) Preposition. Fred is above a store, like you were a
bakery.

(7) Adjective. He is 1like (such as) Bill is.

(8) Noun. A soldier, as I am, seeks adventure.

17

Junction Grammar claims that some statements occur without a

verb in the relative modifier. One way to represent such sentences

in a natural way is to allow non-verb cored statements as follows:

SP SA SN
/\ /\
N + PP N + PA N + PN
John _ " Bill | Jack
P + N A N
at school old fireman

We will indicate that a predicator (e.g. adjective or adverb)

becomes a predicate without a direct object either by the notation

PA oT PA , where E means empty slot.
| N
A A + E

Preposition cored: My kite is on the roof, like your ball.

Fred is above a store, like you a bakery.

(5) A (6) SV
N + PV N + PV
my kite | Fred
/v\\ X
V. * Pp SP V/*\pp
1S .
PE * PP + N is AT

on a store
/\ 7
the roof N”N\\\

+
P * you PP
above P—""

like N

AN

a bakery

18

(7) Ad cored: He is like Bill was

SV
/\
N + PV
He SV
V /\
\'4 *’,/EEL\\ Bill
is V
+ E V"""_\
was * PA
A * A E

like

(8) Noun cored: A soldier, as I am, seeks adventure.

SV

m
N /\ PV

N + PV ,/,/”\\\\\

' V/*\PV v ¢ N

seeks adventure
am
N * N + E

a soldier

Now consider the following two sentences:
(9) A delegate from Canada proposed a compromise.
(10) The old man answered the question.
The modification occurring in these sentences can be expanded out

to relative clauses and represented as follows:

19

N PV
/\ /\
N * N SV v N
a //ﬁ\\\//f\\\ proposed
N * N PV N\
delegate who | a compromise
V
N
V * PP
is T
(was) P N

from Canada

N PV
/\ /\
N % N SV V N
the _ T~ answered
N * N PV
man who | the question
Vv
N
V * PA
is |
(was) A
old

However, these sentences can also be represented with rela-

tive modifiers by employing the non-verb cored statements (below):

SV

Sy
N/\PV — T

N PV

a AN 2>
N * N N * N SA
a

SP proposed a conm- the ﬁ/’h‘\\//’\‘~\ answered the

N * N \\ promise * N PA question
delegate PP man) A
P N old

from Canada

20

One benefit of considering modifiers such as these to entail
entire statements is that various types of ambiguity occurring
with them can be explained as types of ambiguity also character-
istic of clausal statements. For instance, consider the follow-
ing ambiguous sentence:

(11) John clumsily stepped on the snail.

SV
/\
N PV SA
John /\/\
PV * PV ?A

N7 A

stepped on the snail clumsily

The ambiguity in question hinges upon whether or not we con-
sider the relative modification to be restrictive or non-restrictive,
a contrast which in junction grammar is expressed by subcategorizing
the subjunction operation (*).

Note also that semantic complexities which occur with the non-
clausal modifiers of sentences (9) and (10) can also occur with
basic relative clauses. For example, if John is tall (as a person)
and John is a basketball player, we cannot conclude that John is
a tall basketball player. And similarly, if John is an expert and
John recommends Gillette, we cannot necessarily conclude that John
is an expert who recommends Gillette (the reason being that he
might be a blimp expert who just recommends Gillette products to
his friends, while saying that he is an expert who recommends
Gillette implies that he is an expert on the types of products

that Gillette produces).

Further, if modifiers such as those in (9) and (10) are con-

21

sidered to be relative statements, it explains our intuition that

obviously, surprisingly, etc., are usually modifiers at statement

level. For example, a natural way, it would seem, to represent

charitable man is as follows:

N * A
man charitable

Similarly, for The man in need asked for help, man in need would

be represented as follows:

N

N * PP

man _~" S~
P N
in need

But if this were done, then obviously charitable man and man

obviously in need would, it seems, have to be represented as

follows: N N

T N

N * PP N * A
man ,/”N“~\\ man

PP A A * A

N obviously charitable obviously
P N
in need

But this represents the reading in which obviously is taken

as a manner adverb, and it seems that because we have not represent-
ed the modification as a relative clause, we are prevented from

using obviously as a sentence level modifier.

Now consider the following sentence with its Junction Grammar

diagram:

(12) The obviously rich boy bought the Mercedes.

22

SV
N-f \
N N SAT xS S /\
the T~ _ BA bought th d
N % N PA | ought the Mercedes
boy) | A
A obviously
rich

By expanding the rich relative clause to include a verb, the
sentence might be lexicalized as:
The boy who obviously was rich, bought the Mercedes.

But also, obviously can be used as an adverb of manner. Taken in

this way (12) would mean that the ostentatiously rich boy bought

the Mercedes. As such, it would be diagrammed as follows:

/SV\
N PV
N
N N SA
the _~T~~_"7 bought the Mercedes
N * N PA SA
boy ¢ /\/\
ﬁA * PA PA
|
A A
rich obviously

Finally, consider these two relative modifier sentences:

23

John runs as slowly as Bill walks.

SV
/\
N + PV SA SV
John _~ ~~_" ~~
PV * PV PA N
| | Bill
Vv A
TUnNnS N SA PV
A * A /\/\
slowly PA + PV #* PV
\Y
A * A walks
as as

Bill brought as many books as John bought paintings.

SV

Blll /\
brought,/"‘\\ SV
/\
,,/“\\\ books N + PV
N * N John N
many N + \'
‘\\\\‘brought

N * N * N
as as paintings

It should be pointed out that the above discussion has omit-
ted major areas of Junction Grammar, such as specializations of
subjunction which indicate flow of information in "compiling" a
junction tree, conjunction, and the function and application of

lexical rules to junction trees.

24

ITI. Implementation.

A. Analysis.

The analysis step must accept natural language input and
produce the appropriate junction tree for each segment of text
(normally, but not necessarily, a segment is a sentence), accord-
ing to the context of that segment.

Two types of ambiguity can be distinguished: word sense
ambiguity and syntactic ambiguity. Without some logical proces-
sing, an utterance such as "John bought some ink for the pen" is
word sense ambiguous as to pen, between the writing utensil and
the enclosure senses. Also, the sentence "The boy flipped the
coin by the book," is syntactically ambiguous as to the point of
intersection between the prepositional phrase and the rest of the
sentence.

Several English analysis systems (e.g. W. Woods, Y. Wilks,
T. Winograd, etc.) have seen considerable success in resolving
word sense and syntactic ambiguities automatically on texts that
stay within some restricted vocabulary or context. However, no
one has attempted to apply such principles to a large scale system
(10,000 to 20,000-word lexicons) which can analyze a wide variety
of structures and types of texts. At present, it is not known
whether any system is expandable to such a degree or, even if it
were, how many years would be needed to complete such a project
and how much it would cost to run. Clearly, research and develop-

ment in the area of automatic analysis should be continued.

25

In the meantime, however, work is needed on the processing

that must follow automatic analysis to form a complete translation
system.

Therefore, our research group has decided to develop a machine-
assisted translation system consisting of interactive analysis
(where the human operator resolves difficult ambiguities via his
video screen) followed by automatic transfer-synthesis into multi-
ple target languages with junction trees as the interlingua. This
configuration, which has also been proposed by Kay [7], has some
attractive features. Suppose that the Junction Grammar transfer-
synthesis system produces acceptable translations of real-world
text from the output of the interactive analyzer. The analyzer
could then be replaced by a more automatic version without dis-
turbing the rest of the system.

On the other hand, if thegfpole system fails, we will not
have invested nearly as much eafort as if we had tried to develop
a large-scale automatic analysis to junction trees.

In addition, during the period of development and testing,
counters can easily be set up to keep statistics on what inter-
actions are most common and therefore should be given priority
in a more automatic version or during the testing phase of auto-
matic routings to see if they disambiguate the same way the human
does.

Finally, regardless of the particular version of analysis
used, the system divides the effort expended in doing the analysis

by the number of target languages being translated into from the

Administrator
Note
Not Clear in the film

26

same junction tree.

Now let us describe the qurrent five-phase implementation
of interactive analysis. The first phase performs limited mor-
pheme splitting (e.g. possessives and contractions). As each
word is identified it is matched against an index-sequential dic-
tionary stored on disk. If there is more than one word sense
associated with the word then several definitions are chained to
the entry. These several meanings appear on the video screen and
the human is asked to choose the meaning for this particular con-
text. When a choice is entered, the information associated with
that particular use of the word (or phrase of which it is the key-
word) is retrieved from the dictionary. The dictionary contains
semantic indices, categories, and binary features. Information
specific to the source language and information considered to be
language independent are represented in these features. This in-
formation is put into a two dimensional array (Reference table) and
will be available during the other phases. If a word is not in
the dictionary, the person monitoring has the option of picking a
synonym, or passing the word through untranslated as he would a
proper noun, signaling only the category of the word (noun, verb,
adjective, adverb, preposition). It is by this interactive process
that we temporarily solve the word sense ambiguity problemn,

The second phase of analysis, called "PHRASER", logically seg-
ments the reference table (sentence) into "phrases' containing a
maximum of one noun each. The first word of the sentence starts

the first phrase. Thereafter, a noun or comma ends a phrase, and

27

the succeeding phrase begins with the next word. The sentence
“The boy in the car ate a very good hamburger while driving down
the street" is symbolically segmented as (The boy) (in the car)
(ate a very good hamburger) (while driving down the street).
During the segmenting operation PHRASER assigns a global reference
category to each element (word) of the reference table. The main
purpose of PHRASER is to divide the sentence into '"phrases' or
segments which are individually processed by the infix generat-
tion routines as separate units, thus simplifying their task.

The third phase of analysis is the syntactic resolver and in-
fix builder (Figure 1). This phase produces an infix representa-

tion equivalent to normal junction trees. For example, N1$(P+N2)

is equivalent to N SP The basic philo-
Ny * N & PP
//\
P = N

sophy of this routine is to process phrases generated in PHRASER
by calculating their internal structure, then placing them in
their proper structural position in the total sentence. This is

facilitated by the introduction of what we call "order-rules."

The Order-Rule

As discussed earlier, a simple sentence can be represented in

a tree diagram as SV
/\
N + PV
subject
+ N
verb object

which can be stated in an infix notation as (N+(V+N)), which will

28

TYPSET (TYPE) INFIX ROUTINE
0000 o INFX 00
0001 N Topic INFX 01
0010 Nouns INFX 02 **
0011 V Topic INFX 03
0100 Verbs INEX 04
0101 Adj Topic INFX 05
0110 Adjectives INFX 06
0111 Adverbs INFX 07
(:Start j) 1000 Prep Topic INFX 08
A 1001 Prepositions INFX 09
Initialize Glo- 1010 ? 1 INFX 10
bal Variables : : F
Invoke Ordrrul 1 1011 Con?unctlon INEX 11
AA} 1100 Articles INFX 12
1101 Adv Topic
Seg & 0
Nounc €0 ?
T |
Seg + 1 I
|
Nounc Nounc+l |
YES Put pointer to |
noun in nounlist |
(nounc) |
I
Go to l
Phase 4 Indict '1'B |
' 7

|

Call
Infix Phrase
Routine

p.

Use Typset
(Seg) for calling
sequence (see table)

Figure 1.

PHASE II1 MAINLINE INFIXER.

29

be called a clause order-rule. Notice that the order rule has

the terminal nodes (N + (Vv + N)) as well as
subj verb obj

the father node markings (parentheses).

(* (*))
pre- pre- post post
sentence predicate predicate sentence

This gives seven slots of layers for the actual entries of the
order-rule. An order-rule has the order portion, i.e. (N+(V+N)),

and the entries that fill the slots of the order: subject

verb

object
pre-predicate
pre-sentence
post predicate
post sentence

There are three basic constraints on order-rules. First,
they can never represent discontinuous word order. The discon-
tinuous orders (V, N subject, N object and N object, N subject,
verb) cannot be represented directly but must use variant order
Tules. The second basic constraint in the use of order rules is
that when order rules are interjoined, the first terminal node
element of the subordinant order-rule must be the intersect node.

For example: "I saw the boy that likes you'" has two order rules.

must be first terminal
node of the subordinate order-rule

I saw boy=> (N + (V + N)) that likes you—>(N + (V + N))
I saw boy topic likes you
(that

When these are combined, the following interjunction will be cre-

ated: (N+ (V+ (N§$ (V+N)))). The third constraint is that

all subordinate order rules must indicate their antecedent nodes

30

in some other order-rule.

To review, phase three routines build order-rule representa-
tions; phase four inserts the slot or layers up into the order-
rule, then it conflates all the order-rules into one linear infix
string. This linear infix string cross references the information
table produced in phase one (cross-referencing is achieved via
doubly-linked-1list processing).

The reader will recall from Section I that Junction Grammar
relative clause modification involves an interjunction and phrasal
modifiers (prepositional phrases, adjectives, and adverbs) have the

same basic form as the clause.

SP SP SP
X PP + N PV —ﬁ N~ + PV
PN I N 1 N
P + N vV + N Vv + N SP
in barn saw boy saw _~ o\
N # N + PP
boy N
P + N
in barn
Notice the interjunction: N SP

N * N + PP

boy /\
P + N
in barn
In infix notation this is: (N + (V+N$§$ (P +N)))
I saw boy in barn

providing of course that boy is what in barn modifies. An adjec-

tive or adverb has the tree structure: SA
/\
X + PA
/\

31

Adjectives normally pre-pose their head in English, so big boy —>

(A + E) §N. "T saw the big boy in the unsightly barn" is
big boy

represented in infix notation as

(N+ (V+ (A+E)§NS§ (P+ (A+E)§$N).
I saw Dbig boy in unsightly barn

The order-rule with consitutent values for this is the following:

(N + (V+ N))
N

\' Note that we create new order-
(A+E) N (P+ (A+E) $N) rules only when we have new

) verb core predicates.

)

¢

)

Phase three programs can generally identify the subject, pre-
dicate, and, if present, indirect objects of clauses, both inde-
pendent and subordinate. There are, however, certain areas of
processing that present difficulties for the program. A simple
sentence like, "I threw the ball in the foom" illustrates such
problems because the program does not know without context whether

in the room identifies which ball it was that I threw, the direction

of its path (motion), or where I and the ball were during the ac-
tion. As stated before, the key to this problem is the context.
As a matter of fact, almost every prepositional phrase is ambigu-
ous in the computer environment. For this reason, we have the
program query the person monitoring the program and ask,

I (1) threw {2) bal1<3) in {4) room (5
"What does 'prep-object' modify?'", in this case, '"What does 'in-

room' modify?" If the answer is "3" (ball) then the infix would be

32

(N+ (V+N§ (P + N)))
I threw ball in room

and it would identify which ball was thrown. If PV 2 is entered,
it is interpreted to modify the predicate (throw + ball); then

the infix would be (N+ (V+N) §$ (P + N)) and implies
I threw ball in room

that the phrase tells where the action took place. If "2"(throw)
is entered, the infix would be (N+(V$ (P +N) +N)) and

the phrase modifies the verb. Note that in addition to identify-
ing the ambiguity, we can signal the intended meaning and represent
any of those meanings in a systematic manner.

Another '""contextual" problem in English is the identification
of the antecedents for relative pronouns. "I saw the boy in the
car that the girl loves." The question, of course, is: '"What
does the girl love--the boy or the car?" This is solved by having
the program ask '""Does 'that' refer to X?" where X is popped off
of a push-down stack of previously encountered nouns. The relatives

that, who, whom, and which all invoke new order-rules. The result

of this interaction is to point the subordinate order-rule to the

antecedent identified by the human's response.

(N + (V + N)) ((N + V) + N)
N (1) N(girl)
V(saw) V(loves)

(boy) N § (P + N) (in car) Topic N

Combining the prepositional phrase and antecedent problems, we pro-

duce a sentence like this:

I saw the big red car by the church on which the birds ate
1 2 3 4 5 6 7 8 9 10 11 12 13 14

the bread.
15 16

33

The program will ask what by the church modifies--we will answer

"6" (car). Then it will ask '""Does which refer to church?" This

is really asking '""Did the birds eat the bread on the church?" If
we say '"No" then it will ask, '"Does which refer to car?" 'Yes."
Next the program asks "What does 'on-which' modify?" This is
somewhat difficult because we have a prepositional phrase whose
antecedent is in one clause yet the phrase modifies something in
another. In the example the prepositional phrase modifies the

predicate 'birds ate the bread' by telling where the action hap-

pened.
(N + (V + N)) yes. — ((V + Nl)) +dN)*
N (I - N i
v Eslw) ‘(/’”"'pq_,, \ Ea%:)S)
(A+E) $ (A+E) N (P+N) N (bread)
big red car by chuarch
g (N +P) § pre PV

topic (on)

Passive constructions may have an ambiguous element in them:
"The cake was eaten by the dog." The question is: did the dog do
the eating or does the prepositional phrase tell where the cake

was eaten. Interaction indicates which reading should be repre-

sented.
Complement constructions can be identified in this same way

(through interaction). "It surprised Aunt Jane that the girl loves

the car.” 1In this instance the program asks "Does 'that' refer

During the layer insert phase the pre PV will be inserted to

the left of the predicate parenthesis, making the topic the first
node encountered.

34

to Aunt Jane?" Reply ''No." '"Does 'that' refer to it?" This time
the reply is '"YesC'" where the '"C" indicates that the subordinate

clause is the complement of it. This structure is not interjoined

but fully subjoined.

SV
_____/"/\\
N PV

/,/"x\\ /,/“-~\\N
N * S(that) \Y N

It N surprised Aunt Jane
N PV

V N
loves car

The infix notation for the above is: (N * (N + (V + N))+(V + N)).
It girl loves car surp. A.Jane

The order rule representation:

(N + (V + N)) (N + (V + N))
N (it) & N (girl)
V (surprised) V (loves)
N (Aunt Jane) N (car)
))
) * (The operation of full

subjunction)
) ')
g)
A variation of the complement response is: 'He came after we ate

dinner." The program asks "What does 'after-we' modify?'" This is
erroneous, and is so indicated by answering instead what the true
prepositional phrase "after-it (that)'" modifies and putting a "C"
for complement at the end of the reply: "PV 2C." The "C" will re-
move the '"we'" as object of the preposition and replace it with a

noun "it." A new order-rule is then invoked, pointing to the noun

35

"jt." The underlying structure is represented "after it that we

ate dinner" PP
AN
P + N
after "
N * SV (that)
it
N PV
we
V N

ate dinner

or, in infix: (N + (V+N) § (P+N * (N + (V+ N)))).
The details of the other interactive situations will be omit-

ted. Interaction is necessary for the adjectival like as in "I saw

a man with a dog like you." The question is, '"What is like you,
the man or the dog?" So the program asks, "Does 'like' refer to
dog?" If the response is 'no,'" then the program asks, '"Does 'like'
refer to man?"

Participles and gerunds are very ambiguous. For example, "I
like chewing gum." 1Is it "I 1like to chew gum" or "I like chewing-
gum"? Again, "John's hobby is shocking me." Is the '"shocking" a
progressing verb or is it a gerund? At this point we have the pro-

gram ask, "What type of participle is X ing"; the replies can be:

N Adj for the chewing-gum type, use of an ing form

\' for the progressive verb

Adj X (where X is the segment modified) for adjectival
participles

Adv X (where X is the segment modified) for adverbial
participles

Of course, the infinitive form also is often ambiguous. For
example, "I like to buy candy" is much different from '"He sent me

to buy candy." There are several answers to the program's question,

36

"What type of infinitive is 'to X '?" where X is the verb.

Other questions that the programs are designed to ask all
have two points in common: first, they are stimulated when the
surface string does not map into the underlying semantic string
on a one-to-one basis; second, when the decision is made by the
human as to its use and the reply given to the program, the pro-
cessing continues in standard existing programs and no ad hoc

routines are needed.

The output of phase three is a series of order-rules. Each

order-rule has the form:

(N + (V + N)) order specifier

N (subject)

V (verb)

N (object)

Pre-predicate modifiers

Pre-sentence modifiers layers or slots
Post predicate modifiers for elements

Post sentence modifiers

If a sentence in the input stream should have more than one clause,

there will be at least one order-rule for each:

Unfortunately, I plainly saw the little boy in the big red car that
1 23 4 5 6 7 8 9 19 11 12 13 14

the girl loves.
15 16 17 18

Order-rule 1 Order-rule 2
(N + (V + N)) ((N + V) +N)
3 N .4—‘——______——————~*—"'—' 16 N
5V 17 V
7 8 9 11 12 13
(A+E) $ N § (P + (A+E) § (A+E)$N) 14 X (topic)
4
(A+E) § g
1

(A+E) § /

37

Phase four will make one continuous infix string of these
order-rules. First, the rules are checked for those situations
where both of the father nodes of an interjunction are available
for further junctions. If such a situation exists, then the
operations involved are marked. Next, all the layers are insert-

ed into the order-rule, giving the following:

Order-rule 1: (A+E)$(N+(A+E)$(V+(A+E)NS(P+(A+E) $(A+E)$N)))
1 3 4 5 7 8§ 9 11 12 13

Order-rule 2: ((N+V)+N)
16 17 14

Notice that the second rule still points to the antecedent in the
first order rule. Next all order-rules are conflated into omne,
by performing the necessary interjunctions between order-rules.

(A+E)$(N+(A+E)$(V+(A+E)$((N$V)+N)$(P+(A+E)$(A+E)$N)))
8§ 17 14 9 11 ~ 12

The above infix string is now ready for phase five.

Phase five converts the infix notation into postfix notation
to be used as input to the transfer-synthesis steps.

As a summary of this section, we will follow a sample sentence
through the five phases of analysis.

Figure 2 shows the processing involved to disambiguate the re-
ference for some of the words in the input string. 1In this sen-
tence there were several potentially ambiguous sequences (See Figure
3) "TPUT" identifies the computer programs question of the operator
and "TGET" shows the reply. Most of these are self-explanatory.
This interplay between man and program makes it possible for the
computer to build a structure depicting its syntax and semantics

for the given context, provided of course that the human responds

38

correctly to the questions. The output of phase three is several

order rules which are merged into one infix structure (Figure 4).

THE(1) SWIMMING(2) COACH(3) LIVING(4) IN(5) C$ALIFORNIA(6) BOUGHT(7)
THE(8) OLD(9) HOUSE(10) ON(11) THE(12) HILL(13) THAT(14) RESEMBLES(15)
THE(16) CHURCH(17) THAT(18) YOUR(19) GRANDFATHER(20) ATTENDED(21)
,(22) WHICH(23) SURPRISED(24) THE(25) PEOPLE(26) IN(27) THE(28)
TOWN(29) . (30)

ENTER MEANING FOR: COACH(3)

1 N T$HE COACH ENCOURAGED THE TEAM TO DO BETTER.(PERSON THAT TRAINS,
TUTORS)

2 N H$E RODE IN THE QUAINT OLD COACH TO THE STATION. (VEHICLE)

3 V M§Y FATHER WILL COACH THE BASEBALL TEAM. (ACT AS A COACH)

ENTER MEANING FOR: LIVING(4)

1 N H$E EARNED HIS LIVING BY REPAIRING REFRIGERATORS. (SUSTENANCE)
2 VI$§ LIVE IN THE USNITED S$TATES OF A$MERICA. (DWELL)
3 V S$HE CHOOSES TO LIVE THE PRINCIPLES OF THE GOSPEL. (OBEY,KEEP)

ENTER MEANING FOR: IN(5)

**XPARTICLE OF VERB + PARTICLE COMBINATION#*#*#

T$HE SHOE WAS IN THE KITCHEN. (CONCRETE LOCATION)

T$HERE SHOULD BE LOVE IN THE FAMILY. (ABSTRACT LOCATION)

T$HE SENATOR SPOKE IN HONOR OF THE MAYOR'S ACCOMPLISHMENTS.
L$ET'S GO IN THE HOUSE. (DESTINATION; INTO)

I$ DID THE EXERCISE IN TEN MINUTES. (WITHIN OR DURING A PERIOD
OF TIME)

W$E MUST SAY IT IN WORDS AND ACTIONS. (INDICATE MEANS)

DUMMY PREPOSITION

(@) W I -GN S]
g g g g D

oo

ENTER MEANING FOR: THAT(14)

1 N I$ WOULD LIKE TO READ THAT BOOK. (ARTICLE--FAR DEMONSTRATIVE,
SINGULAR)

2 N T$HAT IS THE MOST INTERESTING MOVIE 1$'VE SEEN. (PRONOUN--3P,
S, DEM,NOM)

3 N I$ HAVE NEVER SEEN THAT BEFORE. (PRONOUN--3P,S,DEM,O0BJ)

4 N T$HE FIRST PERSON THAT CALLS WILL WIN A PRIZE. (TOPIC)

Figure 2

39

ENTER MEANING FOR: CHURCH(17)

1 N H$E HAS BEEN A MEMBER OF THAT CHURCH FOR SEVERAL YEARS.

(OR-

GANIZATION)

2 N W§E SAW THE CHURCH THAT WAS JUST BUILT.

(BUILDING)

3 N T$HE C$HURCH IS CONTINUING TO GROW THROUGHOUT A$SIA. (L$DS
C$HURCH)

Figure 2 (cont.).

PHASE 3 SENTENCE 3

TPUT
TPUT
TPUT
TPUT
TPUT
TPUT
TGET
TPUT
TGET
TPUT
TGET
TPUT
TGET
TPUT
TGET
TPUT
TGET
TPUT
TGET
TPUT
TGET
TPUT
TGET

THE (1) SWIMMING(2) COACH(3) LIVING(4) IN(5) C$ALIFORNIA(6)
BOUGHT (7) THE(8) OLD(9) HOUSE(10) ON(11) THE(12) HILL(13)
THAT(14) RESEMBLES(15) THE(16) CHURCH(17) THAT(18) YOUR(19)
GRANDFATHER(20) ATTENDED(21) ,,(22) WHICH(23) SURPRISED(Z4)
THE (25) PEOPLE(26) IN(27) THE(28) TOWN(29) .(30)

WHAT TYPE OF PARTICIPLE IS SWIMMING(2)?

NADJ

WHAT TYPE OF PARTICIPLE IS LIVING(4)?
ﬁgi% DOES IN(5) - C$ALIFORNIA(6) MODIFY?
éHAT DOES ON(11) - HILL(12) MODIFY?
%8ES THAT (14) REPRESENT HILL(13)?

ggES THAT (14) REPRESENT HOUSE (10)?

%ggs THAT (18) REPRESENT CHURCH(17)7?

%ﬁim DOES WHICH(23) REFER TO?

%%ZT DOES IN(27) - TOWN(29) MODIFY?

Figure 3.

40

PHASE 4 SENTENCE 3 Output of phase three (input to phase 4)

*%% LEVEL 1 %%% ANTECEDENT O FROM LEVEL O ORDER FYPE 1

ORDER NODE # ((N* (V+N)) " NS (A+E) - (V+

REF 1 31 2 32 3 33 7
ORDER NODE (A+ E) NS (P+N))) #

REF 9 10 11 13
% LEVEL 2 *%* ANTECEDENT 33 FROM LEVEL 1 ORDER TYPE 5
ORDER NODE # (* (VS (P+ N)+E)) #

REF 2 4 5 6
*%% LEVEL 3 #%% ANTECEDENT 10 FROM LEVEL, 1 ORDER TYPE 1
ORDER NODE # (N- (V3IN)) ¢#

REF 3 14 15 17
*%% LEVEL 4 %%% ANTECEDENT 17 FROM LEVEL 1 ORDER TYPE 2
ORDER NODE # ((N-V)Y4L ((A*N)Y+E) N) #

REF 4 18 21 34 19 20
*%% LEVEL 5 #%%% ANTECEDENT 0 FROM LEVEL 1 ORDER TYPE 1

ORDER NODE # (N-(V+NS (P+N))) ¢#
REF 5 23 24 26 27 29

Figure 4.

41

B. Transfer

Within the context of Junction Grammar, a transfer grammar
from 3 source language S to a target language T is an algorithm
which inputs a junction tree from an analysis grammar of S and
outputs the junction tree, with any needed adjustments, to a
synthesis grammar of T.

In the present implementation, we are developing transfer
grammars from English into Spanish, German, French, and Portu-
guese (abbreviated SPN, GER, FRN, and POR). Figure 1 is a gen-

eral diagram of the flow of information in the transfer systemn.

42

English Transfer Pre-
Analysis paration Phase

J-Trees and lists

of transfers to
Junction Rule perform
Key Files for
SPN,FRN,GER,POR

Transfer Language

——» Interpreter Phase
Semantic Index Transferred J-Trees
Key Files for
SPN, FRN,GER,POR
Conversion to

Synthesis Repre-
sentation and
Synthesis
Preparation Phase

Transfer Pro-
gram File for
SPN, FRN,GER,POR

J-Trees J-Trees J-Trees J-Trees
adjusted adjusted adjusted
to SPN to POR

to GER

Figure 1.

43

In the preparation phase, each junction tree is scanned for
junction rules and semantic indices which stimulate transfers go-
ing into a given language. This scanning is accomplished by con-
sulting files which associate key junction rules and semantic
indices with transfer numbers. The 1list of transfers is then
associated with the tree.

After the preparation phase, the transfer language interpre-
ter phase (Phase two) executes those transfer programs whose num-
bers have been recorded. Of course, as the transfer executes, it
may check the context and decide not to change the junction tree.
All the transfer programs are in one file so that several lang-
uages can share common algorithms. The third phase of transfer
converts the adjusted junction trees to synthesis representation,
adding to them features from the target language lexicons. None
of the three phases of transfer contain any language-specific
coding; only the files are language-specific. Thus, a transfer
grammar can be made machine executable simply by loading records
into the key files and the transfer program files.

Transfer programs are written in a linguistic programming
language called Transfer Language (TL) (see [8]). The TL loader
compiles the programs into a pseudo-machine language which is stored
in the transfer program file and is interpreted at execution time
in the second phase of transfer. Before describing TL in detail,
we present an entry from a simple transfer grammar. Figure 2
shows the necessary input to the TL loader and the semantic key

file loader. This figure shows the form of entries loaded umder

44

the current transfer system implemented on an IBM 360.

//GRAMMAR JOB (...)

//LOADPGM EXEC TRNTLSLD *THIS PROCEDURE LOADS TRANSFER PROGRAMS*
19

*STMPLE TRANSFER FROM "X MISSES Y" TO "Y MISSES TO X"

*E.G. "HE MISSES HER" TO ELLE LUI MANQUE"

*THIS TRANSFER INSERTS INTO THE JUNCTION TREE THE INDIRECT OBJECT
*PREPOSITION, WHICH HAS BEEN ASSIGNED SEMANTIC INDEX 1¢¢86

LET =2 BE Y(A(A(=1)))

LET =3 BE Y(A(=1))

REPLACE =2 WITH =3

REPLACE =3 WITH E

JOIN =1 § (P1g@86 + =3)

*)

//LOADKEY EXEC TRNTKLD,LANG=FRN *THIS PROCEDURE LOADS KEYS*

//*WHEN GOING INTO FRENCH, STIMULATE TRANSFER 19 FROM SEMEME §9172.¢¢¢
//*ANY OTHER VERB WHICH CHANGES FROM "X VERB Y" TO "Y VERB TO X" COULD

//*ALSO KEY INTO TRANSFER 19
§§N¢5916.¢¢¢ 19

Figure 2.
A simple transfer program and its key.

The details of TL needed to fully understand Figure 2 will be
explained later. For now, let us consider the simple linguistic
principle behind the example. When translating "I miss my brother"
into French, brother becomes the syntactic subject, giving "mon
frere me manque," which, taken literally back into English, is
"my brother (to) me misses." In terms of verb orientation, the
English verb to miss is normally used as a '"subject is interested

person'" verb while in French the sense wish someone were here

is a "subject is interesting person' verb. Note, however, that the

other sense of to not hit is a "subject is interested" verb in

French, the same as English, i.e. "I threw the ball but I missed

45

him" is translated ''J'ai lance la balle mais je 1'al manque,"
and receives a different semantic index in analysis. Therefore,
it does not stimulate a transfer as does the first word sense.
In Figure 2, the desired adjustment from "X misses Y" to
"Y misses X" is accomplished by a transfer program which has been
numbered 19. In transfer 19, the first two statements (LET...;
LET...) set pointers to crucial nodes of the junction tree and
the next three statements (REPLACE...; REPLACE...; JOIN...) make
the direct object into the subject and the subject into the in-
direct object. The transfer will be executed at the appropriate
time because at the bottom of Figure 2 we associate the semantic

index 5916 (to miss someone, i.e. wish he were there) with trans-

fer 19 going into French (FRN@5916.@@@# 19). The qualifier '.@gg@gg"*
attached to the semantic index is a sememic refinement code used
to make very fine distinctions if needed. Work on this aspect
of our lexicon is in its formative stages and will be reported
later.

With the preliminary example of Figure 2 in mind, let us now

examine transfer language as a programming language.

GENERAL STRUCTURE OF TL

TL is a free-format, block-structure, list-processing lang-
uage similar in general form to PL/I or ALGOL. Internal to a
transfer program are DO-END blocks and externil are subroutine
blocks. Computer scientists may be interested to know that TL

contains no GOTO-type statement. The central data structure is a

46

junction tree, represented as one doubly-linked list whose inter-
nal structure is logically a set of intersecting binary trees in
postfix notation. Of course, TL shields the user from the details
of linked 1list manipulation through the use of high-level commands.
The user data types are: (1) address variables (e.g. '=4"')
which point to nodes of the junction tree, (2) condition variables
(e.g. 'C4') which can be true-false or contain integer values (such
as semantic indices), (3) parameters (e.g. 'P2') which contain op-
tional information associated with a sememe key in addition to the
number of the transfer program to invoke, and (4) integer constants.
As previously mentioned, a transfer grammar is a set of keys
and transfer programs. The transfer programs are not ordered re-
lative to each other; .their execution is stimulated by the presence
of a key sememe or junction rule in a junction tree. When a given
top-level transfer (i.e. one that is invoked directly by sememe or
rule, not invoked by another transfer) is executed, address var-
iable one ('=1') is pointed at the sememe or junction rule which
stimulated the transfer program. Normally, a top-level transfer
progrdm will begin with some statements which derive (from the ad-
dress in =1) the addresses of some other crucial nodes in the junc-
tion tree. Then, except in the simplest cases, this context will
be tested and appropriate manipulations, if any, will be performed
on the junction tree. If errors are detected during the execution
of one of the transfers on a list, control is normally returned to
the transfer supervisor, which continues processing the sentence by

invoking the next transfer on the list. However, the user may

47

choose to set up "ON UNITS" which intercept error conditions and

invoke some specified transfer designed for error recovery.

TRANSFER LANGUAGE STATEMENT TYPES

Let us now consider the most important statement types in
TL, beginning with assignment, which is accomplished with the
LET statement.

LET. One form of LET is used to move around the junction
tree. For example, if =3 is set to the address of the verb of
a clause, we can point =5 to the direct object, skipping over any
verb-level modifiers, by the statement: LET =5 BE Y(A(=3)).

The built-in function A moves to the next level of adjunction
(e.g. from a V to its PV) and Y moves down the tree to the right
brother.

Other built-in functions include X (which moves down to the
left brother), L (which moves up to the father), B (which moves
down successive sons, or left brothers, until reaching a terminal
node), S (which moves from the father of a point of intersection
in a ranking trxee to the corresponding father node in the subor-
dinate tree), R (which moves from subordinate trees to ranking
trees), and C (which moves to the SV governing the start node).
In the example LET =5 BE Y(A(=3)), the movement is relative to an
initial node pointed to by =3. In this initial address slot we
can also use the symbol 'H', which stands for the topmost node of
the highest ranking subtree of the junction tree, or '=', which

stands for the address of the most recently created node in the

tree.

48

Another form of LET assigns values to condition variables.
When an address variable is assigned to a condition variable (e.g.
LET C7 BE =5), the condition variable receives the semantic index
of the node pointed to by the address variable. Also available
in TL is an easily expandable set of built-in functions to perform
such tasks as indicating the category of a node, checking for the
presence or absence of certain semantic features on a node, or
reporting on the structural context of a node. For example, LET
C7 BE INODCAT(=8) sets C7 to a number indicating the category of
the node pointed to by =8. Other special forms of the LET state-
ment set features and the special pointer 'H', which indicates
the top of the junction tree.

JOIN. The JOIN statement allows the user to insert any de-

sired structure into the junction tree. The dollar sign ($) is
used to indicate an interjunction; otherwise, the symbols used
in the JOIN statement are a straightforward infix representation

of a segment of a tree. Thus, if we assume the fragmented tree:

SV N=5 SA
/\ /\/\

PV + N=2 N * N PA
/\ /\
vV i/)ﬁii A + E

N & N

and execute the statement JOIN =4 § (P1#267¢12)> + =5) /=9, we

obtain the tree:

49

SV
/\
PV + N=2
P
V + N=9
/\//SP\
=4 N * N PP
N PN
N &§ N P + N=5 SA
(12 ///\\\v//ﬁ\\\\
10267 N * N PA
N
A + E

whose P node contains the semantic index 10267 and the semantic

feature number 12. Also, the /=9 indicates that the primary

result of the last performed operation should be pointed to by =9
UNJOIN. If we then execute UNJOIN =9 on the junction tree

just obtained, we vndo the effect of the interjunction, obtaining

the trees:

SV PP
’/,/\\\ //’\\\

PV + N=2 P + N=5 SA
/\ /\/\
V + N=4 N * N PA

//’\\\ N

N &§ N A + E

REPLACE. If, using the same tree, we execute the statements

LET =7 BE X(=4), LET =8 BE Y(=4), and REPLACE =4 WITH =2, we set

some pointers and switch subject and the object, obtaining:

SV
/\
PV + N=4

50

Finally, if we replace the left conjoined part of the subject with

nothing, i.e. by the statement REPLACE =7 WITH @#, then we obtain:

Note that the unneeded operation and label node are deleted auto-
matically.

IF. The IF statement with optional ELSE clause is simply
borrowed from PL/I, but one form of the IF statement deserves com-
ment. An expandable set of KEYWORDS is available, each of which
indicates that a built-in function is to be called and its value
compared against a predefined constant associated with the KEYWORD.
For example, IF =14 ISA VERB--- is equivalent (using C49 as a work

variable) to the two statements: LET C49 BE INODCAT(=3)
IF C49 EQ 5 THEN---

since 5 is the number which stands for the category V.

SKIP and HALT. SKIP exits from the current transfer program,
while HALT returns control to the supervisor, which moves on to

the next top-level transfer.

TRANSFER. The statement TRANSFER 11 is simply a call to trans-

fer number 11 as a subroutine, while the statement TRANSFER C4 is a
call to that transfer program whose number is in C4 at the time
that statement is interpreted. There seems to be no need for an
algebraic do-loop in transfer but a while-loop is useful. For ex-
ample, TRANSFER 12 WHILE C2 executes transfer number 12 repeatedly
until some context test within transfer 12, or some other transfer

called by it, sets condition variable 2 to false (i.e. to zero).

51

ON. The statement ON CONDITION(NO-LABEL) TRANSFER 1 sets
up an ON UNIT so that if at any time during transfer on the current
node an attempt is made to move up from a node without a label,
transfer 1 will be executed. If an error occurs in transfer 1,

control is then passed to the supervisor which processes the

next top-level transfer.

A few final details should be mentioned. When a transfer
is called, it executes to its end or until a SKIP statement is
executed. Comments can be scattered through a transfer program

by enclosing them by /% ----- */' or beginning the record with '*

Figure 3 summarizes the selected statement types we have dis-

cussed.

52

LET =4 BE Y(A(=2))
LET =9 BE H

LET =11 BE =

LET C7 BE 4

LET C7 BE =5

LET C7 BE C2

LET C7 BE INODCAT (=8)
LET C7 BE P4

LET FEATURES(=9) BE {-SINGULAR,+MASS)
LET H BE =9

JOIN =4 § (P1g267 12 + =5) /=9
UNJOIN =12

REPLACE =10 WITH =2

REPLACE =3 WITH ¢

IF C9 IS TRUE THEN stmt

IF C2 EQ 12 THEN DO stmtl stmt2 . . . END
IF =14 TSA VERB THEN stmt ELSE stmt
TRANSFER 11

TRANSFER C2

TRANSFER 12 WHILE C2

SKIP

HALT

ON CONDITION(14) TRANSFER 2

Figure 3.

Sample Transfer Language Statements.

53

SAMPLE TRANSFERS

Having discussed the major statement types in TL, let us con-
sider a few specific transfers. This will be but an indication of
what is done in transfer, but later reports are expected to present
substantial transfer grammars between language pairs.

Languages frequently differ in their preferred conceptualiza-

tion of a given action. For example, English prefers eat supper to

sup, while French prefers souper to prendre le souper. Similarly,

to watch television has become the single sememe fernsehen in Ger-

man. Alternatively, a verb and non-verbal participle [9] may cor-

respond to a single verb (e.g. make happy goes to alegrarse in

Spanish). Several examples of such patterns are listed in Figure
4.

All these correspondences are handled in TL by writing one
simple transfer for each general pattern and then loading the
appropriate keys. For example, the first case (V + N=>V + E)
could be treated by keying on the verb in each case and loading as
parameters with the key the crucial object or objects. This will
cause collapse and the composite sememe to be formed. In order to
make this and the subsequent examples easier to follow we will use
the English words themselves instead of their semantic indices.

Thus, we might load the following keys:

FRN EAT 12 P1 = LUNCH, JOIN DEJEUNER =11
P2 = SUPPER, JOIN SOUPER =12
SPN GIVE 12 P1 = THANKS, JOIN AGRADECER =11
GER TAKE 12 P1 = WALK, JOIN SPAZIERGEHEN =11
P2 = BATH, JOIN BADEN =12

GER WRITE 12 Pl

POEM, JOIN DICHTEN =11

v
to
to
to
to
to
to
to
to
\'
to
to
V
to
to
v

to

A

to

54

+ N—>» V + E

eat lunch —> dejeuner (FRN)

eat supper —» souper (FRN)

eat breakfast —» desagunar (SPN)
give thanks —> agradecer (SPN)

take a walk~—> spaziergehen (GER)
take a bath—> baden (GER)

have an accident -—» verungllcken (GER)
write a poem —> dichten (GER)

+ E—> (V + E) $§ (P + N)

point — montrer du doigt (FRN)
clap—> battre des mains (FRN)

$ (A* (A+E) +E) + E—V + E

make sad —» attrister (FRN)
make angry —> encolorizarse (SPN)

$§ (P +N)—> (V+N) §$ (A+ E)

stare at X —>» regarder X fixément (FRN)

+ N§ (P + N)—>V + N

turn the pages of a book — feulleter un liver (FRN)

Figure 4.

Some multisememe-single Sememe associations.

55

and treat them all with the following transfer:

12

*SET =2 TO THE OBJECT

LET =2 BE Y(L(=1))

*SEE IF THE OBJECT CORRESPONDS TO ONE OF THE PARAMETERS
IF (=2,=3) ISA MATCH THEN DO

REPLACE =1 WITH =3

REPLACE =2 WITH E

END

*)

This transfer is straightforward except for the statement "IF (=2,=3)
ISA MATCH...." Here it is assumed MATCH has been defined as a key-
word so that this statement is equivalent to the pair of statements:

LET C49 BE SMATCH (=2,=3)
IF C49 IS TRUE . .

The built-in function SMATCH checks the parameters of the stimu-
lating key against the index of the node pointed to by the first
argument (=2). It either returns FALSE (no match) or TRUE and
points the second argument (=3) to the proper composite node made
available through the auxiliary JOIN parameters of the transfer
key.

In this simple transfer, any modifiers on the object would
cancel the transfer by blocking a match (e.g. eat a big supper —>
manger un grand souper), but if the transfer writer so desired, he
could easily UNJOIN an adjective on the object and JOIN it onto the
predicate as an adverb (e.g. SOUPER GRAND). This could be done by

expanding the first statement to the following:

56

LET =4 BE Y(L(=1))
LET =2 BE B(=4)
IF =4 ISAN INTERJUNCTION THEN DO
LET =5 BE Y(S(=4))
LET =6 BE L(=1)
UNJOIN =4
JOIN (ADV * =4) + E
JOIN =6 § =
END

Now let us consider a transfer stimulated by a difference in
productivity of a junction pattern between two languages. English
and French both have possessive adjectives (his, my -—%»son, sa, ses,
mon, ma, mes) but on non-pronouns the English adjectival form be-
comes prepositional in French, e.g. my friend's mother's kitchen—»
la cuisine de la mere de mon copain (the kitchen of the mother of
my friend).

Fortunately, in TL we need not consider the embedded cases
separately from the simple case; rather we can write one transfer
which will be involved automatically by the transfer supervision

for each occurrence of the possessive. The basic transfer should

modify structure in the following way:

N
N
N=4 * N=2 N SP
P becomes: T N T
N * A N=2 * N PP
S
A=1 * N=3 P + N=3
('s) -pronoun (of)

This might be done by the following transfer (stimulated by 's):

17

LET =3 BE Y(L(=1))

IF =3 ISMARKED -PRONOUN THEN DO JOIN =2 § (OF + =3)
LET =4 BE L(L(=1)) END

REPLACE =4 WITH @ *)

REPLACE =3 WITH #

57

In the case of one embedding the boy's mother's kitchen, the trans-

fer would be executed on boy's and then on mother's, changing

structure as follows:

(1) before transfer: N
TN
N * N
. kitchen
N * A
N
A * N
s
N * N
"~ mother
N * A
P as
A * N
's boy

(2) after first execution of transfer 17:

N
S
N * N
. kitchen
N * A
N
A * N SP
's N
N *¥ N PP
mother N
P + N
of boy

(3) finally, after second execution of transfer 17:

N SP
/\/\
N * N PP
kitchen N
P + N SP
of /\/\
N % N PP
mother N
P + N

of boy

58

Before leaving this second example, it should be remarked that
in this transfer, as with all transfers, we do not consider ques-
tions of differing word order or inflectional patterns between
languages. In transfer we simply modify the structure, and syn-
thesis later produces the proper word order and inflection through
the lexical-rule system.

As a final example we will consider a simplified version of
an extensive transfer written as a major component of a thesis
which considered several forms of the English passive [10]. In
our simplified version we do not make many of the needed checks
to weed out unwanted modifiers, etc.

Considér the three closely related sentences:

(1) John gave him a book.

(2) He was given a book by John.
(3) A book was given to him by John.

Many grammars would consider these sentences to have the same mean-
ing and give them the same underlying representation. Junction
Grammar, taking a slightly different approach, chooses to repre-
sent them in such a way that indicates both their similarities
and their differences. This attitude is based on two assumptions
of Junction Grammar.
(1) The path between deep and surface structure should gen-
erally be direct, not tortuous, and
(2) Any difference in structure implies some difference, how-
ever minute, in meaning, since meaning (in Junction Gram-

mar) is defined as the composition of structure, refer-

ence, and context.

59

However, the philosophical gulf between Junction Grammar and
other grammars is not as wide as might appear at first, for if in
any particular application area it is useful to ignore such dif-
ferences as those between the passive and the active, standard
junction trees can easily be passed through a special normalizing
transfer grammar. One transfer in such a normalizing grammar would
be the following, which is stimulated by the rule A * PV and trans-
fers sentences of type (2) and (3) into active sentences” of type (1),
examples of which are shown in Figure 5. (Going into this trans-
fer, it is assumed that =1 is set to the label node of the rule

A * PV.)

15

*PASSIVE-ACTIVE TRANSFER

*SEE SAMPLE JUNCTION TREES IN FIGURE 5

*FIRST, DETERMINE WHETHER THIS IS INDEED A PASSIVE SENTENCE.
LET =2 BE Y(=1)

IF =2 NOTMARKED PASSIVE-PARTICIPLE THEN STOP

*FIND THREE ELEMENTS--THE AGENTIVE, THE OBJECTIVE, AND THE DATIVE,
*(TO DRAW ON FILLMORE'S TERMINOLOGY).

LET =3 BE Y(X(S(L(=1))))

LET =4 BE Y(=2)

LET =5 BE Y(X(S(X(=2))))

*ALSO FIND THE SYNTACTIC SUBJECT.

LET =6 BE Y(A(A(L(T(=1)))))

*SWITCH THE PASSIVE CONSTITUENT (IT MAY BE DATIVE OR OBJECTIVE)
*WITH ITS COREFERENT, THE SYNTACTIC SUBJECT

IF =5 ISMARKED PASSIVE-CONSTLTUENT THEN DO

REPLACE =5 WITH =6

LET =6 BE =5

END

ELSE DO

REPLACE =4 WITH =6
LET =6 BE =4

END

60

*NOW TRANSFER FROM PASSIVE TO ACTIVE BY PLACING THE AGENTIVE ELE-
*MENT AS THE SUBJECT AND THE PASSIVE PARTICIPLE AS THE PREDICATE.
REPLACE =6 WITH =3

LET =7 BE X(L(=6))

#REPLACE THE PREDICATE WITH A DUMMY ONE.

REPLACE =7 WITH PV=8

REPLACE =8 WITH =2

*)

[Figure 5 begins here and continues on the following page.]

SV
(1) John gave him a book.
N + PV
John /\
vV + N
book
SP
vV * A" PP
give N
P + N
(to) he
(2) He was given a book by John.
SV
/\
N=6 + PV
he /\
Vv + E
P
vV * PA
be Pra
A + E
/\//Sp\
A=1 * A PP
/\
P + N=3
A * PV=2{passive by John
;//\\\ participlé)
V + N=4
///\\\\hf:ffi
e,
vV * \' Pp

P + N=5 {passive constituent)
tq

61

(3) A book was given to him by John.

SV
N
N=6 + PV
book _\
V + E
N
V * PA
N
A + E SP
/v/\
=1 * A PP
//,’//f\\ P
P + N=3
A * PV=2{passive by John

~\ participle)

V + N=4{passive Constituent)

SP
vV % v N
give PP
P + N=5
to he

The above description of Transfer Language and the sample
transfers should convey some idea of transfer within Junction
Grammar, but it should also point out the difficulty of comparing
Junction Grammar transfer with the intermediate adjustment phase
of some other translation system (e.g. [11], [12], [13]). The
reason for the difficulty is simply that a transfer phase is
tightly interlaced with the analysis and synthesis phases and the
theoretical base. For example, we do some adjustments in transfer
which other systems neutralize in analysis, while some other sys-
tems consider aspects of word order and word choice in transfer

which we handle in analysis and synthesis.

62

C. Synthesis.

The input to this program is a junction tree or J-tree. The
program applies lexical ordering rules, lexical hiatus rules,
lexical matching rules, lexical agreement rules, and graphologi-
cal and phonological adjustment rules. Figure 1 shows the synthe-
sis mainline in a simplified form which omits some details pertain-
ing to the processing of intersecting trees and discontinuities.

Basic processing follows the figure. First a J-tree is read
in to the computer. The perspective routine recognizes some
essential relationships which are implicit in the J-tree and makes
them available to the synthesis program in an explicit form. Then,
beginning with the topmost node of the J-tree, the cycle processes
the nodes one at a time. Label nodes are processed by the hiatus
and ordering routines. The LHO algorithm determines the ordering
procedure which should be employed and takes the steps necessary
to implement it. These steps always include designating the order
in which the operands of the label node should be processed. They
may include the marking of hiatus (understood) elements, discon-
tinuous elements, and insertion points.

Processing continues through the J-tree in the sequence
designated by the LHO algorithm until the entire J-tree has been

interpreted. Terminal nodes are interpreted by the,LMA (lexical
matching and agreement) routines and appropriate lexical manifes-

tations are generated.

(Coeeme)

read in
J-Tree

v

perspec-
tive
routine

I

interpret
top-most
node

label

lexical

hiatus an

ordering
(LHO)

interpret
first
operand

63

terminal

1exiéa1
matching and
agreement

(LMA)

return to \¢

label node

»
second
operand

Figure 1.

Interpret
second
operand

The Simplified Synthesis Mainline.

64

Two types of lexical ordering rules are used in the synthesis
programs. There are: (1) left-right and right-left ordering of
operands, and (2) discontinuous ordering. These will be considered
individually

(1) When the LHO (lexical hiatus and ordering) algorithm
interprets a label node, it designates one of its operands as the
first operand and the other as the second operand. Processing
then moves to the operand designated as the first. At the top of
the chart the flow of processing is controlled by whether a node
is terminal or a label. At the bottom of the chart, the order of
processing is determined by whether the node which has just been
processed was designated as a first or a second operand. Process-
ing moves from the first operand to the second and from the second
back to the label node.

This seemingly simple ordering procedure gives the junction
grammar system great flexibility and power. A single junction
which has two operands has two ordering possibilities. However,
if one of those operands is itself a junction with two possible
orders, then the string is capable of four orders. In a similar
manner, a string of three junctions can be ordered in eight dis-
tinct ways. In general, a tree composed of N junctions can be
ordered in 2™ distinct patterns,

(2) Discontinuous ordering exists when sentences elements
which are most closely related structurally are not contiguous.
The sentences "It surprised me that he came'" and "It is so big

that I can't 1lift it'" have discontinuous order. With continuous

65

ordering they would read "It that he came surprised me" and "It
was so that I can't 1lift it big."

The synthesis program handles discontinuous ordering by
redirecting the flow of processing in such a way that the discon-
tinuous element is omitted at its normal position and processed
instead at a predetermined insertion point. Figure 2 shows the
synthesis mainline with the reset routines and their skip points.
Figure 3 shows the reset routines in detail.

If the flow of processing is followed as shown in the figures,
the operation of the reset routines is relatively simple. On
each cycle the reset routines check the node which is being inter-
preted to determine if it has been designated by the LHO algorithm
as an insertion point or a discontinuous element. If it has not,
no action is taken. If it has, normal processing is interrupted
to achieve the desired order. For instance, if the reset routine
at the top of the diagram detects that a node is a discontinuous
element, it causes the flow of processing to jump to the second
skip point. This bypasses the LHO and LMA routines, in effect
omitting the discontinuity. At the bottom of the chart processing
resumes just as if the discontinuity had not been omitted. In a
similar manner the reset routines direct processing from the in-
sertion point to the discontinuity and from the discontinuity back
to the insertion point.

The ordering of intersecting structures is quite similar to
the ordering of discontinuous elements. When the point of inter-

section is reached, the flow of processing shifts to the top of

66

the subordinate structure and that entire structure is processed.
Then processing shifts back to the main structure which is completed
in the usual manner. Thus, the point of intersection has some sim-
ilarity to an insertion point while an intersecting structure re-
sembles the discontinuous element. This same procedure is follow-
ed when there are several intersections.

The lexical matching rules access the target language lexicon.
The lexical agreeement rules examine the junction and feature en-
vironment in which the particular sememe appears in order to deter-
mine which inflected form should appear.

At present, most inflected forms appear in the lexicon in full.
Others, however, are generated by the synthesis program from stems
and endings. The two approaches are theoretically equivalent since
most of the inflected forms in the lexicon are generated from stems
and endings by the lexicon building routine anyway.

Thus, the synthesis program interprets a J-tree to generate
an output string. When this output string has been adjusted by

the graphological and phonological rules, which shape the final

form of the output, the target language text appears.

)

read in
J-Tree

Perspec
tive
routine

)

L

reset

before:>F

Interpr
topmost
node

et

label

lexical

hiatus &

ordering
(LHO)

.

Interpret
first
operand

&
N\

exical

(LMA)

terminal

matching §
agreement

67

return to
label node

second
operand

Interpret
second
operand

Reset
after

(2]
N

J-Tree

operand

Figure 2,

The Synthesis Mainline Including the

Processing of Discontinuities,

v
G

process
discont
nuity

1

Re

set Before

process
inserti
point

on

process
discont
nuity

i- ___.G

Re

The Reset Before and Reset After Routines.

set After

Figure 3

inserted

68

69

I1V. Conclusion,

It is proposed that junction schemata of the type illustrated
constitute a universal pool of structural patterns available to
all languages. Presumably, most languages use the majority of
them but no one language need use them all. Perhaps no two lang-
uages use exactly the same subset, nor any two persons speaking
the same language, for that matter. Languages can be expected to
vary in their manner of realizing junction patterns as surface
strings. Specifically, the lexical stock, word ordér, concord,
inflection and conjugation paradigms, etc., are known, for the most
part, to be language specific.

Our experience to date supports such expectations. For ex-
ample, the basic word erder for Japanese can be obtained by shift-
ing the left-right options on subjunction used by English to
right-left. While English uses heterogeneous interjunction freely
("John passed, which surprised us", etc.), Japanese does not; it
either uses the corresponding full-subjunction ("That John passed
surprised us'"), or two conjoined sentences ("John passed, and this
surprised us"). Of course, the lexical stock and morphophonemic
patterns of Japanese are radically different from those of English.
But the conclusion we have been forced to repeatedly is that while
surface phenomena are vastly disparate from language to language,

junction phenomena are more alike than different.

70

While we use the familiar ANALYSIS/TRANSFER/SYNTHESIS scheme
as a general framework for our translation system, the design of
these components is rigidly governed by the junction grammar
model, with junction trees serving as the interlingua.

Analysis, operating in an interactive mode, produces junction
trees from the source text. The data thus obtained is then passed
to the transfer segment of the system.

Transfer from a source language A to a target language B be-
gins with inspection of every junction rule and semantic index
appearing in the junction trees produced by analysis. If some
ruie or semantic index of A does not belong to the subset used
by language B, then a transfer subroutine adjusts the junction
tree. The library of A-B transfer subroutines is a partial con-
trastive grammar of fanguages A and B. However, since word order
and other lexical phenomena are abstracted away from the semantic
component in our model, these do not enter into transfer at all,
but are handled independently by lexical synthesis for language B.

The adjusted trees output by transfer are passed to a syn-
thesis program. The four steps of the synthesis process corre-
spond to four lexical rule types--ordering, matching, ellipsis
(or hiatus), and agreement.

Our development group is currently engaged in developing
English analysis and transfer-synthesis for translation into
Spanish, French, and German, using the University's IBM 360/65.
Our system's dictionaries are largely based on a vocabulary drawn

from a data base of snaterials published for the membership of the

/71

LDS (Mormon) Church, and hence they are not technically oriented.
at present. Currently, each lexicon contains entries for over
10,000 semantic indices and we hope to double this size by the
end of 1976.

We expect that this prototype will provide a gauge for the
utility of various on-line interaction techniques for computer-
assisted translation systems and for the feasibility of achieving
commercial grade computer-assisted translation via the junction
grammar model of language described herein. Work is also in
progress to develop a phonological component of Junction Grammar
that accounts for the connection between prosodic features (pitch,

amplitude, duration, pause, etc.) and semantic considerations of

sentences.

12

REFERENCES

1. Montague, Richard (1970). "English as a Formal Language " in

B. Visentini, et al, Linguizzi nella Societa e nella Tech-
nica. Milan, 189-224.

(1970). '"Universal Grammar,'" Theoria, 36, 373-398.

(1972). "The Proper Treatment of Quantification in
Ordinary English," in Hintikka, et al, Approaches to
Natural Language. Reidel, Dordrecht.

2. Lytle, Eldon G. A Grammar of Subordinate Structures in English.
Mouton and Co., Hungary, 1974,

3. Partee, Barbara Hall. Montague Grammar and Transformational
Grammar. In preparation.

. "Comments on Montague's Paper," in Hintikka, et al,
Approaches to Natural Language. Reidel, Dordrecht.

4. Gabbay, Dov M. '"Representation of the Montague Semantics as
a Form of the Suppes Semantics with Application to the
Problem of the Introduction of the Passive Voice, the
Tenses, and Negations as Transformations," in Hintikka,
et al, Approaches to Natural Language. Reidel, Dordrecht.

5. McCawley, James D. ''Concerning the Base Component of a Trans-
formational Grammar," Foundations of Language, 4 (1968),
243-269.

6. Chomsky, Noam. Aspects of the Theory of Syntax. MIT Press,
Cambridge, Massachusetts,

7. Kay, Martin. "The Mind System," Natural Language Processing,
ed. Rustin. Algorithmics Press, Inc., New York, 1973

8. Melby, Alan. Forming and Testing Syntactic Transfers. Brigham
Young University, M.A. Tﬁesis, 1974.

9. Lytle, Eldon G. "An Analysis of Non-Verbal Participles,"

Brigham Young University Linguistics Symposium Proceedings,
1973,

10. Bush, Charles. Structural Passives and the "Massive Passive"
Transfer. Brigham Young University, M.A. Thesis, 1974,

73

11. Wilks, Yorick. ''Identification of Conceptualizations Underlying
Natural Language,' Computer Models of Thought and Language,
ed. Roger C. Schank and Kenneth Mark (olby, San Francisco:
Freeman and Company, 1973.

. "An Intelligent Analyzer and Understander for English,"
Communications of the ACM, 1975.

12. Kittredge, Richard I. Projet de Traduction Automatique de
1'Universite de Montreal, TAUM73, Rapport do mois d aout,

1973.
13. Vauquois, Bernard. '"Structures Profondes et Traduction Auto-
matique le Systeme du C.E.T.A.'", Revue Roumaine de

Linguistique, XIII, 2, 1968.

) 13
p | m—m.— EEFEETE

NATIONAL BUREAU Of STANDARDS -1963-A

=

)5

MICROCOPY RESOLUTION TEST CHART

==
= -

