American Journal of Computational Linguistics wicroriche 24

THE SQAP DATA BASE
FOR

NATURAL LANGUAGE INFORMATION

Jacob Palme

Research Institute of National Defense
Operations Research Center
Stockholm 80, Sweden

Copyright 1975 by the Association fQr Computational Linguistics

2
ABSTRACT

The Swedish Question Answering Project (SQAP) aims at
handling many different kinds of facts, and nat only facts in a
small special application area. The SQAP data base consists of
a network of nodes corresponding to objects, properties, and
events in the real world. Deduction can be performed, and deduc-
tion rules can be input in natural language and stored in the
data base.

This report describes the data base, specially focusing on
problems in its design, both problems which have been solved and
problems which are not yet solved.

Specially full treatment is given to the data base repre-
sentation ¢of natural language noun phrases, and to the represen-

tation of deduction rules in the data base in the form of data
base ''patterns"

SWEDISH ABSTRACT

SQAP-projektet (Swedish Question Answering Project =
Svenska projektet fHr frigebesvarande system) syftar till att
kunna hantera minga olika slags fakta i datorn, inte bara fakta
inom ett litet speciellt tillHmpningsomr8de. Databasen bestér
av ett ndtwerk av noder som svarar mot objekt, egenskaper och
hdndelser i verkligheten. Slutsatsdragning kan gbras, och
slutsatsdragningsregler kan ges i naturligt spr8k och lagras
i databasen.

Denna rapport beskriver databasen, med speciell tonvikt pa
problem vid dess konstruktion, bade sfdana problem som vi 1l8st
och sldana som vi Hnnu inte 1Hst.

Speciellt utforligt behandlas representation av substantiv-
konstruktioner i databasen, samt hur slutsatsregler kan repre-
senteras soim monster i databasen.

FOAP rapport C 8376-M3(E5), Septemher 1973, revised July 1975.

Contents:

L3
L

L

0
]
2
3,
4.
5.
6.
7.
8

9.
10.
11.
12.
12b.
13.
14.

15-
16.
17.

18.
19.
20.
21.

22.
23.

Introduction

Natural language representation
Introduction to our data base

Objects, events and predicates

Quantifiers on the short relation
Deduction in the data base

Variables

Keys

Dummies

Questions

Example of what our system can do

The EQUAL relation

Natural ldnguage noun phrases

Attributes on noun phrases

Composite objects

Conjunctions between noun phrases in the
general sense

Plural nouns

Fitting composite objeets into the sentence
Noun phrases with just a number and nothing
more

Some examples of translations of sentences
with plural nouns

Problems with the duvual representation of
nouns

Equality between composite objects
Relations between predicates

Event nodes

Putting restrictions on equality

23b. Quantifiers or event nodes

24.

Deduction patterns and natural language

if=clauses

20
21
22
24
28
31

32
35
35

36

40

41
43
44
48
51
54

25.
26.

27 .
28.
29.
30.
31.
32.
33.

Questions

DUMMIES = temporary variables for data
base merging

DUMMIES which refer to VARIABLES

The problem o¢f dual representation
What our system can do and cannot do

A short comparison with other systems
Acknowledgements

Bibliography

Index

58
60

62
64
67
68
68
70
72

0. Introduction

This paper describes the natural language data base structure
used in the SQAP system (Swedish Question Answering System).
Much of that system is already working, but the paper does

not only describe the solutions to solved problems. Difficulties
and unsolved problems are also presented, since I feel this

is important to further progress.

One of the goals of the SQAP project was to create a guestion-
answering system capable of handling facts of many different
kinds. The system should thus not be restricted to a small
speciasl application area.

1. Natural language representation

There is an obvious need for computers with a capability to
converse in natural human languages. Natural languages are
more general-purpose than most artificial languages, which
means that you can talk about a wider subject area if you use
natural languages. Natural languages can be used by everyone
without special training, so computers talking natural language
can make more people able to use more different computer
facilities. Finally, a rizing part of computer usage in the
future will be unintelligent processing of natural language
texts, and such systems can be improved if the processing is
not wholly unintelligent.

There are also wellknown difficulties with natural languages
for computers. Natural language is closely connected to human
knowledge. Therefore, natural language sentences can only be
understood by a man or a computer with factual knowledge about
the subject matter and with the ability to reason with those
facts. To disambiguate such wellknown examples as

"The pig was in the pen" (Bar-Hillel 1964) or "He went to the
park with the girl" (Schank 1969) the computer must have an
underlying knowledge about various kinds of "pens", about where

"the girl" was previously and so on.

6
Also, the same thing can be said in many different ways, and
a computer with natural language capabilities must be able to
understand this, so that for example it can see the similarity
between "Find the mean income of unmarried women with at least
two thildren." and "Search through the personell file. For
each individual who is a woman, who is not married, and who

has a number of children greater than two, accumulate income
to calculate the mean."

Therefore, a computer understanding natural language must
have a data base with basic factual knowledge about the world

in general or about the subject matter which the computer is
to be used for.

This data base is needed to understand ambiguous sentences,
but also to interpret the sentences into executable data

processing commands.,
The requirements on such a data base are:

~ You should be able to store a wide variety of different
kinds of facts. Natural languages are very general-purpose.
g0 the data base should also be general-purpose.

- You should be able to use this data base to make deductions.
The capability to do simple and natural deductions fast is
more important than the capability to make very advanced and
long=«range deductions. Since the data base will be large, an
important part of deduction will be the selection of the re-~
levant facts and rules out of the large mass of facts not
needed for one special deduction.

The data base can be more or less close to natural language.
A data base close to natural language makes input translation

eagsier, and also the loss of nuances during the input translation

T
will be smaller. But the data base must on the other hand have

a logical structure which is suitable for deduction and fact

searching.

One model of natural language knowledge is the following: The
knowledge consists of "concepts" and of rules relating these
concepts to each other. A typical concept might be "John",
"All young men", "The event when John meets Mary in the park"
or "The month of July, 1973". The concepts are related by
rules, which can be very simple relations (like the relation
between "All young men" and the property "young") or complex
patterns of concepts (like the rule "If Mary is weak and
tired, and she meets a strong brutal man, then she will be

frightened.") These rules form a network linking all concepts
Yogether.

This model of natural language is close to that often used by
psychologists in trying to explain the working of the intelligence

in the human mind.

Phe SQAP system uses a data base of that kind. The model may at
Tirst seem simple and straightforward. When you try to produce
a working question-answering system, you will however find that
there are many difficulties and complications with such a data
base, This report presents the most important of the problems
we have met, and in some cases also our solutione., I believe
that other producers of natural language systems will sooner

or later encounter the same problems, and they may then benefit
from our experience as presented in this paper.

8
2. Introduction to our data base.

During the 196038, several researchers independently and simul-
taneously came up with the same basic idea of organizing such a
date base - Sandewall 1965, Simmons 1971, Shapiro 1971, Sofie of
them were influenced by the case grammar of Fillmore 1968.

The ides is that the data base is organized into nodes, each node

representing a concept. In natwral language, the prepositions
are used to represent short simple and direct relations between
concepts "John is in the bed", "The fire was 1lit by Mary"

In the data base, the idea of prepositions is extended so

that all simple and direct relations between concepts are
represented by implicit prepositions. (Just as you could say
that there is an implicit preposiiion "by" in the phrase "Mary
1it the fire".)

9

More complex rules or relations between concepts are represented
by extra concepts. Thus there is a concept for the event "Mary
1it the fire" and this concept is related to "Mary", "the fire"
and "act of lighting" in a structure like that in figure 1.

Acts of lightingy

CASE

»Mary lit the fire»

—
BY = OB]J
»Mary» »The fire»
Figure 1

This structure has four concepts linked together by three
"prepositional" relations: CASE, BY and OBJ. From now on, I

will in this paper call s8such relations "short relations".

The data base is organized so that the deduction rules can
follow the short relations in both directions, that is go

from "Mary" to "Mary 1lit the fire" or from "Mary lit the fire"
to "Mary".

5. Obgects, events and predicatesg

Noun phrases in natural language usually refer to one or a
set of objects in the real world, like "Stockholm" or "Every
house in Sweden" or "The nice man with a bicycle". In our

system each such concept is represented by a node in the data

10
base, which could be called an object node.

Fach object node is associated with one or more predicate
nodes expressing properties of that object. In our data base,
we mark predicates with the postfix "¥P", Thus, the phrase
"An always happy girl" would in our data base be represented

like in figure 2:

HAPPY-P GIRL-P

TR PRED
Figure 2 AT

»A happy girl

A statement like "There is an always happy girl" or "One girl

1s always happy" would be represented in the same way, with an
object node and two short relationd on 1t to the two predicates,
ATTR to the adjectival predicate, PRED to the nominal predicate.

1f we meet the natural language phrase "One girl is nice
today", then we cannot represent it as simply. We have to
affix a time to the relation between the girl and HAPPY*P",
One way to do this would be to always have the ability to add
extra short relations to existing short relations. This would
require that short relations are represented in the data base
in a form where there is a place to add a list of extra short
relations, and this would triple the size of the data base.
Instead we have an expanded form of those short relastions to
which we want to add other relations, This expanded form is
only used when it is needed, the non-expanded form is used
when there are no added short relations. The expanded form

for the PRED short relation is a node of the type "event",

"

"One girl is happy today" will thus be represented like in
figure 3.

HAPPY-P

CASE
Figure 3
»One girl is happy today»
S
ED BY - AT-TIME
»One girly stoday»

The advantage of having such an extra concept in the data
base is that we can easily add more short relations to the
event node "One girl is happy today", for example to represent

"in the school'" or "hecause of the weather" or "according to
what Tom said".

Since we want to deal with true statements, hypothetical
statements and statements belonging to some person's belief
structure, we always add a relation to an event node indi-
cating which beljief structure it belongs td, true events be-
long to the set "TRUE#*S" of all true statements. Since the

relation "PART TRUE¥S" is so common, we represent it in

pictures with the earth sign of electric charts: edem .

The statement "John believes that Mary loves him" would thus
be represented like in figure 4:

12

»John believes that Mary loves him»

BELIEVE-P LOVE-P

CASE CASE

John believes that» OB] >,

=

BY OB BY

»...Mary loves himy

»Johny »Mary»

Figure 4

Note that there is an earth sign on the true event, but no

earth sign on the event belonging to John's belief structure.

Note that predicates and relations in natural language are

often not represented directly as short relationg in our

data base. "John is the father of Angelica'" is thus not rep-

resented by a short relation "FATHER" from "John" to "Angelica"

but rather with an event node like in figure 52

Figure 5

FATHER-P

CASE

»John is the father of Angelica»

——
-
-

BY F

»Jahn» »Angelica»

13
4. Quantifiers on the short relation

BEvery node in our data base can stand for a set of objects
instead of for just a single objéct. Thus we can represent
"All nice girls" with a node representing the set of all nice

girls.

This means that we need quantifiers on the short relations,

to be able to express relationships between sets.

If there is a short relation R between two sets A and B,
then the relation R might not be true between any member of

A and any member of B. We have several cases:

1) ngxe/%Cv’y{yéB} x Ry)
D YeixeAL(Fy ye B xRy
111)3;(%\)(6A% (\/?,gye nggy)

23, xen (2,5, B «Ry)

These and other cases are represented in our data base
with three guantifiers ALL, SOME and ITS. The difference
between SOME and ITS is shown by the difference between the
second and the third example. One quantifier is plesced on
each end of the reldation. The four examples above will thus
in our data base look like this:

i) (aALL A, R, ALL B)
ii) (ALL A, R, ITS B)
iii) (SOME A, R, ALL B)

iv) (soME A, R, ITS B)

14
The difference between ITS and SOME can be understood if you look
at the statement "Every man is in a car" This can mean that
"Bvery man is inside one single car" or it can mean "For every
man there is one car in which he is". The first phrase might
in our data base be represented as
"Bvery man" ALL IN SOME) "car"

while the second might be represented as
"Every man'" ALL IN ITg) "caxr"

There are simple rules to manipulate the quantifiers when the
deduction rules chain from node to node in the data base.
This is described in Sandewall 1969,

In the following, if no quantifier is marked on a short relation
in a figure, then ALL is implicit.

15
5. Deduction in the data base

The data base does not contain all true statements explicitly,
some of them have to be deduced when needed. Basically all
deduction rules can be seen as patbttern matching. You have a
pattern saying for example that "If something hot is near
something inflammable then the imflammable will catch fire".
Then we have some actual situation, explicit or deduced, e.g.
"The burning cigarette is thrown in the petrol tank”. In our

data base, as in figure 6.

NEAR-P
»If something hot is near something inflammable,
then the imflammable will catch fire»
CASE
<}—Dﬂl—9 »something inflammable»
BY
\ 4
»something hot»
Figure 6
THROW-P
CASE
T »The burning cigarette
(}M_é »the petrol tank» is thrown into the
petrol tank»
OBJ '
V

»the cigarettey

16
Before using the deduction rule, we must match the pattern to

the actual situation. The pattern can contain many inter-
connected nedes, and the reality may not at first resemble

the pattern directly, deduction may be necessary to see the

resemblance.

The simplest deduction rule possible is just a pattern of
two short relations from which a third can be deduced: "If
A R1 B and B R2 C then A R3 C", a simple example: "If A is
subset of B, anl B is subset of C, then A is subset of C",.
Since such rules link together nodes through a chain of short
relations, they are called chaining rules, Spome thaining rules
require side relations on B to the fullfilled, for example

"A BY B, and A CASE C implies B PRED C", but only if A is a
true event.

This is described in Sandewall 1969 and in Makila 1972.

6. Variables

The simplest kind of deduction pattern involves just one node.
Such a node is called a variable, For example, VARIABLES are
used in the tramslation of "Every intelligent man is a bad
soldier" which is represented like in figure 73

INTELLIGENT-P MAN-P BAD-P SOROIER-P
ATTR PRED ATTR PRED
DEF DEF DEF DEF

»Every bad soldier»

»Every intelligent many (ALL EQUAL IT$

sEvery intelligent man is a bad sol dier»

Figure 7

17
Variables have a new quantifier on them, DEF, This indicates

that this short relation is part of the definition of that
variable, The variable "Every intelligent man" above corresponds
to the set of all objects which satisfy the definition. This
means that ag soon as we find an object in the data base for
which we know or can deduce that it satisfies the definition,
then we know that it belongs to the VARIABLE above, and we

can thus deduce that it is a bad soldier,

T. Keys

Sometimes the deduction requires a pattern of more than one
node. Such patterns are called keys. The sentence "If a
motorboat meets a sailingboat, then the motorboat must steer

away from the sailingboat" will in our data base be represented
like in figure 8.

MOTORBOAT-P

PRED

DEF
»Steer away»

»a motorboat»
THAT.
BY CASE
T-P
\‘AEE

DEF

THAT IFTHEN DEF sthen...»
wif...»)

DEF

OB) DEF
DEF FROM

THAT

»a sailingboat»

DEF .
F
PRE igure 8
»If a motorboat meets a sailingboat,

then the motorboat must steer away

SAILINGBOAT-P from the sailingboat»

18
To the left is the pattern of three nodes connected by short

relations with DEF on both ends of the relations. This shows
that they are part of a key. To the right is the deduced
statement, connected to the center of the key with an IFTHEN
short relation. Note that there is a new quantifier THAT above.
This quantifier means that we should single out just that
actual object which was matched to that part of the key. We

do not want to say that "Every motorboat meeting a sailingboat
must steer away from every sailingboat being met by a motor-

boat", and therefore we must single out the matched object only.

8. Dummies

Natural language sentences often refer to previously mentioned
entities with constructs like "he"™ or "the 0ld man'. Our
system will first translate a sentence into an independent
data base fragment. An assimilation program will then merge
this fragment with the data base, Other systems often msake
this assimilation during the input translation. They would

then avoid some, but not all, of our problems, but would
get some other problems instead.

For this merging we create temporary variables and keys
during input translation. The sentence "The man always with the

gun is in the forest™ is thus translated into figure 9:

»The man with the gun is in the forest»

GUN-P MAN-P FOREST-P
™ Figure 9
PRED PRED PRED
DEF DEF DEF

DEF WITH DEF ‘IN .
sthe gunﬁ ythe man») ythe foresty

19

The merging program will use special deduction rules for these
temporary variables, which we call DUMMIES. After merging, the
DUMMIES usually merge with some previous node in the data base,
and they thus become CONSTANTS or VARTABLES depending on the

type of that previous node.

9. Questions

Questions to a computer can require short or long answers.,
There are for example yes-no questions like "Is a man with a
baloon coming?" which in our data base will be represented

like in figure 10,

BALOON:-P MAN-P
»Is a man with a baloon coming?»
PRED PRED
DEF DEF

ITS WITH DEF OME PRED
ya baloony (»a many > f?\) COME-P

U/

Figure 10

where we put a question-mark on one-relation to show that

the program shall try to deduce that relation from the previous
knowleédge.

Other questions require as answer a list of objects, for
example "Which of you can drive a car" or a description of

a deduction chain ("why" questions) or a description of an
algorithm ("how" questions). We have-not yet tried to represent

such questions in our data base structure.

20

10. Bxample of what our system can do

This example shows. a set of facts and questions, such that

our system can answer the questions based on the facts.

The input langusge to our system is not full natural english,
the language is slightly simplified. The sentences in the
example are written in this simplified english.

A girl is a young woman. A boy is a young man. A woman is a

human female, A man is a-human male. Every young man is a boy,

Every sports car is fast and expensive . Every fast car is
dangerous. Anybody - with an expensive car is rich. Every
rich woman is frightened by every poor man.

If a woman is meeting a man and she is frightened by him but

she is loved by him, then she will be despising him. If a man

is loving a woman and she is despising him, then he is depressed.
If a man is depressed and he is driving a car, then he is
gsenseless and irrational. If a senseless man is driving a

dangerous car, then he is dangerous, and all traffic is in
deadly peril.

Bveryone - on a publiec street is traffic,

Mary is a mature girl - with a sports car., Eliza is a pretty
girl ~ with long hair. The mature girl is ugly.

Is the ugly girl, rich?

John is a man. He is young and poor. He is loving every fast
car and every girl - with a fast car.

Is the pretty girl loved by John? Is the rich and ugly girl
loved by John?

21

If Eliza had been s girl - with a fast car, then would she
be loved by John?

Mary is meeting John and he is driving her car. Is the poor

boy, dangerous?
11. The FQUAL relations

The FEQUAL relation between two singular elements means that they
are identical, However, since we can put gquantifiers on the
EQUAL relation, we can also.use it for many set relationships,.

Some examples:

ALL A EQUAL ALL B means that the sets A and B are equal and
contain not more than one element each.
ITS A EQUAL ALL B means that A is a subset of B,
ITS A EQUAL ITS B means that A and B overlap.
ALL A NOT EQUAL ALL B means that A and B are disjoint.
SOME A EQUAL ALL A means that A is not empty.
ALL A NOT EQUAL ALL A means that A is empty.
SOME A EQUAL ALL A means that A is singular, that is contains

exactly one member.

Natural language noun phrases are translated into nodes marked

as singular in the data base, if:
a) The noun phrase is not plural.

b) The noun phrase is not translated into a VARIABLE in the

data base,

¢c) The noun phrase is interpreted in the special sense (1ike
"A man is walking on the street") and not in the general

sense (like "Every man is a male human"),

Data base nodes are marked as non-empty if they are of the

type predicates (like "the act of lighting™ which we call LIGHT*P).

22
12. Natural lengusge noun phrases

There are many date base constructs which correspond to natural
language noun phrases. Noun phrases create many problems with
their attributes, with composite objeets which have several
parts a.8.0s A number of chapters will discuss problems with
representing that kind of facts. The necessary data base

concepts are discussed, rather than the translation problems.

Singular noun phrages without conjunctions are usually translated
into one object~type node. An exception to this is some sgimple

gentences in which noun-phrases are translated to predicate-type
nodes, see chapter 21.

This object~type node can be a CONSTANT, a DUMMY or a VARIABLE.
CONSTANTs are created for simple positive sentences like "A
man is walking on a street." Note however, that in an if-state-
ment or a question, the noun-phrases instead must be inter-
preted as VARTARBRIEs, e.g. "If a man is walking on a street,
then..." or "Ig a man walking on a street?". In thesé cases,

"a man" does not introduce a new constant, but represents a
gimple search pattern to be used in deduction, and VARIABLEs

are used for such search patterns in our data base system.

For general-sense statements, the nouns are usually translated
to VARIABLEs. Example: "Every good girl will kiss every brave
soldier." These VARIABLEs can be used in later deduction, to

find out what happens if a good girl meets a brave soldier.

Noun-phrases beginning with "the" or "this" or "that" or some
gimilar determiner are usually translated to DUMMIES. Here a

search must be made in the data base for some previously known
node to merge the DUMMY with.

Pronouns like "he" or "it" or "her" are also translated into
DUMMIES, for the same reason.

23

The noun word itself indicates a property of that noun (e.g.
"man" indicates the sex and species of "a man"). A predicate

MAN*¥PR is therefore created, and "a man" gets a relation PRFD
0o MANXP

Adjectives do not always indicate properties which are generally

true for the noun phrase. They can mean many things Examples:

The good teacher (The teacher which is good as a teacher),
The big ant (The ant which is big for an ant),

The red house (The house which is red).

Therefore, a weaker relation ATTR is used from a noun to its

adjectives.,.

Names are a very special kind of predicates, and therefore

a special relation NAME goes from a noun node to its name.

When a name such as "John'" or "Cambridge" is used, we want

to identify this with some previously known "John" or "Cambridge"
in the data base. But we cannot give the node itself the name
"John" or "Cambridge'", since there may be more than one "John"
and "Cambridge" in the data base. Therefore, the last-mentioned
which fits the description is found, gust as for other DUMMIES.
"The always Old John" will therefore for example in our data
base be translated into the DUMMY in figure 11.

OLD-P JOHN-P
ATTR NAME
DEF DEF

»The always 01d John¥

Figure 11

24
We have a special rule for VARIABLES with only one PRED as a

definition, where this PRED goes to a predicate whose name
comes from the input sentence, This variable gets the same

name, but with "*S" in the end. Thus, "Every man" is translated

to MAN*S SEED MAN*P

This special rule is not really necessary, but has two advantages:

a) The data base becomes more readable,
b) The data base routines will immediately see that all MAN*S
nodes created by several different sentences can be merged

into one, without having to do any deduction.

You could say that MAN*P is the property of being a man,
while MAN*¥S is the set of all men.

12b. Attributes on noun phrases

This section describes things which are not yet implemented

in the SQAP program when this is written (May 1974)

For several reasons, attributes on a noun phrase cannot always

be represented by a direct relation from the noun phrase to
the attribute.

Sometimes two or more attributes on a noun phrase are related.
If you say "A friend of Nixon" then this person is not always
a friend (he may not be a friend of McGovern) and he is not
always "of Nixon" (he may not be "a son of Nixon" although he
is surely a son). If we represented the two attributes that
he is a friend and that he is "of Nixon" as two separate
independent relations on his object node, then the data base
deduction rules would not properly understand sentences like

"A friend of Nixon is an enemy of McGovern". The deduction

25
rules would wrongly deduce that since this object independently
has the attribute of being a friend and the attribute of being

"of McGovern", the object is a friend of McGovern.

To avoid this erroneous conclusion we must have only one
single outgoing relation from the object to the composite
property of being "a friend of Nixon". The statement "A friend

of Nixon is an enemy of McGovern" might thus be represented

like in figure 11D

FRIEND-P »Nixon» ENEMY-P »McGoverny
CASE OF ASE OF
BY BY
EF DEF
»A friend of Nixon» SUBSET

Y »An enemy of McGoverny

Figure 11b

where two new "event" nodes are introduced for being a friend
of Nixon and being an enemy of McGovern. It seems as if only

the preposition "of" and no other preposition in english creates
this problem.

The same kind of representation can be used to correctly
represent a statement like "A big ant is a small animal",
see figure 11c.

26

BIG-P ANT-P SMALL-P ANIMAL-P
TTR CASE ATTR CASE
BY BY
DEF DEF
UBSET
»A big anty « s > »A small animal
Figure 11¢

Another reason why attributes cannot always be represented

as direct relations on the noun is that the attribute may be
restricted in time or space or in some other way. If we input
the noun phrase "A hungry girl" then the computer creates an
object for this girl. But we may thereafter learn that the
girl eats and is not hungry any more. Thus the same object,

at a later time, does not any more have the attribute of being
hungry. Here again, we must inbtroduce an EVENT node for the
fact that the girl is hungry as shown in figure 11d.

HUNGRY-P
TATTRCASE
AT-TIME
..... GIRL-P
€
BY PRED

»A hun irly
figure 114 Y 8

27
In most cases, the same time-restriction applies to attributes
as to the main verb in the sentence. If we say "A hungry girl
ate a cold buffet in a sundrenched meadow on a warm summer
day" then the time and space restrictiens are valid for all
the attributes on the various nouns in the sentence. In such
cases, the data base could be simplified if we introduced a
special "situation" node to represent the time and space,
and then used a new short relation SIT from the various event
nodes to this situation. This would be even more useful if a

series of sentences all apply to the same situation.

Prepositional attributes may also be situation restricted as
for the sentence "An angry man with a gun is coming at ten
o'clock", where the man at another time may not be "with a

gun", Thie might be represented as shown in figure 11e.

ANGRY-P MAN-P

»Being an angry man with a guny WITH) »a gun»
CASE

(The situation-restricted event)

BY AT-TIME

»An-angry man with a guny »ten o’clocky

BY T-TIME

»is coming.....»

1
CASE
J’ figure 11e

COME-P

28
If the computer 1is told that "Every english spinster who
comes into the church is awed" then the computer can deduce
that Eliza is awed if it knows that Eliza is english, is a
spinster, and is coming into the church, all at the same time.
But if Eliza was an english spinster five years ago, and
comes into the church today, then we cannot make this deduction.
This can be solved in two ways. Either the data base represen-—
tation of "Bvery english spinster who comes into the church
is awed" is changedinto "If at a certain time, an english
spinster comes into the church, then she is awed" or else the
deduction rules are changed so that the time-limitations are

implicitly carried along and combined dur:ing deduction.

13. Composite objects

There is a need to describe the fact that objects can be parts
of other objects. We therefore introduce the node type com-
posite object. A composite object consists of a known or un-

knmown number of elements, which may or may not be similar,

If we know which the elements of a composite object are, then

we use the BLEMENT short relation from the composite to one
or more of its parts.

Example: "John and Mary are married." would be translated inte
figure 12.

29

JOHN-P MARY-P

NAME NAME

DEF DEF Figure 12
»John» »Ma ry»

ELEMENT ELEMENT

DEF DEF

MARRIED-P
»John and"Mary» PRED >
»John and Mary are married»

One might suggest that conjunctions between noun phrases are
translated as two separate indenpendent object nodes. "John
and Mary are married" would thus be translated in the same
way as "John is married and Mary is married". However, this
is dgbviously not the same thing. Sometimes the difference is
perhaps not there, for example when we say "John and Mary are
human", But the safest way is to create a composite object.
This of course requires deduction rules to decide when a pro-
pexrty on a composite can be transferred to its elementary parts.
This can almost always be done, but not in some cases, for
example if we say "John and Mary together are heavier than
Peter." But in such cases there is usually some indication in
natural language, like the word "together" indicating that

the property of the composite cannot be transferred to its
elements.,

Look again at the picture above showing the translation of
"John and Mary are married."

30
ALL the riodes with DEF on them above are DUMMIES, This means
that we first search for a previous-mentioned node with a
"NAME JOHN*P" relation on it. If one is found, "John" will
merge with it, otherwise "John" will become a new constant

and the DEF is changed to ALL., The same thing is done for "Mary"

Thereafter, when "John" and "Mary" have been found in the data
base, we try to identify "John and Mary", that is to find in
the data base a node whose two elementary parts are just
"John" and "Mary". If such a node is found, "John and Mary"
will merge with it, otherwise "John and Mary" becomes a new

constant and the DEF quantifiers are changed to ALL,

This process ensures that if we first say "John and Mary are
married.” and then say "John and Mary are going to separate.”
then the two statements will refer to the same data base node
"John and Mary" for both sentences.

There is a risk, however, if we say "John and Mary and their
son are a family." and then say "John and Mary are going to
London." Then the data base might wrongly identify "John and
Mary" in the second sentence with the composite "Jdohn and
Mary and thein- son" in the first sentence, and thus wrongly
conclude that the son is coming along to London. To stop this,
we might require that if there are ELEMENT relations on a
node, these must point out all the elements, and not some of
them, Thus the data base would know that "John" and "Mary"

are the only elements of the composite "John and Mary", and

therefore cannot identify this with "John and Mary and their
son".

The data base also ought to have a deduction rule which auto-
matically can conclude that there is a PART relation between

two composites, if all elements of the first composite are
also elements of the second.

31

14. Conjunctions between noun phrases in the general sense

In the previous chapter I pointed out the ambiguity between
sentences like "John and Mary are married" and "John and Mary
are human" where the first sentence says that the composite
was married, while the second said that the elements indi-
vidually were humans. I also said that such sentences could
always be translated to composites, since properties of
composites can in general be trasferred by deduction to the

elementary parts.

This is not so easy in the general sense, see the following

examples:

"All men and women are getting married."
"All men and women, are happy."
"Every man and woman standing together are a married couple.”

"All men and women are young people,"

Noun phrases in the general sense are translated into VARIABLES
in the data base, and these VARIABLES are later used during
deduction. In most of the sentences above, the best translation
is tocreate an individual variable for each element, but no
variable for any composite. If we say "All men and women are
happy" what we mean is "Create a VARIABLE containing all men,
and another VARTABLE containing all women, and put the pro-
perty of being happy on all members of both variables." We

da certainly not mean "Create a VARIABLE of man-human couples,

and put the property of being happy on all such couples."

In the general sense, conjuncted nouns are therefore not
combined into compesite objects., An exception is when there
is some special indication that such a combination is wanted,

like the word "together" in the third example sentence above.

32
15. Plural nouns

Plural nouns do not simply indicate a set of singular objects.
There are also properties which belong to the composite of

all the elements together. One of these is the property of
being plural, that is of having more than one element. If we
say "Two horses are running", then each horse is not plural,

neither is each horse two, it is the composite which has

these two properties.

Plural nouns must therefore often be translated into composite
objects in the data base, since relations on sets in our data
base always refer to the individual members of the set, not

to the set as a whole.

An exception from this rule is phrases in the general sense
1like "All men are male humans". Here the plurality is of
little importance, and no composite obgect is created at in~

put translation.

Therefore, when a plural refers to all objects with a certain
property, then a variable is created, but when the plural noun
phrase refers to some special collection of objects, then a

composite object is created.

We introduce the new relation NUM which goes from a composite
object to the numeral of it. We also introduce the relation
COMPLEX which goes from a composite object to a predicate
which applies not necessarily to the composite, but which

applies to all its elements. Examples in figure 13.

33

2 HORSE-P 1 HORSE-P
NUM COMPLEX NOTI{ NUM COMPLEX
yTwo horses» »Some horsesy
Figure 13

This means that the data base must be able to make deductions
on numbers, e.g. to deduct that if a composite has the relation
NUOM 2, then the relation NOT NUM 1 can be deduced. This is

necessary e.g. to merge these sentences into the data base

in a correct way:
"Two horses are coming. One of the horses is sick.,"

To identify "the horses" in the second sentence with "two

horses" in the first sentence, deduction must infer NOT NUM 1
from NUM 2,

There may also be a need to have in the data base management
a routine for counting the number of elementary parts of a

composite, so that the NUM numeral can be deduced if all parts
are known.

16. Pitting composgite objects into the sentence

The genergl rule is that when two conjuncted nouns have been
translated into a composite object, then it is this composite

objects and not its parts which is fitted into the sentence
framework.,

34
This is obviously the correct translation e.g. when you say
"The road between Stockholm and Gothenburg" where "between"
refers to the composite, but not to the elementary parts
singularly. ("The road between Stockholm" is not right).

However, for a phrase like "Every man and woman in the city"
we do not want to find only couples of men and women, so
general sense noun phrases are not translated into any com-

posites at all. The parts are fitted separately into the
sentence framework instead.

If we say "The father and the mother of Mary is coming", then
obviously it is the composite which is "coming", but it is

not so obvious that "of" refers to the composite. Suppose that
we previously in the data base have got a father of Mary and

a. mother of Mary, but no composite of these two. "The father"
and "The mother" are translated into two DUMMIES, and we f irst
search to identify these in the data base, before trying to
identify the composite. But when we try to identify "The father"
we do not want to find the closest previous-menthioned father,
we want to find the closesgt previous-menthioned father of Mary.
Therefore, the rule for prepositions is that to the left, they

refer to the elementary parts but to the right they refer to
the composite,

Se example in figure 14.

35
Example: "The road and railway between Stockholm and Gothenburg
is blocked."

STOCKHOLM-P
RAILWAY-P
PRED NAME
DEF DEF
»Stockholmy
»Fhe railway»

EF ELEMENT
DEF

BLOCKE ST sThe road and railways »Stockholm and Gothenburgy

DEF
i ATWEEN ELEMENT
ELEME

DEF
»The road»
DEF »Gothenburgy
PRED DEF
NAME
ROAD-P
GOTHENBURG-P
Figure 14

As seen from the picture, between goes from the elementary
parts "the road" and "the railway" to the composite object
"Stockholm and Gothenburg".

17. Noun phrases with just a number and nothing more

Some natural languages contains constructs where a noun phrasge
consists of only a number, usually followed by a preposition.

Example "One of the horses" or "Two of the horses".

Here, as usual "one" creates a singular set, while any number

except "one" creates a composite object. The relation "of" is

in this case translated into

36

Noun phrase Noun phrase after the "of"

before the

Mof™" L composite object No composite object
A composite object PART ELEMENT ITS

No composite object REV ELEMENT EQUAL ITS

Examples:

Two of the horses: PART

One of the horses: REV ELEMENT
Two of all horses: ELEMENT ITS
One of all horses: EQUAL ITS

18, Some examples of translations of sentences with plural nouns

ILL-P HOR-P 1
PRED COMPLEX / NOT NUM
DEF DEF
ELEMENT
SOM »Oll ey (sthe horses»
EQUAL (DUMMY)
»One of the horses 1s illy Figure 15
ILL-P 2 HOR-P 1
PRED NUM COMPLEX NOT NUM
DEF DEF
YEWO) PART ythe horsesy
(DUMMY)

»Two of the horses are illy Figure 16

37

BEAUTIFUL-P GIRL-P SWEDEN-P
PRED PRED NAME
DEF DEF
Figure 17
»The girlsy) »Swedeny
(DUMMY)
DEF INSIDE

»The girls - in Sweden are beautifuly

1 LINE-P TRUE-S

NOT NUM COMPLEX PART
DE DEF

sthe linesy (
(DUMMY) BY

»a pattern»
SOM
PRED

EQUAL PATTERN-P

»are...»

OB]J

»The lines are making a patterny

Figure.18

SOME

MAK-P

CASE

EQUAL

38

HIGH-P HUMIDITY-P RAINY-P DAY-P
PRED PRED ATTR PRED
DEF DEF DEF
»The humidity» > »rainy daysy
(DUMMY) DEF ON (DUMMY)
DEF
INSIDE
TROPICP & »the tropics»
PRED DEF Figure 19
»The humidity on rainy days - in the tropics is high»
COME-P PARENT-P 3 STUDENT-P
m CASE NUM COMPLEX
DEF DEF DEF

PRED

ITS
BY
DEF

»all parentsy
(VARIABLE)

»All parents of each o

»parents ofy

ythe three studentsy

(VARIABLE) (DUMMY)
DEF
OF ELEMENT
ITS DEF

yeach of the three students»
(VARIABLE)

f the three students are comingy

Figure 20

39
Figure 21

ohn is eating three eggs, and one of them is rotten»
EATP g Bes,

1
CASE 3 EGG-P
\
NUM\ NOT|NUM COMPLEX
»John is eating...» B
A
— »three eggs»
BY, -

0 (Merged by assimilation)

»John» »them» (DUMMY)
SOME
DEF
DEF NOT NUM
NAME EQUAL
1
JOHN-P ELEMENT

SOME
yone of them»

EQUAL
PRED
' PART-OF
ROTTEN-P
PRED

stwo of themy

NUM

2

»John is eating three eggs, and two of them are rotten»

Figure 22

40
19. Problems with the dual representation of nouns

As has been explained above, nouns must sometimes be translated
to singular sets (for special sense singular nouns), to defined
sets (for general sense nouns) or to composite objects (for
most plural nouns). This duality is necessary, but it also

will make deduction more difficult, since the deduction rules
must be able to make inferences from the composite to its

parts. The deduction rules must alse sometimes be able to

create auxilliary composites or auxilljemy non-composites,

Example I: "One man and three women are coming. How many men
and how many women are coming?" Here, deductiaon will probably
have to create a help-composite for the single man, since only
composites have numeral on them, and the question asks for
this numeral.

Example II: "One or tiore men is coming.," The natural transla-
tion of this is into a composite object with NUM to "One or
more". But if we later learn, or can deduce from the data
base, that it is only a single man, then a singular non-

composite node probably has to be created.
Example III: "Soldiers are cruel. This is because they are scared."

In the first sentence, "soldiers" is used in the general sense
and thus a defined set is created. But in the second sentence,
the translation will first translate "they" into a DUMMY looking
for a composite object. When the routine for merging the

second sentence into the data base finds the defined set for
"goldiers", it must recognize that a DUMMY looking for a com-
posite object can merge with a non-composite defined set in

the data base.

An even more ocomplex problem for the deduction routines will

occur if we say "Two of the horses in the stable are gick. Is
any horse in the stable sick?" which will be translated like

in figure 23.

41

SICK-P 2 1 HORSE-P
PRED NUM NOE NUM COMPLEX
DEF DEF
stwo of...» PART) »the horses»
DEF
IN

»yTwo of the horses in the stable are sick»

ythe stable»

SICK-P

PRED
DEF ITS EQUAL ¢,

<

SICK-S DEF DEF
PRED IN

HORSE-P sthe stable»

»any horse»

»Is any horse in the stable sick?»
Figure 23
The question-answering routine will be asked to answer the
question "ITS EQUAL" (that is: SUBSET) and to do this it must

in some way recognize that a member of the defined set SICK*S

is an element of the composite "two of", and thus is sick.

20. Bquality between composite objects

The natural language phrase "The father and the mother is
John and Mary" cannot be translated with an EQUAL relation
between the two composites for "the father and the mother"

and "John and Mary". EQUAL says that all members of two sets

42
are the same so such a translation would say that there is

a composite object which has four elementary parts: "the
father", "the mother", "John" and "Maxy".

Therefore a new relation SAME is introduced into the data
base. SAME goes between two composite objects, or between a
composite object and a non-composite object. SAME says that
both object nodes represent the same reality, but viewed
from different viewpoints, described by a different set of

descriptions.

"Johm and Mary are a marricd couple" will also be translated
with a SAME relation between the two nodes. "John and Mary"

is a composite object, and "a married couple" is a non-composite,
and EQUAL would therefore mean that a node can be both com-
posite and hon-composite at the same time. To avoid this con-

fusion, the SAME relation is used.

SAME is thus used to indicate a relation between two different
descriptions of the same reality. But SAME cannot be used
between a composite object and a defined set containing its
elementary parts. ELEMENT might be used here, but ELEMENT re-~
fers to one of the parts, not to all the parts. Therefore a
new relation OBJCGOMPLEX is used, OBJCOMPLEX refers from &

composite object to a set of all its parts.

Example: "Twq girls are citizens of Norway" would be translated

like in figure 24.

ALL OBJCOMPLEX TS
»The two girlsy > »Citizens of Norway»
(A composite DUMMY) (A defined set VARIABLE)

»Two girls are citizens of Norway»

Figure 24

43
Second example: "All people in the room are thé two girls"

is translated into figure 253

OBJCOMPLEX
»all people in the (=l »The two girlsy
roomy» (A non-composite (A composite DUMMY)
VARIABLE)

»All people in the room are the two girls»

Figure 25
Predicate complement noun
composite non-composite
composite SAME OBJCOMPLEX
Subject noun
non-composite REV EQUAL
OBJCOMPLEX

21, Relations between predicates

Predicates form an hierarchical structure, e.g. VERTEBRATE*P
is a special case of ANTMAL*P, HUMAN¥P is a special case of
VERTEBRATE*P, KING*P is a special case of HUMAN¥P a.s.o.

To indicate this we use the relation SUBPRED, as in figure 26,

SUBPRED) SUBPRE% SUBPRED)
KING-P i HUMAN- VERTE- ANIMAL-P

BRATE-P

Figure 26

44
This means that some simple sentences can be translated as
relations between predicates. For example, the sentence "Every

man is a human" can be translated like in figure 27.

SUBPRED
MAN-P) HUMAN-P »Every man is humany

Figure 27

which is much simpler than the other translation, in figure 28.

MAN-P HUMAN-P
PRED PRED
DEF BEF
MAN-S & —) HUMAN-S
EQUAL ITS
Figure 28 »Every man is human»

To be able to give this simple translation to adjectival
predicates, we also have the short relation SUBATTR, so that

"Every man is a male human" can be translated to figure 29.

SUBATTR MALE-P
MAN-P \ male humany
Figure 29 SUBPRED HUMAN-P

The difference between SUBATTR and SUBPRED is the same as between

»Every man is a

ATTR and PRED in figure 11. In the above case, there is no semantic

22. Bvent nodes difference.

Many natural language phrases combine several nodes (objects,
defined sets, properties) into a statement which can have
limitations in space, in time, in its truth value, and which

can have a cause, a result etc.

45
The central node in the translation of such phrases is the

event node, Event nodes are used in our system not only
for typical events like "John went to the cinema with Mary"
but also for more sustained "events" like "John is the fiancee

of Mary" or even "John is the father of Mary"

The most important relations on an event node are BY to the

subject ngE €o the predicate, O0BJ to the object, and PART
va _

to the envir%rnment . Example: "John is riding the bike" is

translated as in figuare 30.

RIDE-P

CASE

JOHN-S . BIKE-S
»is ridingy

NAME BY OB] PRED
DEF DEF

»Johny PART sthe bike»

TRUE-S
Figure 30

»John is riding the bike»

From a valid évent node (that is at the time and place of
the event etc.) the deduction procedures can deduce €.8. &
PRED relation from "John" to 'RTprxp, and these deduced re-
lations are very useful in later deduction. There is also a
symmetric relation OBJPRED from the object to the predicate.
If we can deduce that some object has OBJPRED to a predicate
like RTIDE*P, then we can deduce that that object is being
ridden, that is that the predicate RIDED*P (the passive of

RIDExP) is appliable to the object.

46
We ¢can therefore draw the following figure 31 of relations:

Figure 31
PASS
RIDE-P > RIDED-P
PRE CASE PRED

PASSZASE OBMRRED

BY B
»Johny €—===—— »is riding» OBJ) »the bike»

»John is riding the bike» & »The bike is ridden by Johny
including implicit short relations

All of these relations do not have to be produced for every
sentence, since some of them can be deduced from some others
by chaining rules like:

X BY Y & Y CASE Z implies X PRED Z

X PASS Y & Z PASSCASE Y implies Y CASE X

Several more triangles in the figure form such chaining rules,
although not all of them. (Even if John is riding and the
bike is ridden, we cannot therefore conclude that John is
riding Just that 'bike). All the chaining rules involving the
event node are true only when that event node is true, or

valid when the event notde is valid,

If the data base contains a verb both in active and passive
form, then there must be a relation PASS between them to per-
mit deduction. Since passive forms are less common than active,

this PASS relation is generated whenever a passive verb appears.

47

AN- PRESSED-P PASS
MAN-P DEPRESS < DEPRESS.P
PRED PRED
DEF DEF

The always depressed man (DUMMY)

Figure 32

The direct relation OBJPRED from '"the always depressed man" to
DEPRESS*P is thus not created by input translation, but it

can of course easily be deduced.

In the same way, "The bike is ridden by John" is translated
like in figure 33.

RIDED-P PASS
< RIDE-P
N\
PASSCASE
»The bike is ridden by John» JOHN-P
BIKE-P
l BY NAME
PRED OBJ - DEF
DEF -
»the bikey »Johny

Figure 33

48
The CASE relation from the event to RID¥P is not output

explicitly, but can of course easily be deduced.

One could argue that we could avoid passive verbs altogether
in our data base by always using the CASE and OBJPRED rela-

tions. There are two arguments against this:

a) It is valuable always to have the relation PRED from a
noun to all properties on that noun., It is not systematic

to need the relation OBJPRED to some properties.

b) Our representation makes it very easy to represent statements
like "Someone who is killed, is dead" simply by KILLED*P
SUBATTR DEAD*P which otherwise would have to be represented

by a VARIABLE in the way in figure 34.

ySomeone who 1s killed, 1s dead»
KILL-P DEAD-P

OBJPRED: ED
DEF

»Someone who 1s killed»

Figure 34

25, Putting restrictions on equality

One can see event nodes as a way of adding restrictions in
time and space etc on PRED relations. The event nodes are
necessary because our data base does not permit us to put

short relations on short relations.

Sometimes there. is a need to extend the SUBSET relation in

the same way. PRED and SUBSET are very similar relations,

49
although PRED goes to a predicate, SUBSET to an object set.

Since SUBSET is a special case of the EQUAL relation, it is
really the BEQUAL relation which we want to extend into an
event. We therefore introduce a new relation OBJCASE so that
v BY X & Y OBJCASE Z implies X EQUAL Z whenever the event Y
is true or valid. The relations thus form the triangle in

figure 35.

BY OBJCASE
Figure 35

EQUAL

The OBJCASE relation is used when natural language equality

has to be translated into relations between object nodes.
An example is given in figure 36.

»Every evening, John is a singer in the club»

»Every eveningy

Figure 36
AT-TIME

INGER-P
JOHN-P > R

»the Club))
I OBJCASE PRED
NAM \/ \ / %ED

»Johny »singer in the club»

50
From this network, we can deduce that if the event is wvalid,
e.g. in the evening, then "John" is a SUBSET of "singer in
the club".

Since all relations expand into a chaining rule with EQUAL:
"X RY & ¥ EQUAL Z implies X R Z" and since EQUAL can be
expanded intoan event node using BY and OBJCASE, this can be
used to expand any short relation into an event node. For
example, "After 1972, Britain is a part of EEC" requires us
to expand the PART relation between Britain and EEC into an
event, to be able to add a time limitation to that PART
relation. This can easily be done by expanding EQUAL into
BY x OBJCASE in the way in figure 37.

»After 1972, Britain is a part of EEC»

»1972»

AFTER-TIME
»EEC»

DeealSeasd

OBJCASE
J A’RT
ITS
BY, DEF
m——

sthe set of all parts

_ of EEC»
»Britainy

Figure 37

51

?23b. Quantifiers on event nodes

Consider the sentence "A girl 1s giving every man a flower".
This sentence could be interpreted in the following way:
"There is a set of events, one for each man. One and the
same girl is giving a different flower in each such event".

In our data base, this is represented like this:

MAN-§ (Variable) GIVE-P
TO f CASE
ITS DEF ;?

i irl is giving...» (Variable) FLOWI?:R-S
LA svoer oY DEF DEF OBJ ITS (Variable)

jLPARJ'

TRUE-S

figure 37Ta

In the translation above, the two noun phrases "a girl"™ and
"a, flower" are interpreted in different ways. "a girl" is
interpreted as one single girl, while "a flower" is interpreted

as a set of different flowers, one for each man.

These two interpretations of "a" are called respectively the

singular sense and the distributed sense. Other determiners

than "a" have the same ambiguity, for example "some".

"a car" in the sentence "Every man is in a car" can be

interpreted in the singular sense (one single car) or in

the distributed sense (one car for each man).

In the singular sense the interpretation will be:

52

figure 37b
MAN-S CAR-P

BY PRED
»Every man is in a cary Constant

ART

TRUE-S »a car» (Constant)

And in the distributed sense the interpretation will be:

MAN-S CAR.P
BY
ITS PRED
»Every man is in a car» (Variable)
DEF DEF DEF
PART
TRUE-S »a car» (Variable)

figure 37e

One can note that we can later refer back to the car only

with the singular sense interpretation. Example: "Every man

ig in a car. The car drove away". This also corresponds to
the interpretations in the figures above, where only the

singular sense provides a node to refer back to.

Such a back-referencing could thus be used to disambiguate

this kind of ambiguous sentence.

If you compare the two figures above, an important difference

is that the event node is a constant in the singular sense,

a variable in the distributed sense.

53

The translation rule is that if all the noun phrases marked

with "a" or "some" are to be interpreted in the gingular sense,

then the event can become a constant. If, however, one of
the noun phrases marked with "a" or "some" is to be inter-

preted in the distributed sense, then we must have one copy

of the event node for each copy of the distributed noun, so

the event must become g variable,

If the event is translated as a variable, then the quantifiers

on the relations between the event and the noun phrases should be:
DEF-ALL to singular sense and constant nouns,

DEF~ITS to distributed sense nouns,

ITS-ALL to nouns marked with a general quantifier like "every"

or "gll" or "each".

Examples:

"A man and a woman are everyone - in the house"

SAME ITS
»a man and a womany severyone in the house» (Variable)

~> DEF
COMPLEX |COMPLEX q,IN SIDE

»a many »a womany sthe house» (Dummy)
DEF
PRED PRED PRED
WV
MAN-P WOMAN-P HOUSE-P

figure 37d

54

"In every city, some woman 1is in a hospital"

CITY-P

1:ﬂ{5D
DEF
CITY-S (Variable)

INSIDE
ITS
WOMAN-S (Variable) & - »iS...0n
DEF ITS BY DEF
PRED \lquSH)E
ITS
WOMAN-P HOSPITAL-S (Variable)

DEF
PRED

figure 37e HOSPITAL-P

24. Deduction patterns and natural language if-clauses

A natural language statement like "If the weather is rainy
and a person is outdoors and the person is not wearing any
raincoat, then the personh will become wet." introduces de-
duction rules into the data base. These rules are only valid
if a pattern of facts in the data base can fit into the

pattern created by the deduction rule.

Such deduction rule patterns are called keys in our system.
After merging into the data base, the statement above may

look like in figure 38.

55

WEAR-P
WEATHER-P OE}QOORJ’
NOT CASE
PRED CASE DEF
DEF | DEF
»the weathery PeoodSouud »...1s not...»
4\ '} DEF DEE DEF
BY BY, OB]J
DEF
DEF D
BY TS
DEF tyaT
l COND »any raincoat»
DEF »a persony
»...iS...» DEF E}EED
PRBY THAT
DEF COND
CASE DEF
\l/ PERSON-P RAINCOAT-P
RAINY-P
THAT
THAT BY
sthen...»

> WET-P

»If the weather is rainy and a person is outdoors and the person is not
wearing any raincoat, then the person will become wet»

CASE

Figure 38

A new quantifier "THAT" is introduced above. The reason for
this is that if there are two different persons, one who is
outdoors, and another who is not wearing a raincoat, then we
do not want to conclude than any of them necessarily will
become wet. We therefore have to single out in the data base
one person and two events in which this person is the subject.

One of the events should say that he is outdoors, the other

56

that he is not wearing a raincoat. We therefore have a key
of one person and two events, which have to be fitted with

facts in the data base when the deduction rule is used.

The quantifier "THAT" refers from a conclusion to the deduction
pattern key. It means to single out that member of the referred

set to which the whole pattern has been matched,

In the figure above, "the weather is rainy" 1s not part of

the pattern. But in reality, there is in the natural lamguage
text an 1mplicit time and place indication: "If, at a certain
place, at a certain time..." and this place and time will fit

the weather into the pattern key.

Our program does not yet handle such implicit time and place
indications.

There are two short relations for "imply" in our data base:
COND and IFTHEN. COND refers 10 necessary conditions, IFTHEN
to sufficient conditions. To handle cause and effect patterns,
and the resulting structure of situations depending on each
other, probably more such relations are necessary, but we

have not introduced them yet.

A somewhat simpler notation is available for some simple cases.
This is the COP short relation, which refers to a hypothetical

copy. Thus, "If the bridge is low and weak, then it will break"
can be translated like in figure 39.

57

DEF PRED
COP DEF = —> LOW-P
»the bridge>
EF
b PRED WEAK-P
THAT THAT
BY COND
DEF
ythen,,.» CASE
:> BREAK-P
Figure 39

»If the bridge is low and weak, then it will breaky

Thus, if-statements in natural language introduce a patterm
key of variables, connected with DEF-DEF relations. And the
conclusion refers to this pattern with relations with the

quantifier THAT on the patiern end.

A natural language if-statement in a question is translated

in a quite different way. The statement "If the weather is

rainy and John is outdoors, will he then be wet?" is translated
like this: "Add the temporary facts that the weather is rainy
and that John is outdoors into the data base. Thereafter try

to deduce if he will be wet. When the question has been answered,

then remove the temparary facts from the data base again.

Compared to ether natural language systems, one characteristic
of our system is the representation of deduction rules as vari-

able patterns in the data base. Other often used representations
are

58
a) Predicate calculus clauses.

b) Executable programs in some special programming language.

The advantage with our system is that the representation of
deduction rules is so closely integrated with the represen-
tation of facts. The simplest deduction rules, the chaining
rule8, simply are rules for traversing the data base graph
from node to node. The more complex deduction rules are
patterns very similar to the data base facts which these
patterns are to match during deduction.

If a predicate calculus representation is used, then
efficient deduction requires some algorithm for selecting
those clauses which might match the clauses in the deduction
rule. Thus, the pattern matching problem is not avoided,

and an efficient deduction algorithm probably will have to

have an underlying network pattern similar to ours, although
not so visible.

The advantage with predicate calculus representation is
however that the theory of decidability is much fuller
developed for that representation than for ours.

Executable programs in some special programming language
is potentially a more powerful representation than ours.
Heuristic rules guiding the order of the deduction search
are easier to include into such a deduction rule. However,
the power in an actual system is of course limited to the
set of programs which the input translator can generate.
Many of the programs will probably in reality not contain
anything else than our chaining rules, variables and patterns,
and such system will also require some more or less hidden
underlying network to select rules and facts of interest
during a certain deduction process.

25. Questions

On the outermost surface level, we have until now only imple-
mented yes~no questions in our system., Other kinds of
questions can however appear ags sub-questions during the
deduction process. A gquestion is in many ways similar to

a natural language if-statement. In both cases, a pattern

of variables is created, and we want to identify this

pattern with the data base.

59
A typical question like "Is John father of a blond girl" will

thus be translated like in figure 40.

FATHER-P BLOND-P GIRL-P
JOHN-P
NAME CASE ATTR PRED
DE DEF
DEF DEF
»John sthe father») »all blond girls»
BY? ITS DEF OF ITS
Figure 40 »Is John father of a blond girl?»

In this simple case, there was no need to introduce pattern
keys of more than one variable, so fthe franslation was very
simple., One central relation, in this case the By relation,

is marked with a question-mark, which means that it is this

relation which deduction should try %o prove,

The processing of a question therefore usually begins with
the introduction of temporary data (in this case the VARIABLE
for "all blond girls" and the VARIABLE for "all fathers of

blond girls") and then on a single question relation to prove.

This is what our system is capable of today. However, some
complex questions will create patterns where part of the
pattern refers to other patterns, just as for if-statements

in the previous section of this paper.

Look for example at the question "lIs the father of all the
children of any of John's daughters married to that daughter?"
In the translation of this question there will be a VARIABLE
for "the father" and a VARIABLE for "that daughter". And these
two VARIABLES must pairwise match. It is not enough to find
that the father is married, not even enough to find that he

is married to one of John's daughters. He must be married

to just that daughter whose children are all also his children.

60
The translation will therefore have to be something like in

figure 41,

]OEIL\I -P DAUGHTER-P MARRIED-P FATHER-P
NAME PRED CASE PRED

k DEF DEF DEF DEF
»john» oF E}pthat daugh- PeudS..» sthe father»

tery DEF TO DEF DEF BY D

DEF
Figure 41 OF
DEF ALL

CHILD-P < »all the childreny

PRED DEF s the father of all the children of any of John’s
daughters married to that daughter?»
Look at the OF relation from "the father" to "all the children".

This OF relation should single out just the children of his
wife, not the children of all her sisters. We have not yet

found out how to do this. We hope that this complex kind of
questions will not be common .

26, DUMMIES = temporary variables f8r data base merging

A shart presentation of the concept of a DUMMY was made in
gsection 8, DUMMIES and problems with them will be more fully

treated here,

When natural language uses constructs like "He" or "the man”

or "this object in the sky" then this usually refers to something
which the reciever is supposed to know already. Often, the

thing referred to has been mentioned a short time ago in the

previous natural language input.

We therefore introduce a special kind of VARIABLE, This is
called a DUMMY. An ordinary VARIABLE is kept in the data
base to be used at some later time for deduction. A DUMMY
causes an immediate search in the data base for a matching

previously known object.

61
The order of this search is important. If there are several
previous objects matching the descriptions, the last-mentioned
one shall usually be found. However, the subject usually goes
before other noun phrases. If we say "If a card is below
another card, then it cannot be seen." then "it" refers to
the subject "a card", not to the prepositional "anether card"

even though this was mentioned later.

Our program will therefore make a list, the so-called CURRENT
list, of previous-mentioned objects. This is searched back-

wards.,
We have at present two search routines for DUMMY matching,

the "the" routine and the "this" routine. One difference

between them is that 1f no matching node is found, the "thig"
routine will ask the user to rephrase his statement. The "the"
routine will in that case accept that this is something which
the user knows, but not the computer. It will therefore enter

a new node if no previous-mentioned is found.

One problem which we so far Have not completely solved is how
to do with patterns of DUMMIES., If we say ™the man behind John"

then there are two natural ways to translate this into our
data bases

a) Two DUMMIES, one independent (for ™John") and another
dependent (for "the man") as in figure 42.

MAN-P JOHN-P
PRED NAME
DEF DEF
»The many) »Johny

DEF BEHIND ALL

Figure 42 »The man behind Johny

62
b) A pattern key of two mutually dependent DUMMIES, where

WDEF BEHIND ALL™ in the figure 42 is changed to "DEF BEHIND DEF®™,

The first translation is necessary in those cases where only
one of the DUMMIKS has a match in the data base, e.g. for a
statement like "If a man is late, then the man behind him is
even later." Here, there is no previously known man, and the
second translation with the pattern key would not match "a man®
in the if-statement at all,

However, if solution a) is adopted, this text will not be
treated correctly ™A man with a dog is coming. Another dog is
barking. The man with the dog is frightened." Solution a)
will first find the other dog, and then create a new man
who is with that other dog, and let that other man be

frightened. A more complex algorithm may be necessary to
solve this problem.

Another example which will cause difficulty is

"John and his brother are in the wood. His brother is leaving."
If no DUMMY pattern key is created, then "his" in the second
sentence will identify with "brother" in the previous sentence,
"His brother" in the second sentence will then identify with

"His brother's brother" in the first sentence, which is not
correct.

27. DUMMIES which refer to VARIABLES

Look at the natural language sentence "If a lion meets an

elephant, then the elephant will run to the forest."

There are two DUMMIES in the main clause, "the elephant" and
"the forest". "The elephant'" will match the VARIABLE created
by "an elephant" in the if-clause. "The forest" will match a
previously known, probably CONSTANT forest.

63
In general, only after doing the refer-back search in the
data base will we know whether a DUMMY will mmatch a VARIABLE
or a CONSTANT.

If a DUMMY matches a VARIABLE, then that DUMMY may be adding
definitions to that VARIABLE. Look for example at the sen-
tence "If g lion meets an elephant, -and if the lion sees the
elephant, then..." Here, the DUMMIES in the second phrase
will add to the pattern key being built up, and thus add to
the definitions of the VARIABLES "a lion" and "an elephant".

This means that there are two kinds of DEF-marked relations
on DUMMIES, The first of them are those which are to be used
during the refer-back search. And the second are those which
are to be added to the VARITABLE, if the DUMMY matched a
variable. In our system, we intend to distinguish between
these by first giving the relations which are to be used in
the refer-back search. Then the refer-back search is done,
and thereafter the relations are given which add DEF-s to
the definition of the matched VARIABLE,

Another interesting case is where there are two DUMMIES, one
dependent on the other, and one of them matches a VARIABLE.
Look for example at the sentence "If a girl is in trouble,
then her mother will be angry." Here, "her" becomes an in-
dependent DUMMY, while "her mother" becomes a dependent DUMMY.
The "her" DUMMY will match the VARIABLE "a girl" in the if-
clause, The DUMMY "her mother" will not find any match at

all. And the interesting thing is that because the independent
DUMMY matched a VARIABLE, the dependent DUMMY "her mother"
which matches nothing should in this case not create a new
CONSTANT but a new VARIABLE, For every different girl, there

ig a different mother who will be angry, so a CONSTANT will
not do.,

64
This means that the "the" dummy algorithm must be able to

decide if a CONSTANT or a VARIABLE is to be created when a
DUMMY fihds no explicit match.

28. The problem of dual representation

We have of course during the writing of the SQAP system
encountered many problems, For some of them we have found
solutions, for some not. Many of the problems have already
been presented in this paper, and those problemSwhich belong
more to input translation or to deduction than to data base

structure do not fit into the subject of this paper.

Looking at the problems we have met, there seems to be one
problem which recurs several times. This is the fact that

the gsdme natural language construct can be represented in
several ways in our data base. We have found that this is
unavoidable, since one representation is necessary in some
cases and another in other cases. But on the other hand, this
difference in representation will make the deduction difficult,
including the deduction during the merging of new text into

a previous data base.

One solution to this problem is that when there is two different
representations, then for sentences giving one of them, both

of them is created including the relationship between them.

This solution is used for the duality of the representation
of nouns. The noun "book" corresponds in our data base both
to the predicate BOOK*P (=the property of being a book) and
to the defined set BOOK*S (=the set of all books). But when-
ever BOOK*S is created in input trdnslation, BOOK¥P is also
created and the relation BOOK*S DEF PRED BOOK*P is created.
(If this already exists in the data base, then of course the

same thing is not put there twice,)

65
This meangs that whenever both BOOK¥P and BOOK*¥S occurs in our

data base, the relation between them also exists.

Another example where the same solution is used is active

and passive verbs. Whenever a passive predicate, e.g. KILLED*P
is put into the data base, we also put in the active form
KILI*¥P and the relation between them: KILL*¥P PASS KILLED*P,

In this way we ensure that if both KILL*P and KILLED*P are

in our data base, then the relation PASS between them is
also there.

The same solution could be used, but would be cumbersome and
memoryconsuming in other cases. For example, a number of

objects can be regarded both as a composite object and as a

set, for which we have itwo different representation. There

is a short relation, OBJCOMPLEX, in our system, from a composite
object to a set of all its parts. But this relation cannot

solve the whole problem, and it would also be very cumbersome
always to have to put out both representations for certain

phrases. This is discussed further in section 19 of this

Another problem of this kind is that our system is very much
based on the idea that simple facts should be stored in a
simple way and more complex facts in a more complex way. "A

man is a male" is therefore in our data base stored like in
figure 43,

MAN-P =~ MALEP
SUBPRED

»A man is a maley

Figure 43

66
In this case, a relation between the predicates was enough.

But for the slightly more complex statement "Every human male

is a man", a defined set is necessary as in figure 44.

HUMAN-P MALE-P
QTTR A\PRED
DEF DEF
»Every human male» PRED MAN-P

»Every human male 1s a many
Figure 44

If there is some limitation in truthfulness or validity, e.g.
a time-limit, then the PRED must be expanded to REV BY times

CASE, e.g. for the phrase "Every human male was that year a
soldier", in figure 45.

HUMAN-P MALE-P sthat years Figure 45
\
ATTR PRED AT-TIME
DEF DEF
»Every human male» < P Was.» 5‘ SOLDIER-S

BY I CASE

»Every human male was that year a soldier»

The difficulty with this is that when a new fact is going to

be added to old facts, then the expanded version may be necessary.
Also, a question may be asking for the expanded version, and

the deduction routines may then have to do the expanding

during deduction, which is surely possible,; but difficult to

manage in an efficient way.

67

Example: "Bvery male is an animal. If he is human, then he is

also a man,"

Here, "he" in the second sentence creates an object, the data
base merging routine will find it difficult to understand
that this refers to the "male" in the previous sentence, since

this "male" was translated as a predicate, not as an object.

29. What our system can do_and cannot do

Our system can at least partly manage the following natural
language constructs: Nouns, articles, quantifiers, adjectives,
numerals, most pronouns, the conjunction "and", passive and
active verbs, objects, predicate complements, genitive, pre-
positional attributes and adverbials, if-clauses, yes-no

questions.

Some of the things we are not ready with yet are other con-
junctions than "and", relative pronouns, interrogative

pronouns, negation, auxilliary verbs other than "be", com-

parative adjectives,

We do not yet try to resolve ambiguity by reference to the
data base.

The kind of facts which our system can handle are basically

a passive description of a true set of facts about the world,
We can thus not yet handle properly a description of a sequence
of events changing the world step by step. Neither can we
handle properly facts which are part of someone's belief
structure. Statements about statements cannot be handled (e.g.

"This is a difficult problem" ox "This should not be construed
to mean that...").

68

30, A short comparison with other systems

Shapiro 1971, Simmons 1971 and others have presented systems
very similar to our, Most other systems do not have quantifiers
on the short relations as we have, and we feel that this

is an addition which adds to the power of the representation.
Special in our system may also be that one short relation
can be extented when necessary into an event. This saves
much memory compared to representations where the fullest
form is always used, even though it is in mos+t cases not
needed, It is for example true that for a statement like
that in figure 3, there may be doubt about only the BY
relation, or only the AT-TIME relation, or only the CASE
relation, (We may be sure that ™One girl is happy", but not
go sure about the day, or we may be sure that there is
happiness today, but not sure where.) A full representation
would therefore require & place to insert doubt on any

short relation, whether there is doubt or not, and this

would double the data base size.

In our system, the deduction rule can for any node in the
data base find all outgoing and incoming short relations
directly, and follow them., In-spite of this, we can store
a whole short relation in just 64 bits(two 24-bit adresses
plus 16 additional bits). This compact representation
inereases the efficiency of systems storing the data

base in virtual memories,

31. Acknowledgements

The basic ideas for our system were initially conceived by
Frik Sandewall and were presented in his papers in the
bibliography.

69
Our system was developed as a team-work between me, Erik
Sandewall and Kalle Miékila. I have been working with input
translation, Kalle Mikild with data base managment and
deduction, and Erik Sandewall has guided us in our work.
It is difficult to pinpoint who solved each of our problems,
since they were solved through discussions from which a

solution sooner or later emerged,

Siv Sjogren has been working with the problem of adapting

our system to the swedish and esperanto languages.

32. Bibliography

70

The most important papers for understanding our work are

marked with an asterisk.

Bar-Hillel, Yehoshua, 19643

Fillmore, Ch, J.:

* Mikilda, Kalle 1972:

Mikild, Kalle 1975:

¥ Palme, Jacob 1970A:

¥ Palme, Jacob 1970B:

¥* Palme, Jacob 19T71A:

Palme, Jacob 1971B:

* Palmes Jacob 1972A:

Palme, Jacob 1972B:

* Palme, Jacob 197%:

Language and Information,
Addison-Wisley, Reading, 1964.

The Case for Case, In Universals
in Linguistic Theory, ed Back, E.
et al, Holt Rinehdrd and Winston
Inc., 1968.

Deduction procedures in a question
answering system, FOA P rapport
C 8310-M3(E5), January 1972.

Experience of assimilation and
deduction in a semantic net (to
be published),

Making Computers Understand Natural
Language. FOA P rapport C 8257-11(64),
July 1970, also in Artificial
Intelligence and Heuristic Programming
(ed. Findler, Meltzer) Bdinburgh
University Press 1971.

A simplified English for Question
Answering FOA P rapport C 8256-11(64),
December 1970,

A Natural Language Parsing Program for
Question Answering. FOA P rapport
C 8268-11(64), February 1971.

Internal Structure of the SQAP Natural
Language Parser, FOA P rapport C 8286~
11(64), April 1971,

Syntax and dictionary for a computer
english., FOA P rapport C 8312-M3(ES),
February 1972,

From parsing tree to predicate calculus
a prelimin survey. FOA P rapport
C 8313-M3(E5), February 1972.

The SQAP data base for natural language
information, FOAP Rapport, September 1973,

Sandewall, Erik 1965:

% Sandewall, Erik 1969:

* Sandewall, Erik and
Mikila, Kalle 1970:

¥ Sandewall, Erik 1971:

Schank, R.C., and
Testler, L.G., 1969:

Shapiro, Stuart Charles
1971

Simmons, R.F., 1971

Sjogren, Siv 1970:

Bjogren, Siv 1971:

71

Representation of facts in a
computer question answering
systems. Uppsala University,
Computer Science dept. 1965.

A set-oriented property structure repre-
sentation for binary relations, SPB, In
Machine Intelligence 5, Edinburgh University
Press, 1970, also as Uppsala University
Computer Sciences department Report nr 24.

A Data Base Structure for a
Question-Answering System, FOA P
rapport C 8265~11%64§, Nove mber 1970.

Formal Methods in the Design of
Question-Answering Systems.
Artificial Intelligence vol, 2

(1971) pp 129-145,

A Conceptual Dependency Parser

for Natural Language. International
Conference on Conputational
Linguistics, 1969.

The MIND system: A Data Structure
for Semantic Information Processing.
Rand, Santa Monica, Ca. 90406 TUSA,
report R-837-PR.

Natural Language for Instructional
Communication. In Artificial Intelligence
and Heuristic Programming, ed Findler,
N.V. et al, Edinburgh University Press
1971.

En syntax for datamaskinell analys

av esperanto. FOA P rapport C 8264-11(64),
Oktober 1970;

Utkast till en syntax for data-
maskinell analys av svenska, FOA P
rapport C 8314-M3(E5), Februari 1971.

33. Index

A S W S S w—— —

— A ———

Abstract
According to . .
Acknowledgements
Address of author
Ad jective
Agent « &« &« &« .
All . .

ALL short relatlon

Ambiguity, resolving o

And . «

ATTR short relatlon
Attribute « « « . .
Attribute property
Author . « « « + .

— [———

Back-referencing in
Bar-Hillel
Be o ¢ ¢ o & o o @
Because of
Belief structure .
Between
BETWEEN short relat
Bibliography . . .
By +« ¢ ¢ o o « o .
BY short relation .
BY, definition . .

—— O e——

Case grammar . . .
CASE short relation

Chaining rule for BY, OBJCASE EQUAL

ooocc»—hol.ooblt
s ¢ s 8 8§ ® o ¢ ® & ¢ 8 * 3

text

¢ e 8 v s
e ® ¢ ¢ o ¢ 4 02 8

c!oOOoco'o

» [* L]

. [] [] L [] [} * [] L4 []

.] L] . L4 1] [} . [] [[. L 3

72

¢ 9 8 ¢ e & e o 8 s @

¢ & 8 8 % 8 5 8 P 8B & o ® @

]] '} [[] [] » []

e o § % @ @ 2 8 2 ¢ 0

] L4 ¢ [4 [] ® L) L 4 .] [] [L 4 .

[] 4] L L] . [* * L 4 []

Chaining rules for PRED, CASE, BY etc.

Chaining, inference method

Comparison between SQAP and other systems .
COMPLEX short relation .

COMPLEX, example of
Composite object .,

use .

L J L -

L

L J

-

19, 59
|
I
08
]
23
8, ¢
13, 31
13, lo, 53
5
28, 34
10, 23
23
10
[
18, 304 40, 60
5, 70
8, 11
|]
11, 12
34
35
70
8, 47
9, 12, |7
405
38
9, 12, 17, 48
- « 48
« o 46
10
32
36, 38, 41, 53

28,

31

Composite object, number of elements in . .

Composite object, problem with

L

6o

32

73
Composite objects, related by "is" . . 43

Concepts and relations . . . « « « 7
CONL short relation . ¢« =« ¢« « « « « 55, 506
COND, example Of Use <« ¢ o« o o o« o« 57
ConditionN ¢« o« o o e o o o e o « &« « 5

Conditional statement in natural language . . 15, 17, 22,

54, 62
CoONJUNCLION v v ¢ o o o =« « « « + o« 28, 31
Constant, created from dummy . . . |9
CONSTANT, node ClassS =« o o o o« » o 22
Contents « ¢« v o ¢ o o o « o o o o 3
COP short relation . + « ¢« + « « « 56
COP, example Of USE o« « & & ¢ o« « o 27
Couple o ¢ o ¢ o o o o s o o« o« o« o 31
—) e——
Data base model + ¢ « ¢ ¢ o e o o o [/
Data base, Nneed fOr « « e ¢« « o« « « 6
Data base, requirements on 6
Deduction « v« ¢ ¢ ¢ o o o o o o« o o 15, 16
Deduction pattern . « . . e+ o« 174 54
Deduct ion rules for PRED, CASE, BY etc. « . 40
Deduction, use of quantifiers in . 14
DEF quantifier . « « ¢« o o = « « « 164 174 18, 19, 24, 53
Demonstration example « « . « « . .« 20
Disjoint sets + & ¢ ¢ ¢ ¢ ¢« & o . . 21
Distributed sense of %a* 51
Dual representation « « ¢ ¢« v « «» . 04
Dummies, relations petween . . . , 0Ol
Dummy to variable relations . « . . 62
pummy, composite . . + ¢ &« & « o . 42
Dummy, example of use « « « « « - . 36, 37, 38, 47
Dummy, node class ¢« o « o o « « & 18, 19, 22, 30, 40, 60
__...E_.......
Each e o o « + « o 13
ELEMENT short relatlon « + o« « o o 28, 36, 42
ELEMENT, example of use « « « . . « 35, 306
Elements, number of ¢« v o o o o« « « 32
Enemy OFf ¢ ¢ ¢ ¢ v o o o o o o« o« « 24
EQUAL between composite objects . . 41
EQUAL short relation 16, 21, 36, 41, 43
EQUAL, example Of US€ « o o « o« - « 36, 37
EQUALITY, putting restrictions on . 48
Event, node Class « ¢ « « = o « o« « 9, 26
Events, relations between . . « . . 12
EVEYY o« = v ¢ o ¢ ¢ ¢ ¢ o o o o o o 9,13, 17, 18, 21, 22,

24, 31, 51, 66

T4

Every in front of conjuncted nouns . . 34
EXample - - - L] [] [J L] - * - L] L] L J L] 20
Existential quantifier « .« 13, 14
Expansion of short relations . . . 10

e e F PR
Factual data base, Nneed for « « « « O
Father L] [- L L J -« L J ® * L] [] [*® L] 12
Fillmore « ® - * L] [] L - - * o L] ® 8’ 70
First order predicate calculus . . 13, 58
Friend Of *» L J - [] L] ® L] - - - L J [] [] 24

——— () ———
General sense interpretation of nouns . . 21, 22, 31, 40
(Joa]- [] [J L] - » [] * - » L] - - - -» - 5

S H T
He L [[3 ® - [L] [L] - [[] L g [L] [22’ OO
lier [J [] L 3 L 3 L *® [] * L J - L] L] - [J L J - 22’ 60
Hierarchical structure 43
Him L] - - - - [J L J - [] L] [2 L] L d L] [] [] 22’ 6()
How L J - L] » - - » L *® [] -]9
Hypothetlcal cond1t10n c o « o s o D0
Hypothetical statements 11, 12

JR— I ———

IT o o o o & . . c o o s o o o 154 17, 22, 54, 58, 062
IFTHEN short relatlon e o« o o o o o 1Ty 18, 56
Implicit quantifier . « « o« ¢« « « . 14

In . - . L] . - . . L] . [] . - LJ - [8’ '] [53
Index L J * L} L L J [* [J L] - - L 2 - - [] 72
INTEYENCE « a o o ¢ o o o« « o o« o o« 15, 16
Inference pattern « o« o« o« « o o« « « |74 54
Inference rules for PRED, CASE, BY etc. . . 46
Inside L J - L] L J L J L 2 L J L J L] - »> [] L] ® 53
Introduction .« « ¢« o ¢ 5 ¢ ¢ o & « 5

IS - L J ® L J *® -] » L J [] - [J - L] L] - 8’]]
"Is" relating composites 43

It [] - ® - L J - L] * - [] L J L [2 L J L] L] 22

ITS quantifier . ¢« o« o« o o o« « « « 134 14, 16, 19, 41, 53,

59

—— K ——
Key L] [J L] L] » . L] [3 » L] - [] L J L J [] [] '7

Knowledge and language understanding

Knowledge, need fOr . « « o « « o«

. « 5

6

75

——] ——

Limitation on truthity

[]
4
L]

.———Ma-..._.

Makila [4 L 4 - L A 4 . L) - L L] -

———— N e cionn

NaME o o o o o o o o
NAME short relation .
NAME, example of use
NOMEN o « o o o o &
NOT, example of use
Noun phrases . . .
Noun, plural . . .
NUM short relation
NUM, example of use
NUmMber e« o o « o o
Numeral « « ¢ « « &

] * [] L] L] L] . [] . [] .
L] . L] L4 . L]]] . [] [}
. *] ¢ L J [] [[} [] [¢
» [[] [] [} L] [] L] L] ¢ .

0

0OBJ short relation . . « =«
OBJ, definition « « « « « &
OBJCASE, example of use . .
OBJCOMPLEX short relation .
OBJCOMPLEX, example of use
Object of this research .
Ob ject, node class . . .
OBJPRED short relation
OBJPRED, definition .
Of o o ¢ o o o o« »
OF short relation
Open questions .
(Overlapping sets

[] [* @ [L)
L]] * L 4] L} []
[] [} L} [] * [} . . [}]] .]

L]
L
L]
.

[] [] *

_— P -

Packing of data .
Palme . . ¢« « « .
Part . ¢« o o« « &
PASS, definition .

PASS, example of use
PASSCASE, definition .

PASSCASE, example of use
Passive sense « ¢ o o o
Pattern for inference . .
Pattern for questions . .

L] -
L] -
L] L
L -
»®

® L] . » L] [] [4 [] [L
[] L] ’ L L] [} [] []

o & e & & 8 8 o o 3 * & & ¢ ¢ @ & ¢ % e & T 3

. * L] [] []]] [[] []

[2 * . .) [} . [[} . .

L] .] [] [4 L]

[[] .] [s 9

1] * * [3 [] L] [] * [} L]

] L) [] * L] L ¢ [] . [] L [] 1 [] [[. [] L 4 L] L J L] [] *

606

16,

23
23
37
23
37,
22
32
32
37,
35,
33,

46
43
42,
43

45,
46
24,

19
21

68
70
28,
46
47
46
47
47,

58

69, 70, 71

41

38, 41
39, 40
3>, 39, 40

12, 17

65

47

34, 35, 36, 39

30, 36

48
55

76

Pattern matching . '

e ®» o & ® o e ° 'J
Positive sentenCes o o o o « o o « 22
PRED short relation « « ¢« ¢ ¢ o « « 10
PRED, defintion « ¢« « « « « « =« « « 406
PRED, example OFf USP o o « o » « o 41
PRED, restriction on . . « « « .« . 48
Predicate calculus . ¢« &« « ¢ « « « 58
Predicate calculus, First order . . 13
Predicate nodes,; relations between . 44
Predicate, node class « « « « « « & 9 21
Prepositions seen as relations . . 8
Problems .« o« o« ¢ o o o o o « o o « 04
Pronouns, back-referencing of « . . 18, 60
Pronouns, personal . « « « ¢ « « « 22
Property . o« o« o o o o ¢ o ¢« o« « « 10, 23

— Q ————

QUaNtifier « e o« o o« ¢ o o o o« o« o 13, 14
Quantifier on event « ¢« « « ¢ « « « 5l
Quantifier, implicit . . « . « « « 14
Quantifiery, use of in deduction . . 14
QUESTION &« « o a e o o o = o o «» « 195 58
Question, example of translation . 59

——— R ———

Refer—-back in text . . « « « « « « 30, 40, 60
Refer—-back witnh singyular and distributed nouns . . 52

ReferenCesS + « « o o o o « o« o o o 10
ReferencCing « « « o o« o o o o o @ 18
Relations between concepts . . . 7

Relations between Events 12
Relations between sets . ¢« ¢ o 13
Relations on short relations . . 10
Relations, 1ONJ ¢« « o o o « o « o« 12

Q

.
L]
L J
L J
-
[]
L]
P
L]

Relations, short . « « o « o«
Requirements on data base structur e « 6
Restrictions of the SQAP system . 67
Restrictions, in time « « « « « & 26, 271
.._.......5._.._..

SAME relation between composites 41, 42
SAME short relation . e ® a o 43

SAME, example of use
Sandewall « « « « o
Schank o« o« « o o o

53

8, 14, 16, 68, 69, 7I
5, 71

13

[] L [J - ® 21
ng, singular . . 21

Set [J L J L J - L J L J L J
Set relations . c o
Sets, disjoint, overla

pi

app

7T

S8X o o o o o o o
SNAapiro « « « «
Sr]P] L] * [] [[[] []
Short relations .
snort relations, exnan51on of
Short relations, relations on
SIMMONS « ¢ o o o o o =& o
Singular sense of "“a¥ .
SlnLJU].ar SetS ™ . & & @
SIT short relation . .
Situation & .
Size of data base, reduc
Sjogren « ¢ ¢ ¢ .o o o
SOME o a ¢ o o o o o
SOME quantifier « « «
SOME, example of use .
Space restrictions . .
Special sense of noun in
SPECiesS o« o ¢ o o o o o
Structure of data base,
Sub-question
SUBATTR short rrelatlon
SUBPRED short relation
SUBSET &« ¢ ¢ = ¢ o o @
SUBSET, restriction on
SUPERSET « ¢ &« ¢ o o @
Swedish abstract . . .

ion

e

ooooooo_Qo"‘(o.caoOooccc
T

iooooao'-(.‘-rcooooc-fooc

¢« & & o 8 b 0 pu s e s 8 0 @

_— T ———

Table of contents . .
Temporal restriction
Testler «. « « & . .
That . « « « &
THAT quantifier
The « ¢ ¢ o « &
They [] [® [J []
This o« ¢ o o
Time .« « ¢« o«
Time restriction
Today « « o « .« &
True o« ¢ o « o &
TRUE*S L [3 [] [] [] []
Truthity, limitation
Two [] L J [] L J L] L) . []

[] |] - [] [)

[] |] L]] [] [] L] [] []
[} [2N [} L]] L] [] L] L []] []
s @ [] s @] [[]] [] [® [] L
.] L] o o []] L] [] [] * [] L [] ®

000000000000000

S

— [—

Uniqueness of representation
Universal quantifier

s o ® 8 o ¢ 8 D e cte & o & o o & & e ¢ 2 2 s s & ¢

L] L] []

.l....."o. ﬁ.'.....'..l..l

L} |] [4 [] * [] [] [] [] * * [] ® ¢ L 4

22
By 08, 71
22, 60

10
10
8' 68' 7]

20, 27
204 271

69, 71
13, 33
13, 14, 19

26, 27

44, 48

16, 41

3

50

71

22

17, 18, 55
22

40

——] ———

78

Variable to dummy relations 62

Variable, created from dummy
Variable, example of use
Variable, in translation of question
Variable, node class
VARIABLEs never sinjular

Variables, conjunctions between

Variables, temporary

Virtual memory .

s e W ——

WhiCh [] - [J L] L] L
Wt]y L] [] L] [] L] [] []
With L J L4 L] L J - ®

—— Y ——

Yes-no question .

19
33
- L] 59
16, 117, 22, 42
21
31
18
08

19
19
9, 19, 27

19, 58

0

DARD

