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ABSTRACT

Any theory ot language must also be a theory of inference
and memory. It does not appear to be possihle to "understand"
even tae simplest of utterances in a contextually meaningful way
in a system in wnich language fails to interact with a language-
free memory and belief system, or in a system which, lacks a
spontaneous inference reflex.

People apply a tremendous amount of cegnitive effort to
understanding the meaning content of language in context. Most
of this effort is of the form of spontaneous conceptual inferences
wnicah occur in a language-independent meaning environment. I
have developed a theory of how humans process the meaning content
of utterances in context. “he tiheory is called Conceptual lemory,
and has been implemented by a computer program whic:h is designed
to accept as input analyzed Conceptual Dependency (Schank et a..)
meaning grapils, to generate many conceptual inferences as auto-
matic responses, then to identify points of contact among those
inferences in "inference space". Points of contact establish new
patnways tiirouqu existing memory structures, and nence "knit"

each utterance in witn its surrounding context.

Sixteen classes of conceptual inference have been identified
and implemented, at least at the prototype level. Thesc classes
appear to be essential to all higher-level language comprenension
processes. Among them are causative/resultative (those which
predict cause and effect relations), motivational (those which
predict and describe actors' intentions), enablement (those which
predict the surrounding context of actions), state-duration (those
which predict the fuzzy duration of various states in the world)
normative (those which assess the "normality" of a piece of
information - how unusual it is), and specification (those whica
predict and fill.in missing conceptual information in a languagce-
communicated meaning graph).

Interactions of conceptual inference witn the language

processes of (1) word sense promotion in context, and (2) ident-



ification of referents to memory tokens are discussed. A theoreti-
cally important inference-reference "relaxation cycle" is identafied,
and its solution discussed.

The theory provides the basis of a computationally effective
model of language comprehension at a deep conceptual level, and
should therefore be of interest to computational linguists,

psychologists and computer scientists alike.
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1. The Need for a Theory of Coggeptual Memory and Inference

Research in natural language over the past twenty years has
been focussed primarily on processes relating to the analysis of
individual sentences (parsing). Most of the early work was devoted
to syntax. Recently, however, there has been a considerable
thrust in the areas of semantic, and importantly, conceptual
analysis (see (R2), (Ml), (S1) and (Cl) for example). Whereas a
syntactic analysis elucidates a sentence's surface syntactic
structure, typically by producing some type of phrase-structure
parse tree, conceptual analysis elucidates a sentence's meaning
(the "ovicture" it produces), typically via production of an
interconnected network of concepts which specifies the interrela-
tionships among the cohcepts referenced by the words of the
sentence. On the one hand, syntactic sentence analysis can more
often than not be performed "locally" that is, on single
sentences, disregarding any sort of giobal context; and it is
reasonably clear that syntax has generally very little to do
with the meaning of the thoughts it =xpresses. Hence, although
syntax is an imporxtant link in the understanding chain, it is
little more than an abstract system of encoding which does not
for the most part relate in any meaningful way to the information
it encodes. On the other hand, conceptual sentence analysis, by
its very definition, is forced into. the realm of genera. wouriu
knowledge; a conceptual analyzer's "syntax" is the set of rules
which can produce the range of all "reasonable" events that
might occur in the real world. Hence, in order to parse concep-
tually, the conceptual, analyzer must interact with a repository
of world knowledge and world knowledge handlers (inferential
processes). This need for such an analyzer-accessible world
knowledge repository has provided part »>f the motivation for

the development of the following theory of conceptual inference
and memory

however, the production of a conceptual network from an

isolated sentence is only the first step in the understanding



process. After this first step, the real question is: what
happens to this conceptual network after it has been produced
by the analyzer? That is, if we regard the conceptual analyzer
as a specialized component of a larger memotry, then the allocation
of memory resources in reaction to each sentence follows the
pattern: (phasé 1) get the sentence into a form which is under-
standable, then (phase 2) understand it! It is a desire to
characterize phase 2 which has served as the primary motivation
for developing this theory of memory and inference. In this sense,
the theory is intended tc be a charting-out of the kinds of pro-
cesses which must surely occur each time a sentence's conceptual
network enters the system. Although it is not intended to be an
adequate or verifiable model of how these processes might actually
occur in humans, the theory described in this paper has never-
theless been implemented a&s a computer model under PDP-10
Stanford 1.6 LISP. While the implementation follows as best it
can an intuitively correct approach to the various processes
described, the main intent of the underlying.theory is to propose
a set of memory processes which, taken together, could behave

in a manner similar to the way a human behaves when he "understands
language".



2. A Simple Example

The attentive human mind is a volatile processor. My conjec-
ture is that information simply cannot be put into it in a passive
way; there are very primitive inference reflexes in its logical
architecture which each input meaning stimulus triggers. I will
call these primitive inference reflexes "conceptual inferences"”,
and regard them as one class of subconscious memory process. I
say "subconscious" because the concern is with a relatively low-
level stratum of "higher-level cognition", particularly insofar
as a human applies it to the understanding of language-communicated
information. The eventual goal is to synthesize in an artificial
system the rough flow of information which occurs in any normal
adult response to a meaningfully-connected sequence of natural
language utterances. This of course is a rather ambitious project.
In this paper I will discuss some important classes of conceptual
inference and their relation to a specific formalism I have
developed (R1).

Let me first attempt, by a fairly ludicrous example, to
convince you (1) that your mind is more than a simple receptacle
for data, and (2) that you often have little control over the
thoughts that pop up in response to something you perceive. Read

the following sentence, pretending you were in the midst of an
absorbing novel:

EARLIER THAT EVENING, MARY SAID SHE HAD KILLED HERSELF.

One of two things probably occurred: either you chose as referent
of "herself"-some person other than Mary (in which case every-

thing works out fine), or (as many people seem to do) you first
identified "herself" as a reference to Mary. In this case,
something undoubtedly seemed awry: you realized either that your
choice of referent was erroneous, that the sentence was part of
some unspecified "weird" context, or that there was simply an
out-and-out contradiction. Of course, all three interpretations

are unusual in some sense because of a "pata2ntly obvious"



contradiction in the picture this utterance elicits. The sentence
is syntactically ahd semantically impeccable; only when we "think

about it" does the big fog horn upstairs alert:us to the implicit
contradiction:

MARY SPEAK AT TIME T

enablement inference
MARY AIIVE AT TIME T

contradiction
MARY NOT FS IVE- AT TIME T

state-duration inference
MARY CEASES %EING ALIVE AT TIME T-d

resultative inference
MARY KILLS HERSELF AT TIME T-d

Here is the argument: before reading the sentence, you
probably had no suspicion that what you were about to read contained
an implicit contradiction. Yet you probably discovered that
contradiction effortlessly! Could there have been any a priori
"goal direction" to the three simple inferences above? My
conclusion is that there could not have been. If we view tne
mind as a multi-dimensional "inference space", then each incoming
thought produces a spherical burst of activity about the point
where it lands in this space (the place where the conceptual
network representing it is stored). The horizon of this sphere
consists of an advancing wavefront of inferences - spontaneous
propes which are sent out from the point. Most will
lose momentum and eventually atrophy; but a few will conjoin with
inferences on the horizons of other points' spheres. The sum of
these "points of contact" represents the integration of the
thought into the existing fabric of the memory in that each point
of contact establishes a new pathway between the new thought and
existing knowledge (or perhaps among several =xisting pieces of
knowledge). This to me is a pleasing memory paradigm, and there

is a tempting analogy to be drawn with neurons and actual physical



wavefronts as proposed years ago by researchers such as John
Eccles (El). The drawihg of this analogy is, however, left for
the pleasure of you, the reader.

This killing example was of course more pedagogical than
serious, since it is a loaded atterance involving rather black
and white, almost trivial interences. But it suggests a powerful
low-level mechanics for general language comprehension. Later,

I will refer you to an example which shows how the implemented

model, called MEMORY and described in (R1l), reacts to the more

interesting example MARY KISSED JOHN BECAUSE HE HIT BILL, which
is ,perceived in a particular context. It does so in a way that

integrates the thought into the framework of that context and

which results in a "causal chain expansion" involving six
probabilistic inferences.



3. Background

Central to this theory are sixteen classes of spontaneous
conceptual inferences. These classes are abstract enough to be
divorced from any particular meaning representation formalism.
However, since they were developed concurrently with a larger
moael of conceptual memory (Rl) which is functionally a part of
a language comprehension system involving a conceptual analyzer
and generator (MARGIE (S3)), it will help make the following
presentation more concrete if we first have a brief look at the
operation and goals of the conceptual memory' in the context of
the comrlete language comprehension system.

The memory adopts Schank et al.'s theory (51,S2) of Conceptual
Dependency (CD) as its basis for representation. CD is a theory
of meaning representation which posits the existence of a small
number of primitive actions (eleven are used by the conceptual
memory), a number of primitive states, and a small set of
connectives (links) which can join the actions and states

together into conceptual graphs (networks). Typical -of the links
are:

the ACTOR-ACTION "main" link <D

the ACTION-OBJECT link €2

the CAUSAL link 1Tr
Y

the DIRECTIVE link <—

| —>
and the STATECHANGE link &=

<

Each primitive action has a case framework which defines conceptual
slots which must be filled whenever the act appears in a conceptual
graph. There are in addition TIME, LOCation and INSTrumental

links, and these, as are all conceptual cases, are obligatory,

even if they must be infarentially filled in by the conceptual
memory (CM). Figure 1 illustrates the CD representation of the
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sentence MARY'KISSED JOHN BECAUSE HE (JOHN) HIT BILL. That
conceptual graph is read as follows: John propelled some unspec-
ified object X from himself toward Bill, causing X to come into
physical contact with Bill, and this entire event cause Mary to
do something which resulted in her lips being in physical contact
with John! Furthermore, the entire event occurred sometime in
the past. Chapter 2 of (Rl) contains a fairly complete overview
of the CD representation.

Assuming the conceptual analyzer (see (R2)) has constructed,
in consultation with the CM, a conceptual graph of the sort
typified by Figure 1, the first step for the CM is to begin
"integrating" it into some internal memory structure which is more
amenable to the kinds of active inferénce Manipulations the CM
wants to perform. T'his initial integration occurs in three stages.
First is an initial attempt to replace the symbols (JOHN, MARY,
BILL, X, etc.) by pointers to actual memory concepts and tokens
of concepts. Each concept and token in the CM is represented by
a unique LISP atom (such as C0347) which itself bears no intrinsic
meaning. Instead, the essence of the concept or token is captured
in a set of features associated with the symbol. Thus, for
instance, an internal memory token with no features is simply
"something" if it must be expressed by language, whereas the
token illustrated in Figure 2 would represent part of our
knowledge about Bill's friend Mary Smith, a female human who
owns, a red Edsel, lives at 222 Avenue St., is 26 years old, and
so forth. This set of features is called C0948's occurrence set,
and is in' the implementation meérely a set of pointers to all
other memory structures in which C0948 occurs. The process of

referent identification will attempt to isolate one token, or

second best, a set of candidate tokens for each concept symbol

in the incoming graph by means of a feature-intersecting algorithm
described in (R1l).

Reference identification is the first stage of the initial

integration of the graph into internal memory structures. The
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(c) 5
JOHN <7=:> PROPEL === X?

1 MARY <===> 00
|U --+ BILL / \
(a) | e== JOHN (b)
<EEEEEEEEEEEEEEEEEEQEEEEEEEEEEE
val val
X? <=s3> PHYSCONT e---- BILL LIPS <=ss> PHYSCONT e---- JOHN
1) (4)
l part
MARY
FIGURE 1

Conceptual dependency representation
of the sentence "lMary ‘kissed John
because he hit Bill."

C0948: (ISA # #PERSON)
(SEX # #FEMALE)
(WAME # MARY)
(SURNAIE # SMITII
(OWNS # C0713)
(RESIDENCE # C0846)
(TSTART # C0654)

(C0718 is the token representing the kdsel waich (lary owns,
C0846 is the token for Mary's place of residence.. C0654 is a
time token with a numeric wvalue on the CM's time scale rep-

resenting Mary's time of birtih in 1948)

FIGURE 2

The memory token and its
occurrence set wnich rep-
re€sent Mary ,Smith.
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second and third stages are (2) the isolation of subgraphs which

will form the beginning inference queue (input to the spon-

taneous inference component), and (3) the storage of the graph
dependency links themselves as pointers in the memory.Just as for
simple concepts and tokens, composite structures (actigns and
states) are stored under a unique internal symbol, and this symbol
may also have an occurrence set. In addition, there are several
other properties associated with each composite structure S:

the recency of S's activation by explicit reference (RECENCY),
the recency of S's activation by implicit (inferential) reference
(TOUCHED) , the degree to which S is held to be true (STRENGTH),

a list of other composite structures from which § arose in the
memory - its inferential antecedants=(REASONS), and a list of
other composite structures in whose generatlon S played a role

as antecedant (OFFSPRING). RECENCY arid TOUCKHED are also prop-

erties of concepts and tokens, and are used in the-.referent
identification process.

Figure 3 shows the memory structures which result from the
conceptual graph of Figqure 1 after the initial integration. The
net result of the initial integration is a set of starting memory
structures  (actually, a list of pointers to their symbols, such
as (C2496 C2301 C2207)). Each of these structures references
memory concepts tokens and other composite structures.

Regarding the referent identification proeess, for those
concepts and tokens which could not.be uhiquely identified, new
temporary tokens will have beeh created, each having as its

initial occurrence set a list of what is khown about the entity
so far.

After the initial integration, the inference component is
applied simultaneously to each memory structure ("point in

inference space") on the starting inference queue.

13



# (ISA # #PERSON)

(SEX # #MALE)
/’K(NAME#JOHN) \\
(PROPEL * *

\ V\

(ISA # #PHYSOBJ) Y
® *
_(CAUSE ) (UNSPECIFIED #) # (ISA # #PEKSON)
\ A (SEX # #MALE)

/”’_‘"‘\\\_,ﬂk//’ (NAME # BILL)

PH ';\' *
(CAUSE * *) (PHYSCONT

Q /’ (D0 ")
| N ,# (ISA % #PERSON)

(CAUSE * *) (SEX # #FEMALE)
(NAME- # MARY)

t’* (PHYSCONT * *)

; \
(TIME *7/ *) # (ISA # #LIPS)
(PART # *)

# (ISA # #TIME)
(BEFORE # N)

(N is the numeric "now
on the CM's time scale)

The internal memory structures resulting from the
CD graph of Fig. 1.

Figure 3
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4, A Brief Overview of the Conceptual Memory's Inference
Control Structure.

The control structure which implements the CM inference reflex is a
breadth-first monitor whose qucue at any moment is a list of pointers to
dependency structures which have arisen by inference from the beginning
structures isolated during the initial integration. It 1s the inference
monitor's task to examine each dependency structure on the queue in turn,
isolate its predicate, prepare its arguments in a standard format, collect
several tiwe aspeécts from the structure's occurrence sct, then call the
inference ‘molecule associated with the predicate, passing along the argu-
ments and time information.

All inferential knowledge in the CM is contained in inference molecules,

which lie in one-one correspondence with conceptual predicates. An inference

molecule is a structured LISP program which can perform arbitrary discrimina-
tion tests on a relevant dependency structure's features and features of all
involved concepts and tokens, and which-can call on specialist programs to
carry out standard test information retrieval functions. ('"CAUSLER'" is an
example of such a specialist. It will scan back causal sequences from struc-
ture S until it locates a volitional acticn, then it returns the actor of
that action as the primary causing agent of S ) Inference molecules are
hence multiple-response discrimination networks whose Yespornses are cencep-
tual inferences (of the various theoretical types to be described) which can

be made from the depéndency structure. Each potential inference within the
inference molecule is called an inference atom.

The contribution of an inference atom which has been found applicable
to the dependency structure reports eight pieces of information to a com-
ponent of the monitor called the structure génerator, whose job it is to

embody each new inferente in a memory structure. These.eight pieces of in-
formation are the following:
1. a unique mnemonic which indicates to which of the 16
theoretical clgsses the new inference belongs (this
mnemonic is associated with the new structure only
temporarily on the inference queue for subsequent

control purposes)

2. the "reference name'" of the generating inference atom

15



(each atom has a unique name which is associated with
the new memery structure for control purposcs)
the dependency structure (a predicate which binds to-
gether several pointers to concepts, tokens and other
structures), which is the substance of the new inference
a detault '"'significance factor' which is a rough, ad hoc
measure of the inference's probable relative significance
(this is used only if a more sophisticated process, to be
described, fails)
a REASONS 1list, which is a list' of all other structures
in the CM which were tested by the discrimination net
leading up to this inference atom. tivery dependency
structure has a REASONS 1list recording how the struc-
ture arose, and the REASONS list plays a vital role in
the generation of certain types of inference
a '"'propagation strength factor' which, when multiplied
by the STRENGTlis (degree of belief) of all structures
on the REASONS list, produces the STRENGTH of the new
inference. (There is a need for better heuristics$ here
incidentally -- see (Z1) for instance.)
a list of modifying structures (typically time aspects)
which become the new inferred structure's initial occur-
rence set
propagation and strength factors for each modifying struc
ture Figure 4 illustratés the small implemented
NEGCHANGE (something undergoes a negative change
on some scale) inference molecule. It is ingluded to
communicate the gestalt rather than correcct specifics at
this early stage of development.

The two other main components of the inference monitor are the eval-

uator and the structure merger. It is the func¢tion of the evaluator to

detect exact and fuzzy contradictions and confirmations (points of contact)

between each new inference ds it arises and: existing memory dependency struc-

Because ''{fuzziness' in the matching process implies access to a vast

numper of heuristics (to illustrate: would it be more like our friend the
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(IPROG NEGCHANGE (UN PE SC) (X1 X2) (
1COND ( (EVENT UM)
(COND ( (F1 (elSA PE e#PERSON))

(IR oNEGCHANGEL
(eWANT PE (GU (ePOSCHANGE PE 'SC))) ~PEDPLE OFTEN WANT TO BETTER
(8.95 1.8 (CAR UN)) ~THEMSELYES AFTER SOME NEGCHANGE
(TS ex (TI UN))
(1.8 (CAR UN}))

(COND ( (AND (SETQ X1 (F1 (exMFEELa @_ e#NEGEMOTION PE)))
(SETQ X2 !GLOBALFIND))

(IR oNEGCHANGEZ
(ePOSCHANGE X1 e#J0OY)
(8.9 1.8 (CAR UN) X2) ~PERSON GETS HAPPY WHEN ENEMY
(eTIME ex (T] UN)) ~SUFFERS NEGCHANGE )
1.8 (CARUN)})

)
(COND ( (AND (SETQ X1 (CAUSER (CAR UN))) ‘
(NOT (EQ (CAR X1} (e2 (COR X1)))))

(IR oNEGCHANGE3
{ex{'FEEEx PE e#NEGEMOTION(CAR X1)) ~PEQPLE BDN’T LIKE
(8.95 1.8 (CAR UN} (CDR X1)) ~0THERS WHO BURT THEM
(@TS ex (TI UN))
(1.8 (CAR UN)))

)
)
( (HASPRP PE (elSA PE e#PHYSOBJ))

(COND ( (AND (SETQ X1 (F1 (exOWNx PE )
(SETQ X2 (CAUSER (CAR UNY)
(NOT (EQ X1 (CAR C2)))

)
R o SRRl oo GANEGENOTION (CAR X211 =l
@% X @ ~IF X DAMAGES Y'S P
(8.85 1.0 (CAR UN) X1 (COR X21)~  ~THEN X M1GHT FERL ASRERT
(TS ex (T1 UN)) ~TOWARD Y
(1.8 (CAR UN)))

])
)

An inference molecule used by the current program.

FIGURE 4

The NEGCHANGE inference molecule,
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lawyer or our friend the carpenter to own a radial arm saw?),
the evaluator' delegates most of the matching responsibility
to programs - again organized by conceptual predicates - called

normality molecules ("N-molecules"). N-molecules, which will

be discussed more later, can apply detailed heuristics to ferret
oyt fuzzy confirmations and contradictions. As I will describe,

N-molecules also implement one class of conceptual inference

Confirmations and contradictions discovered by the evaluator
are noted on special lists which serve as sources for possible
subsequent responses by the CM. In addition, confirmations lead.
to invocation of the structure merger, which physically replaces
the two matching structures by one new aggregate structure, and
thereby knits together two lines of inference. As.events go, this

is one of the most exciting in the CM.

Inference cutoff occurs when the product of .an inference's

STRENGTH (likelihood) and its significance factor falls below
a threshold (0.25). This ultimately restricts the radius of each
sphere in the inference space, and in the current model, the

threshold is set' low to allow considerable expansion.

Figure 5 depicts the overall strategy of the inference
monitor. (R1l) contains a fuller account of the inference control

structure, whose description will be terminated at this point.

Enter... sixteen theoretical classes of conceptual inference

which fuel this inference reflex.
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[- next level bacomes
4 i new INEWINFS

INEWINFS: ( % % % % % ... x )

L%k % % & % % .40 %)

INFERENCE | J HHH]
MOLECULE -’ === predicate

cut off inferences

ll | ' REORDERER ' ===>;J X X )
v INFS THETE 17 TEET0Rr IRFs
STRUCTURE (% % %k ... (o)
GENERATOR a===> (% % % X % % )
| NANRN / \
/
1 EVALUATOR | z===3=2==3> ( X X X X X )
T K ¥
Lo
N-MOLECULES l N ' I N l l N I

FIGURE 5

—p—

The inference monitor.
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5. The Sixteen Theoretical Classes of Cohceptual Inference.

It is phenomenological that most of the human language experience
focuses on actions, their intended and/or resulting states, and the causal-
ity and enabling states which surround them. ‘There seems to be an ines-
capable core of notions related to actions. causation and enablement, which
almost anyone who introspects long enough will independently discover. In
his "Cold harrior" model; Abelson {Al) was perhaps the first to attempt a
computationally formal systematization of this fundamental core of meaning
relations. It is of the utmost primacy in his system, which models the
political ideologies and bchavior patterns of a rabid right-winger, to dis-
cover and relate the underlying jpurposes, cnablement and causality surround-
ing events in some hypothetical international scenerio or crisis. Again, in
Schank et al's CD theory, the same emphasis arose more or less independentlv
in a system of meaning representdtion for everyday utterances: causality,
actions, state-changes and enablement were recurring.themes. Not surprisingly,
the same notions have emerged as central in my analysis of the inference re-
flex: over half of the 16 classes relate to this "action-intention-causality-
enablement-knowledge' compiex.

In the following descriptions of these 16 classes, keep in mind that all
types of-inference are applicable to every subcomponent of every utterance,
and that the QM is essentially a parallel simulation. Also bear in mind that
the inference evaluator is constantly performing matching operations on each
new inference in order to detect interesting interactions between inference
spheres. It should also be emphasized that conceptual inferences are prob-
abilistic anmd predictive in nature, and that by making them in apparently
wasteful quantities, the CM is not seeking one result or truth. Rather,
inferential expansion.is an endeavor which broadens each piece of information
into its surrpunding spectrum to fill out the information-rich situation to
which the information-lean utterance might refer. The CM's gropings will
resemble more closely the solution of a jigsaw puzzle than the more goal-
directed solution of a crossword puzzle.

The following discussions can only sketch the main ideas

behind each inference_class.-See (R1l) for a more comprehensive:

treatment.
20



5.1 CLASS l: SPECIFICATION INFERENCES

PRINCIPLE: The CM must be able to identify and attempt-to fill in
each missing slot of an incoming conceptual graph.

EXAMPLES: *% Johnawas driving home from work. He hit Bill's cat.
(inference) It was a car which John propelled into
the cat.

** John bought a chalk line.
(inference) It was probably from a hardware store
that John bought the chalk line.

DISCUSSION:

Our use of language presupposes a tremendous underlying kiowledge about
the world. Because of this, even in, say, the most explicit technical writ-
ing, certain assumptions are made by the writer (speaker) about the compre-
hender's knowledge -- that he can fill in the plethora of .detail surrounding

each thought. In the CM, this corresponds to filling in all the missing con-
ceptual slots in a graph.

The utility of such a process is twofold. First, CM failures to specify
a missing concept cdn serve as a source of requests. for more information (or
goals to seek out that information by (M actions if. CM is controlling a ro-
bot). Second, by predictively completing the graph by application of general
pattern knowledge of the modeled world, novel relations among specific con-

cepts and “okens will' arise, and these can lead to potentially significant
discoveries by other inferences.

To illustrate, a very common missing slot is the instrumental case.
We generally leave it to the imaginative powers of the hearer to surmise
the probable instrumental action by which some action occurred:

(husband to wife) I went to SEARS today.
(wife to husband), How? I had the car all day!

Here, wife fills in the instrumental slot as: '"Husband drove a car to SEARS"

(clearly relying on some specific heuristics,, such as the distance from their

21



home to SEARS, etc.), and this led to her discovery of a contradiction.
That she may have been premature in the specification f(and.thad later to
undo it) is of secondary importance to the phenomenon that she did. so
spontaneously.

In the CM,specification inferences, as dll inferences, are implemented
in the form of structured progrgms which realize discrimination nets whose
terminal nodes are corcepts and tokens rather- than inferences, as in general
inference molecules. These specification procedures are called specifier
molecules (''S-molecules'), and are quite similar to inference molecules.
Fig. 6 shows a small prototype of the PROPEL specifier molecule Wwhich can
predictively fill in the missing object of a PROPEL. attion, as in ''John hit

Pete.'" That particular "specifier atom' 1s sensitive to context along one

simple dimension if the actor is known to be grasping an object (this
prototype doesn't care wnetner it's 2 wet noodle or a bludgeon), at the time
of the action, the molecule will infer that it was the grasped object which
was propelled, as in '"John picked up the flower pot. He hit Pete.'" Other-
wise, the molecule will assume '‘hand of the actor". This is ridiculously

oversimplified, but it represents a certain philosophy I will digress a
moment to reveal.

I, as many other people (see W1, Hl, Cl, for anstance), have come to
believe that passive datd structures are fundamentally awkward for repre-
senting knowledge in any detail, particularly for the purposes typified by
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FIGURE 6

The PROPEL specifier molecule.
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this sinple PROPEL example. The needs for 'special case heuristics' in
ceven such a modest pperation as this quickly overtake one's prowess at

devising "'declarative' memory structures. Programs, on the other hand,
are quick and to the point, quite flexible, and have as much "aesthetic
potentidl''as even the most elegant declarative structures.

A life-sicze procedure for this very narrow process of specifying the
missing object -of a PROPLEL action would obviously reqGire many more tests
for related contexts (""John was racing down.the hill on his bike. He hit
Bill.') But independent of the fidelity with which any given S-molecule
executes its task, there is a very important claim buried both herc and
in the other inferential procedurcs in the CiM. It is that there are cer-

tain central tasks in which the deqiﬁion process must seek out the context,

rather thdn context seeking out the appropriate decision process. In other

Ca

priori exactly what dimensions of context could jpossibly affect the gener-

words, much of the inference capability requires specialists who know a

ation of cvery potential inference, and these specialists carry out active
probes to scarch for those dimensions before any inferecnce is generated.

I can imagine no "uniform context mcchanism' which accounts for the human's
diverse ability to attend to the relevant and ignore the superfluous. Il
conjecture is that the mechanism for contextual guidance of inference is
highly distributed throughout the memory rather than.centralized as a com-
ponent of the memory's control structurc.
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5.2 CLASSES 2 and 3: RESULTATIVE and CAUSATIVE INFERENCES

PRINCIPLE: If an action is perceived, its probable resulting states
should be inferred (RESULTATIVE). 1If a state is perceived,
the general nature of its probable causing action (or a

specific action, if possible) should be inferred (CAUSATIVL).
EXAMPLES:  **Mary hit Pete with a rock.
(inference) Pete probably became hurt. (RESULTATIVE)
**Bill was angry at Mary.
(inference) Mary 'may have done something to Bill. (CAUSATIVE)
DISCUSSION:

These two classes of inference embody the QM's ability to relate ac-

tions apd states in causal sequences relative to the (M's models of
causality. In addition to serving as the basis for MOTIVATIONAL in-
ferences and contributing to the general expansion process, CAUSATIVL

and RESULTATIVE inferecnces often achicve the rather exotic form of under-
standing I have termed ''tauSal chain expansion.' It is this process which
makes explicit the oft-abbreviatéd statements .of causality: 1language com-
municated predications ot causality must always (if only subconscieusly)

be explained in terms of the comprehender's models of causality, and fail-
ures to do so signal a lack of understanding and form another source of QM
queries for more information. Calisal expansion successes on the other hand
result in important intervening actions and states which draw out (''touch'')
surfounding context and serve as the basis for inferences in other cate-
gories. Appendix A contains the computer printout from MEMORY, tracing a
causal expansion for 'Mary kissed John because he hit Bill" in a particular
context which makes the explanation plausible.
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5.3 CLASS 4: MOTIVATIONAL -INFERENCES

JRINCIPLE The desires (intentions) of an actor can frequently be
inferred by analyzing the states (RESULTATIVE inferences)
which result from an action he exécutes. These WANI- STATE
patterns are essential to understanding and should be made
in abundance.

EXAMPLES: ** John pointed out to Mary that she hadn-t done her chores.
(inference) Mary may have felt guilty. (RESULTATIVE)
(inference) John may have wanted Mary to feel guilty.

(MOTIVATIONAL)
**Andy blew on the hot meat.

(inference) Andy may have wanted the meat to decrease
in temperature.
DISCUSSION:

Language is a dual system of communication in that it usually com-
municates both the actual, and, either explicitly or by inference, the
intentional. Where the intentions of actors (the set of states.they de-
sire) are not explicitly communicated, they must be inferred as the
immediate causality of the.action. In the CM, tandidates for MOTIVATIGNAL
inferences are the RESULTATIVE inferences {%;} the CM can produce from

an action A: for each RESULTATIVE inference Ri which the M could make
from A, it conjectures that perhaps the actor of A desired Ri

Since the generation of MOTIVATIONAL inference is dependent upon the
results of another class of inference (in general, the actor could have

desired things causally removed by several inferences from the immediate
results of his action), the MOTIVATIONAL inference process is implemented
by a special proceaure POSTSCAN which is invoked between ''passes' of the
main breadth-first monitor. Thesec passes will be discussed morc later.

Once generated, cach MOTIVATIONAL inference will generally lead back-
ward, via CAUSATIVE inferences, into an entirec causal chain which lead wup
to the action. This chain will frequently connect in interesting ways with
chains working forward from other actions.
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5.4 CLASS 5: ENABLING INBERENCES

PRINCIPLE: Every action has a set of enabling conditions -- conditions
which must be met for the action to begin or proceéed. The

CM needs a rich knowledge of these conditions (states), and

should infer suitable ones to surround each perceived action.
EXAMPLES: **John saw Mary yesterday,

(inference) John and “lary were ih the same: general location

sometime ‘yesterday.
**Mary told Pete that John was at the store

(inference) Mary knew tHat John was at’ the store.

DISCUSSION: |
The example at the beginning of the paper contained a contradiction

which could be discovered only by.making a very simple cnabling inference

about the action of speaking (any action for that matter), namely that the
actor was alive at the time! Enabling inferences can fruitfully lecad from
the known action through the cnabling states to predications about other
actions the actor might have performed in order to set up the enabling states

for the primary action. This idea is closely related to the next class of
inference.
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5.5 CLASS 6: ACTION PREDICTION INFERENCES

PRINCIPLE: Whenever some WANT STATE of a potential actor is known,
predictions about 'possible actions the actor might perform
to achieve the state should be attempted. These predic-

tions will provide potent potential points of contact
for subsequently perceived actions.
EXAMPLES: **John ‘wants some ndils.
| (inference) John might attempt to acquire some nails.
**Mary is furious at Rita.
(inférence) Mary might do something to hurt Rita.
DISCUSSION:

Action prediction inferences serve the' inverse role of MOTIVATIONAL
inferences, in that they work forward from a known WANT STATE pattern into
predictions about future actions which ceuld produce the desired state.

Just as a MOTIVATIONAL inference relies upon RESULTATIVE inferences, an
ACTION PRLDICTION inference relies upon CAUSATIVE inferences which can be
generated from the state the potential actor desires. Because 1t is often
impossible to anticipate the specific causing action, ACTION PREDICTION
inferences typically will be 'more general expectancies for a class of pos-
sible actions. In the nails example above, the general expentancy is sim-
ply that John may do something which normally ccauses a PTRANS -(in CD ter-
minology, a change of lecation of some object) of some nails from somewhere
to himself. Often the nature of the desired state is such that some specific
action can be predicted ('John is hungry... John will ingest food.'") By mak-
ing specific action predictions, a new crop of enabling inferences can be pre-
dicted ("'John must be near food.", etc.),,and those conditions which cannot be
assumed to be already satisfied can.serve as new WANT-STATEs of the actor.
Thus it is through MOTIVATIONAL, ACTION PREDICTION and ENABLING inferences
that the CM can model (predict) the problem-solving behavior of each actor.

Predicted actions which match up with subsequently perceived conceptuail-

input serve as a very real measure of the CM's success at piecing together con-
nected discourse and stories. 1 suspect in addition that ACTION PREDICTION
inferences will play a key role in the eventual solutions of the "contextual

guidance of inferencg' problem. Levy (L1) has some interesting beginning
thoughts on this topic.

Fig. 7 illustrates the ACTION PREDICTION imnference cycle.
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The action prediction: inferetwre process.
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5.6 GLASS 7: ENABLEMENT PREDICTION INFERENCES.

PRINCIPLL: I{ a potential actor desires-a state which is a common

enabling condition for some specific action, then it
can be inferred that the nctor might wish to exccute
that action.
EXAMPLES:  ** Mary asked John to turn on the light.
(inference) Mary probably wants to sce somcthing.
** Andy wants the meat to be cool.

(inference) \ndy might want to eat the meat.
JISCUSSION:

Inferences in this class are, in a sense, the inverse of IENABLING
inferences, because they attempt to predict an action from an enabling
state knonn to be desired by a would-be actor. Whercas an ACTION PREDIC-

TION inferemce- predicts: a.possible future action to fulfill the desired

state, cnablement prediction draws out the motivation of the desire for the
state by identifving a probable action the state would cnable. Although

(as with ACTION PREDICIION inference) it will [requently happen that no
specific action can be anticipated (sirnce most states could enable infinite-
1y many specific actions), it is nevertheless possible to form general pre-
dictions about the nature of (restrictions on) the cnabled’action. If,

for example, John walks over to Maryv, then a RESULTATI\E inference is that
he is near Mary, and a MOTIVATIONAL inference is .that he wants to be. necar
MARY At this point an INABLEMENT PREDICTION inference can be made to repre-
sent the gencral class of interactions John might have in mind. This will
be of particular significance if, for instance, the CM knows already that
John had something to tcll her, since then the inferred action pattern would
match quite well the action of verbal communication in which-the state of
spatial proximity playvs a key enabling role.
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5.7 CLASS 8: FUNCTION INFERENCES

PRINCIPLL: Control over some physical obfect P is usually desired by

a potential actor because hc is engaged- in an algorithm in
which P plays a role. The QM should attempt to infer
a probable action from its knowledge of P's normal func-
tion.
EXAMPLES:  #*Mary wants the book.
(inference) Mary probably wants to read the book.
**John wants a knife.
(inference) John probably wants-to cut something with
the knife.
*%Bill Iikes to pour sundaes down girls' dresses.
Bill asked Pete td.hand him the sundae...
DISCUSS10ON:
Function inferences form a very diverse, rather colorful subclass
of ENABLEMENT PREDICTION inference. The underlyihg principle is that
desire of ‘inmediate confrol over an object is usually tantamount to a

desire-to use that object in the normal function of objects of that type,
or imsome function wltiéh 1s peculiar to the object -andfor actor (third
example above). In the M, normal functions of objects are stored as
(NFCT X Y) patterns, as in Fig. 8 for things that are printed matter.
Before applying NFCT patterns, the G firsSt checks for unusual relations
involving the specific actor and specific object (by excludihg paths which
include. the normdl ISA relations between, say sundae and food). Thus, that
Bill is known to requrre sundaes for slightly different algorithms from most
people will be discovered and used'in the prediction. The result of a
FUNCTION inference is always some predicted action, assumed to be part of
some-algorithm’ in which the actor is engaged.
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(NFCT #PRINTEDMATTER: %)

(IbA # HCOMNCEPTS)
(MLOC # HPRINTEDMATTER)

(MTRANS :-k * HPRINTEDMATTER =)

¥
(1SA, 4 £CP)
(PART # x)

|
(lSA # HPERSON)

The memory structure which stores
the normnal function-of printed matter.

FIGURE 8

A "normal-function-of"
memory structure.
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5.8 CLASSES 9 and 10: MISSING ENABLEMENT and
INTERVENTION INFERENCES

PRINCIPLL: If a would-be actor is known to have been unsuccessful

in achieving some action, it is often possible to infer
the absence of one of the action's enabling states (MISS-
ING ENABLEMENT). If a potential actor is known to desire
that some action cease, it'can be predicted that he will
attempt to remove one or more enabling states of the
action (INTLERVENTION).

EXAMPLES: ** Mary couldn't see the horses finish.
(inference) Something blocked Mary's view. (MISSING
ENABLIMENT)

She. cursed the man in front of her...
*% Mary saw that Baby Billy was running out inito the street.
(inference) Mary will pick Billy off the ground (INTER-
VENTION)

She ran after him...

DISCUSSION:

Closely related to the other enabling inferences, these forms attempt
to apply knowledge about enablement relations to infer the cause of an
action's failure (in the case of MISSING ENABLEMENT), or to predict a WANT
NOT-STATE which can lead by action prediction inference to possible actions
of intervention on the part of the WANTer. In the second example above;
Mary (and the QM first must realize (via RESULTATIVE inferences) the
potentially undesirable consequences of Billy's running attion (i.e.,
possible NEGCHANGE for Billy) From this, the CM can retrace, locate the
running action which could lead to such a NEGCHANGE, collect its enabling
states., then conjecture that Mary might desire to annul one or more of them.
Among them tor instance would be that Billy's feect be in intermittent PHYS-
CONT with the ground. From the (WANT (NOT (BHYSCONT FEET GROUND))) struc-
ture, a subsequent ACTION PREDICTION inference can arise, predicting that
Mary-might put an end to (PHYSCONT FEET GROUND). This gvill in turn require
her to be located near Billy, and that prediction will match the RESULTATI\VE

inference made from her directed running (the next utterance input), knitting
the two thoughts together.
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5.9 CLASS 1ll: KNOWLEDGE PROPAGATION INFERENCES

PRINCIPLE: Based on what the CM knows an actor to know, it can often
infer other knowledge which must also be available to the
actor. Since most conceptual inferences involve the in-
tentions «of actors, this modeling of .knowledge is crucial.

EXAMPLES: **John saw Mary beating Pete with & baseball bat.
(interence) John probably knew that Pete was getting hurt.

**Betty asked Bill for "the aspitin.
(inference) Bill probably surmised that Betty wasn't feel-
ing well.

DISCUSSION:

Modeling the knowledge of potential actors is fundamentally difficult.
Yet it is essential, since most all intention/prediction-related inferences
must be based in part on guesses about what krowledge each actor has avail-
able to him at various times. The CM currently models others' knowledge

by "introspecting' on its own! assuming another person P has access to-

the same kinds of information as the CM, P might be expected.to make
some of the same inferences the QM does. Since the @I preserves a logical
connectivity among all its inferred structures (by the REASONS and OFFSPRING
properties of each structure), after inferences of other types have arisen
from some unit of information U, the CM can return, determine who knew the
original fact U, locate U's OFFSPRING (those other memory structures which
arose by inference from U), then infer that P may also be aware of each
of the offspring. As with MOTIVATIONAL infecrences (which rely on the
RESULTATIVE: inferences from a structure), KNOWLLDGE PROPAGATION inferences
are implemented in the procedure POSTSCAN- whichy runs after the initial
breadth-first inference expansion by the monitor.

Modeling others' knowledge demands a rich knowledge of ‘what 1s normal
in the world. ("'ddes John Smith know that kissing is a sign .of affection?”).
In fact, all inferences must rely upon default assumptions, about normality,
since most of the &I's knowledge' (and presumably a. human's) cxists in the
form of general patterns, rather than specific relations among specific con-
cepts and tokens. The next class of -infcrence implements my belief that

patterns, just as inferences, should be realized in’the CM by active programs

rather than by passive declarative data structures.
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5,10 CLASS 12: NORMATIVE INFERENCES

PRINCIPLE: The CM must make heavy reliance.upon programs which, encode
commonsense patteérn information about the modeled world.
When the retrieval of a sought-after unit of information
fails, the relevant normality program should be exccuted
on (pattern applied to) that information to assess its
likelihood in ‘the absénce of explicit inforhation..
EXAMPLES:  **Does John Smith own a book?
(inference) Probably so; middle-class business executives
normally own books.
*%\as John Likely to have been asleep at 3 pm yesterdav?
(inference) Most likely .not, since he has a normal day-
time job, and yesterday was a ‘workday.
DISCUSSION:

There are several low-level information retrieval procedures in the

CM which search fqr explicit information units as directed by specific

inference molecules. Such scarches are on the basis of form alone, and

successes result in précise matches, while failures are total. If there
were no recourse for such failures, the CM would quickly grind to a halt,
being unable to make intelligent assumptions, There must be some more
positive and flexible mechanism to.ameliorate "syntactic''-lookup failures.
In the (M, this ability to make intelligent assumptions is implement:
ed by having the low-level lookup procedures defer control to the appro-

priate normality molecule (N-molecule) which will perform systemmatic tests

organized in single-response discrimination nets, to the unlocatable in-
formation. The goal is to arrive at' a terminal node in the.net where a
real number between ( and 1 is located. 11 some sequence of tests
leads to such a number, the N-molegule returns- it as the assessed likeli-
hood ("eompatibility'* in fuzzy logic teiminology (Z1)) of X being true.
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Although the test in the N-molecules are themselves discrete, they
result in the fuzzy compatibility. The point of course is that the tests
can encode quite diverse and very specific heuristics peculiar to each small
domain of patterns: For instance, based on known (or N-molecule inferrable .--
one N-molecule can call uporr others in its testing process!) features of
either John or the hammer, we would suspect :the compatibility of each of the
following four conjectures. to form a decreasing sequence:

1. John Smith owns something. (very likely, but dependent
on his age, society in which he lives, ectc.)

2 John Smith owns a hammer. (probahly, “ut potentially
related to features*of Jolin, such as his profession)

John Smith owns a claw hammer with a wooden handle.

(73]

(maybe, but again dependent on features of John and
models of hammers in general -- i.e., how likely is
any given hanmer to have a claw and wooden handle?)
4. John Smith owns a 16 oz. Stanley claw hammer with a
steel-reinforced wooden handle and a. tack puller on
the claw. (likelihood is quite low unless the N-mole-

cule can locate some specific hints, such as that

——— T

Johri usually buys goqd equipment, etc.)
A successful N-molecule assessmént results in the- creation of -the
assessed information -as a permanenty, explicit memory structure whose STRENGTI

is the assessed compatibility. This structure is the normative inference.

One is quickly awed by his own ability to ratc (wsually quite accurately)
- commonsensc conjecture such as these, and.thc-process scems usually to be
quite sensitive to features of the entities involved .n the conjecture. It
is my feeling that important insights. can be gained via a mere thorough
investigation of the '"mormative inference' process -in humans.

Another role of N-molecules is mentioned in (R1) with respect to
the inference-reference cycle I will deseribe shortly. Fig. 9 shows the
substance of a prototype N-molecule for assessihg dependency structures of
the form (OWN P X) (person I owns object X ).
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s P a member. of a pure communal society, or is it an infant?
if so, very unlikely that P ouns X
otherwise, does X have any distinctive conceptual features?
if so, assess each nne, form the product. of likelihoods, and call it
M. M witl be used at the end to mitigate the likelihood which would
normal ly-be assigned.

is'X living?
if so, is X & person? .
is PPa slave ouner,; and does X possess characteristics
af a slave? if so, likelihood is low hut non-zero
otheruise likelihood is zero
otheruise, is X a non-human animal or a plant?
if so, is X domestic.in P's culture? _
if so, does P have a fear of X's or is
P allergic to X's of this type?
if so, likelihood is lou
othernise, likelihood is-moderate
othgruise, is X related to actions P does in any special
Way’ :
¢ if so, likelihogod is low, but non-zero
otheruise,. likelihood is near-zero
otherwise, does X have a normal fungtion?
if so, does P do actions like this normal function? (Note here
that we Vould nant to ¥ook.at P's profession, and actions commonly
associated with that profession.)
if so, liKelihood is monratelg high
otherwise, is X a common personal item?-
if so, is it s value within P'means
if so, likelihood is high
if not, likelihood is low, but non zero
othernise, is X a common household item?
if so, is P a homeouner?
if so, is X Wwithin P’s means?
if so, likelihood is high

. otherwise, likelihood is moderate
otheruise,:. likelihood is 1ouw, but non-zero
and so on ...
How we might,g¥t-aliv iding

whether person P owns-arid

FIGURE 9

‘The normality-molecule
discrimination network for the
pattern (OWNS'P X).
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5.11 CLASS 13: STATE DURATION INFERENCES

PRINCIPLE: Most interesting States in the world.are transient. The
CM must have the ability to make specific predictions
about the—-expected (fuzzy) duration of an arbitrary state
so that information in the CM can be kept up to date.

EXAMPLES:: **John handed Mary the orange peel.
(tomorrow Is Mdry still holding the orange peel?
(inference) Almost certainly not.
**Rita ate lunch a half hour ago.
Is she hungry yet?
(inference) Unlikely.
DISCUSSION:

Time features of states relate. in critical ways to the likelihood
those states will be true at some given time. The thought of a scenario
wherein the CM is informed that Mary is holding an orange peel, then- 50
years ~later, uses that information in the generation of some other infer-
ence is a bit unsettling! The (M must $imply possess a low-level function
whose job it is to predict ;mormal durations of states based on the particulars

of the states, and to use that information in marking as ''terminated' those
states whose likelihood has diminished below some threshold.

My conjecture is that a human notices and updates the temporal truth
of a ;tdte only when he is about to use it in some cognitive activity --
that most of the transient knowledge in our-heads is out of date Until we
again attempt to use it in, say,.some inference. Accordingly, before using
any state information, the CM first filters it.through thée STATE DURATION
inference proccss to arrive at an updated estimate of the state's likeli-
hood as a -function of its known starting time (its TS feature,.in CD
notation).
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The implementation of this process in the CM is as follows: an (NDUR S ?)
structure is constructed fbr the state S whose duration-is to be pre-
dicted, and this is passed to the NDUR specifiér molecule. The NDUR S-
molecule applies discrimination tests on features of the abjects involved
in S. Terminal nodes 1n the net are duration concepts (typically fuzzy
ones), such as #ORDERHOUR, #ORDERYEAR. If a terminal node can be success-
fully reached, thus locating such a concept D, the property CHARF (Character-
istic time ‘function) is retrieved from D's property list. CIARF 1is
a step function of STRENGIH vs. the amount of time some state
has been in existence (Fig. 10). From this function a STRENGTH is computed
for S and becomes S's predicted likelihood. If the STRENGTH turns out

to be sufficiently low, a (TF 3 now) structure is predictively generated

to make S's low likelihood explicit. The STATE DURATION inference thus

acts as a cleansing filter on state information which is fed to various
other inference processes.
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' lhr ' éhr
(T-T") ——->

A typical STRENGTH function for fuzzy duration *ORDERHOUR.

{ (W1MAX S1) (U2MAX S2) (H3MAX S3) ... (WnMAX Sn) )

8 < T"-T < WIMAX has strength Sl
WIMAX g T'-T < W2MAX has strength 52

T°-T 2 WnMAX héé'sﬁrength 5]

The format of a fuzzy duration.concept’s step function.

FIGURE ‘10

A typical characteraistic
STRENGTH function for the
state—-duration inference -
process.
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5.12 CLASSES 14 and 15: FEATURE and SITUATION INFERENCES

PRINCIPLE: Many inferences can be based solely on commonly observed

or learned associations, rather than uporr '"'logical" re-
lations such as causation, motivation, and so forth. In
a rough way, we can compare these inferences to the phe-
nomenon of visual imagery which constructs a 'picture"
of a thought's surrounding environment. Such inferences
should be made in abundance.

EXAMPLES: ** Andy's diaper is wet.

| (inference) Andy is a yvoungster. (FEATURE)
** John was on his way to a masquerade.

(inference) John was probably wearing a costume. (SITUATION)

DISCUSSION:

Many "“associative' inferences can be made to produce new features of’
an object (or aspécts of a situation) from known features. If something
wags-its tail, it 1is probably an animal of some sort, if it bites' the mail-
man's leg, it. is probably a dog, if it has a gray beard and speaks, it is

probably an old man, if it honks in a distinctive way, it is probably some
sort of vehicle, etc. These classes are inherently unstructured, so I will
say no.more about them here, except that they frequently contribute fea--

tures which help clear up reference ambiguities and initial reference fail-:
ures.
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5.13 CLASS 16; UTTERANCE INTENT INFERENCES

PRINCIPLE: Based on the way a thought is communicated (especially the

often telling presence or absence of information), infer-

ences can be made about the speaker's reasons for speaking.
EXAMPLES: ~ **Don't eat green gronks.
(inference) Other kinds of gronks are probably edible
#*Mary threw out the rotten part of the fig.
(inference) She threw it out because it was rotten.
**John was unable to get an aspirin.

(inference) John wanted to get.an aspirin.
*%Rita like the,chair, but it was green.
(inference) The cl=l's color is a negative .feature to.
Rita (or the speaker).
DISCUSSION: |
I have included this class only to represent the largely unexplored

domain ot interences drawn-from the way a thought is phrased. The CM will
eventually need an explicit model of conversation, and this model will. in-
corporate inferences from this class. Typical of such inferences are those,
which translate the -inclusion of referentially superfluous features of an
object into an implied causality relation (the fig example), those which
infer desire from failure (the aspirin example) those which infer features
of an ordinary X f{rom features of special kinds of X, (the gronk example),

and so forth. These issues will lead to a more goal directed model than I
am currently exploring.
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6. Summary of the inrerence Component

I have now shetched 16 inference classes which, I conjecture, lie
at the core of the human inference reflex. The central hypothesis is
tnat a human language comprehemder performs more subconscious computation,
on neaning structures than any other theory of language comprchension has
vet achnowledged. When the current CM is turned loose, it will often gen-
erate upwards of 100 inferences from a fairly banal stimulus such as ".John
save Mary the book." While most are irrefutable, they are for the most part
auite mundane and "uninteresting' to a critical human observer, and are, after
the fact, "wasteful.'" But change the context and the bgnal becomes salient --
oven crucial ---while the crucial can become irrelevant! I can see no other
nmecnanis=n for exy laining contextual-interaction of intformation than this
spontancous, subsonscious groping.

I srould perhaps briefly address the adequacy and applicability of the
inference classes in the current model. There is undoubtedly a nurher
vlo, 32, 047) of caually interesting inference classes I have icnored or
overloched.  but 1 feel the number is not large, and that other classes will
subrit to the same sorts of svstomatization as Jescribed here. While the

; leceméal examples I have used to illustrate the various inferences were not

drawn from anyv coherent deomain such as @ "hlocks world'" (¥1l) -- and this is
a tediness -- 1 believe the net result (these inference .classes and their

control structure) will prove central to any restricted domain which involves
volitional acters. It is a current challenge te find such a restricted, yet
interesting, domain to which these ideas can be transr-lanted and applied in
sligatly rore goal-dirccted environments.

I want to,describe now how two cther, important langcuage components

reference and inplicit concent altivation -- aid and abet the inference

reflea.
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7. The Inference-Reference Relaxation Cycle in Conceptual Memory.

A LUNE LCHGHMGL 13 LLUYUTIILLY  LHOCdPRIDLIC UL LS LALdneous1y 1aciel 1y ing
the referent (concept or token in memory) of o languapc:construction (noun
group, jronoun, ctc.). Yet an attentive listener seldom fiils eventually
to identify tHe intended referent, and he will seldom lose information
becausc of the reference delay. [Furthermore, incorrect. reference decisions
are em;irically few and far between. 1 believe that these phenomena are
intimatcly related to the inference reflex.

In the I, initial reference attempts are made {or concepts and tolkens

from descriptive scts:---collectionis of conceptual features gleaned from an

utterance by Riesbeck s conceptual analyzer (R2). Tig. 11 illustrates

the descriptive set for the "the big red Jdog vho ate the bird." Potential
mewory concepts and token referents arc identificd hy an interscection scarch
procedure which locates momory objects whose features satisf{y all the
features-of tihe descriptive set. Such a scarch widl result in cither (a) a
unique idemtification of some memory entity,.(b) a failure to ldocate any
satisfactory cntities, or (¢) a set of candidates, one of which is the
probable referent. Case¢ (a) requires no decision, but (b) dnd (c¢) do

In either case, a new, possibly temporary token T is created afid, for
case (b), T recceives as its initial occurrenceé set the descriptive set
identically, In case (c), where a set of candidates can be located, T

receives the set of features lving in the intersecction of all candidates'

occurrenée sets (this will be at least the descriptive set). In ecither
case, the €M then has an internal token to gork with, allowing the concep-
tual graph in which references to it occur to be “entatively irtcgrated into
memory ‘structures.

The inference reflex 1 have described then.gencrates all the vdrious
inferences, and eventually returns to its quiescent state. Onc byproduct
of tihe inferencing is that -the occurrence set of cach memory object involv-
ed in the original structures will emerge with a possible enhanced- occur-
rence set which may contain inferred information sufficient cither (1) to
identify the 'temporary token of category (b) sbove, or (2) to narrow the

set of candidates associated with the temporary token of category (c¢) (hope-
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‘X #0CG)

X: { (ISA
(COLGR_X #RED)
EREL

SIZE X ElLAnou
: (INGEST X
s { (ISA B EBIRD) (REF # %THEx) |
{ (ISA £ ENMOUTH) }

{ (ISA # KSTOMACH) 1}

) ) (TIME Y { (I1SA # ETIME) (BEFORE # #NOW) 3 ).
(REF X xTHEw)

Descriptive set for "The big red dog who ate the bird"

FIGURE 11

An example of a descriptive set,
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fully' to exactly one). Thus, when the inference rcilex has ceased, the (M
re-appliés the reference intersection alporithms to cach unidentified :oken
to seek oqut any inference-¢larified references. Successful identifications
at this point result in the merging (by the samo structure merger mentioned
earlier) of the temporary token's occurrence set with the identified token's

occurrence set, thus preserving all information collected to that point about
the temporary token. (Implicit in the mexge operation is the substitution of

of all references to the temporary token by references to.the identified
one.) If, on the other hand, the results of inferencing serve only to
narrow the candidate set of case (c), the occurrence sets of the remaiping
candidates are re-intersected, and 7if this increases the size of the set)
the set is re-attached to the temporary toke¢n. In citlier case progress
has been made.

Now.comes a key point. If any referents were in fact identified on
this second attempt (making-their entire occurrence sets accessible), or
1f any candidatec set decreases caused new {eatures to be associated with

the temporary tokens, then there is the possibiiity that more inferences

(which can make use’of the newly-accessible: features) can be made. 1ne C!
thus re-applies the inference reflex-to all memory structures which were
produced on the first pass. (The monitor is conditioned not to duplicate
work already done on the first pass.) But a potential byproduct of the.
second pass is further feature gencration wnicn can again restrict candi-
date sets or produce pnsitive identifications. This inference-reference
interaction can proceed Until no new narrowings or identifications: occur;
hence- the' term *'relaxation cycle.'" €ig. 12 illustrates two cxam.ples‘of=
this phenomenon which are handled by the current CM, and Apperdix B con-
tains the computer trace of the second example.
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EXAMPLE.1 Andy Rieger is a youngster,
Andy Mporer is an adult.
Andy's diaper is wet.

INFERENCE-REFERENCE: Andy Rieger's diaper is wet,

EXAMPLE 2 John was in Palo Alto yesterday.
Jenny Jones was in Palo Alto yesterday.
Jenhy Smith was in France yesterday.
Bill lpves Jenny Jones,
Bill saw John kiss Jenny yesterday.
INFERENCE-~REFERENCE, FIRST PASS: It was Jenny: Jones
that John kissed.
INFERENCE~REFERENCE, SECOND PASS: Bill felt anger
toward Jeohn
FIGURE l2a
Two examples of inference-reference
interaction,
I ANC l
l starting
inference queue
b
| “SUBPROP ==> (% k% %k ... ¥

Y EXTRACTOR

| 7/
— IREFERENCERI (ATRANS % % % %)

temporaruy token

- for unestabl ished INFERENCER
HPETEL17 <~ reference
4 TOLNTIFIGD ’
| REFERENT o -
_ B H e-~ first pass géy second
' e=--—= (ISA # HPERSON) pass
m———e (NAME # PETE)

RE-REFERENCER .

(* *x:* e X))

-- (neu inferred feature)
-=- (neu inferred feature)

(*-.o-- *')

more new information, but
this time about #PETE17

Multiple referencé-inference interaction passes.

FIGURE 12b

Th» inference-reference relaxation cycle.
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8. Word Sense. Promotion and Implicit Concept Activation
in the Conceptual Memory

Another oyproduct of the generation of an abundance of probubilistic
conceptual patterns from each input is that many related concepts and
tokens implicitly involved-in the situation are activated, or ''touched."
This can be put -to use in two ways.

First, implicitly touched concepts can clarify what might otherwise
be an utterly opaque subsequent reference. 1f, for instance, someone says
(outside of a particular context): ''The nurses were nice'', you will prob-
ably inquire '"What nurses?'" If, on the other hand, someone says: '"John
was run over by a milk truck. When he woke up.the nurses were nice'" you
will experience neither doubt about the referents of "'the nurses', nor
surprise at their mention. I presume that a -subconscious filling-out of
the situation "Joln was run over by .-a milk truck' implicitly activates an
entire set of coneptually relevant concepts, ''precharging' ideas of hos-
pitals and thedir relation to patients.

Other theories founded more on concept associationism than conceptual
inference have suggested that such activation occurs through word-word or
concept-concept free associations (see (AZ) and (Ql) for instance). While
these more direct associations play an undoubted role in many language
functions, it is my belief that these stréight associative phenomena are
not fundamentally powerful enough to explain the kind of language behavior

underlying the nurse example. It is more often than not the ''gestalt"
meaning context of an utterance which restricts the kinds of meaningful
associations a human makes. In centrast tu the nurse example above,

most people would agree that the reference to 'the nurses' in the follow-
ing situation is a bit peculiar:

In the dark of the night, John had wallowed

through the knee-deep mud to the north wall

of the deserted animal hospital. The nurses
were nice.
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A sinmple hospital-nurses association model cannot account for this. Un
the other hand, those concepts touched by the more restrictive conceptual
inference patterns would presumably be quite distant from the medical
staff of a hospital in this example, thus explaining the incongruity.
Related to this idea of concept activation through conceptual infer-
ence Structures is another mechanism which, I presume, underlies a compre-
henders' ability to select (almost unerringly) the proper senses of words
in comtext during the l°nguistic analysis of each utterance. This
mechanism is frequently called word sense promotion, and its

exact nature is one of the major conundrums of language analysis. It
underlies our ability to avoid -- almost totally -- backing up to reinter-
pret words. It is as ‘though at each moment during our comprehension we
possess a dynamically shifting predisposition toward a unique sense of
just about any word we are likely to hear next. Fig. 13 contains some
illustrations of this phenomenon.

I have only a thought (which I plan to develop) on this issue. At
each instant in the M, there is a powerful inference momentum which is
the product of conceptual inferences. -Obviously, these concepts which
the inferenge patterns touch will correspond to senses of words. These
senses can be '"promoted'" in the same way implicit activation promotes

certain referents. This is a partial explanation ot word sense promotion.
Suppose, however, that in addition the CM had an independent parallel pro-
cess whirh took each inference as it arose and mapped it back into a near-

language "'proto-sentence', a linear sequence of concepts which is almost

-

a sentence of the language, except that the actual word realizates of each

concept have not yet been chosen. In other words, a generation process

(see (Gl) for example) would be applied to each inference, but would be
stopped short of the final lexical substitutions of word senses. By pre-
cnarging all the senses of the various words which could be substituted in
such a proto-sentence, the CM would, have a word sensc '"'set' which would be

a function of the kind of restrictive inferential context which I feel is

so vital to the process of analysis. This.didea is obviously computationally
exorbitant, but it might model a very real mechanism. We often catch our-
selves subvocalizing what we expect to hear next (especially while listening
to an amnoyingly slow speaker), and this is tantalizing evidence that some-
thing like a proto-sentence generator is thrashing about upstairs.
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EXAMPLE 1l: (CONTEXT) John asked Mary which piece of fruit
she wanted,

(SENSE) Mary picked the apple,

versus (CONPEXT)

(SENSE)

(CONTEXT)
(SENSE)

Mary climbed the apple tree.
Mary picked the apple.

EXAMPLE 2: John was in a meadow.

The grass smelled good,

(CONTEXT) John was looking forward to getting high
(SENSE) The grass smelled good.

(Riesbeck's example (R2))

versus

EXAMPLE 3:

John went on a hunting trip. He shot two bucks.
It was. all he had!

FIGURE l3a

Examples of word sehnse promotion.

incoming analyzed ¥ |
utterances graphs ) e |
o :
F_l \ conceptual
CONCEPTUAL /_ Y ‘ Hrom anat
m=a==ad ~ rom analyzed
==az=z> ANALYZER ~L ‘a graphs Y
==a===> - . >
activated rt 1
uond'se?sesd | S e |
are prefere K
by the At I
analyzer \
e b
|1 : ,
(‘ D) s8¢ a8 ) ‘the part|a| genErator
( efvievanees ) <==msa==z===zz==== PARTIAL runs independentliy
( ..c0eeen.. tes ) <===z=m=ms======== -CQNEEP’IUAL from the memory
: ......... .. ; <=-.=s=szz=ga=g=== GENERATOR
profo-senteﬁééé ...... conceptual '
Which are the various structures
wWays each inference back into

might be expressed

by ldnguage. These
involve many alternative
Hord senses-.

proto-sentences

Mapping inferences back into proto-sentences, activating many word senses,

——

FIGURE 1l3b

Mapping inferences back into

proto~-sentences, activating many word senses.
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9. Conclusion

Any theory of -language must also be a theory of interence and memory.

It does not appear to be possible to "understand!' even the simplest of
utterances in a contextually meanmingful way in a system in which language
fails to interact with a language-free belief system, or in a system which
lacks a spontancous inference reflex.

One very important thcorctical issue concerns exactly how much "infereuce
energy'' is expended. before the fact (prediction, expectation) versus how
much is expended after the fact to elear up specific problems of how the
utterance fits the context. My belief is that there is a great deal of ex-
ploratory, essentially undirected inferencing which is frequently overlooked
and which cannot be repressed because it is the language-related manifesta-
tion of the much broader motivational structurc of the brain. Rather than
arguc at an unsubstantiatable neurophysiological level, I have compiled
evidence for this hypothesis within the domain of language. 1 belicve,

however, that spontaneity of inference pervades all other modes of perception

as well, and that quantity --as much as quality -- of spontaneous inference

1s a necessary requirement for general intelligence.
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APPENDIX A: CAUSAL.CHAIN EXPANSION COMPUTER EXAMPLE

WORK ING: "FORWARD", GENERATING (CONTEXT) Bill swiped Mary's book.

RESULTATIVE INFERENCES FROM : ]
HE PROPEL UNDERLYING "HIT": (CAUSAL) gzrﬁilzlzii? John because

John propelled his hand toward Bill
resultative

. John's hand came into physical contact with Bill
resultative

Because it uas. propelled, the physical contact was probably

resul tative forceful

. Bill probably suffered a negative change in physical state
resul tative

_ Because Bill suffered a negative-change; and Mary felt
resultative a negative emotion toward Bill at the time, Mary might

thave experienced a pasitivé change in joy

¥ e——— W E— K E— A E— X — %

Because Harg_mag have experienced this positive change,
and bgcause it was John uwhose action. indirectly caused her
pogsitive change, she.might feel a positiye emotion tomard John

/ \
’ POINT OF CONTACT:
Mary.'probably feels a

positive emotion toward
John.

WORKING "BACKWARD", GENERATING
CAUSATIVE INFERENCES FROM THE®
PHYSCONT UNDERLYING "KISS":

Mary's placing her c#ps in contact with John uas probably

b 3
. ) taused-by Mary feeling a pasitive emotion toward John.
causative
% Mary's lips uere,in contact with.vonn
Figure 5-21. One explanation of ywhy Mary's kissing
was related to-John’s liitting.
(MARY KISSED -JOHN BECAUSE HE HIT BICE) _---fgig_;s the input seéntence. lts underlying

conceptual graph is shod ¥
(((CON ((CON ((ACTOR (JOHN) <=>. &P grapb is shodn nex

(xPROPELx) OBJECT (xPHYSOBJ% SPEC
(xUx)) FROM (JOHN) *TO (BILL)) TIME
(TIMQL1)) <= ((ACTOR (xPHYSOBJx SPEC
(xUx)) <=> (xPHYSCONTx VAL (BILL)))
TIME (TIMB1)))) <= ((CON ((ACTOR
(MARY) <=> (xDOx)) TIME (TIMBZ) SPEC
(%Ux)) <= ((ACTOR (sL1PSx PART (MARY))
c=> (xPHYSCONTx VAL (JOHN))) TIME
M82))))) TIME (TIMBL))

L
E
E

I
8O ((VAL T
81 ((BEFOR
82 ((BEFOR

82 X)))
g X)))

O e | —

))}
TIM
TIM
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( (CAUSE ((CAUSE ( (xPROPELx (#JOHN1)
(CBRL3) (HJOHNL) (#BILL1)) (TIME
(COBLE))) ((xPHYSCONTx (C@@L3) (#BILL1))
(TIME _ (C@818)))))» {(CAUSE ((xDOx
(#MARYT) Ce@818) (UNSPECIFIED ). (TIME
(CBBL7)))  ( txPHYSCONTx_(C8621T (#JOHNLY)
(TIME _ (Ce817)))))) (TIME _ (CBAalb)))

CB835

- e - - -

STARTING INFERENCE QOUEUE:
((X 1.8 C8835).)

.’l..l

ABOUT TOQ APPLY eLAUsSEL tu.C0B35
C8835: (CAUSE (CAUSE (xPROPELx #JOHN1
CBB13 #JOHN1 #BILLL) (xPHYSCONTx

Cee13 #BILL1)) (CAUSE (x0Ox #MARY1
Ce918) (xPHYSCONTx CB821
H#JOHN1)Y))

INFERRING: C8928

ABOUT TO APPLY .«CAUSE2 TO CB8@35
CBB35: (CAUSE (CAUSE (xPROPELx A#JOHN]
CoB13 #JOHN1 ABILLL) (xPHYSCONTx
Cesl3 ABRILLL)) (CAUSE (xD0x AMARYL
CB8108) (¥PHYSCONTx CB821 #JOHN1)))
INFERRING: .C8834

RECORDING CAUSAL RELATION:
(CeB24 . CBB32)

—— Ay —. e -

ABOUT 10 .APPLY ePHYSCONT1 TO CB832

CA@32: (xPHYSCONTx C@021 #JOHNL)

INFERRING: (*HFEESSHET?RYI HPOSEMOTION
ALSC GEMNERATING: (TIME C@833 Z6817)

ABOUT TO-APPLY ePROPEL1 TO C0824

£0824: (+PROPELX #JORNI CB043 AJOHNL |
INFERRING: (%FORCECONTx C8@48 #BILL1) |
ALSO GENERATING: (TS°C@@s2 Ceels) |

ABOUT TQ APPLY'* FORCECONT2 TO CB852

CB852: (xFORCECONTx C0048 HBILLL)

INFERRING: (NEGCHANGE #BILL1 A#PSTATE)
ALSO GENERATING: (TIME Ce@s55 Cegle)
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This is the partially integrated memory
structure, atter references have been
estab|ished. No reference ambiguity is
assumad- to exist for this example.

COB3S is the resulting memory.structure
for this utterance. '

We suppress all but this structure on' the
starting inference queue.

(e witl be seging 'about one.fourth of the
original trace output fgr this example)

Hece, the CAUSE inference mglecule is
injecting the two subconceptualizations,

A and B in Fig. 1 into the.inference
stream.

The causal structure of this conceptualization
indicated that a path should be found

relatina structure C to structure D in

Fig.1 . This_is noted.- C8824 corresponds

to C, LKY32 to O.

Here, the causative inference that Mary's
kigsing Was probably caused by her fee?ing
a positive emotion toward John .is made.

Because the PHYSCONT of John's hand and .
Bill was caused by a PROPEL, MEMORY' here
mak?s :he inference that it was a forceful
contact,

Since onz of the objects involved in the
FORCECONT _was a _person, MEMORY predicts

a small NeGCHANGE on his part. The degree
of the NZGCHANGE is dependent upén the
tggﬁ gf object which cane intd contact

Wi im, ‘



ABOUT TO .APPLY eNEGCHANLEZ 1U LUBBOSS

~P055: (NEGCHANGE #BILL1 HPSTATE)

INFERRING: (POSCHANGE #MARYL #JOY)
ALSO GENERATING: (TIME Cegsl Cegle)

ABOUT TO APPLY »POSCHANCEL TO C@@e!l
Covels (POICHANGE #MARYL #JOY)
INFERRING: (xMFEELx H#MARY1 #FOSEMOTION

#JOHNI )
ALSO GENERATING: (TS C@g68.C0816)

CAUSAL EXPANSION ACHIEVED:
(COB24  CRP32)
CONTACT POINTS ARE: (C0068 C8833)

MERGING:
Cooe8; (xMFEELx #HARYI)#POSEHOTIUN

#JOHNL
CBP39: («MFEELx #MARY1 .#POSEMOTION
#JOHN1)

x | EXPANDED_CAUSALS

((Ces24 . C8832))

x (CAUSAL_PATH eCB824- 2C8032)

(Ce824 COBS2 CBeSS CeLel Ceess Che32)

——————

- i e = WP o e et b e e e e e e ey NN S G e e e e e . S e

COB24: (¥PROPELx #JOHN1 C@843 #JOHNL
HBILLL)

ASET:
CenS4: (CAUSE # CBB852)
Co828: (CAUSE: # CQB26)

_ CPp25: (TINE # Coole)

RECEMCY: 3908

TRUTH: T, STRENGTH: 1.0

REASONS: .
(CAUSE Ce@824 C8026)

CRBZ3:
OFFSPRING:
Cona78: (CAUSE C8epl Chee6s)
CeA68: (xMFEELx #MARY1 HPOSEMOTION
#JOHNI)
C@BR5: (CAUSE CessS Ceees3)
COv63: (xMFEELx #BILL1 #NEGEMOTION
_ HJOHNL)
Cee54: (CAUSE CBB24 CRA52)
CBmS3: (TS CHRSZ CRRlG)
CPB52: (xFORCECONTx CoB48 #BILL1)
ISEEN: (=PROPEL1)
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Here, because Har? Wwas. feeling a negative
emotion toward Bill at the time, when Bill
underpent a small NEGCHANGE; the prediction
can be made that Mary mau'-have exber ienced
a degree of jou.

Looking back the causal path uhich lead
to Mary's |ikely change in joy, the
POSCHANGE inference molecule. discavers
that it was an action on John's part
which was most directiy responsible for
her joy. The'inference that Mary might
have started feeling a positive emotion
toward John is made,

- o an -

As this last inference is mada, the
inference evaluator natices that the same
information exists elsewhere in the memory.
This is a point of contact in inference
space, |t ds furthermore noticed that the
tuo MFEEL structures' join a causal path
betuween tuwo-structures which have bheen
related causally by language. The two
MFEEL structures are merged into one, and
this event is noted as a causal chain
expansion. fo the left, .C8868 and CBB39
are the contact points, C8024°,and C6@32
are the two structures which have now been
causally related.

Inference proceeds, and finally stops. At
that point, we took a look at the structures
Iging along this explained causal path.

C8824 is the original PROPEL structure,

CBB32 is the PHYSCONT-lips structure. The
service function CAUSAL_PATH will track doun
the causal linkage for us. The causal chain
consists of the six structures to the left.

This is the original PROPEL. During the
process, but not shoun, CBR4E was detected
as unsPecified, and filled in*as John's
hand, Notice on_the REASONS and OFFSPRING
sets the results uf other {nferencing uhich
was not discussed above.



COB52: (xFORCECONTx C00848 #BILL1)

ASET:
Cea77: (WANT #JOHN1 #)
CoB57: (CAUSE # C8@55)
CedsS4: (CAUSE C8024 #)
Co9S3: (TS # Cesle)
RECENCY: 18416
TRUTH: T, STRENGTH: 8.83333393
REASONS:
CBB824: (xPROPELx #JOHN1 CBB848 .#JOHNL
#BILLL)
OFFSPRING:
C0973: " (TS (8877 COvle)
C8077: (WANT #JOHNL C8852)
CeuS7: (CAUSE €B@52 CRBSS)
CB8256: (TIME COBSS C88l16)
Cee55: (NEGCHANGE #BILL1 APSTATE)
[SEEN: (eFORCECONTZ)

CoB55: (NEGCHANGE #BILL1 ARSTATE)
ASET:

C8873: (WANT HJOHN1 #)
C8067: (CAUSE # C8053)
CO866: (GAUSE # CB8bl)
C8@65: (CAUSE # C8863)
C857: (CAUSE COBS2 #)
CorSe: (TIME # CBB16)

RECENCY: 13833

TRUTH: T, STRENGTH: 8.85580808

REASONS:
CE0852: (xFORCECONTx C0848 #BILL1)
(ISA #BILLL APERSON)

18003
OFFSPRING: _
Cog3a: (TIME £0979 C80L6)
£0@79: (WANT #JOHN1 C8@SS)
Ce067: (CAUSE 8855 C853)
Coes6: (CAUSE (8855 COB51)
COPRS: (CAUSE ‘CAOSS CHp63)
CRARA4: (TS COBR3 CBAIs)
CB263: (XMFEELx #BILL1 #NEGEMOTION
_ AJOHNL]
C0062: (TIME CPeG1 CO016)
CQoG1: (POSCHANGE AHARY1 AJOY)
Ce@63: (TS CBes9 Canlie)
C00S9: (WANT #BILL1 C89S8):
ISEEN: (eNEGCHANGE3 NEGCHANGEZ
oNEGCHANGE1)

- —— S . — S G . S P T S G T > — D St Gy S m— v ———

CB261: (POSCHANGE A#MARY1 #JOY)

ASET:
Ce078: (CAUSE # C8g68)
Coa6h: (CAUSE CBBSS #4)
Cere2: (TIME ¥ CB816)
RECENCY: 24616

TRUTH: T, STRENGTH: NIL

REASONS:
CoB55: (NEGCHANGE ABILL1 HPSTATE)
18137: (MFEEL #MARY1 ANEGEMOTION
#BILL1)
OFFSPRING:

55

Here is the FORCECONT uhich was inferred
from the PROPEL.

This is Bill's likely (small) ¢hanae |}
PSTATE which resulteé from“the FOR ECDET.

This is the impartant inference that
Bill's NEGCHANGE may have cause a small
degree of hagpln§§s in.Mary, Notice that
one .of the BEASONS was assumed to be the
case beforehand. (13137).



Ceg78: (CAUSE Ceesl C@pe68)
CBe63: (TS COBES CBBL6)
Co868: («MFEELx AMARYL H#POSEMOTION
HJOHN1)
ISEEN: (ePOSCHANGEL)

-y S S By W vy =y ey by am gt Gaf VD NE SE miy S Mm G Y W W G TR W S S W Tt g e

Co068: (xMFEELx EMARYL HPOSEMOTION
© HJOHND)

ASET:
Coas5:. (WANT AHJOHN1 #)
Cev4d: (TIME # CBB17)
CBB44: (xMLOCx # CBB41)
Ceg47: (CAUSE ¢ C80832)
Ce878: (CAUSE Cgesl #)
COBG3: WS # COB16)
RECENCY: 27366
TRUTH: T, STRENGTH: 8.35888388
REASCNS:
Ceesl: (POSCHANGE #MARY1 #JOY)
CoB24: (*PROPEETLff?HNl CoB48 HJOHNL
i
C8B44: (xMLOCx COB863 CoB4l)
OFFSPRING:
Cee’7+ (TS CBB3S CRBLE)
Cee36: (TIME Ceg85 Ceal?)
Ce885: (WANT H#JOHN1 Coees8)
ISEENs NIL

- - P = v s o e P e e R S S S P G B G S R WP v G e A A S =

£0932: (+PHYSCONT CB82L #JOHNL)
CONS3: (LANT #JOHNL #)
C871: (LANT #MARYL #)
C847: (CAUSE CB@B3 )
C9846: (CAUSE A C044)
C@@24: (CAUSE C0829.#)
C@833: (TIHE # Coal7)

RECENCY: 12816

TRUTH: T, STRENGTH: 1.@

REASONS:
C934: (CAUSE C8829 Ce83z)

OFFSPRING:
£0@39: (TIME CEess C08l7)
Cap83: (WANT #JOHN C0832)
Co872: (TIME COB7L CEel7)
Cgg7L: (UANT #MARY1 C@832)
C@@47: (CAUSE C0863 C032)
Censb: (CAUSE C0A32 CBg4s)
Caa4S: (TS C88s44 Caaly)
CAB44: (xILOCx COBRS COBA4L)
Cga48: (TINME COB58 Coel7)

ISEEN: (oPHYSCONT2 oPHYSCONT1)

o6

Here, Mary is feeling a positive.emotion
toward John, whose action indirectly caused
her joy, This structure is the point of
contact, and is the structure which resul ted
from the merge. Motice that its STRENGTH

has assumed the higher'STRENGTH of the two
structures which uere merged.

This is the original PHYSCONT-|ips structure
which lead, via a causative inference to

the prediction that Mary may have felt a
positive emotion toward John.

This WANT is a prediction that one reason
Har? may have kissed John is so that he
would know she felt. a positive €motion
téuard him, '

This MLBC represents the inference tHat
John probably now knows that Mary MFEELS
a positive emotion toward him.



APPENDIX B

INFERENCE-REFERENCE RELAXATION CYCLE, COMPUTER EXAMPLE

This computer example illustrates reference-interence, reference-inference interaction (two

inference passes). Hearing the input "Bill saw John kiss Jenny.”, MEMORY -is unable to decide

upon the referent of "Jenny": it could be Jenny Jones or Jenny Smith. MEMORY therefore

creates a temporary token having as features all the common features of Jenny Jones and Jenny

Smith. By inference, MEMORY is able to decide upon Jenny Jones. At that point, the temporary

token is marged into the concept for Jenny Jones, and a second pass of inferencing is initiated.

However, on the second pass a new inference arises: because Bill loves Jenny Jones, and he saw

John kiss her, he {probably) became angry at John. This inference was not triggered on the first

inference pass because baing loved by Bill was not a common feature of both Jennys, and hence

not accessible then (ie. it had not been copied to the temporary token's occurrence set),

The example begins with a few lines to set the scene for MEMORY. Inferencing on these

setup lines (which is normally spontanaous) has been suppressed for the sake of simplicity in

this example.

L L T R e

JOHN WAS IN PALO ALTC YESTERDAY

((LOC% (EJOHNI) (EPALOALTQ))
(TIFE _ (Ceeal)))
Cop8z

JENMNY JONRS WAS IN PALC ALTO YESTERDAY
((+LOCx (FJENMYZ2) (HPALOALTO))

(TIE _ (Ceeds)))

CEnvs
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This example illustrates reference-inference,
reference-inferencg interaction. That is,
MEMORY is unable to establish a reference,

so it creates a temporary token, and proceeds:
with, inference, Inferencing generates new
information uwhich solves the reference, so
more inferencing can be undertaken. Houever,
because features of the referent are
accessible-on 'the second inference pass.

new inferences are possible.

To the left, MEMORY is reading in some



JENNY SMITH WAS [N FRANCE YESTERDAY.
{ (xLOCx (#JENNYL) (#FRANCE))

(TIME _ (CGe87))

-0808

w0 S s G A W Wb v VR oW W WY S

BILL LOVES JENNY .JONES
((*HSEEL* {#BILLL) (HLQVE) (A#JENNY2)))*
Co8l

1}
e s IR SR e W S e s S .

BILL SAW JOKN KISS JENNY YESTERDAY -

COPYING COMMON.FEATURES Tn C@@15
FROM (#JENNY2 AJENNYL)

{ (xMTRANGx (#BILLL) ((CAUSE ((+D0x
(#JOHN1) (HUNSPECIFIED)) (TITE
(CeB11))) ((xPHYSCONTx (C@812) TC8815)
(TIME _ (C@s811))))) (Ceel8) (CBa21))
(TIME — (C@B11)) (INST _ ({xLOOK. ATx
(¥BILLT) (C@81S #JOHN1)Y (TIME _
(Cgsli)))))

Coe3l

HJENNY1: NIL

ASET.

[8819: (SURNAME # SMITH)
18818: (1SA # HPERSON)
18817: (NAME # JENNY)

RECENCY: NIL

H#JENNY2: NIL

SET:
18922: (SURNAME # JONES)
18821: (1SA # H#PERSON)
18828;: (NAME -# JENNY)
RECENCY: NIL

CeelS: NIL

ASET:
CBB23: (xLOOK ATx #BILL
CRO26: (xPHYSEONTx C8@1
CeoaLl7: (1SA-# HPERSON)
CPB16: (NAME # JENNY)
RECENCY: 3866

H)
H)

N

STARTING - INFERENCE QUEUE:
((X 1.8 C8@31) (X 1.8 Cee17)
(X 1.8 C8916).
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information which js relevant to this
demonstration. Each of these inputs would
normally produce inferences as it i's processed,
but interencing has been suppressed for thé
first four sentences of this example. The

four sentences are shown uith their partial
integrations and final structures. CQ882,

Coegs5, Coees, Ceeia.

The synopsis of this short plot is as follows:
There are, two Jennys: Jenny Jones and Jenny
Smith. Bill loves Jenny Jones., John and Jenny
Jones ugre in Palo Alto yesterday, Jenny Smith
was in France yesterday. The ¢! imax' comes

when Bill sees John kiss Jenny. It is MEMORY's
job to figure out which Jenny. MEMORY will
decide upon Jenny Jones, then re-inference

and infer that Bill probably got'angrg at
John-- something which wouldn”t have.happgned
if Bill had seen John kigs Jenny Smith."

To the left, the climax line is in the

?rocess of being read and internalized.

ts final structure is €8831. Notice that
CBB1S was created to stand for some jenng, and
that all common features of the two Jenny
candidates were copied to it.

- - - - -

We interrupt MEMORY at, this point to have
a’'look at the two Jennys and CBB15, the token
representing one of these Jennys.

This is the person named Jenny who Biil

saW yesterday, and who 'John kissed., C@812

is the-token rearesenting John's ‘1ips, which
were in *xPHYSCONTx with this person named
Jenny (C8B15) at time COB11. )

MEMORY begins inferencing from this ‘input.
The starting inference queue consists of.

the main structure for the sentence, together
uith all other ‘facts known about CBB15. In
I8 s case, these are simply that CBBLS is



APPLYING  INF MOLECULE «*f1LOCx TO
7: {(«MLOCx (CAUSE (xDOx AJOHNI
cess EUNSPECIFIEB) {xPHYSCONTx CARL2
Ce815)) ree2l)

SIS0, e
HIR S X
ALSO GENERATING: (TS C0843 C88l1)

APPLYING INF MOLECULE *PHYSCOgT* 10
C8826: (xPHYSCONTx C0812 Cesld)

OUT TO APPLY oPHYSCONTY 10 C0826
@BFERRING: (*NEEEL* #JOHN1 #POSEMOTION:

C815)
ALSO GENERATING: (TIME 0843 reell)

ABOUT TO APPLY ePHYSCONT2 TO C8826
INFERRING: (xOCx C8849 C8851)
ALSO GENERATING: (TS C@@54 Ceell)

ABOUT TO APPLY ePHYSCONT3 TD C8826
INFERRING: (xLOCx C8815 #PALOALTO)
ALSO GENERATING: (TIME C8@56 C@sl1)

APPLYING oPQSTSCAN 10 C0@43:.. .
- (*MLOCx (CAUSE (xDOx #JOHN]
ggggsgﬁﬂFlEU) (%xPHYSCONT C8812 C8918))

INFERRING: (xMLOCx C8843 C0048)
COPYING. TIMES. FROM Cg843 TO Ceess

- o - -

———————————————————————————————————

C8815: NIL

ASET:
COB85h:
Coes3:
Cena9:
C@829:
Ce826:
cenl7:.

A% QC% # HPALOALTO)
(PART-CBO51 H)

(xHFEEL% #JOHN1 A#POSEMOTION #)
(xLOOK _ATx #BILLL #)
(xPHYSCONTx CBB12 #)

(1SA # HPERSON)

a person, ‘and that its name is Jenny. lhese
Wwi.ll not be of use in this exampie. All other
subproposi tions have been suppressed from

the starting inference queue for' this example.

One inference from Bill's seeing this event
is that he knows that the event eccurred.
That js, the.event went from his eyes to
his conscipus processor, C8821.
To the left, the inference that Bill knous
about John's kissing Jenn% is beinhg ?enerated:
information in Bill's CP (C8821) will also
enter his LTH, CB048. This fact Will 'be of
use during -the second pass of inferencing
jaftg; NEHORY decides that 8815 is Jenny
ones).

Another inference arises from John's lips
being in PHYSCONT with COB815: that John
feels a positive emotion toward CBB15. The

stgzgture representing this inference is

Another inference from John's kissing action
is that CBB15 knows that John feels a.positive
emotion toward C8B1S, COB51 is CBOLS's LTM.
This inference will be of no direct

consequence in this example.

MEMORY also infers from John's kissing C8815
that John and CB815 -had the same location

at the.event time, C8011 (yesterday). Since
MEMORY knows that John was in Palo Alto, and
has no information concerning C8815's location
gesterdax, MEMORY infers that CBO15 was also
in Palo Alto.yesterday. This information will,
solve the reference ambigui ty.

During the. postscan interencing, .the fact
that Bill saw John kiss CBOLS Teads to

the inference that.Bill knaws that John
feels a positive emotion toward CBB1S, This
inference type implements the prificiple that
if a person knows X, he also is.likely also
to know the inferences which -can:be draun
from X, That is, MEMORY assumes that aother

Reo le possess the same inference powers as
EMORY cloes.

Inferencing eventually ceases. We jnterrupt
processing at this ﬁnunt to examine CB815,

the unknoun Jenny, Notice the neuw information
which has been bu.it up about C8815.

CegS1 is CeA1S's LN,

CPB12 is John's |ips.



COB16: (NAME # JENNY)
RECENCY: 3358

- ——— ——— WP N D = Tw P g e e o e

C956: (xLOCx CBBLS HPALOALTE)

ASET:

Cen78: (xMLOCx # CB8408)
Ceas7: (TIME #°'Cesll)

RECENCY: 642533

TRYUTH: T, STRENGTH: 8.908258088

REASONS: _
C0882: (xLOCx #JOHN1 APALOALTO)
Cev26: (xPHYSCONTx C8012 Ce8is)
OFFSPRING:
CBl8l: (xMLOCx CB8e824 CoE51)

ISEEN: NIL
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C8086: xMLOCx CBQ43 CBB4LD)
(xMLOCx (xMFEELx #JOHN1 #POSEMOTION
AS Co015) CBe48)

ET:

Cee87: (TS # CeBll)
RECENCY: 257589 )
TRUTH: T, STRENGTH: 8.395000088
REASONS: -

CeB43: (xMLOCx CPB28. CPB4E

ISEEN: (eMLOC2) :

RETRYING REFERENCE:
(CBB15 HJENNYZ2 HJUENNY1)

REFERENCE AMBIGUITY 'SOLVED.

OLD: (CABIS WJENNY2 HJENNYI)
NEW: HJENNYZ

MERGING:
HJENNY2: #JENNYZ
cAntS: CRBLS

(xL0Cx C@elS #PALOALTO)

(xMLOCx (xLOCx C@B15 #PALOALTO)
Cea48)

(TS (xMLOCx (%LOCx C@8815
H#PALOALTQ) CB848) CBB11)

{TIME (#LOCx CBB1S HPALOALTO)
Cceall)

(ISA CB8a1S HPERSON]

(NAME C8815 JENNY)

PURGING
PURGING:

PURGING:
PURGING:

PURGING:
PURGING:

- D - e A8 S e D D Sah e S AR Y S W e S e S R MY A Am e e e et

HJIENNYZ: NIL

ASET:
£all17:.
Coe20:
Cee29:
CRB849:
CBes3:

(IDENTIFIES # Cegls)
(xPHYSCONTx CB8812 #)

(xLOOK _ATx 4BILL1 #)

(#MFEECK, #JOHN1 #POSEMOTION #)
(PART C@@S1 #)
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Since it will settle the reference ambiguity,
e have 3 closer lbok at:the structure which
represents CBB1S’s being in Palo Alto
yesterday (CBBL1)., CBOB73 represents Bill's
knowledge of CB315's location yesterday

(but has no direct relevance to. this-example).

Notice that the reasons for MEMORY believi
that CBA1S was in.Palo Alto at time Eﬁéfflng
?;qtt?gfold: ;h?; {ohn was in Palo Alto at

at time, an at a body part of Joh
was in PHYSCONT. uith CBBlg Ehen. onn

We also examine the structure which represents
the inference that Bill knbows that John

feels a positive emotion toward COB1S5. This
information will come into play after CBAB15's
ldentltB is_solved (on the second inference
pass). LBB3/ indicates uhen Bill started
knowing this fact (CBB48 is his LTH).

The first pass of inferencing is nouw finished.
We allou HENORY to proceed. ?t notices that
a-reference decision is pending, and attempts
to decide betuszan HJENNYL and gJENNYZ as the
referent of CE2!5 by using newly-inferred
information about CE31S (from the first

pass). |t succeeds,. because H#JENNYZ wnas

knoun to be in Palo Alto yesterday, and

this matches new CBBLS information, CB8S5B6.

MEMORY merges CB31S into HJENNYZ, purging
gld lnforgatlon which is not used to augment
#HJENNYZ., Hecall that the merge replaces
occurrence set pointers, so-that every,
MEMORY structure which referenced C8BI5 now
references #JENNYZ,

We have anqther look at HJENNYZ before the

“second inference pass begins. .



Ceela:
Caeus:
10919:

(WMFEELx #BILL1 #LOVE #)
{xLOCx # HPALOALTO)
(SURNAME # JONES)

10918: (ISA # -APERSON),

100817: (NAME # JENNY)
RECENCY: 8359

RE-INFERRING...

ARPLYING "INF MOLECULE =MLOCx’'TO
CaABgs86: (xMLOCx (xMFEELx A#JOHNI
HPOSEMOTION' #JENNYZ2) CE848)

ABOUT TO APPLY oMLOC3 TO CB886
INFERRING: (xMFEELx #BILL1 HANGER

.- #JORNL)
ALSO GENERATING: (TS C81139 Ce81l)

- e e T - S T B e e S A W = i AP R S W e e B D S D M WD ew P e =

ASET:

Ce12l: (CAUSE C88386 #)
Celz8: (1S # CeBll)

RECENCY: 187608

TRUTH: T, STRENGTH: ©.30256088

REASONS:
£00836: (xMLOCx Ceg43 Cea48)
C0918: (kMFEELx #BILL1 #LOVE KJENNYZ)

ISEEN: NIL
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MEMORY.begins the second pass of inferencing.
This consists.of subjecting each inference
which arose from the first pass to inference
again. The .ISEEN property prevents duplication
of inferences during second and subsequent
passes.

One neuw inference uhich was not possible

on the first pass is that Bill probably

became angry at Johm. Thig inference arises
from Bill's knouinﬁ that John .feels a'positive
emotion touward HJENNYZ, someone Bill loves.
CBl119 is the structure representing Bill's
incipient anger toward John., The crucial

point is that this inference became possible
only after HJENNY2's features became
avatlable.after a'reference decision, which

was in turn'made possible through first-
pass inferencirg.

Finally, we have a look at this second pass
inference. :

C8l21 represents the cause of Bill’s anger
as being C8886, his kKnowing ‘about the kissing
event, CBB43,

Notice the reasons MEMORY believes that Bill
became angry at John: he knew John kissed
HIENNYZ (this structure is CB843), and he
loves HJENNYZ2,
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