American Joursfal of Computational Linguistics Microfiche 8

STRING TRANSFORMATIONS

IN THE

REQUEST SYSTEM

Warren J. Plath
IBM Thomas J. Watson Research Center
Yorktown Heights

Copuright 1974 by the Association for Computatiaonal Linguistics

ABSTRACT

The REQUEST System is an experimental natural language query
system based on ¢ large transformational grammar of English. 1In
the original implementation of the system the process of computing
the underlying siructures of input queries involved a sequence of
three steps: (1) preprocessing (including dictionary lookup),

(2) surface phrase structure parsing, and (3) transformational
parsing. This scheme has since been modified to permit transfor-
mational operations not only on the full trees available after com-
pletion of surface parsing, but also on the strings of lexical
trees which are the output of the preprocessing phase. Transfor-
mational rules of this latter type which are invoded prior to sur-
face parsing, are known as string transformations.

Since they must be defined in the absence of such structural
markers as the location of clause boundaries, string transforma-
tions are necessarily relatively local in scope. Despite this in=-
herent limitation, they have so far proved to be an extremely use-
ful and surprisingly versatile addition to the REQUEST System,
Applications to date have included homograph resolution, analysis
of classifier constructions, idiom handling, and the suppression of
large numbers of unwanted surface parses. While by no means a
panacea for transformational parsing, the use of string transfor-
mations in REQUEST has permitted relatively rapid and painless ex-
tension of the English subset in a number of important areas with-
out corresponding adverse impact on the size of the lexicon, the

complexity of the surface grammar, and the number of surface parses
produced.

TABLE OF CONTENTS

1. Introduction
2, REQUEST System Organization
3. Motivation for the Introduction of String Transformations
3.1 Some Relevant Design Principles
3.2 Early Experience with the Parser
3.3 Problems of Growth of Coverage
4 The Use of String Transformations in the RFQUEST System
4,1 Classifier Constructivus
4, 2 Stranded Prepositions
4,3 Homograph Resolution
4. 4 Idiom Processing
4.5 Experiments in Limited Conjunction Processing
5. Summary and Conclusions

Appendix: Listing of String Transformations

References

11

12

16

20

22

23

31

34

38

43

53

56

81

String Transformations in the REQUEST System

1. INTRODUCTION

The REQUEST (Restricted English Question-answering) System [l, 2]
1s an experimental natural language query system which is being developed
at the IBM Thomas J, Watson Research Center. The system includes a
large transformational grammar, a transformational parser, and a Knuth-
style semantic interpreter. The grammar and its associated lexicon are
broadly oriented towards question-answering on periodic numerical data,
they also include material specific to natural English interaction with col-

lections of business statistics, as exemplified by the Fortune 500

The long-range objective of the work on REQUEST is to determine the
extent to which machine-understandable subsets of English can be developed
to provide non-programmers with a convenient and powerful tool for access-
ing information in formatted data bases without having to learn a formal
query language. In the interest of facilitating effective "understanding'' on
the part of the system, the semantic scope of the English subset we are
currently dealing with 1s largely restricted to the world of business statis-
tics, Within that narrow domain of discourse, however, we are attempting
to cover a relatively broad range of syntactic and lexical alternatives, 1n
the hope of permitting future users to employ their normal patterns of

written expression without major adjustment. The current REQUEST

grammar covers a variety of basic English constructions in some depth,
including wh- and yes-no questions, relative clauses and clausal negation
It is now being extended into such areas as comparison, conjunction and
quantification which, while complex, appear to be of central importance

in providing a semantically powerful subset of English.

2. REQUESL bdystem Organization

The REQUEST System consists of a set of programs written in LISF
1.5 together with an associated set of data files containing the lexicon,
grammar, semantic interpretation rules and data base. The system runs
interactively on a System/370 Model 158 under VM/370 in 768k bytes of
virtual core. As can be observed from Figure 1, the system contains two
major components, one transformational, the other interpretive.

The transformational eomponent, which serves to analyze input woru
strings and conypute their underlying structures, consists of two main
parts: a preprocessor and a parser. The interpretive component also
has two major subcomponents: (i) a semantic interpreter*, which trans-

lates each underlying structure inta a logical form, i.¢., a formal ex-

pression specifying the configuration of executable functions required to
actess the data base and compute the answer to the corresponding question
and (ii) a retrieval component**which contains the various data-accessing
testing, and output formatting functions needed to ecvaluate the logical form
and complete the question-answering process.

Looking at the trdnsformational component in somewhat greater de-

tail, the role of the preprocessor is to partition the input string into words

b
Implementation of the semantic interpreter, which operates according to

a scheme originally proposed by D. E. Knuth [3], is due to S. R. Petrick
[1, 4, 5], who has also devised the specific semantic interpretation rules
employed in REQUEST.

s
F. J. Damerau is responsible for the design and implementation of the
current retrieval component.

TRANSFOR
MATAONAL
COMPONENT

INTERPRETIVE
COMPONENT

-
|
|
|
!
I
n
I
I
I
|
I
I
I
I
I
I
|
I
|
I
|
|
I
I
|
|
I
I
|
|
|
|

F1gurc 1

,(USER)
- . >

Input Word

String
PREPROCESSOR j= - LEXICON
Preprocessed
String
STRING
et = oy TRANSFOR-
MATIONS
SURFACE
2l
PARSER GRAMMAR
INVERSE
TRANSFOR-
e —=
MATIONAL
GRAMMAR
Unferlying
Structure(s)
I SEMANTIC e —
INTERPRETER
Exccutable
Code N\
v (Logical Form)
RETRIEVAL ————
1
|
{
~~~~~ 4 Output
Overall System Organization



and punctuation marks and then look up each segment in the lexicon, yield

ing a preprocessed string of lexical trees which serves as input to the
parser. Multi-word strings that function as lexical units are identified by
a "longest match' lookup in a special phrase lexicon; while the lexical
trees corresponding to arabic numerals (which may variously represent
cardinals, ordinals, or year names) are supplied algorithmically rather
than by madtching against the lexicon., In cases where there are gaps in
the preprocessed string, due to the presence in the input of misspellings,
unknown words, ambiguous pronoun references, and the like, the prepro
cessor prompts the user to supply the required information.

Operation of the &iransformational parser* procceds in three stages:

(1) The preprocessed string is successively analyzed with

respect to the structural description of each rule in a

linearly ordered list of string transformations, Each

successful match against a string transformation leads
to modification of one or more of the trees in the pre-
processed string through application of the operations
specified in the structural change of the rule in ques-

tion -- operations which are drawn from precisely the

e

The original design and implementation of the parser are due to Petrick
[6]. The version currently being used in REQUEST is the result of signifi-
cant revisions and extensions by M. Pivovonsky, who (with the aid of

E. O. Lippmann) has also been chiefly responsible for implementing the
preprocessor.



(2)

(3)

same inventory of elementary transformations that the
system makes available for the processing of full trees
by conventional cyclic and postcyclic transformations,
namely: deletion, replacement of a tree by a list of
trees. Chomsky adjunction, feature insertion, and fea-
ture deletion. (A more detailed account of the nature
of string transformations and the motivation for their
use in a transformational parser will be presented in
the remaining sections of the paper. )

Upon completion of the string transformation phase,
the resulting transformed preprocessed stringe--

still in the form of a list of trees -- i{s passed to a
context-free parser in order to compute the surface
structure (8) of the sentence. (Although one major
effect of the employment of string transformations has
been a substantial reduction im the number of unwanted
surface parses, cases still occur with some frequency
where more than one surface parse is produced.)
Finally, the transformational parser processes each
surface structure in turn, attempting to map it step

by step into a corresponding underlying structure



10

according to the rules of a transformational grammar.
In this process transformational inverses are applied
in an order precisely, opposite to that in which their
"forward'' counterparts would be invoked id sentence
generation: inverses of the postcyclic¢ transformadtions
are applied first, starting with the ''latest' and ending
with the ‘'earliest’’; then the inverses bf the cyclic
transfoermations are applied (also in last-to-first order)
working down the tree from the main clause to those

that are most deeply embedded.

To help ensure validity of its final output, the parser checks each
intermediate output produced by successful application of an inverse trans-
formation to determine whether or not its constituent structure conforms
fully with the set of branching patterns that can be generated by the cur-
rent grammar in underlying or intermediate structures., At the end of
each inverse cycle, a similar check is performed to determine whether
all structure above the next (lower) level of embedded S s is consistent
with the inventory of allowable underlying structure patterns alone. Fail-
ure of either test results in immediate abandonment of the current analysis

path. (Ag described in [2], other, more stringent tests involving the



11

application of corresponding forward transformations can optionally be
invoked in order to provide a more definitive validation of inverse trans-

formational derivations.

3. Motivation for the Introduction of String Transformations

Within the series of major processing steps described in the preceding
section, the application of string transformations occurs at a point midway
between preprocessing (including lexical lookup) and surface phrase struc-
ture parsing. Taken in sequence, these three steps have the cumulative
effect of shifting the locus of analysis operations from the domain of word
strings to that of full séntence trees, where conventional transformations
(and their inverses) can meaningfully be invoked. Unlike the balance of
the transformational parsing process, these three preliminary steps do not
seem to bear a direct correspondence to familiar generative operations.
Nevertheless, their combined effect is to produce the tree or trees which
exist at that stage of the "forward' generation where the last postcyclic
transformation has applied. Accordingly, it scems reasonable to view
them initially as constituting a kind of "bootstrap' whose function is to set
the stage for ‘true' transformational parsing,

Prior to the introduction of string transformations in the REQUEST
System, the entire burden of the "bootstrap'" role just outlined necessarily

fell on the preprocessor and the surface parser. Moreover, as will be



12

explained below, certain basic principles concerning the nature of the
system's transformational component -- relating to the range of inputs

to be accepted and the criteria for satisfactory outputs -- had the effect of
ensuring that the burden would be a large one. The full dimensions of the
situation began to emerge ornce extensive testing of the first sizeable trans
formational grammar was underway, There followed a series of correc-

tive actions, the last and most far-reaching of which was the introduction

of string transformations,

3.1 Some Relevant Design Principles

In the early design phases of what subsequently became the REQUEST
System's transformational grammar, it was decided to adopt a level of
underlying structure considerably more abstract than the deep structlire
of Chomsky's Aspects [7] -- a level which, somewhat in the spirit of gen-
erative semantics [8, 9], would go a long way towards direct representa-
tion of the meanings of sentences., Eschewing irrelevant details, the essen-
tials of the representation adopted (which hears certain strong resem -
blances to the predicate calculus) are as follows: Each underlying struc-
ture tree represents a proposition (category Sl) consisting of an underlying
predicate (V) and its associated arguments (NP's) in-that order. Argument
slots are filled either by embedded propositions (complement S1's) or by

nominal expressions (NOM's). A nominal expression directly dominates



13

either a NOUN, or a NOM and an Sl (the relative clause construction).
Each NOUN dominates an INDEX node which is specified as a constant
(+ CONST) in the case of proper nouns and as a variable (- CONST) other
wise. The INDEXes and the terminal nodes they dominate play an impor
tant role in the grammar, including the representation of coreference*.
One major impact which this view of underlying structure had on what
the '"'bootstrap' had to accomplish involved the connection of prepositional
phrases to the balance of the surface structure tree. In underlying struc-
ture, the noun phrase corresponding to each surface prepositional phrase
would appear as a specific argument in a specific proposition, follawing,
the application of the generative transformations whose inverses the parser
would employ, the resulting prepesitional phrase would in most cases still
be explicitly linked to the clause or clausal remnant derived from that un-
derlying proposition. Thus, in order to make possible a correct inverse
transformational derivation, the surface parser would have to make all
sach linkages explicit, This requirement represented a significant depar-
ture from earlier practice in a number of phrase structure parsing systems,
notably those employing predictive analysis [10, 11], where the problem

of connecting prepositional phrases to the correct level of structure was

simply ducked by making an arbitrary linkage to the nearest available

‘Much of the early work on the grammar, in particular the svstem of
variables and constants, reflects suggestions bv Paul Postal.



candidate, therehy avoiding what would inevitably have been a large in-
crease in the number of unwanted analyses. (A similar approach has re-
cently been followed in the ATN parser of Woods Lunar Sciences Naturat
Language Information System [12], but there the semantic interpreter is
made to pick up the slack. )

A second design principle which had a major impact on the mechanisms
for computing surface structures from input strings was the alteady-men-
tioned goal of providing broad coverage of syntactic altermatives to promote
ease of use, (As should be fairly obvious, expansion of grammatical
coverage -- ¢ven in a restricted domain of discourse -- in general entails
not only an incrcase in the size and complexity of lexicon and surface gram-
mar but alsg an increase in the potential for lexical and syntactic amba-
guity. )

Two classes of syntactic alternatives whose coverage at the surface
syntax level led to specific problems,ultimately resolved by the use of
string transformations were stranded prepositions and classifier construc-
tions. In both cases the problems stemmed from the introduction of new
possibilities for incorrectly connecting a preposition or prepositional
phrase to the balance of the surface structure. Stranded prepositions
occur with some frequency in wh-questions and relative clauses.in English
often yielding results whose naturalness compares favorably with that of

the corresponding non-stranded versions, as in (1) (3) below. Because



>f these circumstances, we felt obliged tu provide for such constructions

(1) a.

b.
(2) a..
b.
(3) a.
b.

What companies did XYZ sell oil to?
To what companies did XY Z, sell oil?

What was the city which ABC's headquarters was located in
in 1969?

What was the.city in which ABC's headquarters .was located in
19697

What company was Mr. Jones the president o4 in 1972

? Of what company was Mr: Jones the president in 19727

even in early versions of our grammar. The case for including classifier

constructions, in which proper nouns are opfionally accompanied by a com-

mon noun designating their semantic class (cf. the (a) versions of (4)- (7)),

did not seem quite as compelling as that for stranded prepositions, since

(4) a.
b.
(5) a.
b.
(6) a.
b.
(7) a.
b.

the City of Sheboygan

Sheboygan

Commonwealth

Stat
the { ate } of Massachusett

Massachusetts

Corporation

(the) Tentacle {M }

Tentacle

the year (of) 1965

1965

15



16

the versions with classifiers have a formal, slightly pedantic quality that
is absent from their classifier-less counterparts. Nevertheless, there
appeared to be no reasonable grounds (such as obscurity, doubtful gram-
maticality, and the like) for excluding them from the subset.

A third factor affecting the performance of the ''bootstrap'' was the
conscious decision to try to get along initially with a surface parser which
would be maximally simple with respect to both its computational mechan-
ism and 1ts surface phrase structure grammar. In particular, this meant
employment of a context-free parser without either the complications or
the benefits of sensitivity to syntactic and semantic {eatures [11, 13]. The
hope was that any additional surface parses which resulted from this ap-
proach would be effectively filtered out during transformational parsing

by the various well-formedness checks on inverse derivations discussed at

the end of Section 2.

3.2 Early Experience with the Parser

Starting in late 1971, tests began on an inverse transformational
grammar whose generative counterpart had been developed with the aid of
Joyce Friedman's transformational grammar tester [14]. In the interest
of debugging the system with as few unnecessary complications as possible,

the initial examples were ''spoon fed' to the parser using a minimal lexicon



17

and surface grammar. While revealing no critical problems with the boot-
strap, these first trial runs indicated that incorrect surface structures
were indeed produced along with the correct ones and tended to give rise

to analysis paths which continued for some time before being aborted by
well-formedness tests, Sentences with ambiguous verb forms were a case
in point. Thus, in the question '""What companies are computers made by? "
the surface parser produced two almost identical structures -- the first
with '"made' taken as-a finite verb in the past tense, the second with it
taken (correctly) as a past participle. The first analysis initiated a lengthy
inverse derivation that was terminated as ill-formed only after the entire
postaycle and the first inverse cycle had been traversed, meaning that
nearly as much time was spent in pursuing this incorrect path as was re-
quired to follow the correct one. In this and a number of similar cases,
however, it was observed that ill-formedness of the surface structure
could have readily been detected at or near the outset of the transforma-—
tional parsing process by performing tests employing the pattern-matchin
power of transformational rules., This observation led to the introduction
of so-called blocking rules in the transformational grammar, rules which
proved to be quite effective in detecting and filtering out ill-formed struc-

tures such as the incompatible auxiliary/finite verb combination in the

example just considered.



18

In the spring of 1972, the surface grammar was greatly expanded 1n
an attempt ta cover the full range of structures that could be produced by
the set of transformational rules then in use. At that point, the combined
effect of the various design decisions affecting surface structures and sur-
face parsing became immediately and painfully evident in the form of a

combinatorial explosion: The brief and apparently innocuous question (8)

(8) '"Is the headquarters of XYZ in Buffalo?"

produced no less than 19 surface parses, a figure which soared to 147
when a third prepositional phrase was introduced by replacing '"Buffalo"
with the classifier construction "the city of Buffalo'  Although a blocking
rule for detecting spurious stranded prepositions rather quickly killed off
16 of the 19 analyses in the former case, thereby reducing the analysis
problem to tractable size, the system was unable to cope with the latter
situation at all, due to problems of storage overflow,

Thoughts of what would inevitably happen if we added yet another prep
ositional phrase (as in "Was the headquarters of XYZ in the city of Buffalo
in 1971?") made it clear that killing off unwanted surface parses after the
fact by means of blocking rules was not enough, measures wauld have to
be adopted which would prevent formation of most such analyses in the
first place. Two corrective steps were taken almost immediately:

(a) coverage of classifier constructions was temporarily dropped, and

(b) it was decided to explore what could be done towards elimination of



spurious surface parses through selective refinement of category distinc-
tions in the surface grammar.

In the latter area, it was discovered (not surprisingly) that differences
in the surface structure distribution of prepositional phrases, genitive
noun phrases, and other types of noun phrases could be effectively ex-
ploited to suppress incorrect parses, as could distributional contrasts be-
tween proper nouns ahd common nouns, finite verbs and participles, etc,
(In the case of (8) above, 13 of the original 19 parses were ruled out on the
ground that proper nouns cannot take modifiers, while 3 more analyses
(plus 4 of the 13 already eliminated) were excluded on the basis of distribu
tional distinctions between prepositional phrases and other noun phrases.)

Implementation of the refinements in the surface grammar required
numerons part-of-speech code changes in the lexicon and a substantial in-
crease in the number of rules in the surface grammar. Beyond this, the
central problem was that the transformational grammar defines a specific
class of surface structures -- employing only elements from a fixed set of
intermediate symbols -- as the parses which must be found. In order to
meet this requirement, the by now considerably expanded set of inter-

mediate symbols employed in the surface grammar had to be mapped onto

the smaller set compatible with the transformations. Thus, for example,
PP (prepositional phrase) and NPG (genitive noun phrase) nades in each sur-

face structurc would be replaced by NP nodes before transformational



20

parsing began -- tortunately an extremely simple and rapid operation. (In
the most recent version of REQUEST, the surface grammar employs a
total of 32 temporary node names for this purpose; they are subsequently

mapped onto a set of only 9 nodes for purposes of transformational parsing.

3.3 Problems of Growth of Coverage

The various measures just described had the effect of stabilizing the
incidence of artificial surface structure ambiguities at a tolerably low
level for a period of about a year, during which the transfosmational
grammar roughly doubled in size from about 35 rules to over 70 as cover-
age was cxtended to include such structures as numerical quantifiers, time
ecompounds, and various expressions involving rank ahd ordinality. The
principal costs of ambiguity suppression were felt not in the analysis pro-
grams, which required only negligible modification for that purpose, but
rather in the surface grammar, which grew much larger and more complex
to the point wherc it became rather difficult to work with, Sinc¢e a number
of additional extensions of grammatical coverage were under active can-
sideration -- among them the restoration of classifier constructiohs to the
subset -- it seemed desirable to seek out some new approach to ambiguity
suppression which'would not further overburden the surface grammar,

The alternatives originally considered were uniformly unattractive.

In fhe case of the classifier constructions, one could have achieved the



21

immediate objective by simply loading up the phrase lexicon with an entry
for each legitimate pairing of a classifier with a proper noun, thereby
achievihg a minor gain in grammatical coverage at the price of more than
doubling the size of the lexicon. Another approach would have involved
creating phrasal entries only for the classifiers themselves -- e. g.,
"the city of', the state of', etc. -- leaving it to special ad hoc routines at
the end of the preprocessor first to check the preprocessed string for the
presence of immediately following proper nouns of the corresponding seman-
tic class and then to effect the appropriate amalgamations or deletions.
The second alternative was quickly rejected as even more distasteful
than the first, since despite its relatively small initial :ost, it would, if
used at all extensively, have micant abandonment of an otherwise orderly
and perspicuous analysis procedure. This train of thought, however,
eventually led to the idea of modifying the preprocessed string not by ad
hoc subroutines requiring accretions to the program, but by means of
locally defined transformational rules employing the same computational
apparatus and notational conventions as the existing forward and inverse
transformations. Within a week of its conception, the idea of a string

transformation facility became a reality through some minor modifications

to the flow of control of the parser.

*Much of the ease of this transition stemmed from the generality of the
original properanalysis mechanism, which was designed to accept a
list of trees, rather than a single tree, as itg input.




4. The Use of String Transformations in the REQUEST System

Because they apply to strings of unconnected* lexical trees, rather
than to full surface trces with their representation of the structure of
phrases and clauses, string transformations tend to be relatively local in
scope, typically being restricted to constructions with contiguous elements.
Despite this inherent limitation, such rules rapidly found a wide variety of
uses within the REQUEST System: Classifier constructions were readily
identified and transformed into classifierless counterparts by a handful of
string transformations. Rules were also written for suppressing incorrect
stranded prepositions, resolving homography, and translating certain
idioms into a form more manageable for the surface parser. Finally, ex
periments were undertaken to explore the possibility of employing string
transformations to deal with a limited but potentially useful range of con-
junction construations.

A common thread running through several of these apparently diverse
applications of string transformations 1s the application of what would

otherwise have been treated as the inverse of a late postcyclic transforma-

tion at a point preceding surface structure parsing in order to achieve a

*At least initially. Some string transformations currently in use produce
what are in effect partial surface structures as output. In fact, itis
quite pos’sible that an appropriately chosen cyclically ordered set of
string transformations could supplant the surface grammar entirely, how-
ever, such a development appears unattractive at this time due to ef-
ficiency considerations.

22



simplification of the surface grammar, a reduction in the number of
spurious surface parses,, or both. (The benefits of such a reordering stem
in large part from the fact that derived constituent structure patterns pro-
vided for at the string transformation level need not be dealt with in the
surface grammar, thereby reducing its size, its scope, and its potential
for producing incorrect surface parses.) In the case of classifier construc

tions (Section 4.1) and of certain idioms involving notions of rank (Sec-

tion 4. 4), existing postcyclic transformations were actually replaced by
string transformations; while in the case of stranded preposition preven-
tion (Section 4.2), a string transformation was made to assume much of
the load of an existing postcyclic blocking rule, resulting in a highly bene-
ficial elimination of unwanted surface parses in both instances. In other
situations, such as these involving homograph resolution (Section 4. 3) and
the treatment of the first group of idiom-processing rules discussed in
Section 4.4, a correspondence of string transformations to locally-defined
postcyclic transformations, while potentially possible, did not actually
exist, since no attempt had been made to cover the constructiéons in ques-

tion prior to the introduction of string transformations.

4.1 Classifier Constructions
The string transformations relating to classifier constructions are

exemplified by-the rule '"City, State, Year Classifier', whose statement



24

is displayed in Figure £ using a hybrid tree/list netation in order to en-
hance legibility. Like’all transformations in the REQUEST System, this

rule consists of a list with five main sections: header, structural pattern,

condition, structural change, and feature change. The header, which

serves to identify the rule and a number of basic attributes governing its

applcation, is in the form of a list comprising the name, type (FORW,

INVDIR, INVINDIR, STRING, or BLOCK), optionality (OB or OP), and

mode (ALL, ANY, ONE, NA, or REANALYZE') of the transformation.
Thus the rule CSYCLSFR is labeled as a string transformation whose
execution is obligatory for all matches that may occur 1in the list of trees

being processed.

The structural pattern (possibly gqualified by further constraints ex-

pressed in the condition section) defines the domain of applicability of

the transformation in the form of a list of pattern elements, each specify-

ing a tree or class of trees. For a match to occur, it must be possible to
partition the input tree (or list of trees) into a list of non-overlapping,

adjacent trees each of which matches the corresponding pattern element.
Thus, the structural pattern in Figure 2 indicates that the rule CSYCLSFR
requires that the preprocessed string be partitionable into the following
six-segment sequence: (1) an arbitrary initial segment (possibly null)
designated (X . 1), (2) an occurrenceé of the definite article THE, (3) a

common NOUN (already represented-in our surface structure as dominating



Header: (CSYCLSFR STRING OB ALL)

Structural Pattern:

(X.1) (THE.?2) NOUN (OF . 5) ((INDEX. 6)
(ORX (+ CITY
+ STATE + YEAR)))

(INDEX . 4)

(CITY . 3)
(STATE . 3)
(YEAR . 3)

Condition:

(EQUAL ORX (QUOTE {+ (NODENAMEOF 3))) )

Structural Change

(1 2 3 4 5 6 7)

(1 0 0 0 0 6 7)

Feature Change:

NIL

Figure 2: The String Transformation
"City, State, Year Classifier"

25

(X . 7))



an underlying predicate (V) and an INDEX) which happens to be one of the

three classifiers CITY, STATE, or YEAR, {4) an occurrence of the prep-

osition OF; (5) an INDEX bearing one of the feature pairs (+ CITY),

(+ STATE), or (+ YEAR) (the absence of a preceding V node here is suffi
cient to guarantee that any matching item will necessarily be an INDEX

(+ CONST) -- i,e., a proper noun); and (6) an arbitrary ({possibly null)
final segment, designated by (X . 7). The condition adds the further stipu-
lation that the value of the variable ORX>45 be compatible with node 3 in the

pattern -- i.e., the proper noun must belong to the semantic class desig-

nated by the classifier.

The structural change pf a transformational rule may be stated in one
of two wayk:
(1) If the change is relatively simple fas here) it may conveniently be
stated in the form of two lists of numerals referring to the correspond-
ingly labelled elements of the structural pattern. The first list identifies
the elements under consideratior the second list (which must contain the
same number of elements as the first) specifies what (if anything) happens
to each of them -- replacement, deletion, sister adjunction tc another

element, eté. In the case of CSYCLSER, the change specified is the

o

%
In addition to providing variables ALPHA, BETA, and GAMMA, which

range over the setof feature values {#, -.}, « the notational system of the
REQUEST transformational component includes the variables ORX, ORY
and ORZ, which range over sets of (feature value, feature name) pairs.

26



27

deletion of the trees whose top nodes are labelled 2, 3 4, and 5 (including
by convention, any higher nodes which dominate only deleted nodes). Thus
the effect of the rule is to eliminate all classifiers of the designated type

from the preprocessed string:

{(2) Alternatively the structural change may be expressed as a list of
elementary operations, drawn from thre set REPLACE, DELETE,
LCHOMADJ, RCHOMADJ}, and their arguments. This notation is typi-
cally employed when fixed trees are inserted (although the first option may
still be taken in such cases) and is obligatory whenever a choice is made
among alternative structural changes by evaluating one or mere condi-
tional expréssions. Had this second option been taken in the case of the
present rule, its structural change would have read: ((DELETE 2}
(DELETE 3) (DELETE 4) (DELETE 5)).

The feature change section of each transformation is always expressed

as a list of elernentary operations which are members of the set {INSERT,
DELETE]}, together with their associated arguments. Where no feature
change is associated with a rule, as is the case for CSYCLSFR, this
final sectiorr of the rule statement is specified as NIL, the eppty fist.

(The structural change and condition sections of transformations can

similarly be defined as NIL, denotfing that the tree structure remains un-

changed and that there are.no extra conditions on apnlicability, respectively. )



28,

Two other classifier-deleting string transformations which are very
similar to "City, State, Year Classifier' are the rules '""Year Classifier"
(YRCLASFR) and "Company Classifier"" (COCLASFR) The former de-
letes the lexical trees corresponding to the underlined material in
examples like '...the year 1968...", while the latter does the same
thing in examples such as "... {the) American Can Company... . Although
the underlying predicate COMPANY is the only one specified in the strue¢-
tural pattern of COCLASFR, the rule actually applies to instances where
a form of either of the words ''company' or'"“corpofation'" has been used
in the input string, owing to the fact that the lexicon assigns the same under-
lying predicate to both in recognition of their synhonymity

"City State Block' (CSBLOCK) and "City State' (CITYSTAT) are two
rules, related to the preceding ones, which illustrate additional aspects
of the system., Both of these rules follow €SYCLSFR in the list of string
transformations. As indicated by its header information, (Figure 3(a)),
CSBLOCK is a blocking rule (BLOCK), which entails that it is obligatory
(OB) and will result in termination of the current analysis path if the
structural pattern matches the preprocessed string at least once. The
structural pattern is idéntical to that for CSYCLSFR save for the omis-
sion of the alternatives relating to the predicate YEAR and the feature
(+ YEAR) Due to the parallelism of the structural patterns and the rela-

tive ordering of the two rules, it is necessarily the case that CSBLOCK



‘Header:

(CSBLOCK BLOCK OB QNE)

Structural Pattern:

(X.1 (THE.?2) NOUN (OF . 5) ((INDEX . 6) (X
' (ORX (+ CITY
+ STATE)))
\; (INDEX . 4)
(CITY . 3) |
(ST&ATE . 3)

Candition:

NIL

Structural Change: NIL

Feature Change: NIL

Header:

(a)

(CITYSTAT STRING OB ALL)

Structural Pattern:

‘
(X.1) (INDEX. 6)(+ CONST {(COMMA . 3) | (INDEX(+ CONST

Condition:

+ CITY)) | | + STATE))

(W 2) | L (W 4)

NIL

Structural Change:

(L 2 3 4 5)

(1 (2 &)

0 0 5)

Feature Change:

(INSERT

6 ((+ CITYSTATE))))
(b)

Figure 3: The Rules CSBLOCK and CITYSTAT

29

. 7))

(X



30

will apply if and only if the classifier and the following proper noun do
not correspond (any corresponding classifiers having already been de-
leted by CSYCLSFR). Thus CSBLOCK has the effect of aborting analyses
where a proper name known to the system as designating a state has been
classified as denoting a city, or vice-versa

The rule CITYSTAT does not refer to classifiers as such, but it
does deal with a proper noun construction even more important for our
particular subset: the precise identification of a specific city by append-
ing the appropriate state name to the city name. This construction is essen-
tial in distinguishing among such cities as Portland, Maine and Portland,
Oregon, not to mention the eighteen varieties of Springfield in the con-
tinental United States** The structural pattern of the rule (Figure 3(b))

specifies a domain consisting of a city name ({(INDEX . 6) (+ CONST + CITY))

followed by an optional comma, followed by a state name (INDEX (+ CONST

o,

P
+ STATE)), where the actual city name is a single tree (W . 2) and the

Such a situation would always arise in processing such inputs as
City

'

the 3Statc

proper noun, if the user were not previously asked by the system to re-
solve it, as is vur current practice,

zof New York", effectively resolving the ambiguity of the

wls

""Cf. reference 15.
%A% : :
The structural variable W is employed in structural patterns in place

of the more usual X whenever one wishes to specify the occurrence of
precisely one unknown tree.



31

state name a single tree (W, 4). As indicated by the structural change,
each match results in the replacement of the tree labelled 2 by a list of
trees consisting of itself and the tree labelled 4, thereby pairing the state
name with the city name by what amounts to right sister adjunction. The
optional comma (COMMA 3) and the state name (W . 4) -- plus, by the
convention cited earlier, the structure dominating 1. -- are deleted.
Finally, the feature (+ CITYSTATE) is added to the feature'list of the
node (INDEX . 6), where its presence will eventually be noted by the

semantic interpreter as requiring a match on both elements of a (cityname,

statename) pair in the data base. As far as the transformational compon-

ent is concerned, the net effect of the rulg is.to make ''city, state' con-

structions pass through both the surface parser and the inverse trapsforma-

tions as though they were simple city names,

4, 2 Stranded Prepositions

'"Stranded Preposition Prevention' (Figure 4) is a string transforma-
tion designed to prevent surface structure parses in which non-stranded
prepositions are erronecously analyzed as stranded ones. Since most
prepesitions, whether stranded or not, are obligatorily present in sur-
face structures, this rule necessarily reflects an approach very differ-
ent from the ''recognize and delete' strategy employed in the string trans-

formations involving classifiers. What is done here is to assign new word



32

class codes to thosc prepositions determined to be non-strandable, and to-
write the surface structure rules for the new codes in such a way that they
are only allowed to combine with a following noun phrase.

Expressed in p*dinary English, the statement of the rule reads about
as follows: '"Replace the word class code of each preposition by the corres-
ponding code for non-strandable prepositions except where the preposition
immediately precedes an auxiliary, a punctuation mark, a verb form, or
another prepnsition, assign any locative feature associated with the original
word class code to the new word clasg code''. As staied -- and as cur-
rently implemented -- the rule may well be at once both too weak and too
strong, at least in an absolute sense., It is probably too weak in that it
will fail to label as non-strandable any preposition which immediately pre-
cedes a noun phrase beginning with an adjective (VADJ), as, for example;
in the sequence ''to large companies'., This sort of deficiency is of little
consequence, however, since the rule will serve its purpose well if it
fails to catch an occdasional non-strandable preposition, leaving things as
ambiguous as before in those cases.

Excessive strength, in the sense of marking some stranded preposi-
tion as non-strandable, is potentially a much more serious flaw, since
it precludes obtaining a correct analysis in such instances, Examples

such as (9), where SPRPPREV would fail in just this way by applying



13

Header: (SPRPPREV STRING OB ALL)

Structural Pattern:

’

(x . 1) (PREP.Z)W X 4))
(W' 5)
) >
(PREPOF  3)
w's
L W
Condition: (NOT (ANALYSIS 4 NIL (QUOTE([(((BAUX)) ) (X)) )
((COMMA))
((DAUX))
J(PREP)) |
((PUNC T))
((V))
((VADJ))
L((VING))

Structural Changc

((COND (2

(COND((ANALYSIS 2 NIL (QUOTE ( ((PREP((+ LOC2)))))) )

(REPLACE ( (NSPFEP((+ 1.0C2))) ) 2))
5

(T (REPLACE ‘(NSP‘REP) 2))))

5

(3 (REPLACE (NSPRLEPOF) 3))) )

Feature Change: NIL

Figure 4: The String Transformation '"Stranded Preposition Preventio:



34

incorrectly, are not particularly difficult to think up.. However, the

(9) Was the company XYZ bought ballbearings from a subsidiary of
Universal Nut & Bolt?

great majority of such examples -- including (9) -- seem to be irrelevant
to the present REQUEST data base. Thus, while it is clear that our
initial rule for stranded preposition prevention does not provide anything
approaching a general solution to the problem, it does appear to be work-
ing satisfactorily for the moment in eliminating artificial surface ambig-

uities within a narrow domain of discourse.

4,3 Homograph Resolution

One of the simplest and yet most useful of the 33 string transforma-
tions in the current version of REQUEST 1s the rule '"Ordinal Formation"
(ORDFQRM). Its function is to match on each string consisting of an
arabic numeéral immediately followed by any member of the set of English
ordinal-forming suffixes {d, nd, rd, st, th} and mark the sequence as an
ordinal numeral. The operation of ORDFORM (Figure 5) 1s entirely
straightforward. By this point in the analysis process, all arabic.numer-
als have already been assigned lexical trees dominated by the node
(VADJ (+ CARD)) -- the combination denoting a cardinal numeral -~ during
the input scanning phase of the preprocessor; while the ordinal-forming

suffixes have been assigned trees dominated by the category ORD during*



Header: (ORDFORM STRING OB ALL)

Structural Pattern:

((X.1l) ((VADJ.. 2) (+ CARD)) (ORD 3) (X . 4))

Condition: NIL

Structural Change:

((DELETE 3))

Feature Change:

((DELETE 2 (CARD)) (INSERT 2 ({(+ ORD))))

Figure 5: The String Transformation

"Ordinal Formation'

35



36

the lexical lookup phase. ORDFORM simply finds each instance in the pre-
processed string where a (VADJ (+ CARD)) imirhediately precedes an ORD,
deletes the ORD tree, and changes the feature on the VADJ from (+ CARD)
to (+ ORD), thereby identifying that item as an ordinal numeral rather
than a cardinal.

The approach just described has the advantage of putting an unlimited
set of ordinals at the disposal of the user at negligible cost, involving e
few very minor additions to the lexicon and none at all to either the surface
grammar or the preprocessor, The alternate of using a postcyclic trans-
formation instead of a string transformation to achieve the same coverage
was avoided because it would have imposed the additional requirement that
the surface grammar be significantly enlarged through the inclusion of at
least three new category symbols (for cardinals, ordinals, and ordinal
suffixes) along with a set of context-free rules describing their distribu-
tion. Although identification of ordinal numerals of this type could also
have been effected by building~the appropriate tests directly into the prepro-
ce'ssor, the latter alternative would have been much less attractive than
the string transformation approach for at least two reasons: First, itis
inherently messier to bury such operations in a special program subroutine
than to deal with them as just another transformational rule. Second, and

more important, is the fact that the latter approach makes the system less



37

general and flexible, since material specific to English is directly re-
flected in the structure of the program itself, rather than being confined
to the grammar, where it is readily accessible to the linguist who may
wish to modify it or replace it by material describing some other natural
language,

Another string transformation currently employed to resolve word
class homography on the basis of local context is the rule "Cardinal
Noun' (CARDNOUN), which will be discussed only briefly here. The
sule distinguishes instances where a cardinal numeral functions as a
proper noun (l10) from those in which it serves as a numerical quantifier
of a following nominal expression (l1). It does so by checking the im-

mediateé right-hand cpntext of each (VADJ (+ CARD)) for the presence of

(10) Is the number of companies in Chicago greater than 167?

e

(11)  What companies employed at least 200, 000 people in 19737

items (such gs articles, auxiliaries,y punctuation, and verbs) which are
incompatible with the latter possibility, replacing the VADJ structure by
a correspondinig proper noun structure whenever a match occurs,
(CARDNOUN follows ORDFORM in the list of string transformations in
order to take advantage of the latter's replacement of certain cardinals

by corresponding ordinals, )



38

4,4 Idiom Processing

By their very definition, idiomatic expressions are items which pre-
sent problems in grammatical analysis, semantic interpretation, or both,
Although it would be very teinpting to exclude all constructions of this
sort from the English subset of REQUEST, the currency and naturalness
of many idioms is so great that such a prohibition would entail abandon-
ment of our goal of permitting future users to employ their normal pat-
terns of expression.

For idioms such as ''make money', (in the.sense of ''be profitable'),
where the components are adjacent and the number of paradigmatic var-
iants are few, one possible approach is to deal with the problem by putting
appropriate entries in the phrase lexicon. For example, the entry for
''"makes money'' in our present lexicon treats that combination as an in-
transitive verb in the present tense and singular number which dominates
the same underlying predicate and has the same selectional features as
the adjective ''profitable'’. Even in such a relatively straightforward
case, however, it is not difficult to think of minor extensions, such as
the inclusion of negatives (''make no money'), which will at least require
another set of plirasal entries. Moreover, the phrase lexicon approach
breaks down completely as soon as one deals with an idiomatic construc-
tion :hat includes an open class as one of its components, producing a

situation parallel to that encountered earlier for classifier constructions.



39

The attempt to provide broad coverage of constructions involving
notions of rank and ordinality led to the consideration of a number of
common idiomatic patterns including arbitrary cardinal or ordinal numer-
als. These patterns, three of which are illustrated in (12), were even-
tually dealt with successfully by the development of string transforma-
tions designed not-only to cope with therr syntactic peculiarities but to

was

(12) (@) What company ranked

i numiber 18 in 1972 sales?

(b) What were the 25 I-E%g%lestz -ranking companies with

respech to earnings in 1969
(c) List the top 20 companies in 1973 growth rate!

set the stage for corfect semantic processing as well,

The nature of these idiom-processing transformations is perhaps
best illustrated by considering the rule "Top n'" (TOPN), whose state-
nent appears in Figure 6. The structural pattern of TOPN specities
a sequence of elements consisting of an initial arbitrary string of trees
(X . 1) followed in order by an occurrence of the definite article "the"
(THE . 2), the word 'top" (TOP 3), a cardinal numeral ((VADJ . 4)
(+ CARD)), a nominal expression (NOM . 5), either of the prepositions

"in'"" {IN. 6} or 'with respect to”. (WITH RESPECT TO . 6), and a



Header: (TOPN STRING OB ALL)

Structural Pattern:

((X.1) (THE .2) (TOP.3) ((VADJ. 4) (NOM . 5) |

Condition; NIL

Structural Change:

(+ CARD))

(W. 8)

HREPLACE (5 (VING(+ ADJ (VADJ(+ ADJ PREP
+ ING)) + ORD))
RANK (NQUOTE 1) THROUGH

(DELETE 3) (DELETE 4))

Feature Change:

NIL

Figure 6: The Rule “Top n"

40

(IN . 6)

(WITH RESPECT
_TO. 6)

(VADJ(+ ADJ ) 5)
+ ORD))

8

(X.

-1



41

final arbitrary string of trees (X . 7). The structural change includes a
replacement and two deletions.
The syntax of a replacement operation is of the form (REPLACE

<list of trees> <tree>); its execution results in the replacement of the

item corresponding to tree by the items corresponding t6 list of trees.

The replacement operation in TOPN is therefore to be understood as
follows: The nominal exptession tree in the input which matches the
pattern element (NOM ., 5) is replaced by a list of elements consisting

of itself, followed by lexical trees corresponding to (i) the -ing form of
the verb '"rank', (ii) the ordinal nunmieral 'first' (where the (NQUOTE 1)
notation causes the '"'1'" to be interpreted as a literal, rather than as.a
reference to the pattern element (X . 1)), (iii) the preposition "through',
and (iv) the ordinal numeral corresponding to the cardinal which matched
((VADJ . 4) (+ CARD)) in the structural pattern. The two deletion opera-
tions remove the lexical trees for the cardinal numeral and the adjec-

tive 'top'" from the preprocessed string.

In the case of (l2c), the overall effect of this structural change is

to replace the string of lexical tregs corresponding to 'the top 20 com-
panies' by the'string of trees corresponding to ''the companies rankihg
(1st through 20th". A subsequent string transformation called '"Rank
Interval” (RNKINTVL), operating in a fashion similar to that of "City

State' (cf. Section 4.1), then transforms the trees corresponding to



'] 5t throupgh 20th'" into a single ordinal numeral tree (bearing the feature
(o+ INTERVAL)) which dominates the numerals 'l" and "20'" Asa
result of these operations both surface and'transformational parsing of
such examples has become completely roufine; while their semantic
interpretation has required only the addition of a simple mechanism --
triggered by the feature (+ INTERVAL) -- for.generating a dense set of
integers from its endpoints.

Another group of string transformations involving rank are derived
from what were originally late postcyclic transformations. The three
rules in question -- "First Superlative' (FIRSTSUP) '"Nth"Superlative"
(NTHSUPER), and ‘''Nth Place'" (NTHPLACE) -- collectively serve to

restore the various deletions illustrated in (13).

(13)  a. --- gri‘:‘:d (the) first highest - -- =
- granked : (the) highest -
was
ranked . f1rst ) or
b, --- \;/as (in) (the) [sécond highest ---: >
nth
k )
ranked first
-—— z 'g (in) (the) { Second
was :
| “nth




43

P
Ce === zrankedz in (the) 1uth highest place --- ob .
was
- { ranked Z(the nth highest ---
was

The prime motivation for shifting these rules from the postcycle to
a point preceding surface parsing was that the structure and distribution
of the various phrase remnants resulting from the deletions are at best
difficult to desdéribe within the framework of a context-free phrase struc
ture grammar. A variety of ad hoc apparatus, including special word
class codes for the verb ''rank' and for superlative ac ectives, as well
as special phrase names for such sequences as ''the + superlatite"
and '"ordinal numeral + superlative', would have to be introduced in order
to provide broad coverage without an accompanying combinatorial ex-
plosion. By restoring the deletions before surface parsing, however,
such distasteful and complicated measures are entirely avoided, since
lexical categories are left unchanged and the surface parser has to do no

more than parse an ordinary prepositional phrase in the position following

the verb.

4,5 Experiments in Limited Conjunction Processing

As was mentioned in the introduction to this paper, one of the princi-

pal directions in which we are currently seeking to extend the English



subset accepted by the REQUEST System is in the caverageé of (coordin-
ate) conjunction constructions. The fact that the underlying variety and
complexity of these constructions t@nds to be masked by superficial simi-
larities makes a selective, piecemeal approach to their coverage a gen-
erally'dubious move in a system swech as REOUEST, whose eventual
users can hardly be expected to make distinctions that may not be im-
mediately obvious even to a trained linguist. Despite strong rescrvations
on-this point, it was decided to employ the string transformation mechan-
ism to deal with an extremely limited range of conjunction constructions
on an experimental basis,

The range of constructions chosen was confined to conjoined proper
nouns exclusively, subject to the further constraint that all terms of a
given conjunction be:members of the same semantic class - i.e., for the
current data base, either company names, city names, state names
or year names., While undeniably highly limited tn scope, this particu-

lar incremental increase in grammatical ¢overage (if successful) had

44

three distinct merits: (1) it appcared to be compatible with the adjacency

constraints of string transformations, .owing to the tendency of proper
nouns to take no modifiers, (2) it seemed potentially explainable to a
naive user in simple terms, and (3) it could provide a natural language

interface to an existing, but as yet largely unused, capability of the out-

put formatting routines to generate and display tables of valueg containing



such information as the earnings of each of a set of companies over a
>eriod of years.

The approach employed in the string transformations for processing
:onjoined proper nouns is exemplified by the rule '"City, State, Year,
Company Conjunction' (CSYCOCNJ), whose statement is displayed in
Figure 7. The second and third elements of the structural pattern form
a subpattern that is preceded by an asterisk and surrounded by a pair of
parentheses. This notation identifies the occurrence of a so-called
'"Kleene star expression'', which is interpreted by the transformational
parser as a pattern eclement that is to be matched by zero or more con-
secutive occurrences of tree sequences matching components. The
particular Kleene star expression used here will mjatch a string of any
length* whicHh consists entirely of an alternating sequence of proper nouns
and' commas, provided that all the proper nouns are members of the same
semantic class** The pattern elements fdllowing the Kleene star ex-
pression specify that it must be followed by: (i} ancther instance of a

proper noun of the appropriate class {this will be the initial instance if

the null value of the Kleene star expression is the orfly one that matches);

ol
RN

The effect of the condition, which precludes any match where the left-
hand structural variable (X . 1) ends in a sequence of trees satisfying
the pattern of the Kleené §tar expression, is to force a (unique) match
of maximum length,

1
-

*
Repeated-accurrences of ORX in a structural pattern, whether implicit
or explicit, are required to match the same feature pair.

45



Header: (CSYCOCNJ STRING OB ALL)

Structural Patiern:

((X.1) (¥ (INDEX (ORX (+ CITY + STATE (COMMA 3))
+ YEAR +.CO)))

(W . 2)
[
(INDEX (ORX (+ CITY + STATE (COMMA . 3) ‘
+ YEAR + CO))) < »
NIL
(W . 2) k )
(AND , 4) ((NOUN 8) (+ SG)) (X . 7))
(ORR . 5) ((INrEX 9) (ORX))
(W . 6)
Condition-"’

(NOT (ANALYSIS I T (QUOTE {({(X))({INDEX (ORX))) ((COMMA))) ))

Structural Change:

(1 23 45 6 7)
(1 00 0 0 (2 6) 7)

Feature Change:

((COND (4 ((INSERT 9 ((+ ANDSET))) (INSERT 8 ((-SG)))))

(5 (INSERT 9 ((+ ORSET))))))

Figure 7: The Rule '"City, State, Year, Company Conjunction'"



47

(ii) an optional comma; (iii) au instance of either of the coordinating
conjunctions 'and" or '"or'" , represented internally as ORR, since
OR is already used to signal the presence of a disjunctive pattern element
to the rule-processing routine); (iv) the final instance of a semantically
combatible proper noun, and (v) the usual end variable.

The structural change specifies (1) that the terminal elements of
all but the rightmost conjunct (which are collectively associated with
the pattern element (W ., 2) during the pattern matching phase) are to be
sister adjoined to the terminal element of that rightmost conjunct and
(2) that the original occurrences of all trees but those corresponding to
the end variables and the final conjunct are to be deleted. Conditional
on the presence of the conjunction ''and'" (AND ., 4), the feature change
adds the feature (+ ANDSET) to the feature list of the surviving INDEX
and the feature (-~ SG) to that of the NOUN node immediately above.
(The latter operation automatically results in replacement of the original
(+ SG)). I the conjunction is an '"or" (ORR. 5) instecad, the feature
change merely adds the feature (+ ORSET) to the feature list of the
INDEX, leaving the number of the NOUN unchanged.

The overall effect of the rule reflects the by now familiar strategy
of mapping a structure which would otherwise pose severe problems in
surface parsing into a significantly simpler one which will be processed

without difficulty by both the surface parser and the transformational



48

parser, As in the case of CITYSTATE and RNKINTVL, a special fea-
ture is attached to the node in the output structure that directly dominates
two or more terminal symbols as a result of the structural change of the
rule. In each case, the purpose of the feature is to communicate to the
semantic interpreter how the elements of the set of terminal symbols are

to be treated -~ as a (city, state) pair, as the endpoints of a dense set of

integers, or as the eléments of a conjoined set of proper nouns.
The experimental approach to proper naun conjunction just described
appeared initially to be a rather effective one. Examples such as (14)

went through the transformational component as smoothly as ones like (15),

(14) How much did GM, Ford, and Chrysler earn in the years from
1967 through 19727

whereupon the interpretive component produced what appeared to be an

approptiate answer -- in the case of (14), an earnings table with 18 entries

(15) How much did Ford earn in 19697

listed by company and by year, It was not long, however, before considera-
tion of examples such as (16) and (17) revealed that the initial appearance

of an adequate solution had been highly misleading.

(16) Was GM or Ford unprofitabte in 1970?



49

(17) What were the earnings of the Big Three auto companies tor the
1966-1968 period?
For thg former example, atleast two readings seem possible: one

as a selectional question, paraphrased in (18a) (which would preclude a

(18)a. Which auto company was unprofitable in 1970 -- GM or Ford?

b. Was either GM or Ford unprofitable in 19707

yes or no answer), the other as a yes-no question (18b), where the con-
ditions for giving a positive answer depend upon the interpretation of the
"or'" as inclusive or exclusive, In the case of (17), there seems to be
a series of possible readings, roughly paraphrased by (19a-d), reflecting
ambiguity as to whether what has been requested is earnings information
(19) a. What were the earnings of each of the Big Three auto companies

for each of the years 1,966-19687?

b. What were the combined earnings of the Big Three auto com-
panies for each of the years 1966-19687

c. What did the earnings of each of the Big Three auto companies
totat for the 1966-1968 period?

d What did the combined earnings of the Big Three auto companies
total for the 1966-1968 period?
(a) presented individually by company and by year, (b) summed over
companies but not over years, (c) summed over years but not over com-

panies, or (d) summed over both companies and years.



Ambiguities of the types exemplified by (16) and (17) were found to
be quite widespread in the sort of material we are dealing with, occurring
in a number of examples such as (14) where their presence was not
initially perceived. Moreover, it was soon realized that such ambigui-
ties were totally different in character from the types we had previously
been most concerned with, since they involved instances of genuine multi.
ple meaning in the language, rather than ambiguities artificially intro-
duced by the inadequacies of a grammatical description or a parsing
mechanism., It was also clear that the underlying structures assigned to
these ambiguous examples were seriously deficient, in that they did not
indicate the presence of an ambiguous situation, much less what the am-
biguous alternatives were.

Further investigation indicdted that the ambiguities encountered were
not restricted to conjoined proper nouns, but could also occur in the case
of plural noun phrases. ¥or example, (20) is ambiguous between a read-

ing requesting earnings listed individually by company and a reading
(20) What were the 1972 earnings of the companies in Chicago?

requesting a combined earnings figure -- exactly the same readings which
would exist if the phrase 'the companies in Chicago' were replaced by

the conjoined names of all companies satisfying that description. Thus,

50



it appearcd that the ambiguities we wished to understand and cope with
were related not to conjunction per se, but to semantic properties of
sets and relations on sets,

This view was reinforced by the discovery of syntactically parallel
examples with sharply contrasting ambiguity patterns, as in (21). While
both (2la) and (2l1b) share a reading where what is desired is a produc-

tion (employment) figure for each year in the period, only (2la) has a

(21) a. How many cars were produced by Chrysler in the 1969-1972
period?

b. Heow many people were employed by Chrysler in the 1969-1972
period?

sensible reading where the annual figures are to be totalled up arith-
metically., The reason lies in the distinction between quantities like

earnings, auto production, and rainfall, -- which are inherently additive

51

and are measured on a cumulative basis -~ and quantities like employment,

assets and temperature, which are measured on an instantaneous nasis
and are not additive over time in a meaningful sense*. On the other hand,
(21b) seems to have two other possible readings (22a) and (22b), re-
flecting questions abaut the size of a set union and of a set intersection,

respectively. Although neither version of (22) could be answered with

'PAlthough it is meaningful to add them on the way to computing an
average over a period of time,



(22) a. How many differcent people were employed by Chrysler in
the 1969-1972 period?

b. How many people were employed by Chrysler during the entire
1969-1972 period®

respect to a Fortune-500-type data base, where people are countable but

indistinguishable, both are questions which it would be quite reasonable
to try to deal with in a data base environment that included personnel
files.

At present, we are continuing to work on problems of conjunction-
handling both by pursuing the line of investigation just touched upon and
by studying patterns of disambiguation suggested by such examples as
(18), (19), and (22). The richness and subtlety of the material we have
encountere#l -- scarcely hinted at here -- is particularly remarkable in
the light of the severe limitations placed on the types of conjunction con-
structions to be considered. While the use of string transformations
has not provided us with a satisfactory solution for even a small part of
the domain of conjunction constructions, it has had the highly beneficial
effect of bringing us face-to-face with a range of significant problems of

which we had previously been almost totally unaware.



53

5. Summary and Conclusions

In the REQUEST System, string transformations are transformational
rules of relatively local scope which are applied to strings of lexical trees
at a point midway between lexical lookup and surface phrase structure
parsing. From the standpoint of linguistic theory, the status of the string
transformation facility is unclear, since it is a component that seems to
have no direct generative counterpart, The fact that a number of existing
string transformations are in effect inverses of late postcyclic transform
tions suggests that there may be some value in viewing the facility in terms
of such relationships. However, the rule writer isentirely free to ignore
linguistic considerations of this sort and define any of a wide range of tree
manipulations as string transformations. Accordingly, the string trans-
formation facility can,with some justification, simply be viewed as a con-
venient mechanism whereby the tree processing power inherent in gramma-
tical transformations is made available for purposes of implementing a wide
variety of parsing heuristics.

In contrast to the obscurity of its theoretical role, the string trans-
formation facility of REQUEST has had a clear and decidedly favorable
impact on the practical development of the system. The facility was
originally added 1n order to provide a more satisfactorvy input interface to

the transformational parser -- an interface which would be considerably



less vulnerable to the undesirable side-effects of expanding grammatical
coverage than one consisting solely of a preprotessor and a surface
parser, More specifically, this innovation was aimed at preventing the
proliferation of unwanted surface parses in a way which would be at once
less costly and more perspicuous than alternatives requiring extension of
the preprocessor or of the surface grammar,

Based on approximately one year's experience in the use of the string
transformation facility, it appears to have fulfilled these orivinal objec-
tives., During this period, the grammatical coverage of REQUEST has
been significantly expanded, but the lexicon and the surface grammar have
undergone only very modest growth as a result, and there has been no
accompanying upsurge in the number of spurious surface parses. The
strategy of reordering the inverses of certain latée postcyclic rules within,
the parsing system by placing them before, rather than after, the surface
structure rules has provea to be effective both in reducing the number of
unwanted surface analyses and in simplifying the surface grammar (and
hence the structures that it produces). Moreover, =string transformations
have also shown an unexpected versatility in such areas as idiom process-
ing and homograph resolution.

In contrast to these favorable results, our attempt to employ string

transformations in dealing with conjunction constructions -- while of great

54



55

indirect benefit -- can hardly be viewed as an unqualified success. What
the latter experience has clearly demonstrated is the fact that string
transformations gre a tool, not a panacea, and cannot be expected to yield
satisfactory results in areas where the necessary linguistic groundwork

is lacking. Despite its limitations, we expect to make continued heavy

use of this tool in our ongoing work on extending the grammatical coverage.

of the REQUEST System.



Appendix: Listing of String Transformations

The following is a complete computer listing of all 33 string transfor-
mations in the REQUEST System grammar as of October 1974. The
fully-parenthesized list notation employed in the computer file has been
""pretty printed" 1i.e., printed with indentations) in order to make the
internal structure of the rules more legible. Each list is surrounded by
a pair of parentheses, with its main components (if any) in general printed
starting two spaces to the right of the beginning of their '"parent' list.
Thus, for example, the left parenthesis of the pair surrounding each rule
is indented two spaces to the right of the left parenthesis that initiates the
entire list of rules. Similarly, with the exception of the header list (which

is indented only one space to make it stand out), the main components of

each rule -- the header, structural pattern, condition, structural change
and feature change -- are indented two spaces with respect to the rule, and
so forth.

In contrast to the two-dimensional graphical representation employed
for trees in the figures in Section 4 of the text, trees in the listing are rep
resented in a linear, parenthesized notation with the following essential

characteristics:

1. Within a structural pattern, an expression of the form (A B C...D)

stands for a tree of the form where

B, C ... D themselves may be replaced by parenthesized expressions

56



57

that stand for subtrees, etc. As in the figures of Section 4, association-
of a feature list with a node is denoted by enclosing the list in one pair of
parentheses and then surrounding the node and the list with a second pair
of parentheses, e.g. (A (+ FEATI - FEATZ2)). In place of the curly
bracket notation used in the figures to denote mutually exclusive sequerces

of trees, the listing employs expressions of the form (OR (list of treesl)

(list of trees2) ... (list of treesn)), where the arguments of the. OR stand

in one-to-one correspondence with the sequences of trees. Thus, for
example, the expression
(OR
(({PREP . 2) (W.5)))
((( PREPOF . 3) (W.5))))
in the structural pattern of the rule SPREPREV (p.77+ ) corresponds to
the curly bracket expression that appears near the top of Figare 4 (p..33).

2. Within a condition, structural change, or feature change, trees are

represented in a fully parenthesized 'dressed'' notation which contrasts as
follows with the ''peeled' notation just described for trees in structural
patterns: Each node in a tree always has two pairs of associated paren-
théses -- an inner pair surrounding the node and its feature list (if any)
and an outer pair enclosing the node, the feature list, and any subtrees
dominated by the node. FEach feature list contains at least two pairs of

parentheses ~-- one surrounding the entire list, and one for each (feature

valuwe, feature name) pair. Thus in ''dressed'' notation the ''peeled'ex-
pressions (A B C ... D) and (A (+ FEAT!] - FEAT2)) become

((A) ((B)) ((C))... ((D))) and ((A((+ FEAT1) (- FEAT2)))),

respectively.



8¢

( 1IN
( (% 31313Q)
(€' 343713Q)
(s
(8 (((QY0 +) (rav +)) rAVA))
(((HONOYHL) ) (d3ud))
( (C(T 3.000N)D)
(({Q¥0 +) (fav +)) rava))
( COINVE))
(((ONI +) (FQY +)) ONIA))
$ ) 3Ivid3y) )
1IN
( (L * X)
(((9 ° 0147 123dS3¥HLIM)) ((9 ° NI)) u0)
. (S ° WON)
- ({8 ° M) ((QUVD +) (¥ * ravA)))
{c * d01)
(2 * 3HL)
(T ° X))
(17v 80 ONIY¥Y4LS NdOLl))

— e -— .
. {

( € (((QY0 +)) & LY¥3SNI)
((Q¥V2) 2 31373q) )
((€ 313130))
1IN
( (% * X)
(€ ° Q¥0)
((QYYD +) (2 ° FQVA))
(1T ° X))
(17Y 80 ONI¥LS WYC4Q¥0))

( 7IN
1IN
1IN

( (e °* X)
( C (02 ° INKWN)) ((Z ° NNON)) ¥dQ)
(FAVA *)

(WON (3W0S HM A) (1 ° WON)) )
( (({(2 ° TINWN)) ((Z ° NNON)) ¥O0)
(FOQYA x)
(WON (dWOS HM A) (T ° WON))
d3dd)
(-(((2 ° 0Qa)) ((Z2 * 349)) duO)
(IW0S HM (T ° ravaA)) )
¥0) )
(VN 90 %3018 J019LVHM))



( (HYPHNRNK STRING OB ALL)
( (X o 1)
(THE . 2)
(OR
(((VADJ o 3) 4% ORD}})
( (((VADJ . &) (+ CARD)) (W . 10))
(OR
((((VADJ ¢ 5) (+ EST + POL)) HIGH))
(((VADJ « 5) TOP)) ) )
((((VADJ . 5) (+ EST + POL)) HIGH))
(((VADJ . 5) TOP)) )
(HYPHEN « 6)
((VING « T) RANK]
((NOM . 8) (NOUN (V COMPANY) INDEX))

(X « 9) )
NIL
( (COND ( 3 (REPLACE (8 7 3) 8} )
( &4
(REPLACE ( 8
T
((VADJ ((+ ADJ) (+ ORDI}})
( ({NQUOTE 1})) )
}(PREP) ( (THROUGH) ) )
(VADJ ((+ ADJ) (+ ORD))) 10) )
8 ) )
(7 )
(REPLACE ( 8
7
({VADJ ((+ ADJ) (+ ORD}})
( ((NQUOTE 1))) ) )
8 ) 1))
(DELETE 3)
(DELETE 4.)
(DELETE 5)
(DELETE 6)
(DELETE 7)) )
NIL)

( (NUMBRNCO STRING OB ALL)
( (X « 1) .
¢THE . 2)
((NOUN . 3) (V NUMBER) INDEX)
((VADJ + 4) (+ CARD))
((NOM . 5) (NOUN (V COMPANY) INDEX))
(X « 6) 1
NTL
( (REPLACE ( 5
((VING ((+ LOC2) (+ ADJ) (+ ING)))
( (RANK)) )
3
4 )
5 )
(DELETE 3)
(DELETE 4) )
NIL )

L -—

59



( (INUMBERN STRING 08 ALL)
X « 1)
((NOMQ . 3) (NOUN (V NUMBER) (INDEX . 7)))
(((VADJ + 4) (+ CARD)) (W . 8))
(OR ((IN « 5)) ((WITH_RESPECT_TO , 51)))

(X « 6) )
NIL
( (REPLACE ( ((PREP ((+ LOC2})))
((IN)Y )
((VADJ ((+ ADJ) (+ ORD))) B)
( (NOM)
((NOUN (({+ SG) (= HUMAN) (+ PLACE}))
({Vv) ((PLACE)))
7Ty })
3 )
(DELETE 4) )
NIL )

( (RNKINTVL STRING OB ALL)
( (X « 1)
(OR
((BETWEEN . 2)
((VADY [+ ORD)) (W . 3))
(AND . 4) )
((FROM . 2)
((VADJ (+ ORD)) (W . 3))
(OR ((TO . 4)) ((THROUGH . 4))) )
( ((VADJ (+ ORD)) (W . 3))
(OR
((TO . 4))
((THROUGH .+ 4))
( (HYPHEN . 4)) ) ) )
(((VADJ « 7) (+ ORD)} (W « 5))
(X « 6) )
(NOT
(ANALYSIS
1
T
( QUOTE
(((X)) ((FROM))) ) ) )
(1 2345 6)
(1 000 (3 5) 6)
((INSERT 7 ({4 INTERVAL)I))) )

- aau an e _—.1- ------- g atuy G S—

60



61

( (FIRSTSUP STRING OB ALL)

( (X « 1)
(OR ((RANK . 2)) ((BE . 2)))
(OR ((THE . 3)) NIL)
((VADJ « 4) (+ EST))
(OR ((IN . 5)) ((WITH_RESPECT_TO . 5)))
(X o 6) )

NTL

( (REPLACE ( 2

((PREP ((+ LOC2)))
((IN)) ) )
2 )
(REPLACE ( ((VADJ ((+ ADJ) (+ ORD)})))
( C{NQUOTE 1}))) )
A
( (NOM)
((NOUN ((+ SG) (-~ HUMAN) (+ PLACE)))
((V) ((PLACE})))
((INDEX ((— CONST)))
((XN)Y) ) ) Y )
4 ) )
NIL

- —— — —— e qu i A PP

— . G —

( (NTHSUPER STRING OB ALL)
( (X o 1)
(OR ((RANK o 2)) ((BE . 2))
(OR ((THE . 3)) NIL)
((VADS . &) (+ ORD))
(DR (1(VADJ . 5) (+ EST))) NIL)

(OR ({IN . 6)) {(WITH_RESPECT_TO . 6))!
NIL

[ (REPLACE ({ 2

((PREP {(+ LOC2)))
((IN)) ) )
2 )
(REPLACE ( ((NOM)

((NOUN (“F SG) (- HUMAN) (+ PLACE)))
((V) [(PLACE)))
({ EX ((~ CONST)))
(XN)Y) ) ) )




62

((NTHPLACE STRING 0B ALL)
( (X 1)
(OR ((RANK . 2)) ((BE . 2)))
((PREP o 3) IN)
(OR ((THE o« 4)) NIL)
((VADJ . 5) (+ ORD)Y)
{OR
(L(IVADJ . 6) (+ EST)) HIGH))
NIL )
((NOM . 1Y [NOUN (V PLACE) INDEX))

(OR ((IN ., 8)) ((WITH_RESPECT_TO . 8)})!
(X « 9) )

NIL
( (COND ( 6

(REPLACE ( ((PP)

3
((NP)
({THE))
( (NOM)
(V)
((ADV ((+ EXT))) 5)
6 )
7)) )
5 ) )
(T
(REPLACE ( ((PP)
3
((NP)
((THE))
( (NOM)
((v)
((ADV ((+ EXT))) 5)
((V ((+ ADJ) (+ POL) (+ EST))¥
((HIGH)) ) )
7)) ) )
5 ) ) )
(DELETE 3)
(DELETE 4)
(DELETE 6)

(DELETE 7) )
NIL )




{ (YRINTRVL STRING OB ALL)
( (X « 1)
(OR
( ((PREP . 2) BETWEEN)

((INDEX (+ YEAR)) (W . 3))

(AND « 4) )
{ ((PREP . 2) FROM)

((INDEX (+ YEAR)) (W . 3))

(OR ((TO « 4)) ((THROUGH

e 4))) )

( ((INDEX (+ YEAR)) (W « 3))

(OR
((TO « 4))
((THROUGH « 41})
((HYPHEN . 4}) ) ) )
(((INDEX « 7) (+ YEAR)) (W .
(X « 6) )
(NOT
(ANALYSIS
1
T
(QUOTE
(C(X)) ((FROM}))} ) ) )
( (COND ( (AND
2
(NOT
( ANALYSIS
1
T
{ QUOTE
( (X))
((PREP))
((THE))
(OR

( ({(NOUN ((-= SG)
)

((v)

( (LINDEX)?Y )

5))

))
((YEAR)))
)

( ((NOUN ((+ SG)})

((v)

((PERIOD)))

( (CINDEX)) ) ) )
(REPLACE ( ((PREP ((+ LOC2)))

((IN))
2 1)
( T (DELETE 2} ) )
(DELETE 3)
(DELETE 4)

CREPLACE (3 5) 5) )
( (INSERT 7 ((+ INTERVAL)))) )

)

)

y

)

)

)

)

63



((CSYCLSFR STRING 0B ALL)
{ (X « 1)

(THE . 2)
(NOUN
(Vv
(OR
((C1TY . 3}
((STATE . 3
((YEAR . 3}
{ INDEX . 4) )
(OF . 5)

{(INDEX o 6) (ORX [+ CITY + STATE + YEAR}))
(X « 7))

(EQUAL ORX (QUOTE (+ (NODENAMEOF 3))))
(1 2 3 4 5 &7

(1 000 067

NIL )

)
).)
) ) )

S, Gt S ST sl

((CSBLOCK BLOCK OB ONE)
( (X « 1)
( NOUN
(v
(OR ((CITY . 3)) ((STATE . 3)1)) )
CINDEX « &) )
(OF . 5)
((INDEX . 6)
(X « 7))
NIL
NIL
NIL )

(ORX (+ CITY + STATE)))

e R i g et

((PRDCLSFR STRING OB ALL)
(‘(x . 1,
(THE . 2)
(OR

( ((NOUN . 3) (V PERIOD) INDEX)
((INDFEX . 4) (+ INTERVAL)) )
(((INDEX . 4) (+ INTERVAL))

(ANOUN , 3) (V PERIOD) INDEX) ) )
(X « 5) )

NIL

((DELETE 2) (DELETE 3))
NIL )

S e et S S G — S — -

64



({(YRCLASFR STRING 08 ALL)
( (X « 1)

(THE . 2)

( (NOUN « 3) (V YEAR) INDEX)
( (INDEX « 4) (+ YEAR))
(X « 5) )
NIL
(1 2 3 4 5)
(1 0 0 4 5)
NIL )

((COCLASFR STRING OB ALL)
( (X « 1)
(OR ({THE .. 2)) NIL)
{ {INDEX . 3} (+ CO}))

((NOUN . 4) (V COMPANY) INDEX)
(X « 5} )

(NOT

(ANALYSIS
1
NIL
(QUOTE

(C(X)) ((THEY)) )} ) )
3 4 5)

e G . S e . S S dhn

— i e A S S G vt d . G S-S ——— w—— agpa

((CITYSTAT STRING 0B ALL)
( (X « 1)

(((INDEX . 6)
(OR ((COMMA

{ (INDEX (+ CONST + STATE)) (W . 4))
(X « 5) )
IL

N
(1 2 3 4 5)
(
(

(+ CONST + CITY))

1 (2 4) 00 5) _
(INSERT 6 ((+ CITYSTATE))))

)

e S S S S A S S gy, sl G S . U S . G —

(W . 2))
« 3)) NIL)

65



( (CSYCOCNJ STRING 0B ALL)
( (X 1)
(*

{(INDEX (ORX (+ CITY + STATE + YEAR + CO))) (W . 2))
(COMMA , 3) )

( CINDEX (ORX (+ CITY + STATE + YEAR + CO))) (W . 2))
(OR ((COMMA . 3)) NIL)
(DR ((AND « 4)) ((ORR .« 5)))
({(NOUN « 8) (+ SG))
{({(INDEX . 9) (ORX)) (W « 6)) )
(X « 7))
(NOT
(ANALYSIS
1
T
(QUOTE
( (X))
( (CINDEX (ORX)))
((COMMA)) ) ) ) )
4 5 6 7T)
0 0 (2 6) 7)

(INSERT 9 ((+ ANDSET))])
(INSERT 8 ((= SG))) ) )
( 5 (INSERT 9 ((+ ORSET))) ) ) ) )

ot e g -

o—— g

((GENAFCNJ STRING 0B ALL)

( (X « 1)
( *
( (INDEX (ORX (+ CITY + STATE + YEAR + CO))) (W . 2))
(GENAF . 3)

(COMMA . 4) )
( (INDEX (ORX (+ CITY + STATE + YEAR + CO))) (W « 2))
(GENAF . 3)
(OR ({COMMA . 4)) NIL)
(OR ((AND . 5)) ((ORR . 6)))
(((NOUN . 10) (+ SG))
((CINDEX o« 11) (ORX)) (W « 7)) )
(GENAF . 8)
(X « 9) )
(NOT
(ANALYSIS
1
T
(QUOTE
€ ((x))
( CINDEX (ORX)))
( (GENAF))
((COMMAY) ) ) ) 1}

(1L23456 78 9)
(1 00O0OOO (27) 8 9)
( (COND ( 5
( (INSERT 11 ((+ ANDSET)))

(INSERT 10 {(- SG))) ) )}
( 6 (INSERT 11 ((+ ORSET})) ) ) ) )

- SRS S G G . G — G e ——

66



((PPCONJ STRING 0B ALL)
€ (x « 1)
(%
(OR
((PREP (W . 2)))
((PREPOF (W . 2))) )
((INDEX (ORX (+ CITY + STATE + YEAR + CO))) (W o 3))
(COMMA . 4) )
(OR
((PREP (W + 2)))
((PREPOF (W + 2))) )
( (INDEX (ORX (+ CITY + STATE + YEAR + COJ)) (W . 3))
(OR ((COMMA o 4}) NIL)
(OR ((AND . 5)) ((ORR . 6)))
(OR
((PREP (W o« T7}))
((PREPOF (W « 71)) )
(((NOUN . 10) (+ SG))
(CEINDEX . 11) (ORX)) (W « 8)) )
(X o 9) )
(AND
(NOT
(ANALYSIS
1
T
(QUOTE
€ ((Xx))
(OR
(L{PREP)))
( ({PREPOF)) )
(CINDEX (ORX)})
((COMMAY) ) ) )
(COMPARELISTITEM 2 7) )
(1 23456789)
(1000007 (38)9)
( (COND ( 5
( (INSERT 11 {((+ ANDSET)))
(INSERT 10 ((~- SG))L-) )
( 6 (INSERT 11 ((+ ORSETIN) 1 ) } )

)
)




{ {(RTIMEDST STRING OB ALL)
( (X « 1)
((PROPNOM . 2) (NOUN (INDEX (+ YEAR))))
(NMNL (+ PERIODIC))
(OR
( (OR (PREP) (PREPOF))
(INDEX (+ CO)) )
NIL )
(*
COMMA
((NMNL + 3) (4 PERIODIC))
(OR
( (OR ((PREP)) ((PREPOF)))
(INDEX (+ CO)) )

NIL ) )
(OR
( (OR ((COMMA . 5)) NIL)
AND
((NMNL . 4) (+ PERIODIC)) )
(COMMA
((NMNL . &) (+ PERIODI
(DR
( (OR ((PREP)) ((PRE
(INDEX (+ CO}) )
NIL )
(%
COMMA
((NMNL . 6) (+ PERID
(OR
( (OR ((PREP)) ((P
( INDEX (+ CO)) )
NIL )
(OR ((CUMMA » 7)) NIL)
AND
(NMNL (+ PERIODIC)) ) )
(X 8) )
{ AND
(NOT
( ANALYSIS
8
-
(QUOTE
( (OR
( ((PREP))

( (CINDEX ((+ YEAR))))
(X)) )
( (OR
(((PREP)))
(((PREPOF))) )
( CINDEX ((+ C0))))
( (PREP))
( (CINDEX ((+ YEAR}}))
((X3) ) ) ) ) )
(COND ( 5 3 )
(T 7))
((REPLACE (2 4) 4))
NIL )




69

(

( TIN
({g (€ 2 g) 3Ivid3¥))
{ ¢ ¢ 1 1)
( ¥ & ) GNOD)
( € ¢ ¢ ¢ ¢(x)?
(C((0D +)) X3ANI))
( (((30d3¥d)))
(({d3¥d)))
d0
((((3V3A +)) X3ONI
((d3¥d
{ ((X
((({0D2 +)) X3AONI
{ ((({40d34d)))
({{d3%8d)))
40) )
4o) )
310N0)
1
01
SISATIVYNY)
AON)
Gyt
{ (01 * X4
( { ((J2IQDIY3d +) TINWN)
(TIN (((dV3A +) X3ANI)) u0)
aGNvV
{1IN ({6 ° VWAWDD)) ¥O
(TIN (((¥V3IA +) X3ONI) d3xd) ¥O)
({2I00I¥3d +) (8 ° INWN))}
(TIN (((YV3A +) X3ONI)) 3d0)
VHWOD
*)
(TIN ({(VV3A +) X3ANI) d3dd) UQP)
((2IQ0I¥3d +) (9 * TINWN))
{TIN (((J¥V3IA +) X3ANI), ¥O)
{S ° VRWDID))
{ ((DIQDIYU3d +) (9 * INNWN))
(TIN (((¥V3A +) X3IANI)) ¥O)
(S * ANV)
(TIN ((L ° VWRW0OI)) ¥O) )
¥0)
{ (JIN ({((YdV3A +) X3OGNI) d3dd) ¥O)
((2Id0I¥3d +) (¥ ° TINKWN))
(TIN (((¥V3IA +) X3ANI)) ¥HO)
VRWOD
%)
(TIN (((dV3IA +) X3IONI) d3dd) ¥Q)
((D2IA0IY3d +) TINWN)
(TIN (((YdV3IA +) X3ANI)! d¥0)
(€ ° 4VN39)
((((0D +) X3ANI) NNON) (2 °* WONJdOY¥YdN))
(L * X) )
(77v 80 ONIYLS LASIANIOY))

)
))
)) )
))
))



((LTIMEDST STRING OB ALL)

( (X o 1)
(OR
{ (OR
( (INDEX (+ CD))
GENAF

({(NMNL . 2) (+ PERIODIC)) )
( (OR (THE) NIL)
( (NMNL « 2) (+ PERIODIC))
(OR
( (OR (PREP)} (PREPOF))}
( (NPROPNOM ., 4) (NOUN (INDEX (+ CO))))
NIL Y Y ), )
( (OR
( (CINDEX (+ CO))
GENAF
((NMNL . 3) (+ PERYODIC)) )
( (OR (THE) NIL)
( (NMNL . 3) (+ PERIODIC)}))
(OR
( (OR (PREP) (PREPOF))
(INDEX (+ CO)) )

NIL ) ) )
(%
COMMA
(OR
(CINDEX (+ CO)) GENAF (NMNL (+ PERIODIC)))
(- (OR (THE) NIL)
(NMNL (+ PERIODIC})
(OR .
( (OR (PREP) (PREPOF))
(INDEX (+ CO)) )
NIL ) ) ) )
COMMA
(OR
( (INDEX (+ CO})

GENAF
( (NMNL . 2) (+ PERIODIC)) )
( (OR (THE) NIL)
( (NMNL . 2) (+ PERIODIC))
(OR
( (OR (PREP) (PREPOF))
( (NPROPNOM ., 4] (NOUN (INDEX (+ CO}}}))
NIL ) ) ) ) )
{ =
COMMA
(OR
( CINDEX (+ CO))
GENAF
( (NMNL « 3) (+ PERIODIC)) )
{ (OR (THE) NIL)
( (NMNL. . 3) (+ PERIOCDIC))
( OR
( (OR (PREP) (PREPOF))
(INDEX (+.CQ)) )
NIL ) ) ) )
(DR ((COMMA . S5)) NIL)
AND
(OR

)

)

70



({INDEX (+ CO))

GENAF
(NMNL (+ PERIODIC))
(PREP . 6)

((PROPNOM . 7) (NOUN (INDEX (+ YEAR)}})) )
( (OR ITHE) NIL)
(NMNL (+ PERIODIC))
(OR
( (OR (PREP) (PREPOF))
(INDEX t+ CO))
(PREP .+ 6)
((PROPNOM . 7) (NOUN (INDEX (+ YEAR)))) )
((PREP . 6)
((PROPNOM . 7) (NOUN (INDEX (+ YEAR))))
(OR (PREP) (PREPOF))
(INDEX (+ CO)) ) ) ) )
(X . 8) )
( AND
(NOT
(ANALYSIS
1
T
(QUOTE
t (OR
( ((X))
( CINDEX ((+ C0O))))
( CGENAF)) )
(X)) ((THE)))
(X))
( (NMNL ((+ PERIODIC))))
(OR
( (OR
(({PREP)})
(C(PREPOF))) )
( (INDEX ((+ CQ))}) )
NIL )
((COMMA))Y ) ) ) ) ) )
(COND ( 5. 3 )
(T T)Y)H))
( (COND ( & (REPLACE (4 6 7) 4) )
( T (REPLACE (2 6 7) 2) ) ) )

((
(

NIL )

A, G S g S i G . Sl S S S SR S A S S S A, P S G S G S G S —




((LGENDIST STRING 0B ALL)
(X « 1)
(OR (THE) NIL)
(OR
{ (OR
( (INDEX (+ YEAR))
((NMNL . 2) (+ PERIODIC)) )
({(NMNL . 2) (+ PERIODIC))
(OR (PREP (INDEX (+ YEAR))) WNIL) )} )} )
(OR
( (CINDEX (+ YEAR))
( (NMNL « 3) (+ PERIODIC)) )
{({NMNL . 3) (+ PERIODIC))
(OR (PREP (INDEX (+ YEAR))) NIL) ) )
(*
COMMA
(OR (THE) NIL)
(OR
( (INDEX (+ YEAR)) (NMNL (+ PERIODIC)))
( (NMNL (+ PERIODIC))
(OR (PREP (INDEX (+ YEAR))) NIL) ) ) )
COMMA
(OR (THE) NIL)
(OR
( (INDEX (+ YEAR))
((NMNL . 2) (+ PERIODIC)) )
(((NMNL ., 2) (+ PERIODIC))
(OR (PREP (INDEX (+ YEAR))) NIL) ) ) ) )
(x
COMMA
(OR (THE) NIL)
(OR
((CINDEX (+ YEAR)) |
((NMNL. » 3) (+ PERIODIC)) )}
(C(NMNL « 3) (+ PERIODIC))
(OR. (PREP (INDEX (+ YEAR))) NIL) ¥ ) )
(OR ((COMMA . 4)) NIL)
AND
(OR (THE) NIL)
(OR
((INDEX (+ YEAR)) (NMNL (+ PERIODIC)))
( (NMNL (+ PERIODIC))
(OR (PREP (INDEX (+ YEAR))) NIL) ) )
(OR (({PREP « 5)) ((PREPOF . 5)))
(INPROPNOM . 6) {NOUN (INDEX (+ €O))))
(X « 7))
( AND
(NOT
(ANALYSIS
1
T
(QUOTE
( (OR
(({X)) ((THE)))
( ((x))
( (NMNL ((+ PERIODIC))))

(OR
(PREP))
( (NNDEX ((+ YEAR)))) )



NIL )
((COMMAY)) )
( (X))
( (CINDEX ((+ YEAR)}))
(COND ( & 3 )
(7T 7)) 1))
((REPLACE (2 5 &) 2))

NIL )

)

) )

( (CARDNOUN STRING OB ALL)
( (X « 1)
" (L(VADJ . 2) (+ CARD)) (W . 51))
(OR
((A « 3))
((BAUX . 3))
((COMMA , 3))
((DAUX . 3))
((PREP . 3})
((PUNCT . 3))
((THE . 3))
((V . 3))
(({VADJ . 3) (+ CARD))
((VADJ . 3) PREP)
((VPART ., 3)) )
(X « 4) )
(NOT
AND

(ANALYSIS 3 NIL (QUOTE (((V)))))

(ANALYSIS
4
T
(QUOTE

( ((INDEX ((~ CONST))))
(tx)y ryyr )y
( {REPLACE ( ((NP)
( (NOM)

((NOUN ((+ SG) (= HUMAN)))
( (INDEX ({+ CONST) (+ CARD))) 5)

NIL )

)

)

)

}

)

)

13

)



((ABTAPPRX STRING 0B ALL)
( (X + 1)
((PREP . 2) ABOUT)
(OR
{{{VADJ « 3) (+# CARD)))
((EQUAL . 3))

((WH . &)
SOME
(OR.(LARGE) (MANY) (MUCH))
(X « 5) )
(COND ( 4 (NULL 1) )
(T 7))

(- (REPLACE ( ((CADV)

(v ((+ ADJ))

((APPROX))

NIL )

)

)

)

)

)

74



( (COMPNQFR STRING 0B ALL)
( (X o 1)
(OR
( (LPREP . 2) AX)
(OR ((LEAST + 3)) ((MOST . 4))) )
( (OR ((NO « 5)) ((NOT . 5)) NIL)
(OR
(((VCOMP . T7) LESSTHAN))
( (OR ((MORE . 6)) ((FEWER o 71))
(CTHAN . 8)) ) ) ) )
((VADJ o 9) (+ CARD))
(X « 10) )
(NOT
(ANALYSIS
1
NIL
(QUOTE
( (X))
| BR
(((NOD))
((INDT)I) ) ) ) ) )
( (COND { (AND 6 (NOT 5))
(REPLACE ( {(ADV)

(v ((+ ADJ) (+ COMP)

( (GREATERTHAN))

9 )

9 ) )
( (AND 7 (NOT 5))

(REPLACE ( ((ADV)

({v ((+ ADJ) (+ COMP)

{(LESSTHAN)) ) }

9
( (OR 3 (AND
(REPLACE (

((GRTRTHANEQ))
9 )
9 ) )
{ (OR & (AND 5 6))
(REPLACE ( ((ADV)

((V ((+ ADJ) (+ COMP)
((LESSTHANEQ)) ) )

9 )
9 1) )}
(DELETE 2)
(DELETE 3)
(DELETE 4)
(DELETE 5)
(DELETE 6)
(DELETE 7)
(DELETE 8) )
NIL )

(V ((+ ADJ) (+ COMP)

(+ TWOARGS)

(+ TWOARGS)

(+ TWOARGS)

(+ TWOARGS)

(+

(+

(+

(+

75

NMA3X 1))

NMA3X) ) )

NMA2X)))

NMA2X) 1))



76

( (WHNUMAMT STRING OB ALL)
( (X o 1)
(OR
(((VADJ . 2) WH SOME))
( ((WHADV « 2) (V WH SOME))
((VADJ . 2) LARGE)
(A . 2) ) )
((NOMQ . 3)
(NOUN
(v
(OR ((NUMBER . 7)) ((AMOUNT . 8}))) )
{INDEX . 9) ) )
(OR
((OF « 4) (THE . 5))
((OF « 4))
NIL )
(X « 6) )
[ AND
(NOT
( ANALYSIS
6
751
(QUOTE
( (OR
(((OF)) ((X)))
(CCTHED D) ((X3)) ) ) ) ) )
(COND ( (NULL 4) 8 )
(T Ty
( (COND ( &
(COND ( 7
(REPLACE ( ((WHADJ)
L(ADV ((+ EXT)))
((V ((+ ADJ) (+ QUANT)))
((WH))
((SOME)) ) )
((V ((+ ADJ) (+ QUANT) (+ POL}))
((MANY)) ) ) )
3 ) )
( 8
(REPLACE ( ((WHADJ)
(CADV ((+ EXT)))
(v ((+ ADJ) (+ QUANT)))
((WH))
( (SOME)) ) )
((V ((+ ADJ) (+ QUANT) (+ POL)))
((MUCH)) ) ) )
3 ) ) ))
(T
(REPLACE ( ((QNOM)
(JADV ((+ EXT)))
((V ((+ ADJ) (+ QUANT)))
((WH))
( (SOME}) ) )
( (NOM)
((NOUN ( (- HUMAN) (+ SG)})
((V ((+ ADJ) (+ QUANT) (+ POL)))
( (MUCH)) )
91 ) )
3) ) )



(COND ( (AND 4 (NOT 5)) (DELETE 4) ) )
(DELETE 2) )
NIL )

{ (SPRPPREV STRING 0B ALL)
( (X « 1)
(QR
({(PREP ., 2) (W . 5)))
(((PREPOF «+ 3) (W « 5))) )
(X « 4) )
{NOT
(ANALYSIS
&
NIL
(QUOTE
{ (OR
(({(BAUX})}
( (COMMA) ))
((DAUX)))
((PREP)))
((PUNCTI D)
((vi))
({VADJ) ))
{(VING))}) )
y) Y Y 1)
( (COND ( 2
(COND ( (ANALYSIS
2
NIL
{(QUOTE
(((PREP ((+ LOC2))))) ) )
(REPLACE ( ((NSPREP ({(+ LOC2))) 5) )
2 1))
{ T (REPLACE {(((NSPREP) 5)) 2) ) ) )

{ 3 (REPLACE (((NSPREPOF) 5)) 3) ) 1) )
NIL )

((TIMECMPD STRING OB ALL)

( (X « 1)
( (PROPNOM . 2} (NOUN (INDEX (+ YEAR))))
((NMNL . 3) (+ PERIODIC))
(X o &) )

NIL

( (REPLACE (((NMNL) 2 3)) 3)
{DELETE 2) )

NIL )

77



( (RANKCMPD STRING OB ALL)
( (X . 1)
INMNL . 2)
( (NMNL « 3) (V PLACE RANK) INDEX)
(X « 4) )
(NOT
( ANALYSIS
1
/81
(QUOTE
¢ (XM
((INDEX ((+ YEARID))} 1} ) } )
( (REPLACE ( ((NMNL) ((NOM) 2) 3) )
3 )
(DELETE 2) )
NIL )

-r

{ (PROPERPP STRING OB ALL)
( (X « 1)
(OR ((NSPREP . 2)) ((NSPREPOF . 3)))
(OR ((PROPNOM o 4)) ((NPROPNOM . 4)))
(X « 5) )
(NOT
{OR
( ANALYSTIS
5
T
(QUOTE
(((GENAF)) ((X))) ) )
{ AND
(ANALYSIS
5
/51
(QUOTE
( ((NMNL ((+ PERIODIC))))
({(X)) ) ) )
(ANALYSIS
4
NIL
1QUOTE
( ((PROPNOM)
( (NDUN)
(({ENDEX ((+ YEAR)))) )
{ (COND ( 2

(REPLACE ( ((PP) 2 ((NP) 4)) )

2 ) )
( 3

{REPLACE ( ((PPOF) 3 ((NP) 4)) )

3)))
(DELETE 4) )
NIL )

)

)

)

78



((TICOPPCD STRING DB ALL)
( (X « 1)
(OR
(((NOM . 2) (NOUN (+ PERIODIC))))
(((NMNL . 3) (+ PERIODIC)))
(CINMNL . 4) NOM (NMNL (¥ PLACE RANK) INDEX)))
(OR
( (OR
( ((PPOF . 5)
NSPREPOF
(NP (NPROPNUM (NOUN (INDEX (+ COUI)})) ) )
g Aamvv.o m-
NSPREP
(NP (NPROPNOM (NOUN (INDEX (+ COJ)))) ) ) )
(OR
( ((PP . 6)
NSPREP
(NP (PROPNOM (NOUN (INDEX (+ YEAR))))) ) )
NIL ) )
{ ((PP . 6)
NSPREP
(NP {PROPNOM (NDUN (INDEX (+ YEAR))))) )
(OR
{ ((PPOF . 5)
NSPREPOF
(NP (NPROPNOM {NOUN (INDEX (+ CO))))) ) )
( ((PP . 5)
NSPREP
(NP (NPROPNOM (NOUN (INDEX (+ CO))))) ) )
NIL ) ) )
(X o« 7))
( AND
(NOT
(ANALYSIS
1
T
(QUDTE
( ((x))
(OR
(({INDEX ((+ YEAR))))
(({vCDOMP)))
(({vc)))
( ((VCPART))
(QR
{ ((NSPREP})
( (NPROPNOM) )
( (GENAF)) )
NIL ) )
(COVCINGYY)Y ) ) )y ) )
(COND ( (NOT (AND 5 6))
{NOT
(ANALYSIS
7
T
(QUOTE
(OR
{ ({NSPREP)}))
( ({NSPREPOF)))
(({PREP))) )



(

(tx)y Y)Y ) )

(7T T1)Y)
(COND ( (NOT 5)
(ANALYSIS
1
T
(QUOTE
[ (X))
(T 7))
(COND ( 2
(REPLACE (
2
( 3
REPLACE (

3
( 4

(REPLACE (

4
(DELETE 5)
(DELETE B) )

NIL )

({GENAF))) ) )

((NOM) 2 ((Z1)
) )

{ (NOMN)
( (NOMN) 3)
((Z1) 5 6) )
) )

( (NOMN)
( (NOMN) &)
({Z1) 5 6) )
) V)

5 6)) )

~

80



10.

81

References

Petrick, S. R., "Semantic Interpretation in the REQUEST System'/,
in A. Zampolli (ed.) Computational and Mathematical Linguistics.
Proceedings of the International Conference on' Computational Lin-
guistics. Pisa, 27 VIII - 1/IX 1973, Casa Editrice Olschki,
Firenze (1974), Vol. I

Plath, W. J., ""Transformatioral Grammar and Transformational
Parsing in the REQUEST System'', in A. Zampolli (ed. ), Compu-
tational and Mathematical Linguistics. Proceedings of the Inter-
national Conference on Computatibnal L-inguistic s. Pisa, 27 VIII -
1/IX 1973, Casa Editrice Olschki, Firenze (197-4), Vol, II.

Knuth, D. E., '"Semantics of Context-free Langudages'' Mathematical
Systems Theory, Vol. 2 (1968), pp. 127-145.

Petrick, S. R. '"On the Use of Syntax-based Translators for Symbolic¢
and Algebraic Manipulation', in S. R. Petrick {ed. ), Proceedings
of the Second Symposium on Symbolic and Algebraic Manipuldtion,
ACM, New York (1971), pp. 224-237

Petrick, S. R., Mapping of Linguistic Structures into Computer-
Interpretable Form, AFCRL-TR-73-0055, Final Report, Con-
tract No. F19628-72-C-0129 (December 1972).

Petrick, S, R., A Recognition Procedure for Transformational Gram
mars, MIT Doctoral Dissertation (1965)

Chomsky, N., Aspects of the Theaqry of Syntax, MIT Press, Cam-
bridge, Mass. (1965).

McCawley; J. D., "Meaning and the Description of Languages'
Kotoba No Uchu, Vol. 2, Nps. 9-11 (1967).

Lakoff, G.,, '"Linguistics and Natural Logic', Synthése, Vol. 22,
Nos. 1-2 (1970).

Kuno, S. and Oettinger, A. G., '""Multiple-path Syntactic Analyzer',
Mathematical Linguistics and Automatic Translation, Report No.

NSEF -8, Sec. I, The Computation Laboratory of Harvard Univer-
sity (1963).




11,

12.

13.

14,

15.

82

Plath, W. J., '""Multiple-path Syntactic Analysis of Russian', Mathe-
matital Linguistics and Automatic Transtation, Repor#dNn. NSF-12,
The Computation. Laboratory of Harvard University (1963)

Woods, W. A., Kaplan, R. M. and Nash-Webber, B., The Lunar
Sciences Natural Language Igf'ormation System, Final Report,
BBN Report No. 2378, Cambridge, Mass. (1972}

Plath, W. J., "A Tag Language for Syntactic and Semantic Analysis'"
in H. H. Josselson (ed. ), Proceedings of the 1965 Conference on

Computer-Relg'ted Semantic Analysis, Wayne State University,
Detroit, Mich. (1966).

Friedman, J., Bredt, T. H. et al., A Computer Model of Transfor-
mational Grammar, American Elsevier, New York (1971)

Selzer, L. E. (ed.), The Columbia Lippincott Gazetteer of the World,
Columbia University Press, New York (1961).




< g iz

ol

Rl

e §

50
L
u
| S
u
| 9

T

lths

N
n

Il

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963:A




