American Journal of Computational Linguistics Microfiche 7

SEMANTIC DIRECTED TRANSLATION

OF

CONTEXT FREE LANGUAGES

H. William Buttelmann
Ohio State University

Copyright 1974 by the Association for Computational Linguistics

ABSTRACT

A formal definition for the semantics of a context free language,

called a phrase-structure semantics, is given. The definition is a model

of the notion that it is phrases which have meaning and that the meaning
of a phrase is a function of its syntactic structure and of the meanings
of its constituents. Next we give a definition for translation on context
free languages. We then study a certain kind of translation on cfl's,
which proceeds by translating on the phrase trees of the languages, and is
specified by a finite set of tree-replacement rules. We present a pro-
cedure which, given a cfg and phrase-structure semantics for a source
language and a cfg and phrase-structure semantics for a target language,
will (usually) produce the finite set of tree-replacement rules for tne
translation, if the translation exists. The procedure may be viewed as a
computer program which is a translator generator, and which produces

another program that is a translator.

TABLE OF CONTENTS

Title Page .« o« o ¢ o o o o s o o o 5 o 5 5 o s o s o o s o o o
Abs tract L} - . L] [» e L} L] [] [] L] LY L J L] L] [L] - [] L] L] L] [] . L a L]

Table of Contents .

0 L] IntrOduction L] L} L] L] L] o L] [] [L] L} [] L] L] [] . L] * [] L] [] L] L] L] L

1. Phrase Structure Syntax and Semantics .« « ¢ ¢« ¢ ¢« ¢ o o o« o &
Definition 1 (phrase-structure semantics) . « « « ¢« « o« « &
Example 1 (cfg and phrase-structure semanties) « « « « « + &
Definition of semantic functions 4: T(G) + & . . « « « « + &

Definftion of meaning function s L(G) + ZU e e s & o a & @

2. Translations as Tree Mappings + ¢ ¢ « ¢ ¢ ¢« ¢ ¢ ¢ ¢ o s ¢ o &
Definition of general translation T: L(Gl) +-2L(G2) e v e
Definition of gen(T) . ¢« « v 4 v 4 ¢ ¢ ¢ ¢ 4 o ¢ o o

Example 2 (gen(T)) e . < . e
Definition of translation Tt: T(Gl) -+ ZT(Gz) . . « o e
Definition of translation T: L(Gl) > ZL(GZ) e 4 e s e e e s

Example 3 (finitely specified translation) « . . .

3. A Procedure for Finding Translations (Usually)
P RO‘CEDURE L] [) L] L] * [] L] [] [] [] []

Proof that the function defined by PROCEDURE is a
translation

Figure 1. Translator Generator and Translator . . « . . « .

4, Sample Translations . . « + ¢ ¢ « o o & o

TRANSLATION I (Postfix to Precedence Infix)
TRANSLATION II (Cxplicit * to Implicit %)
TRANSLATION III(2,+ to 1,+) . e o e o s a4 s e s s o e & o
TRANSLATION IV (1,+ to 2,+) . . .

5. Conclusion and Further Research

[] » L4 . L] - L 4 [] L] "

Selected Bibliography « . .

[} [3 . [L) L] - L L L] L] - [] []

0D oo N O U

12
12
13
13
14
15
16

17
19
22

25

27
27
31
32
33

33

36

1.
SEMANTIC DIRECTED TRANSLATION
OF CONTEXT FREE LANGUAGES

by

H. William Buttelmann

Department of Computer and Information Science
Ohio State University
Columbus, Ohio 43210

0. Introduction.

This paper presents a formal model of the translation of context
free languages. The model is admittedly inadequate to provide for all
the intricacies and complexities of the problem of language translation.
Nevertheless, I hope that practicing apflied and computational linguists
will find it intuitively satisfying in its simplicity. At the same time,
the model should give us a basis for proving some theoretical results
about the nature of language tramslation,

Translation is necessarily concerned with both syntax and semantics,
so we begin with a formal definition of semantics for context free grammars.
In Section 2, a simple algorithm for translating from one context free
language to another is given. The algorithm is '"controlled" by a finite
set of rules which specify how to replace phrases in the source language
with semantically equivalent phrases in the target language. The trans-
lation algorithm, it turns out, is straightforward. The key problem is in
"finding'" the finite set of rules which correctly specify the translation.
The main part of this paper, Section 3, is concerned with that problem.
Throughout th® paper, we assume that grammars and semantics are given.
There is nothing in this paper that tells you how to go about writing the

"right" grammar and semantics for a given cfl.

An earlier version of this paper was presented to the Eleventh Annual
Meeting of the Association for Computational Linguistics at Ann Arbor,
Michigan, August, 1973.

This research was supported in part by NSF grant GN-534.1.

5

Much of the presentation is formal. Some readers may find it helpful
to read only through Example 1, and then to peruse Section 4 (Sample
Translations) to pick up some intuition, before proceeding with the rest

of the paper.

1. Phrase Structure Syntax and Semantics.

I assume the reader is familiar with the notions of "derivation" and
"syntax tree' (alias "derivation tree'", alias '"phrase marker") for cfg's.
Several good texts on these subjects are listed in the bibliography,

The definition of semantics which I am about to give is based on
the following two simple notions: 1) it is phrases which have meapndng
(paragraphs, sentences, clauses, and morphs are special cases of phrases),
and 2) the meaning of a phrase is a function of its syntactic structure
and of the meanings of its constitugnts. Keeping in mind that a function
is nothing but an assignment of elements in its cedomain to elements in
its domain, this definition will provide for idiomatic and emotive meaning,
as well as denotative or referential meaning, provided such meanings are
specified in the umiverse of discourse. I wish to add before giving the
definition that, although I have never seen it in this form before, I do
not believe this definition of semantics is original with me. I believe
it incorporates the notions of semantics in Benson (1970), Knuth (1968,
1971), some statements attributed to Thompson (cf Benson, 1970), and in-
Tarski (1936). Now the definitiom:

Definition 1.

Let.G = (V, 3, P, S) be a context free grammar where:

V is the finite nonempty vocabulary,
L € V is the terminal alphabet,
S € (V~-1I) is the axiom, and

P is the finite nonempty set of grammar rules, having the form
A+>g, for A€ (V-23) and B € V+.

A phrase-structure semantics for G is a 7-tuple

8 = (U, M, u, X, A, F, R), where:

U is a set, the universe of discourse,

U . .
MC2" is a finite set of atomic morphemes,

p: V> 2M is the vocabulary meaning function,

X={(), ,, Xys Xys ooy xﬁ} for some integer n,
A is a finite set of ndmes of partial recursive functions,
F is a finite set of definitions for the partial recursive

functions named in A,

R is a finite set of semantic rules, with the property that

to each grammar rule A - Bl"'Bn there is assigned one

semantic rule, having the form T(LB

B (xl,...,xn) = p,
1...n

where p € M U X U A)+, and Ty 5 B B (xl,...,xn) = p

1..
specifies a partial recursive function:

fa > B...p " HE)TTTHE) T REA).

We also require that X N (M U A) = @.

There is an example on the next page.

Example 1.

Consider a cfg and phrase-structure semantics for well-formed addition

expressions over the alphabet £ = {I, +}. L(G) = {I, I+I, I+I+I, ...}
G=(V, Z, P, S), and & = (U, M, y, X, A, F, R), where:
grammar semantics
P: R:
S+S + S rS+S+S(X1’x2’x3) = xz(xl,x3)
S+ 1I re,r(xy) = 1(x;)
V={S, I, +} C=NU {f+} U {1}, where:
= {1, +} N is the set of non-negatiwe integers,

and £ and 1 are recursive functions
defined in F below.
M={N, 1, £}
X = {(,); »s Xis Xo x3}
A= {1, £}
WD) = (1}, w(#) = {£73, u(s) = N
F contains just the following definitions:
1 (identity function on N » N):

1(x) = x
f+ (integer addition on N x N » N):
0) £7(0,y) =y
1) f+(x V) = (f+(x,y)) (! is the successor fn.)

Note that rS+S+S(xl,x2,x3) = x2(xl,x3) does indeed specify a recursive

function on u(S) xu(+) xu(S) - u(S), since if Xy and X4 are in p(S) = N and if
X, is in u(+) = {f+}, then xz(xl,x3) = f+(x1,x3) is in N and f+ is defined

primitive recursive.

Before explaining the example, let's first consider what the semantics

is used for. We will need the following notation for trees:

0) a is a tree, for all a ¢ I.

1) a<tl...tn> is a tree, for all a ¢ I and trees tl’ ceey tn.

FTor readability, wé write the members of M without unnecessary braces -—-
i.e., "1" instead of "{11}".

The above inductive definition gives a "standard" parenthekized notation
for trees. Let us denote the root of a tree t, rt(t) and the frontier,

fr(t). We shall also need the following non-standard notation:

to[tl...tn] is a tree if to, tl, ++vy tare trees and if
fr(to) = rt(tl) rt(tz) rt(tn).

Informally, to[tl...tn] is the tree formed by '"grafting" each t; at the
i~ node of the frontier of tO’ which can be done since this node has the
same label as the root of ti' For example, the tree a
b [
e

is denoted a<b<de>c>, and it has all the following non-standard representa-
tions: a<bc>[b<de>c], a<b<de>c>[dec], and af[a<bec>][b<de>c]. As the reader
can see, the '"box notation" is useful for isolating any rooted subtree. In
particular, note that S<S+S5>[S<I>+S<I>] is the syntax tree S<S<I>+S<I>> of
the grammar of Example 1, with its dominating subtree S<S+S> isolated.

Now back to the semantics. The semantic rules R are used to define a
function ¢ on the trees of the grammar which assigns to each syntax tree t
a semantic function ¢(t). Then ¢ and the meaning function y are used to
define a meaning function p on the sentences of G. First, we define ¢,

then .

To define ¢, we must first define the codomain of ¢, . Informally,

$® is the set of all n-ary functions on ZLx---XZU - ZU, for arbitrary n.

Formally, let 3" = {f:2Ux---XZU -+ 2U f is a function of n arguments}.
Then & = U ",

n=1,2,...
The fun;t;on $:T(G) - ¢ assigns to each t in T(G)+ a semantic function
¢(t) on u(Bl)X°--xu(Bn) + u(rt(t)), where Bl"°Bn = fr(t). To specify a
semantic function we will use the notat#on f(xl,...,xh):D + C, where £ is
the name of the function, (xl,...,xn) is the vector of arguments, D is the
domain, and C is the codomain. ¢ is defined by the following inductive

definition:

¥ T(G) is the set of syntax trees (partial and complete) of G.

0) ¢(a) (x):u(a) » u(a@) = 1(x):u(a) + u(a), where a €V,
¢(A<Bl. . 'Bn>) (xl-, . .xn) :u(Bl)xm *X) (Bn) > n(A)

=T

A+B (kg5 e osx) iu(B)xsoxu(B) + u(4), where

...B
1 n
A > Bl"'Bn is a grammar rule.

1) let t = to[tl...:n] € T(G),

and let Bij_1+l"'Bij= fr(tj) for j =1,...,n, where io = 0,
Then ¢(tylt ..ot 1) (% seeesx, Jan(By)xesoxu(B,) + ulre(ry))
n n
= ¢{to)(¢(t1)(x1,-..,xil):u(Bl)X°°-xu(Bil) + ure(t,)),
¢(t2)(xil+1,---,xiz)=u(Bil+1)x°--xu(BiZ) + u(rt(tz)).

¢(tn)(xi 4100 0%y)=u(Bi +1)Xt°'xu$Bi) + u(rt(tn)))
n n n-1 n

: u(rt(tl))x"'xu(rt(tn)) + u(rt(to))

Intuitively, the semantic function assigned to each tree t is the composi-
tion of the semantic functions assigned to the subtrees of which t is
composed. We leave it to the reader to verify that ¢ is well-defined.

The meaning function u on sentences is a special case of the meaning
function u on a larger domain -- the set of phrase forms of the grammar.
A phrase form is similar to a sentential form, except that it need not be

derived from the axiom. Formally, the set of phrase forms of G is the set

* *
P(G) ={w | w €V and A =w for some A € V}.

The function ¢ is used to define the meaning function as follows. The

function u:P(G) -+ 2U is defined by the following rule: Let w

wl...wn be

a phrase form in P(G) and let w have syntax trees t t . Then the
m

1’ ...’
set of meanings of w is the set

nw) = ; U ACHECIC FRPRN A

= ’...’m
L(G), the language of G, is a subset of P(G), so the meaning function on,
sentences, p:L(G) + ZU, is just the restriction of y to L(G).

10

Since the three functions y, ﬁ, and p have disjoint domains, they can

never be confused, so we shall write p for all three. u is the meaning

function, which assigns to each sentence, phrase form, and symbol, one or
more meanings according to the semantics J Thus, we are assigning
meaning to a sentence by assigning to it the meanings which are computed by
the semantic functions specified by its phrase structures, taking as argus
ments the meanings of the constituents of the sentence. The most elementary
constituents of a sentence are the members of I which constitute it. One
may think of these as the lexical items of the language. Their meanings,
whiich are the arguments of the semantic function, are among the morphemes
of the language -- those morphemes which cannot be further separated into
morphemes (this is the set of "atomic morphemes', M). Thus, the meaning

of a sentence is a function of its morphemes. Which function to use is
determined by its syntactic structure. A sentence can be semantically am-
biguous if it has more than one syntax tree or if at least one of its con-

stituents is semantically ambiguous.

We retuyrn to Example 1 on the next page.

11

Now consider Example 1. Let w be the sentence "L + I' + I". It has
the syntax tree

t =)A\
‘ Y

One meaning of w is ¢(t) W({T), v(&), u(l), u(+), u(I)). Tor notational
purposes, let tl-’ t?_’ t,, and t4 be the subtrees of t circled in the

picture. Now compute this member of u(w):

¢(t)(u(1)s u(E), u(@), v, u(d))

$(5<S+S> £+, 1) (D), u(), u(D), uE), (D))

= $(s<+8>) (4) (WD), H(H, 1D, $E) N, $(t,) WD)

= $(S<5+5>) ($(S<E+S>[t,7t,51) (WD), w(H), n(D)), $() (W(H), $(S<I>) (u(D)))

= $(S<5¥5>) ($(S<5+5>) ($(£,) (1), $(H) W), d(£x) (D)), B(H (),
6(S<T>) (u(1)))

6 (S<5+5>) ($(S<5+5>) (B (S<T>) (W(1)), () M), $(S<T>) (WD),

¢(+) (M), ¢(S<I>) (u(I)))

Torsts Tgrgs (Faup (M(I)s 1 (W), 1o ; (WD), 1(E)), re W(I)))
To,g+s Touogeg (L W), 1)), 1 (@), 1)), 11 (D))
T oasas Teogeg L L)s 1ED, 1D, 1(ED, 1))
+ +
(Trs4s(ds £

» 1), £, 1)
@, v, £, 1

TSss+s

Tssg45
et a, v, v

- 72, 1)

3

12
Note that "I + I + I" also has the syntax tree

t'n &
—

+ 5

i TN

I < + 5
| |
I I

but the senten¢e is not semantically ambiguous since

o(t) (), u(#), n(@),), u@)) = ¢(")®@, uE=), u(D), v, w@)

2. Translations As Tree Mappings.

Consider now any two cfg's and their associated semantics, G‘l, Jl
and G2, 432. A translation of L(Gl) to L(GZ) is a function
L(Gy)
TS L(Gl) + 2 defined as follows:
@) = {w' [u ') N) #¢)

The codomain of a translation must be the power set of the target language,
since every sentence in L(Gl) may have many semantically equivalent sen=-
tences in L(Gz). In this paper we focus on trxanslations which are speci-
fied by a finite set of rules. For these translations, there is a simple
algorithm for computing the translation of any sentence. This section
presents the method for giving the finite specification of 1t and the
algorithm for computing the translation.

In fact, instead of specifying a translation on the languages, we
specify a translation on the trees of the syntaxes.

To make precise what is meant by "translgtions which are specified by
a finite set of rules" we ‘introduce the concept of a generating set for

trees. Let Tl and T2 be two sets of trees with labels from some alphabet

L. Define the set Tg to be the set of all trees with single nodes and
labels from X, i.e., Tg = { a l a € r}. Informally, T, is a generating. set

1

. 0
for T2 just in case every tree in %, is either in 'I‘Z

finite number of trees of Tl, and just in case every tree so constructed is

or is constructed of a

in TZ' Formally, let T be a set of trees with labels from f. The set

13
gen(T) of trees generated by T is defined inductively as follows:

0
0) Tz

1) to[tl...tn] € gen(T) if it is defined,
for all positive integers n,

Cgen(T) and T C gen(T),

and for all trees tgs Bys cees By € gen(T).

T is a generating set for gen(T). We leave it to the reader to verify that
every tree in gen(T) can be written in the form to[tl...t 1, where

€ (TU T) and each t, € gen(T), fori =1, ..., n.

%o i

Example 2.

The set of production trees of a cfg is a generating set for the set

of all the syntax trees of the grammar. Let G = (V, I, P, S), let P

i) Bfi)B(i)..- (1) 1=1,2, ..., k}.

contain k rules, and let P = { A 2

oy
Then the set of production trees of G is the set
Tp = At il) éi)...Béi)> | 1=1,2, ..., k}
i

The set T(G) of all syntax trees of G is the set gen(TP).
As a more concrete example, consider the cfg G given by the following
rules:
S + 08§
S +B
B->0
B~>1
TP is the set { S<0S>, S, B<0>, B<l> }, or written pictorially:
//)i\\ ’ s B , B
S

0 S

T(G) = gen(TP) contains all trees of the following forms::

5(<08)" (»)" ,n >0,
S (<08)" (»)™ , N s
S (<08)<B<0>> (>)™ ,n >0,

n
5(<08)"<B<l>>(>)" , n >0,
B, 0, 1, B<0>, and B<l>.

14

The tree t = S<0S<0S>> is in T(G) = gen(TP) since t = S5<0S>[0S<0S>}
and S$<0S> € TP; 0 € gen(TP), and S<0S> ¢ gen(TP). Note that t can also
be written as t = S<0S<0S>>[00S], and again, S<0S<0S>> € genC¢P),

0 € gen(TP), and S € gen(TP).

To specify a translation from T(Gl) to T(GZ) we proceed as follows:

Let T be any partial function on VN -+ VN , and let T be a generating set

. 1 2 t
for T(Gl)' Let T be a function on T ~ T(GZ) X N; which satisfies the

following properties:

if T(t) = (t', xl...xn) then
i) rt(t') = 1(rt(t)), and
11) n = [fr(t')|, and
iii) O < Xy S_|fr(t)|, fori=1, ..., n, and

iv) Xy #0=fr(t"), = 1(fr(t)_), fori =1, ..., n.
i xi

T(G,)
Then we define the funttion T: T(Gl) + 2 2 by the following inductive

definition:

0) t €T =1(t) =t , where T(t) = (t', x).

1) T(to[tl...tm]) T(to)[ti...t;],

where i) T(to) = (T(to), xl...xn), and
any member of 'r(tx) if Xy # 0,

ii) t! = i

fr(r(to))i if x; = 0.

Note that the codomain of 1t is the power set of T(Gz) because there may be
trees in T(Gl) whose non-trivial factorings into to[tl...tm] are not unique.
For these trees, t1(t) = { f(to[tl...;m]) | to[tl...tm] is a representation

of t }. As with languages, we will call ¢ a translation only if it pre-

T(Gy)
serves semantics, that is, T: T(Gl) > 2 2 is a traanstation iff for every

tree t € T(Gl) and for every tree t' ¢ T(GZ)’ if fr(t) = w +e.w and

1
fr(t') = wi...w&, then

£ € T() = G Ty () snensuy (D) N GCED) Guy (D)5 ensity G1)) # 0.

¥ NO is the set of non-negative integers.

15

We will call t finitely specified (specified by a finite set of rules) iff
the generating set T is finite.

L(
Finally, T is used to define a translation Tt: L(Gl) + 2 K: as follows:

Let w € L(Gl) have syntax trees t., t . Then

l’
W) = { w' l Jt' in T(GZ) and 3 t in T(Gl) such that
t' is a syntax tree of w' and

t is a syntax tree of w and
t' € t(t) l.

It follows from the definitions that T is a translation if T is. To see
this, let w = Wy oW and w' = wi...w; and let w' € t(w). Then there exist
syntax trees t of w and t' of w' such that t' € t(f). Let

= = r v
£y ¢(t)(ul(w1),--.,nl(wm)) and &, ¢(t)(“zml’)""’“z("n”' Then from

the definition of u, gl E_ul(w) and 52 E_;é(w') = uz(fkw)). If 1 is a

translation, then £, N &, # @, so'?i(w) N ;é(?kw)) # #, and so T is a
translation.

The functions T and T are the method for specifving the function T.
The specification is finite just in case the generating set T is finite.
The inductive definition for t gives the algorithm for computing the trans-
lation of any tree in T(Gl), and the definition of ;: together with this
algorithm and a general context free parser such as Floyd's or Early's
algorithm, gives the algorithm for computing the translation of any sen-

tence in L(Gl). The next example illustrates.

(In the following and in all subsequent examples, we shall give ex-—
plicitly only the grammar rules, the right-~hand side of the semantic rules,
the universes of discourse, the meaning function, and those definitions of
partial recursive functions that are necessary. The reader can easily
determine the rest of the specifications for the grammars and semantics, 1if
he wishes. TFor cfg's we shall follow the usual convention that all symbols
which do not appear on the left-hand side of some grammar rule are termi-

nal symbols, and that the axiom is the first symbol appearing in the first
rule.)

16
Example 3.

We present two cfg's and their semantics, and a finitely specified
translation T on T(Gl) -+ ZT(GZ). To help the intuition, consider that
Gl’ Jl describes well-parenthesized subtraction expressions, and GZ’ JZ
describes subtraction expressions in Polish postfix notationm.

Glz Rl: GZ: RZ:

E + E-E XZ(xl’XB) S -+ §5- x3(x1,x2)
E > (E) 1(;2) S~+>1 t(xl)
E~+1 1(x1) S » 2 1(x1)
E~+2 1@9 S+ 3 1&0
E->3 1(x1)

U1 = U2 =N U {f }, where
N is the set of Integers and

f ¢: NxN->N is ordinary subtraction

uy (1) = 1 ny (1) = 1
ul(Z) = 2 U2(2) = 2
b 0) = by (8) = N
111(") = f
Hy(E) =N

The translation is specified by:
T(E) = S

o
>

-~ D>

=t eomman Ty

]

H—m

!
A

(5]

-

(4]

e’

~

E
TN,
E

e
]

&)

< e

-t >
(ol d s |
o
v
-t >
m;
It
.
;)

(ST Y oy |
L) e)

17

The sentence 1-2-3 is semantically ambiguous (its meanings are O and -4),

and its two translations are given by:

NN A

1)

>m

E

SEES

1 L]
i.e., T(1=2-3) contains 12-3-

2) /f\

>
7

v R
ot mom—
B =

a
S

E - E S =~ E S - §
IL/I\ I AN | AN\
1 l1 § - 1

|
2

() smeve T}

PO

() e ()

N =)

(0 e L)
|

i.e., 1(1-2-3) contains 123--

On the other hand the sentence 1-(2-3) is unambiguous and is translated:

AN AN AN
NN TAN
AR
l 2 3

ok T4
1 >~w

>

—

o s (1)

~

>

£\ s ['T]
w—m

N
(F%)

;>

N

i.e., T(1-(2-3)) contains 123--

t\)—-m

3. A Procedure for Finding Translations (Usually).

Suppose an oracle presents us with two cfg's Gl and G2 and their

respective semantics '81 and JZ' Suppose also that a finitely specified

translation from T(Gl) to T(Gz) exists. Can we find it? That is, can we

18

produce the finite set ofr rules defining the functions T and 1?

In this section we consider a procedure which accepts two arbitrary
cfg's and their phrase structure semantics and tries to find a descrip-
tion of such a translation. The procedure may not always work, in thap
it may not halt or the function T it describes may.be only partial. But
T is guaranteed to be correct; that is, the definitions of ¢ and 1 pro-
duced specify a partial function rt: T(GI) > 2T(G2) which is a translation
in the sense that, for any t € T(Gl), if t(t) is defined then T(t) is a
translation of t. First, the procedure is presented; then we give the
arguments that T is a (partial) translation.

Intuitively, the procedure works as follows: We try to find a finite

generating set T for T(Gl) and a pair of functions t: V., - V_ and

N.” N
4 1 Y2

T > T(Gz) x Ny which have the property that for every tree t

~

0 €T, if
%(to) = (ta, X), then to and té represent the same semantic function. What

is meant by "to and té represent the same semantic function" is just this:

1f ?(to) = (té, xl...xn) then ¢(to)(y1,...,ym) = ¢(t6)(yi,...y&),

y if Xy ¥ 0,

X

provided yi = 1

M =
u2(fr(t0)i) if Xy 0.

In general, to get semantic equivalence, one has to be careful how the

syntactic variables on the frontier of to are associated by the string x

with the syntactic variables on the frontier of tb, since these represent

possible trees with meaming, and hence the domains of the semantic fumec-
tions for t0 and té. If such a generating set T and functions T and T can
be found, the job is finished, since it can then be shown that the function
1 defined by T and T is a translation.

The procedure begins with the set TP of production trees of Gl’ which

is indeed a finite generating set for T(Gl). If the procedure can find a

"translation" for each t in TP’ it will be successful, and will halt and

output T, %, and T. The procedure systematically picks successive trees t0

in TP and searches T(Gz) for a semantically equivalent tree té whose fron-

tier it can match up by some rule x. If it finds one, it outputs the

definition %(to) = (té, x), deletes t0 from TP and tries one of the remain-

ing trees. T1If it succeeds in exhausting TP’ it is successful.

19

Suppose, however, that for some tO in TP’ the procedure can't find a
"translation" in T(Gz). Then if we assume that T does exist, it must be
the case that t, is part of a larger tree (or of each of a set of larger
trees) which can be "translated'. Furthermore, if we also assume that
T is finitely specified, this set is finite. Thus, the procedure tries
to construct a new set of trees, Tl, not containing tO, which is a finite
generating set for T(Gl) - {to}. It cannot be the case that the frontier
of t0 is a sentence if we also assume that the existing 1 is total on
ECGTS So, losing to from T(Gl) cannot delete any sentences from the

language represented by T(Gl). The procedure takes the set T. as a new

generating set to work with and begins again. .
It turns out that finding T depends heavily an the sequence in which
successive trees are chosen for translation attempts. Therefore, to
guarantee that T will be found if it exists, the procedure tries all poss~-
ible sequences of trees. The procedure has the general structure of a
"tree search'", and is represeunted by the search tree pictured. below. Each

node in the tree represents a subprocedure which is descrihed below the

tree.

PROCEDURE

Given two reduced+ cfg's G1 and G2 and their respective phrase-
structure semantics .31 and 32, execute the search tree below for all
integer pairs (maxi, maxs) = (1, 1), (1, 2), (2, 1), (2. 2), If for

any pair step 1 halts and outputs 'success', then halt.

Reduced in the sense that each nonterminal symbol is derivable from the

axiom and derives terminal strings. It is well-known that every cfg can
be put into this form.

Step .2 (To) LN]

step 1: - Set 1+« Q.
* Define the (finite) set of trees

T, = {A<B;B,...B > | A+ 3B

c.B_ € P}.

* Define the (finite) set of all possible partial . functions

182 182

{1, Ty oo, %k} such that for each j =1, 2, ..., k,

tj:VNl -+ VN2 and Tj(Sl) =§

+ Execute step 2 for each function 1

~and for all A € V , u,(4) = uz(%j(A)).

2 1

]

(i.e., for each j =1, 2, ..., k). If for some j the execution
of step 2 returns "success", then halt and output "success". If
step 2 returns "fail", increase j and continue. If step 2 returns
"fail" for all %j (i.e., for all j), then halt and output "fail".

step 2: (N.b., Ti is a finite set)
. If Ti = (¢ then return "success'".
« If i > maki then return "fail".

* Otherwise =2=xecute ste2_3 for each t €T If the execution of

i.
step 3 retvrns "success", then return "success". If step 3

returns "fail", then pick the next t in T, and execute step 3

step 3:

search:

21

again. If step 3 returns "fail" for all t in Ti’ then return
"fail",

Execute search.

If search returns "fail" then execute expand.

If expand returns "fail" then return "fail"” to step 2.
If either search or expand returns 'success' then retumn

"success" to step 2.

Generate the first (maxs) trees of T(G2):
t o ' 1 '
T {t!, tos =evs tmaxs}'
Test each tree t' in T' to see if it satisfies each of the

following properties:
1) t(rt(t)) = rt(t")

ii) There is a string of non-negative integers x = xlxz...xn'

such that each of the following is true:

a) n = [fr(t")]|

b) x, # 0 = fr(t"), = t(fr(t)_) for i =1, 2, ..., n
i xi

c) X, = 0 = fr(t')i € 22 fori=1, 2, «vu, n

d) ¢(t)(ylf"”ym) = ¢(t')(Yi,---,Y;)
y ifx, #0

. : Xy 1
provided ¥y =
1 -

uz(fr(t)i) if X, = 0.

If no such tree t' exists in T', then return "fail" to step 3.
If such a tree t' does exist in T' then

. define T(t) = (t*', x)

+ set | « i+l

» define the set Ti = (Ti~1 - {t})

* execute a new version of step 2.
If step 2 returns "success" return "success" to step 3.

If step 2 returns "fail" return "fail" to step 3.

expand:

22
Let Dom(t) denote the domain of the current version of the
function T, i.e., Dom(?) = {t | T(t) has been defined by
some execution of search in the current path of the search
tree}l. Let Ti denote the (finite) set (Ti U Dom(7)). Define
the set Tt to be the smallest set of trees which is a generating
set for (gen(Ti) - {t}), and which contains the set (Ti - {t}).
(Note that Tt does not contain t.)
If Tt is not finite, return "fail" to step 3.
Set 1 « 1i+l.

Set Ii + Tt'

Execute a new version of step 2,

If step 2 returns "success" return "success'" to step 3.
If step 2 returns "fail" return "fail" to step 3.

END OF PROCEDURE

Now we want to explain how the PROCEDURE defines functions (possibly
partial functions) on T(Gl) > ZT(GZ) and on L(Gi) > 2L(G2), and prove that

the functions are translations. We shall also show that if the PROCEDUXE

halts, the translation it total, except under certain easily identifiable

conditions.

Consider any path in the search tree. It looks like this:

(T is defined here.)

(T0 = TP is defined here.)

(t(t) = €', x) is defined here if
the node is search.)

(T1 is defined here.)

(Tn is defined here.)

23

We need to identify two particular sets of trees associated with this path.
Both are finite. The first is the domain of the function T, and the second
is the set of trees "excluded" by the successive executions of expand.

Note that each execution of the subroutine search adds one item to the
definition of the function' T, and the entire definition of T is given by
the set of all these items defined by executions of search in the path.

The domain of T, then, is the set

Dom(t) = {t l T(t) is defined by some execution of the

subroutine search in the pathl.

Similarly, each execution of the subroutine expand, in its first step,
defines a new set, Tt’ which does not contain the tree t. This step has
the effect of excluding the tree t from any further consideration in the

translation process. The set of all such trees is the set

Excl = {t | T, is defined by some execution of the

subroutihe exclude in the path}.

Now, the set (Dom(T) U Tn) is a finite generating set for the set

&T(Gl) - Excl), so the functions T and T define a partial function

T:'T(Gl) > ZT GZ) according to the definition in Section 2. Furthermore,
if Tn = ¢ then T is total onthe generating set, and so t is total on
(T(Gl) - Excl), and this is just the case when the PROCEDURE halts. Since
Ex¢él is a finite set, we have the result that T is defined on all but a
finite number of elements in T(Gl), when the PROCEDURE halts.

T(G»)
Since 1 is a partial function on T(Gl) + 2 2 , it follows from the

_ P(G,)
definition of t in Section 2 that T is a partial function on P(Gl) + 2 2

L(G,)
and therefore on L(Gl) »> 2 27 Let P(Excl) denote the set of frontiers

of the trees of Excl. Note that each member of P(Excl) is a phrase fomm.
Then when the PROCEDURE halts, since T is total on (T(Gl) - Execl), it
follows that T is total on (P(Gl) - P(Excl)) and on (L(Gl) - P(Excl)).
Thus, T is total on L(Gl) if PROCEDURE halts and if none of the trees
excluded by exclude are complete syntax trees. If complete syntax trees

are excluded, then their sentences are the only ones for which T is not
defined.

24

We have left only to show that T is a translation. The reader may
recall that there may be several nontrivial factorings of trees into a
form for which 1t is defined, and that this may lead to non-unique trans-
lations. Furthermore, the languages may be semantically ambiguous. These
conditions make the proof that 1 is a translation less lucid, so we shall
give here the proof for the case where 1 is defined for only one factoring
of each tree and there is no ambiguity. It will be helpful in the proof
to have the following notation: Let t € T(Gl) have fr(t) = Wyee oW and let
t' € T(GZ) have fr(t') = wi...w;. Then by ¢(t) = ¢(t') we mean
Sy W)y eeenmy (0 D) = ¢(E") Uy (Wyd e ey, (02D

Now to the proof. Let t(t) = t'. We wish to show that ¢(t) o(t").
Since t € gen(Dom(%)), t can be written as to[tl...tm] where to € Dom(7)
and each of the trees tl’ ceds tm € gen(Dom(T)). Let ?(to) = (¢}, x ...xn).

0 1
Then from the definition of t, T(t) = té[ti...t;], where for each

i=1, ..., n,

T(txi) if Xy # 0,

' =
fr(to)i if X, 0.

For inductive hypothesis, assume that for each j =1,...,m,

¢(tj) = ¢(T(tj)). Then we have:
$CE) (g p)sueyuy Ga)) =

¢(t0)(¢(t1)(ul(wl),---,ul(wjl),.--,¢(tm)(ul(wjm- +1),---,u1(wm))) and

1
B (") (uy(13) 5 ve sty @) =

BED) (361D Gy (oD e osbg G Do s CED Gy (gD by (D)) and

1 1
¢(tx1) if x, £ 0,
¢9(t,) =
dEr (), = wy(Er(tp)) if x, = 0.
Forr = 1,...,m let y_ = ¢(t 3(u (w.)yeeasp,(w,)), and
© r rl Jr_1+1 1 i,

for i = 1,...,n let y; = ¢(t£)(u2(wL +1),...,uz(wl'(i)). Then, if we
i-1

define jO = k0 = 0, the result above demonstrates that

25

yxi if X, $# 0,

uz(fr(té)i) if X, = 0.

Thus, by the defirdifion of T in search,
§ () (g 1)y e gy (1)) = CEQY (ypsenesyy) = $(ED(7]5ens¥0)

= ¢(t')(u2(wi),...,uz(w;)), or ¢(t) = ¢(t'). Thus t is a translatiom,

Finally, as we showed in Section 2, since T is a tramslation (on the.

syntax trees), T is a translation (on the languages).

In programming terminology a generator is a program whose input is a

set of parameters and whose output is a specialized program (cf Brooks and
Iverson (1969), p. 365). Then PROCEDURE constitutes a "translator
generator': its input is two cfg's and their associated phrase structure
semantics, and its output is a table of tree transformations which "drives"
a standard tree-mapping program. The tree mapping program is designed to
be part of a translator system composed of a parser, the tree mapper, and
a frontier stripper (see Figure 1). Translation proceeds as follows: Let
G1 and 81 be the cfg and semantics for the source language Ll’ and G2 and
d 2 the cfg and semantics for the target language Lz. The translater is
given a sentence w in>Ll. The parser produces a parse tree t{(w) for w., (If
w is syntactically ambiguous, the parser may produce all the parse trees of
w.) If t(w) is in the domain of the function t defined by the tree mapper,

the tree mapper will produce t(t(w)) whose frontier is a sentence u in L2.

G, and 1° Go and 32,
cfg and semantics cfg and semantics
for Ll for L2
TRANSLATOR
GENERATOR
r— _ N]
Parser Tree |
table transformation TRANSLATOR
table I
l G and 3) |
12 |
w € L,—-#]PARSER MWt (v) TREE |~ 1(t(w)) FRONTIER j—#u € L,
MAPPER STRIPPER
L . —

Figure 1. Translator generator and translator.

26
The importance of the argument that the function defined By the PROCEDURE
is a translation, is just that w and u are guaranteed to have the sgme
meaning. if they are unambiguous, and if thev are ambiguous, w and u are

guaranteed to have meanings in common -- i.e., that u is a bona fide

translation of w, in the ordinary sense of the word

The usefulness of such a method of translating is that the generator,
which has to consider all issues of syntax and semantics, and thereforas
runs very slowly, need only run once. The translator which it produces
should run very fast, since, other than parsing, it bhly has to transform

trees according to the finite set of rules in the tree transformation
table (the function T1).

time.

No semanti¢ computing is required at translate

4. Sample Translations.

27

This secfion presents some examples of translations on context free

languages. The tree search procedure outlined in Section 3 is programmed

in CPS and runs on the IBM S/370/165 at Ohio State.

lations were "found" by the program.

TRANSLATION I (Postfix to Precedence Infix)

Postfix:

Gl:

Grammar Rules

S =+ §S0

S+ A

S+B

S=+C

0+ +

All of these trans-

d:

X

Semantic Rules

%) (%ys%3)
l(xl)
XZ(xl’XB)
1(x,)
l(xz)
1(x;)
1(x,)
l(xl)
l(xl)
1(x;)
1(x,)

I(xl)

Infix:
Jl: G2:
§emantic Rules Grammar Rules
x3(xl,x2) E =+ EOT
l(xl) E-+T
I(xl) T + TXF
I(xl) T~+F
1(x,) F > ()
1 F->A
(xl)
1(xl) F-+3B
l(xl) F=>C
0>+
0~ -
X > %
X+ /
Universe of discourse
U1 = U2 =RUF
R = real numbers = {Rl, Rz, R3, .
- %
F={, £, £,)

28

Meaning function assigning atomic morphemes to lexical items and

syntactic variables:

u (A) = Ry M, (A) = Ry
ul(B) =R, W, (B) = R,
My (C) = Ry My (C) = Ry
u1(+) = £ Wh(+) = £
W) = £ (=) = £
b) = £ by (%) = £
w () = g/ y (/) = ¢/
W) =F Wy () = @
1, (8) =R 0, 00) =8
w0 = (£,
b, (0) = {£%,£7)
Wy (F) = R
uy(T) = R
uz(E) =R

Al = A, = {1}, and F1 = Fé contains just the definition: 1: N + N: 1(x) = x.

The reader should be able to figure out, after reading the definition in

-]
Section 1, that M, = M, = {R, R;, Ry, Ry, F, et ¢, £, ¢/} and
Xl = XZ = {(9),) x1$ xza.x3}-

A number of finite specifications for translations are possible. One is:

A

t(S) = E

T i =//
\

b] 0

~)>
m

w0
!

E
|
T
|
F
|
A

(o« P Y e B €3

~1>

iy

/’ii\\ . 10658\:9

E O T

>

j\ = /?\ s 10020\

i []
AN LN

[s E 0100026\
AN 7
AN T AN

T X / T X F
HR\ |
F * (E F / (E)

/N /N

(E) (E)

] —(-]

: 0100026\

1>
]

2]

It is interesting to note that the PROCEDURE does not have to know how

to compute the functions f+, £, f*, and f/ in order to discover this
translation. All that is needed is to assume that if a symbol appears

in both semantics, it represents the same semantic entity in each,
whatever that entity is. For emample, consider the two trees in the
translation involving "+". Let t = S<S80<+>>, and t' = E<EO<+>T<F<(E)>>>,
All we need to know is that ¢(t) = ¢(t'), and it turns out we can find
that out without computing f+:

¢(t)(ul(5),ul(8),u1(+))
= ¢(S<SSO<+>>)(ul(S),ul(S),ul(+))

= ¢(5<S50>[SS0<+>}) (u; (5,1, (8),u; ()

]

6(5<550>) ($(5) (1 (5)),6(5) (u (5)),6(0<+>) (1, (+)))

Tsgs0 (10 (8))5 1y ()47, (1 (D))

¥

Foagso(h (1 (830, 10k (8)),1 (g (+3))

Tgg50<Hy (8) 51y (5),1; ()

+
TsagsoRs Ro £)

= T @®, R)

Similarly, ¢(t')(UZ(E)9U2(+):V2(():UZ(E)suz())) = f+(R) R)’ so we know
that ¢(t) = ¢(t').

30

The following shows that

Consider now the translation of ABC+*.

D ————as

= |) by O

T(ABC+*) = A*(B+(C)):

—

+
Awllc
)

) e <3

TRANSLATION II (Explicit * to implicit *)

This translation is interesting because it shows the procedure has

the ability to "discover" that a word (*) in L(Gl) has no translation.

31

But it can find 'a phrase form involving that word which can be translated

to a phrase form in L(Gz).

Explicit *: Tmplicit *:
Glz 1: G2: 32:
*
E + EOE xz(xl,x3) S + 8§ f (xl,xz)
E > A 1(x1) S + A I(xl)
E~+B 1(xl) S+ B I\xl)
0> % 1(x1)
= = x
U, =0, =R U {£*}
ul(A) = R uy(A) = R
uI(B) = R uz(B) = R
® = %® =
ul() = f£ uz(S) R
ul(E) = R
ul(O) = f*
The translation is given by:

T(E) = S
- ? = 7 T ? =fs , 0

)l [\l
T E =

T(A*B*A) = ABA:

A

E O
ll/f\
A * E

I
B

o

*

P—

A

D> e U

W

O wm——()
o}
P> e (13

TRANSLATION III (2, + to 1, +) 32

L(Gl) is the language of all addition expressions with 2, i.e., the

set of all strings of the form 2 + 2 + ... + 2. L(Gz) is the set of all
strings of the form 1+ 1 + ... + 1. Under a standard semantics, L(Gl)
expresses the even integers and L(G2) the integers. The procedure

"discovers' that the word '2" in L(Gl) must be translated as the phrase
"1 + 1" in L(GZ)

Glz J&: G2: 32:
S + 245 xz(xl,x3) S + 1+S xz(xl,xB)
S+ 2 l(xl) S+1 1(x1)

+
U, = U2 =NU (£}

N = positive integers = {1, 2, ...}

u1(2) = 2 Wo(1) =1
+ 4+

ul(+) = f u2(+) = f

ul(S) = N uz(S) = N

+
F, = F2, which cogtains the following definition

f+:N X N+ N (integer addition):

0) £(0,y) =y

1) f+(x',y) = (f+(x, v))! (' is the suc~
cessor fn.)
1:N > N (didentity): 1(x) = x

The translation is specified by:
T(8) = S

~

T/ S = S , 000

A AN (/l\ o
\

~>

2 1 + § 2 + 1 S
* |
1

4

1 + S

33

Note that to "discover" this translation, the procedure must be able to
compute the function f+, since it needs to know that 2 = 1+1. Consider,

for example, ¢(S<2>)(ul(2)) = rS+2(ul(2)) = 1(2) = 2, but

¢(S<1+S<l>>) (112(1) ,uz(+) suz (D) =

¢(S<l+S>)(¢(1)(uz(l)).¢(+)(u2(+)),¢(5<1>)(uz(l))) =

rS+1+S(1(1),l(f+),1(l)) = £7(1,1) = 2. To get the last step in the
evaluation of the second semantic function, the procedure must be able to

compute f+(1,l).

TRANSLATION IV (1,+ to 2,+)

Suppose the procedure were asked to translate from L(GZ) to L(Gl) in
the previous example — i.e., from the integers to the even integers. It
would never halt, but it would "discover' that the phrase "1 + 1" is to be
translated as the word "2", "1 +1 4+ 1 + 1" as "2 % 2", etc. Tt wodld
define a translation which is total on the strings in L(GZ) whose values
are even, and it would continus to look forever for possible translations
for the odd-valued strings. We leave it as an exercise for the reader to

give the functions T and T which define this partial translation.

5. Conclusion and Further Research.

At the present time what is needed more than anything else in the area
of language translation is an understanding cf the formal nature of
semantics, its relation to syntax in language description, and its role
in translation. I believe this paper provides some of the basis for that
understanding. Incidentally, the reader might have observed that the
definition of phrase-structure semantics in Section 1 provides for
solutions to the semantic projection problem (cf Katz and Fodor (1964), and
Langendoen (1969)).

The reader is certainly aware by now, if not before, that theke are
many grammars and semantics for a given language. After having played
with writing grammars and semantics for simple languages for quite a while
now, I believe that, for most languages at least, there are "better"
grammars and semantics and "worse' ones. Some just seem to be more

elegant or simple, or '"matural" than others, for a given language. But I

34

can't say much of a specific nature about what it means for a grammar and
semantics to be "elegant", "simple", or "natural". It seems that some
study ih this area might give us insight into certain skills for making it
easier to write linguistic descriptions suitable for translatiom.

One phenomenon this model explains is why it is so difficult to
compute an inverse translation and get anything like the original. That
is, if one starts with sentence w in Ll and translates to w in L2, then
translates w' to w'" back in Ll’ one would like for'w and w" to have the

same meaning. But the scuttlebutt says it isn't so, and this model shows
Ly

I -~ 2 to be a translation

is that if w' is a transta®ion of w, then ul(w) N uz(w') + @, i.e., that

why. Note that all that is required for T: L

the source sentence and its translation have some common meaning. Now

L
suppose T':L2 + 2 1 is also a translation and that w" € t'(w'). Then we

have ul(w) N uz(w') # P and uz(ww) N ul(w") # @, but it does not follow
that ul(w) N Ll(w") # #. In oxder to get back to the original meaning,

each translator must produce the entire set t(w), rather than just some
sentence in T(w), and then all of these must be retranslated in entirety.
Translation programs don't usually do that. Neither do human translators,
for that matter! Alternatively, the translator should be able to give with
the translation, its parse and the atomic morphemes associated with the
sentence. The procedure in this paper provides for doing that.

The same definition of translation, if it is accurate, dlso explains
another phenomenon of language translation —-- how it is that two very
different translations can cone from the same source. If w' and w" are
translations or w, then we have ul(w) N uz(w') # @ and ul(w)'ﬂ uzcw") + 0,
but it do@s not follow that uz(w') n uz(w") # 0.

For natural language, one would like to¥exte 1 the theory in this
paper to arbitrary phrase structure grammars and to transformational

grammars. The extension to transformational grammars requires only

Z}.

The "lore'" has it that someone fed.the following sentence to a

translator from L1 to LZ:

"The spirit indeed is willing, but the flesh is weak."

Then he took the translation and fed it into a translator from L2 to
Ll’ and got:

"The liquor is all right, but the meat is spoiled.”

35

formalizing the notion of the transform ¢f a semantic function to be
associated with each syntax transformation. (For transformational semantic
theories which do not allow semantic change in the transformations, the
extension to arbitrary phrase structure grammars is sufficient, of course.)
The extension to arbitrary phrase structure grammars requires first a
formal statement of the '"phrase structures" of unrestricted grammars,

since these structures are not trees. The author's forthcoming paper,
listed in the bibliography, covers the subject of the syntactic structures
for unrestricted languages in detail.

There are, of course, schemes for translatlon other than the one
described in this paper. One might think of computing the meaning of a
source sentence, and then having some effective way of generating the
target sentence directly from the meaning. The scheme in this paper,
however, is more attractive at present than such a "direct" scheme, for
three reasons: 1) It is intuitively satisfying. I believe I translate
by first translating simple phrases and then putting their separate
translations together according to some restructuring rules that are
guaranteed to preserve semantics. Thus, one '"builds up'" the translation
of a sentence recursively, I am more likely to call the result which I
get by first computing the whole meaning and then producing a sentence
(often it is a sequence of senfences) with the same meaning, a "paraphrase
or an "interpretation', rather than a "translation". 2) If used much,
this scheme is likely to be more efficient than the '"direct' scheme, since
no .semantic computation is required at translate time. AJl the semantic
problems are examined once and for all in the translator generator; at
translation time, only a sequence of tree mappings is performed — simply
a structure matching and replacing technique. 3) The "direct" scheme
requires knowing how to specify linguistic descriptions in such a way that,
given a meaning in semantic notation, one can produce a sentence having
that meaning. This problem is a difficylt one not yet well understood.
Presumably, the research currently under way in the ficld of generative

semantics will explicate the issues involved.

36
Selected Bibliography.

BAnson, D. B. (1970). Syntax and semantics: a categorial view. In
Information and Control, 16, pp. 738-773.

Benson, D. B. (forthcoming) Semantic preserving translatioms.

Brooks, F. P., Jr., and Iverson, K. E. (1969). Automatic Data Processing.
New York: Wiley.

Buttélmann, H. W. (forthcoming). On the syntactie structures of unre-
stricted grammar®. In Information and Control.

Katz, J., and Fodor, J. A. (1964). The structure of a semantic theory.
In Language, 39, pp. 170-210, Reprinted in Fodor and Katz
(eds.) The Strugture of Language. Englewood Cliffs, New
Jersey: Prentice-Hall, pp. 479-518.

Katz, J., and Postal, P. (1964). An Integrated Theory of Linguistic
Descriptions. Cambridge: MIT Press.

Hopcroft, J. and Ullmann, J. (1967). Formal Languages and their Relatioh
to Automafa. Reading, Mass: Addison-Wesley.

Ginsburg, S. (1963). The Mathematical Theory of Context Free Languages.
New York: McGraw-Hill.

Knuth, D. E. (1968). Semantics 6f context-free languages. In Mathe-
matjital Systems Theory, 2, pp. 127-146.

. (1971). Examples of formal semantics. Symposium on
Semantics of Algorithmic Languages. Engelor, ed. Lecture Notes
in Math #188. New York: Springer-Varlag, pp. 212-235

Langendoen, D. T. (1969). The Study of Syntax. New York: Holt, Rine-
hart and Winston.

Tarski, A. (1936). Der Wahrheitsbergriff in den formalasierten Sprachen.

In Studia Philosophica, I, pp. 261-304. OGOriginally published
in 1933.

3

1.0 e s

36

e ———
——————
——————
D ———
D ————]

,'_. llb it e

~ MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF ST:\ND:\RUS 1963 A

