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ABSTRACT

This paper discusses human semantic knowledge and processing
in terms of the SCHOLAR system. In one major section we discuss
the imprecision, the incompleteness, the open-endedness, and the
uncertainty of people's knowledge. In the other major section we
discuss strategies people use to make different types of deductive,

negative, and functional inferences, and the way uncertainties
combine in these inferences.

Impreeision can occur either in memory or in communication.
SCHOLAR can have precise values or fuzzy values stored, and its
procedures can, to some extent, deal with fuzzy questions when
precise values are stored, and with precise questions when fuzzy
values are stored. Embedding allows information to be specified
in the data base to any level of detail or precision. But SCHOLAR
only communicates the most important information on any topic (as
measured by importance tags), unless more information is requested.
It should also be possible by using importance tags to adjust what
information SCHOLAR communicates, in accord with the sophistication
and interests of the listener.

Inference gtrategies that are appropriate when the complete
set of object attributes, or values, is known (i.e., in a closed
world) do not apply when knowledge is incomplete (i.e., in an
open world). There are a variety of uncertain inferences that
people use to circumvent the holes in their knowledge, which are
being programmed in SCHOLAR.

There is a set of transitive relations -~ superordinate,
superpart, similarity, preximity, subordinate, and subpart relations
-= that people frequently use to make deductive inferences.



Currently SCHOLAR only handles superordinate inferences (e.g.,
the Llanocs has a rainy season because it is a savanna) and super-
part inferences (e.g., the language in Rio is Portuguese because
Rio is part of Brazil). Deductive inferences can be more or less
certain (similarity inferences are like superordinate inferences,
but less certain) and can have restrictions on their use (only
certain attributes transfer on superpart).

when knowledge is incomplete, it is not safe to assume that
something is not true just because it is not stored. Thus an in-
ference is necessary to decide when to say "No" and when to say
“T don't know.® There is a complicated set of strategies in
SCHOLAR to find various kinds of contradictions that people use
to say "No." If a contradiction cannot be found, another negative
inference, called the "lack-of-=knowledge" inference, is tried.
When enough is known about an object, it is possible to conclude

that something is not true about that object on the grounds that
if it were true, it would be stored.

Another class of uncertain inferences depends on ill-defined
knoyledge of functional determinants, e.g., that climate depends
on latitude and altitude. Different ways that people use functional
knowledge involve functional calculations (e.g., if a place has a
particular latitude, it probably has a particular climate), func-
tional analogies (e.g., 1f a place is like another place in latitude
and altitude, it probably has the same climate), and to answer Why

questions (e.g., a place has a particular climate because of its
latitude and altitude).

Different inferences can combine in different ways. Sometimes
one strategy may call another strategy to find an answer. When
different inferences independently reach the same or different con-
clusions, they combine to increase or decrease certainty. The pro-
gramming of uncertain inferences is necessary to make computers as
clever and as fuzzy-thinking as people.
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1. Introduction

In this paper we will discuss how to eepresent and process
information in a computer in ways that are natural to people.
This does not mean doing away completely with representations and
procedures which computers have traditionally used, but adding

new representations and procedures which they have not used.

People often store and communicate imprecise, incomplete,
and unquantified information; they often assert truth or falsity
in relative terms; and they seldom seem to use rigorous logic¢ in
their inferential processes. Because of these conditions, people
seem to have an almost infinite information processing capacity,
with inference making and problem solving abilities more refined

and far more flexible than any ®xisting computer program.

How ®an we study these human capabilities in order to make
our machines show similar performance? A combination of
approaches is perhaps best. Observation of people's behavior,
introspection, some experimentation, protocol analysis, and
synthesis of computer programs can all be valuable techniques. A
recent paper (Collins, Warnock and Passafiumes) discusses a tech-
nique for combining protocol analysis with program synthesis as
applied to tutorial dialoques. The synthesis directs what to
analyze, and the strategies observed in the analysis are evaluated

by synthesis, in a kind of feedback loop We have been using



the SCHOLAR system in this way as a vehicle for experimentation

with natural semantics.

Before we discuss some of the major problems in natural
semantics, we will briefly describe the SCHOLAR system, since it
is the environment for our research. A word of caution though:
we are only trying to develop some insights, without attempting
to be exhaustive. More questions will be raised than answers

provided. There are many observable things people do that we do

not know how to simulate.

2, The Scholar System as an Environment to Study Natural
Semantics

In this section we will discuss, very briefly, some pertinent
aspects of SCHOLAR, a mixed-initiative instructional system. More

detailed discussiong are provided in Carban@112”3”4 and Warnock

and Collimsl@, Several data bases currently exist: one

is about the geography of South America, another about the ARPA
network, and a third about a text-editing system called NLS.
SCHOLAR s knowledge about any subject matter is in the form of a
static semantic network of facts, concepts, and procedures. This
is a modified and extended network a la Quillianlz and has a rich

internal structure with a well-defined syntax.



Dialogue with SCHOLAR takes place in a subset of English that
is limited mainly by SCHOLAR's currently primitive syntactic
capabilities. In tutorial fashion, the system uses its semantic
network to generate the material it presents, the questions it
asks, and the corrections it makes. At any time SCHOLAR accepts
questions and requests from the student, and generates responses
based on its semantic network, making calculations and inferences
of different types that it has been progzammed to handle. The
dialogue is unanticipated, and is dependent on the student's
responses, questions, and requests. Figure 1 presents a sample
protocol of an interaction with SCHOLAR; the person types after
the asterisk and returns control to the system with a second
asterisk.

Figure 2 shows some excerpts of SCHOLAR's semantic network.
Properties, none of which are obligatory, can have as values
(single words usually English words defined elsewhere in the
network), numbers, different types of lists, and other properties.
Attributes are usually English words, but there is a set of
special attributes for important relations, like SUPERC (for
superconcept or superordinate, e.g., Lima is a city and a capital),
SUPERP (for superpart, e.g., Lima is a part of Peru and South

America), SUPERA (for superattribute, e.g,, fertile refers to soil

and soil refers to topography), APPLIED /IO (color applies to things,



WHAT IS THE LANGUAGE OF ARGENTINA?
*PROBABLY SPANISH*

VERY GOOD.

APPROXIMATELY WHAT IS THE AREA OF ARGENTINA?
*TELL ME SOMETHING ABOUT PERU¥*

PERU IS A COUNTRY.

IT IS IN WESTERN SOUTH AMERICA.

IT IS ON THE COAST OF THE PACIFIC.
THE CAPITAL IS LIMA,

THE MOUNTAINS ARE NUMEROUS.

THE REGIONS ARE THE AMAZON JUNGLE, THE ATACAMA DESERT, AND
THE ANDES.

NOW YOU CAN EITHER ANSWER MY QUESTION OR ASK A NEW ONE.

*THE AREA OF ARGENTINA IS 1,100,000 SQUARE MILES®.

APPROXIMATELY TRUE, BUT A MORE EXACT VALUE 1$ 1,200,000.

THE EASTERN BORDERING COUNTRY OF PERU IS =-=-
*CHILBE®

NO.

THE SOUTHERN BORDERING COUNTRY OF PERU IS CHILE. THE EASTERN
BORDERING COUNTRY OF PERU IS BRAZIL.

WHERE IS PERU?

*WHAT IS THE MOST IMPORTANT DIFFERENCE BETWEEN PERU AND PARAGUAY?®

THE PRIMARY DIFFERENCE IS:
PERU IS IN WESTERN SOUTH AMERICA.
BUT PARAGUAY IS IN CENTRAL SOUTH AMERICA,

Figure 1. A Sample Dialogue Between SCHOLAR and a Student.
(Student inputs are enclosed by asterisks.)



CAPITAL
SUPERC (I O) CITY
PLACE (X O]
OF (I O) GOVERNMENT

APPLIED/TO (I 4) COUNTRY STATE

EXAMPLES (I 2) (SEOR BUENOS/AIRES LIMA MONTEVIDEO
BRASILIA GEORGETOWN CARACAS BOGOTA QUITO
SANTIAGO ASUNCION LA/PAZ WASHINGTON)

FERTILE
CONTRA (I 0) BARREN
SUPERA (I 0) SOIL

PERU
SUPERC (I 0) COUNTRY
SUPERC (I 1 B) SOUTH/AMERICA
LOCATION (I 0)
IN (I 0)
SOUTH/AMERICA (I 0) WESTERN
ON (I 0)
COAST (I 0)
OF (I 0) PACIFIC
LATITUDE (I 4)
RANGE (I 0) -18 0
LONGITUDE (1 5)
RANGE (1 0) -82 -68
BORDERING/COUNTRIES (I 1)
NORTHERN (I 1) (SL COLOMBIA ECUADOR)
EASTERN (I 1) BRAZIL
SOUTHEASTERN (I 1) BOLIVIA
SOUTHERN (I 2) CHILE

CAPITAL (I 1) LIMA
CITIES (T 2)

PRINCIPAL (I 0) (SL LIMA CALLAO AREQUIPA TRUJILLO
CHICLAYO CUZCO) '

LIMA
SUPERC (I 0) CITY CAPITAL

SUPERC (I 1 B) PERU SOUTH/AMERICA
LOCATION (I 0)

IN (I 0) PERU

Figure 2. Four Partial Entries from SCHOLAR's Georgraphy Dakta
Base.
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and caplital to countries and states), CONTRA (for contradiction,e.g.

barren contradicts fertile and democracy contradicts

dictatorship),
case-structure attributes like agent and I{nstrument (see Fillmores),

and various others.

The entry for location under Peru in Figure 2 illustrates an

important aspect of SCHOLAR’s semantic network called embedding.

Under the attrihute location there is the value South America

plus several subattributes among which is bordering countries.

But under bordering countries there are subattributes like northern
and eastern, some of which have several values. Embedding
describes the ability to go down as deep as necessary to describe

a property in more or less detail.

In the data base there are also tags, sucH as the (I 0) after
location and the (I 1) after bordering countries. These tags are

called importance or irrelevancy tags (I-tags), and they vary

from 0 to 6. The lower the tag, the more important the piece of
information 1s. The tags add up as you go down through lower
embedded levels. One of the ways SCHOLAR uses I-tags is to

decide what 48 relevant to say at any given time.

In the rest of this paper, we will discuss how we are using
SCHOLAR to cope with some of the problems in natural semantics.

However, there are still many natbral-semantics problems we have

not touched.
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3. Natural Semantic Information

In this section we discuss some aspects of natural semantic

information and its relation to artificial intelligence.

3.1 Imprecision or Fuzziness

Imprecise language is an essential characteristic of human
communtcation. As Lyonslo says, “"Far from being a defect as
some philosophers have suggested, referential 'impreciseness'...
makes language a more efficient means of communication.” Talking
about a tall person or a blue-green object does not require
precise specification of height or spectral characteristics. The
imprecision may occur either in communication or storage. 1If we

say that a colleague receives a large salary, we may or may not

know the figure.

SCHOLAR currently stores areas and populations in numerical
form, but it can respond to the fuzzy question "Is Montevideo
large?"” with a pertinent answer like: "It is not one of the
largest cities in South America, but it is the largest city in
Uruguay.” Here SCHOLAR has found two superparts, South America

and Uruguay, and then compared Montevideo to other cities in each

with respect to population.

However, it is more common for people to store values
that are imprecise or 'fuzzy', what Zadeh19 calls 'linguistic’

variables. This is the case with values like 'large', 'red’, ‘'hot’,
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'rich!, etc. It seems to us that one must be able to store
either precise values or fuzzy values interchangeably. (In fact,
SCHOLAR has fuzzy values as well as precise values stored, e.g.,
that the Brazilian Highlands has a large population.) Further-
more, the procedures that act upon these values must be flexible

enough to deal with either.

3.2 Incompleteness, Embedding, and Relevancy

Imprecise statements are often motivated by incomplete
specification. Since all specifications can be refined, they
are essentially incomplete. We store what is necessary, and if
we store more, we only communigate what is pertinent. SCHOLAR
does this through its I-tags. If it is asked "Tell me about

Peru,” it only gives a few salient facts.

Further specification can be added by refining existing
values. For example, instead of 'blue’ we can have 'Navy blue’,
or 'quite dark navy blue', etc. Further specification can also
be added by giving new properties with attributes somewhat
orthogonal to previous ones. An example of this is 'tall man'
versug ‘tall, heavy man wearing glasses'. Properties can be
specified to any level of detail by embedding, an inherent quality

of SCHOLAR~-type semantic networks.
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}.3 The Reference Problem and Context

Somewhat related to incompleteness and relevancy is the

l1). Referring to a colleagque, we

eference problem (see Olson
nay 'define’ him as the father of Jack and Jill, or the author of
hat paper on self-referential statements, or the tall thin fellow
vith glasses. We decide on some specification depending on the
ontext, including our assumptions about the person we are talking

to. People usually specify only to the degree that is needed.

In this sense, every partial specification is a 'definition’.

The problem of context pervades natural semantics.
Definitions and specifications, anaphoric references, what and
how to answer, all depend on context. Furthermore, there usually
co-exist a range of contexts from overall context to short-term
running contexts. For example, at a given time, SCHOLAR may
have the contexts South America, Argentina and Buenos Aires, each
with some dynamically adjustable life. What is relevamt. at any

given time depends on this contextual hierarchy.

A start toward making references specific to the listener
is possible in a SCHOLAR-type system by using I-tags (see Collins,
Warnock, and,PassafiumeG). The likelihood that another person
will know about any concept is roughly proportional to the
importance of the concept, as measured by the I-tags, with

respect to the overall context. Therefore, it is possible to
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estimate the sophistication of a person based on the level of tags
of the concepts he mentions in his conversation. This estimate
then can influence the description one uses in referring to some
concept. For example, to an unsophisticated listener one might
refer to the %"capital of Argentina® rather than “Buenos Aires, "
because the I-tags for the concepts "capital” and "Argentina® are
lower than those for "Buenos Aires," as measured from a context

such as geography.

In the future we want to have adjustable contexts in SCHOLAR,
so that it can talk about #he ARPA network, say, "from a communi-
cations point of view" to one person and “from & programming point
of view" to another person. What this entails is a temporary
alteration of the relative values of I-tags throughout the
gemantic network. Those concepts that are referred to under the
concept "communication® (such as message capacity, bit-rate, etc.)
should be temporarily increased in importance wherever they occur
in the data base, for the person interested in communication. A
corresponding change must be made for the person interested in
programming or any other concept or set of concepts. This kind
of sensitivity to the interests and background of the person, and
the kind of sensitivity (described above) to the sophistication
of the person may be the two major elements in the way people

adapt what they say to the listener.
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3.4 Closed versus Open Worlds

In some realms of discourse such as an airline reservations

1

system (Wbodsl7), a blocks world (Winograd 5),'or a lunar rocks

catalogue (Woods, Kaplan, and BashnWEbberls

), there is a closed
set of objects, attributes, and values to deal with. However,

in most real world domains such as those faced by SIR (Raphaella),
TLC (Quillianlz) or SCHOLAR (Carbonellz), there are open sets of
objects, attributes, and values. It turns out that the procedures

and even the rules of inference that can be applied are different

in closed and open worlds.

The distinction between closed and open sets is one of
exhaustiveness and not one of size. For example, the set of
states (e.g., Iowa), which is a closed set for most people, is
probably larger than the set of cattle breeds (e.g., Holstein),

which is an open set. However, epen sets tend to be larger in-

general than closed sets.

The distinction is important in a variety of ways. For
example, if there are no basaltic rocks stored in a closed data
base, then it makes sense to say "No" to the question "Were any
basaltic rocks brought back?" But if no volcanoes are stored
for the U, S., it does not follow that the answer should be “"No®
to the question "Are there any volcanoces in the U. S.?° A more
appropriate answer is "I don't know.® FPurthermore, it makes

sense to ask what the smallest block in a scene is or the rock
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with least aluminum concentration, but it makes no sense to ask
what is the smallest city in Brazil or the least famous lawyer
in the U, S. It would be an appropriate strategy for deciding
how many flights from Boston to Chicago are nonstop, to consider
each flight and count how many make 0 stops. But it would not
be an appropriate strategy to consider each person stored in a
limited data base (such as humans have), in order to answer the
guestion “How many people in the U. S. are over 30 years o0ld?"
Within open worlds there are closed sets, so that a question like
“How many states are on the Pacific?" makes sense whereas "“How
many cities are on the Pacific?" does not. SCHOLAR deals with

this by distinguishing exhaustive sets from non-exhaustive sets.

We will discuss in Section 4 how SCHOLAR begins to deal with
open world semantics. The essential point here is that the well-

defined procedures that are appropriate for a closed world simply
do not carry ove

r to an open world. Unfortunately, most of human

knowledge is open-ended, and so people have complex strategies for

dealing with uncertainty and facing problems such as how to apply

new attributes or values to objects where they haven't applied in

the past.
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3.5 The Twue-False Dichotomy and Quantification

The two-valued logic that underlies the propositional
calculus and related approaches to inference cannot encompass
natural semantics. The trouble arises because truth varies in
degree, in time, in range, in certainty, and in point of view of
the observer, when it is applied to real-world objects. We will
briefly examine some of the implications of the multivalued nature

o® truth for natural semantics.

Ssymbolic logic uses quantification to distinguish between
the universal and the particular, e.g., between "All men are
mortal® and "Some men have warts.” But there is no allowance
made for the degrees of truth as between say "Some men have warts"®
and "Some men have ears," even though only a fraction have warts
and almost all have ears. People will infer that Newton had ears
(given no information to the contrary as with Van Gogh), but will
not infer that Newton had warts. The inference in the former
case treats the particular like the universal, because almost
all men have ears. The more generally true a statement is, the
more certainty people assign to such an inference. There just are

not many universal truths to be found out in the cold, cruel world,

and so people make the best of it.

Degree of truth varies not only with respect to fuzzy

variables (see Section 3.1) and quantification, but also in other
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respects. The sky is blue, but not all the time. The yellow of

a lemon is less variable than the yellow of corn, which sometimes
borders on white. Boston is cold in the winter, but it is not so
cold from the point of view of an Eskimo. Nixon told us that he
didn't know about the cover-up of Watergate, but one is only

more or less cewtain that he didn’t know. What these examples are
designed to show is that people are uncertain about the truth of
any propogition for a variety of reasons. Sometimes people seem
to merge all the many sources of uncertainty together, but
sometimes they can distinguish different aspects of their

uncertainty with respect to a single proposition.

SCHOLAR does not now have any means for representing

uncertainty, but the natural way to add such information is in

tags stored along with the I-tags. Just as with I-tags, U-tags

can apply at all embedded levels of the data base. Because we

have started on programming uncertain inferences (discussed below),
it has become desirable to represent the underlying uncertainty

in the data base as well, in order to evaluate how certaln any

inference may be.,

4, Natural Inferences

We classify human semantic inferences into four major types:
deductive, negative, functional, and inductive inferences. The

various types are discussed in somewhat greater detail in Collins
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1 and Collins, Caxbonell, and Warnocks. We do

and Quillian
not argue that these describe all the inferential strategies that
people use, but only some of the major varieties. The different
strategies described are being implemented as subroutines in
SCHOLAR. While we think that people have a large set of such
strategies, the number is probably less than one hundred.

Therefore, despite the inelegance of such an approach, we do not

regard it as an endless task to encompass the bag of inferential

tricks a person uses.

In Figure 3 we have included excerpts from tape-recorded
dialogues between human tutors and students to illustrate some
of the morée complicated strategies people use, and the ways they

combine together. We will discuss the examples individually

below.

4,1 Deductive Inferences

There are several transitive relations that people use
frequently to infer that a property of one thing may be a property
of the other. These include superordinate, superpart, similarity,

proximity, subordinate, and subpart relations.

Of the above types SCHOLAR now handles only superordinate
and superpart inferences, which are the most common. For example,

if asked "Does the Llanos have a rainy season?®, SCHOLAR will



(T)

(8)
(T)

(S)

(T)

(S)

(T)

(T)

(8)
(T)

There is some jungle in here (points to Venezuela) but
this breaks into a savanna around the Orinoco.

Oh right, that is where they grow the coffee up there?

I don't think that the savanna is used for growing
coffee. The trouble is the savanna has a rainy season
and you can't count on rain in general. But I don't
know. This area around Sao Paulo is coffee reglon, and
it 1s sort of getting into the savanna region there.

o G2 O3 O O T G O CID D

Are there any other areas where oil is found other than
Venezuela?

Not particularly. There is some o0il offshore there but
in general oil comes from Venezuela. Venézuela is the
only one that's making any money in oil.

o CR 22> €D D O Sty O @ G2

Is the Chaco the cattle country? I know the cattle
country is down there.

I think it's more sheep country. 1It's like western Texas
gso in some sense I guess it's cattle country.

T D O O Gy G AT @D I CRED

And the northern part of Argentina has a large sort of
semi-arid plain that extends into Paraguay. And that's
a plains area that is relatively unpopulated.

Why?

Because it's pretty dry.

Figure 3. Tutor-Student Dialogue Excerpts

20
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first look under Llanos and failing to find the information
there, will look under Llanos' SUPERC (for superordinate), which
is savanna, and its SUPERP (for superpart), which is Venezuela
and Colombia. A rainy season is a property of savannas and so
the superordinate inference provides the answer. The superpart
inference is less general because it is restricted to certain
attributes such as climate, language, and topography. One would
not want to conclude that the capital of Massachusetts is
Washington, D. C., just because Massachusetts is part of the
United S&ates. Because most properties of a superordinate or
superpart are only generally true, and not universally true,
exceptions must be stored to preclude an incorrect inference

(RapheellB).

Similarity and proximity inferences parallel the superordinate
and superpart inferences, but they carry less certainty. An ex-
ample of a person using a proximity inference is shown in the
latter part of the tutor's response in Example 1 of Figure 3.

The tutor first said that a savanna could not be used for growing
coffee, but then he backed off this conclusion because of the
proximity of the large Brazilian savanna to the coffee-growing
region there. To illustrate a similarity inference: if one
knows a wallaby is like a kangaroo, only asmaller, then one will
infer that a wallaby probably has a pouch, We plan to add

similarity information to SCHOILAR in the near future, because it
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will also be useful in making functional analogies which are
discussed below, The recently added map facility (Warnock and
Collinsl4) which ties together visual and semantic representations,

makes proximity inferences possible, but they are still a way off.

Subordinate and subpart inferences follow a somewhat different
pattern from the others discussed. If asked whether South America
produces any oil, a person will answer "Yes" because Venezuela,
which is part of South America, produces oil. But one does not
want to conclude that South America is hot because the Amazon

jungle is. We haven't worked out the details of the restrictions

on these inferences as yet.

There are other transitive relations that are used to make

deductive inferences but they are not as prevalent as the ones

outlined here.

4,2 Neggtive Inferences

Negative information, such as the fact that men do not have
wheels, is not usually stored but rather inferred. In a closed
world this presents no problem; it is reasonable to assume that
if something is not stored, then it is not true. 1In fact, early
versions of SCHOLAR say "No" if asked "iIs o0il a product of Brazil?"
just because o0il isn't stored for Brazil. But in the real world,

the fact that something is not stored does not necessarily mean
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that it is not true. People seem to have complex strategies for
deciding when to say "No" and when to say ®I don't know." We

have recently been implementing these in SCHOLAR.

One kind of negative inference now in SCHOLAR is a simple
contradiction procedure. It relies on contradictory values
stored with various concepts: for example, barren contradicts
fertile, and democracy contradicts dictatorship. Suppose
SCHOLAR is asked "Is the Pampas barren?® It would find the soil
of the Pampas is fertile, and since fertile contradicts barren,

it would say "No. The soil of the Pampas is fertile."

There is an important class of contradictions that are not
subsumed under the procedure above. For example, consider the
question “Is Buenos Aires a city in Brazil?" The fact that
Buenos Aires is not among the cities of Brazil is no reason to
say "No," because there are cities in Brazil, such as Corumba,
which are not stored. But there are three facts that together
make a contradiction possible: (1) Buenos Aires is located in
Argentina, (2) cities only have one location, and (3) Argentina
and Brazil are mutually exclusive. We can illustrate tne
necessity for conditions (2) and (3): (2) even though Portuguese
is the language of Portugal, it is alsé the language of Brazil
(1.e., language can have more than one location); (3) even though

Sao Paulo is in South America, it is also in Brazil (i.e., South
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America and Brazil are not mutually exclusive). Making an
incorrect negative inference about cities with more than one
location (e.g., Kansas City) or different cities with the same
name (Rome, New York, and Rome, Italy) is precluded by storing
both locations specifically, just as with deductive inferences.
The strategy we have woxrked out and implemented to find different

contradictions of this kind is fairly complex.

Fallure to find a contradiction leads to another kind of
negative inference people -use which we call the lack-of-knowledge
inference (Collins, Carbonell and Warnocks). Example 2 of
Figure 3 shows the tutor using this strategy. The basif of the
tutor's inference is this: since he knows as much about other
South American countries as he knows about Venezuela, it is a
plausible but uncertain inference that if other countries produced
0il, he would know about it. (His conclusion was at least
somewhat wrong, because there are in fact several other countries
in South America that produce oil. though for those countries oil

is not nearly so important as it is for Venezuela.)

Soch a strateqy is currently being implemented in SCHOLAR in
the following way: If asked a question like "Is oil a product of
Uruguay?” where no oil is stored, SCHOLAR can look for oil under
similar objects (e.g., Venezuela or Brazil) or objects with the

same SUPERC and SUPERP. If SCHOLAR finds oil stored with



25

Venezuela (say with an I-tag of 3) and if it has enough
information stored about Uruguay (up to an I-tag of 8, say)

to know about o0il if it were at all important, then it can infer
that Uruguay probably has no oil. The degree of certainty
expressed in the answer should depend on the difference in I-tags
between the depth of what it knows about Uruguay and the level at
which o0il is stored with similar objects. If SCHOLAR can find no
similar objects that have the property in question, as with "Is
sand a product of Uruguay?" the appropriate answer is something
like "I don't know whether sand is a product of any country in
South America.” The lack-of-knowledge inference is based on the
assumption that one's knowledge is fairly consistent for similar

objects.

4,3 Functional Inferences

Functional inferences are common in the dialogues we collected
(Ccllins, Warnock, and Passafiumeﬁ). Examples 1, 3, and 4 in
Figure 3 illustrate the three different ways we have seen people

use functional knowledge: in quasi talculations, in analogies,

and in answer to "why" questions.
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Punctional knowledge, which includes knowledge about func-
tional determinants and their interactions, is learned, just as
is factual knowledge, and therefore is stored in SCHOLAR's data
base under concepts such as climate or agricultural produets. We
would arque that the representation of functional knowledge
should be in a form that different procedures can use, One
problem is to find a way to represent such knowledge in SCHOLAR
so that it can be more or less precise, and still be accessible

to different subroutines that infer answers to questions or that

describe the functional relation to students.

Functional calculations can be used in both a positive and
negative way. One simple positive function now in SCHOLAR
calculates the climate of a place if the information is not
gtored, Based on the major functional determinants of climate,
which are latitude and altitude, SCHOLAR will infer whether the
climate is troplical, sub-tropical, temperate, or cold/polar. A
negative use of calculation based on the agricultural products
function is shown in the first part of the tutor's answer in
Example 1. The functional determinants of agricultural products
include the climate, soil, and rainfall. The tutor picked the
lack of rain as a basis for a tentative "No." Negative calcula-
tions do not require as precise knowledge as positive calculations.
They often only require that one or two of the functional

determinants have an inappropriate value.
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Like functional calculations, functional analogies can be
>ositive or negative. Example 3 shows the tutor making a positive
Functional analogy, again with the agricultural products function.
There he thought of a region, western Texas, that matched the
chaco in terms of climate and rainfall, the functiohal determin-
ants of cattle raising. Since he knew that western Texas was
cattle country he inferred that the Chaco might be as well. A
negative functional analogy might have occurred if the student
had asked whether the Chaco produced rubber. Since the Amazon
jungle and Indonesia produce rubber, the tutor could have said
"No" on the basis of the mismatch between the Chaco and those

regions, with respect to climate and rainfall.

A positive and negative analogy subroutine has been
implemented in SCHOLAR. It is a fallback strategy to be used
if there is not enough information stored to calculate the
functional relationship. For a functional analogy it is only
necessary to know the functionally relevant attributes and their
relative importance. Then SCHOLAR looks to see if it knows any
similar objects where the property in question is in fact stored.
It tries to find a match or a mismatch by comparing the given
object and the similar object with respect to their values on
the functionally relevant attributes. People frequently use
such analogical reasoning, probably because of the ill-defined

nature of their knowledge about functional relations.
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The last example in Figure 3 shows the use of a functional
relation to answer a "Why" question. The population density of
a place depends on an indefinite set of functional determinants:
climate, soil, and rainfall are major ones but distance from the
sea, the par*icular continent, presence of valuable minerals, all
contribute in different ways. The tutor picked one determinant
that had a value inapprgopriate for a large population density
and gave that as a reason. By contrast a geographer could
probably write a whole treatise on why the Chaco has a low
population density. What we aspire for SCHOLAR to do is what the

tutor did, that is, to pick one or two of the majer determinants

with appropriate values and give those as a reason.

4.4 Inductive Inferences

We mention inductive inferences here only because they are
a major class of human inference. We have not yet tried to
program them in SECHOLAR gince they occur mostly in storing
rather than retrieving information. The generalization and dis-
crimination processes underlying induction have been discussed

in detail elsewhere (Beck@rlg Winsﬁonlﬁg Collins and Quillim‘ﬂ)°
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4.5 Combining Inferences and Accumulating Uncertainty

The inferential processes described can combine in a variety
of ways. For instance, contradictions can combine with deductive
inferences. SCHOLAR will answer a question like "Is the Atlantic
orange?" with "No, it is blue," because it finds blue is stored
with the SUPERC, ocean. Also one functional inference may call
another. If the agricultural products function needs a value for

hhe climate of some region, it could call the climate function to

compute it.

A more important way that inferences combine shows up when
different strategies reach independent conclusions about the same
question. A good example is Example 1 in Figure 3. There a
negative functional inference, with an implicit lack-of-knowledge
inference, first led to a tentative "No" answer, but then a
proximity inference produced a possible "Yes" answer, and so the
tutor backed off his earlier "No." When several inferences combine
to yield the same conclusion, they increase the certainty of the

answer, and when they produce opposite conclusions, they decrease

the certainty.

There are a number of sources of uncertainty in inferential
procedures. Uncertainty can derive from the size of the difference
between I-tags ian the lack-of-knowledge inference, it can derive
from the degree of match or mismatch in a functional analogy, it

can derive from the degree of predictiveness of the functional
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determinants, and as we discussed earlier, it can derive from the
degree of certainty about the information stored. These sources
of uncertainty may be combined to produce an overall uncertainty
(see for example Klingg)° This overall uncertainty is important
so that long, tenuous chains of reasoning are not pursued to their

pointless end, and so that the degree of uncertainty in the answer

can be iadicated to the student.

5. Conclusions

What we have tried to show in this paper is the fuzzy, ill-
defined, uncertain nature of much of human knowledge and thinking.

We want SCHOLAR to be just ag fuzzy-thinking as we are.
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