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We present a framework for generating natural language description from structured data such
as tables; the problem comes under the category of data-to-text natural language generation
(NLG). Modern data-to-text NLG systems typically use end-to-end statistical and neural ar-
chitectures that learn from a limited amount of task-specific labeled data, and therefore exhibit
limited scalability, domain-adaptability, and interpretability. Unlike these systems, ours is a
modular, pipeline-based approach, and does not require task-specific parallel data. Rather, it relies
on monolingual corpora and basic off-the-shelf NLP tools. This makes our system more scalable
and easily adaptable to newer domains.

Our system utilizes a three-staged pipeline that: (i) converts entries in the structured data
to canonical form, (ii) generates simple sentences for each atomic entry in the canonicalized
representation, and (iii) combines the sentences to produce a coherent, fluent, and adequate
paragraph description through sentence compounding and co-reference replacement modules.
Experiments on a benchmark mixed-domain data set curated for paragraph description from
tables reveals the superiority of our system over existing data-to-text approaches. We also
demonstrate the robustness of our system in accepting other popular data sets covering diverse
data types such as knowledge graphs and key-value maps.
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1. Introduction

Structured data, such as tables, knowledge graphs, or dictionaries containing key-value
pairs are popular data representation mechanisms used in a wide variety of industries to
capture domain-specific knowledge. As examples, (1) in the finance domain, tabular data
representing the financial performance of companies; (2) in healthcare, information about
chemical composition of drugs, patient records, and so forth; and (3) in retail, inventory
records of products and their features are a few among many other manifestations of
structured data. Various artificial intelligence–based human–machine interaction ap-
plications such as question-answering or dialog involve retrieving information from
such structured data for their end goals. A key component in such applications deals
with Natural Language Generation (NLG) from the aforementioned structured data
representations, known as the data-to-text problem. Another important use-case of this
problem is story-telling from data, as in automatic report generation.

In literature, several approaches have been proposed for data-to-text, which can
be categorized as rule-based systems (Dale, Geldof, and Prost 2003; Reiter et al. 2005),
modular statistical techniques (Barzilay and Lapata 2005; Konstas and Lapata 2013), and,
more recently, end-to-end neural architectures (Lebret, Grangier, and Auli 2016; Mei,
Bansal, and Walter 2016; Jain et al. 2018; Nema et al. 2018). Rule-based approaches
use heuristics or templates for specific tasks that cannot scale to accommodate newer
domains unless heuristics are revised manually. On the other hand, the statistical and
neural approaches require large amounts of parallel labeled data for training. Parallel
data in NLG tasks are quite expensive to obtain; they require an annotator to frame a
complete text as output for each input. To work on unseen domains and tasks, these
data-hungry systems need to be trained again with parallel data for every new domain.
To put this in the data-to-text NLG perspective, Table 1 shows lack of adaptability of
supervised systems on unseen domain data. It can be seen that models do well for
the domain in which they are trained on whereas they perform poorly on a different
domain. In hindsight, such end-to-end systems are adversely affected by even slight
changes in input vocabulary and may not generate language patterns other than what
is seen during training.

Further, because existing systems are designed as task-specific solutions, they tend
to jointly learn both content selection from the input (what to say?) and the surface realiza-
tion or language generation (how to say?). This is often undesirable, as the former, which
decides “what is interesting” in the input, can be highly domain-specific. For example,
which weather parameters (temperature, wind chill) are influential versus what body
parameters (heart rate, body temperature) are anomalous is heavily dependent on the
domain at hand, such as weather or healthcare, respectively. On the other hand, the
surface realization part of language generation may not be as domain-dependent and
can, thus, be designed in a reusable and scalable way. Therefore, it would be easier
to develop scalable systems for language generation independently than developing
systems that jointly learn to perform both content selection and generation.

In this article, we propose a general-purpose, unsupervised approach to language
generation from structured data; our approach works at the linguistic level using word
and sub-word level structures. The system is primarily designed for taking a structured
table with variable schema as input and producing a coherent paragraph description
pertaining to the facts in the table. However, it can also work with other structured
data formats such as graphs and key-value pairs (in the form of JSONs) as input.
Multiple experiments show the efficacy of our approach on different data sets having
varying input formats without being trained on any of these data sets. By design, the
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Table 1
Existing structured data-to-text systems WEBNLG Model is a system trained on WEBNLG
training data (Gardent et al. 2017), and WIKIBIO Model is a system trained on WIKIBIO training
data (Lebret, Grangier, and Auli 2016). As expected, the performance of both these models are
good only on the data set they are trained on, showing a lack of adaptability across domains.

WIKIBIO Test data

Input Title : Thomas Tenison
Birth Date: 29 September 1636
Birth Place : Cottenham , Cambridgeshire , England
Death Date : 14 december 1715
Death Place : London , England
Archbishop of: Archbishop of Canterbury
Enthroned: 1695
Ended : 14 December 1715
Predecessor : John Tillotson
Successor : William Wake

Reference: Thomas Tenison (29 September 1636 - 14 December 1715) was an English church leader,
Archbishop of Canterbury from 1694 until his death.

WEBNLG Model: thomas , england and england are the main ingredients of thomas of archbishop , which is a
member of the title of the thomas of archbishop . The birth date of the country is thomas.

WIKIBIO Model: thomas tenison (29 september 1636 - 14 december 1715) was archbishop of canterbury from 1695
to 1715.

WEBNLG Test data

Input Bacon Explosion , country , United States
United States , leader name , Barack Obama
United States , ethnic group , White Americans

Reference: Bacon Explosion comes from the United States where Barack Obama is the leader and white
Americans are an ethnic group.

WEBNLG Model: The Bacon Explosion comes from the United States where Barack Obama is the leader and White
Americans are one of the ethnic groups.

WIKIBIO Model: bacon explosion is a united states competitive american former competitive men ’s national team.
united states (born october 16 , 1951) is a retired united states district judge for the united states
district court for the united states district court for the united states district court for the united
states district court for the united states district court for the united states district court for the
united states district court for the united states district court for the united states district court
for the united states district court for the united states united states (born october 16 , 1949) is an
american former white executive.

system is unsupervised and scalable, that is, it assumes no labeled corpus and only
considers monolingual, unlabeled corpora and WordNet during development, which
are inexpensive and relatively easy to obtain.

In the proposed approach, the generation of description from structured data
happens in three stages, namely, (1) canonicalization, where the input is converted
to a standard canonical representation in the form of tuples, (2) simple language
generation, where each canonical form extracted from the input is converted into a
simple sentence, and (3) discourse synthesis and language enrichment, where simple
sentences are merged together to produce complex and more natural sentences. The
first stage is essential to handle variable schema and different formats. The second stage
gleans morphologic, lexical, and syntactic constituents from the canonical tuples, and
stitches them into simple sentences. The third stage applies sentence compounding
and co-reference replacement on the previously produced simple sentences to generate
a fluent and adequate description. For the development of these modules, at most a
monolingual corpus, WordNet, and three basic off-the-shelf NLP tools—namely, part-
of-speech tagger, dependency parser, and named entity recognizer—are needed.

To test our system, we first curate a multidomain benchmark data set (referred
henceforth as WIKITABLEPARA) that contains tables and corresponding manually
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written paragraph descriptions; to the best of our knowledge, such a data set did
not previously exist. Our experimental results on this data set demonstrate the supe-
riority of our system over the existing data-to-text systems. Our framework can also
be extended to different schema and datatypes. To prove this, we perform additional
experiments on two data sets representing various domains and input-types, only
using their test splits: (i) WIKIBIO (Lebret, Grangier, and Auli 2016), representing key-
value pairs, and (ii) WEBNLG (Gardent et al. 2017), representing knowledge graphs.
Additionally, for the sake of completeness, we extend our experiments and test our
system’s performance on existing data-to-text NLG data sets (for the task of tuple to text
generation). We demonstrate that even though our system does not undergo training on
any of these data sets, it nevertheless delivers promising performance on their test splits.
The key contributions of this article are summarized as follows:

• We propose a general purpose, unsupervised, scalable system for
generation of descriptions from structured tables with variable schema
and diverse formats.

• Our system utilizes a modular approach enabling interpretability, as the
output of each stage in our pipeline is in a human-understandable textual
form.

• We release a data set called WIKITABLEPARA containing WikiTables and
their descriptions for further research. Additionally, we also release data
gathered for modules for sentence realization from tuples (refer to Sections 4
and 6), useful for general purpose tuple/set to sequence tasks. The data set
and code for our experiments are available at https://github.com/parajain/
structscribe.

We would like to remind our readers that our system is unsupervised, as it does
not require parallel corpora containing structured data such as tables at the source side
end and natural language description at the target side. Manually constructing such
labeled data can be more demanding than some of the well-known language generation
tasks (such as summarization and translation) because of the variability of the source
structure and the non-natural association between the source and target sides. Our
system does not require such parallel data and divides the problem into sub-problems.
It requires only simpler data forms that can be curated from unlabeled sources.

We would also like to note that an ideal description generation system would
require understanding the pragmatic aspects of the structure under consideration. In-
corporating pragmatic knowledge still remains an open problem in the domain of NLG,
and our system’s capability toward handling pragmatics is rather limited. As the state-
of-the-art progresses, we believe that a modular approach such as the one proposed can
be upgraded appropriately.

2. Central Challenges and Our Solution

This section summarizes the key challenges in description generation from structured
data.

• Variable Schema: Tables can have a variable number of rows and
columns. Moreover, the central theme around which the description
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should revolve can vary. For example, two tables can contain
column-headers [Company Name, Location], yet the topic of the description
can be the companies or the locations of various companies. Also, two tables
having column-headers [PlayersName, Rank] and [Rank, PlayersName]
represent the same data but may be handled differently by existing methods
that rely on ordered-sequential inputs.

• Variation in Presentation of Information: The headers of tables typically
capture information that is crucial for generation. However, presentations
of headers can considerably vary for similar tables. For example, two
similar tables can have column-headers like [Player, Country] and [Player
Name, Played for Country], where the headers in the first table are
single-word nouns but the first header of the second table is a noun-phrase
and the second header is verb-phrase. It is also possible that the headers
share different inter-relationships. Nouns such as [Company, CEO] should
represent the fact that CEO is a part of the company, whereas entities in
headers [temperature, humidity] are independent of each other.

• Domain Influence: It is known that changing the domain of the input has
adverse effects on end-to-end generators, primarily due to differences in
vocabulary (e.g., the word “tranquilizer” in healthcare data may not be
found in tourism data).

• Natural Discourse Generation: Table descriptions in the form of discourse
(paragraphs) should contain a natural flow with a mixture of simple,
compound, complex sentences. Repetition of entities should also be
replaced by appropriate co-referents. In short, the paragraphs should be
fluent, adequate, and coherent.

End-to-end neural systems mentioned in the previous sections suffer from all of
these challenges. According to Gardent et al. (2017), these systems tend to overfit the
data they are trained on, “generating domain specific, often strongly stereotyped text”
(e.g., weather forecast or game commentator reports). Rather than learning the semantic
relations between data and text, these systems are heavily influenced by the style of
the text, the domain vocabulary, input format of the data, and co-occurrence patterns.
As per Wiseman, Shieber, and Rush (2017), “Even with recent ideas of copying and
reconstruction, there is a significant gap between neural models and template-based
systems, highlighting the challenges in data-to-text generation.” Our system is designed
to address the challenges to some extent through a three-staged pipeline, namely, (a)
canonicalization, (b) simple language generation, and (c) discourse synthesis and
language enrichment. In the first stage, the input is converted to a standard canonical
representation in the form of tuples. In the second stage, each canonical form extracted
from the input is converted to simple sentences. In the final stage, the simple sentences
are combined to produce coherent descriptions. The overall architecture is presented in
Figure 1.

Note that our pipeline is designed to work with tables that do not have a hierarchy
among its column headers and row headers. We believe that tables of such kind can
be normalized as a preprocessing step and then fed to our system. To handle this
preprocessing is beyond the scope of the current work. We discuss our central idea in
the following sections.
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MORPHKEY2TEXT 
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Figure 1
Our proposed three-staged modular architecture for description generation from structured
data.

3. Canonicalization of Structured Data

Our goal is to generate descriptions from structured data that can appear in various
formats. For this, it is essential to convert the data to a canonical form that can be
handled by our generation stages. Though our main focus is to process data in tabular
form, the converter is designed to handle other input formats as well, as discussed
subsequently.

3.1 Input Formats

1. Table: Tables are data organized in rows and columns. We consider
single-level row and column headers with no hierarchy. A table row can be
interpreted as an n-ary relation. Currently, we simplify table row
representation as a collection of binary relations (or triples).

2. Graph: Knowledge graphs have entities represented as nodes and edges
denote relations between entities. Here we consider only binary relations.
A knowledge graph can be translated as a collection of binary relations or
triples.

3. JSON: This is data organized in the form of a dictionary of key-value pairs.
We limit ourselves to single-level key-value pairs where the keys and
values are literals. A pair of key-value pairs are converted to a triple by
concatenating the value term of the first key-value pair with the second
key-value pair.

3.2 Canonical Form and Canonicalization

For our system to be able to handle various formats we have just listed, we need to
convert them to a standard format easily recognizable by our system. Moreover, we
require that the generation step can be trained without involving labeled parallel data so
that they can be used in various domains where only monolingual corpora is available.
Keeping this in mind, we arrived at a canonical form consisting of triples made of binary
relations among two entities types. For example, consider the triple : 〈Albert Einstein ;
birth place ; Ulm, Germany〉. The entity tags for named entities ‘Albert Einstein’ and ‘Ulm,
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Germany’ are PERSON and GPE, respectively. This leads to the canonicalized triple form:

〈PERSON birth place GPE〉

For tabular inputs, extraction of tuples requires the following assumption to be
followed:

• The column-headers of the table should be considered as the list of
keywords that decide the structure of the sentences to be generated. In the
event the table is centered around row headers (i.e., row headers contain
maximum generic information about the table), the table has to be
transposed first.

• One column header is considered as the primary key, around which the
theme of the generated output revolves. For simplicity, we chose the first
column-header of the tables in our data set to be the primary key.

For each table, the table is first broken into a set of subtables containing one-row and
two-columns, as shown in Figure 2. The first columns of the subtables represent the
primary key of the table. For a table containing M rows and N columns (excluding
headers), a total number of M× (N − 1) subtables are thus produced. The subtables
are then flattened to produce a triple by dropping the primary key header and con-
catenating the entries of the subtables, as shown in Figure 2. This produces standard
entity-relationship triples 〈e1, r, e2〉, where e1, and e2 are entities that are entries and r is
the relationship, which is captured by the column header.

The entities e1 and e2 are tagged using a named entity recognizer (NER), which
assigns domain-independent place-holder tags such as PERSON and GPE for persons
and geographical regions, respectively. For tagging we use the Spacy (spacy.io) NER
tagger, an off-the-shelf tagger that performs reasonably well even on words and phrases.

name birth place birth date wife
Albert Einstein Ulm, Germany 14 March 1879 Elsa Lowenthal

name birth place

Albert Einstein Ulm, Germany

name birth date

Albert Einstein 14 March 1879

name wife

Albert Einstein Elsa Lowenthal

“Albert Einstein”
“birth place”

“Ulm, Germany”

“Albert Einstein”, 
“birth date”

“14 March 1879”

“Albert Einstein”, 
“wife”,

“Elsa Lowenthal”

< PERSON birth place GPE > < PERSON birth date DATE > < PERSON wife PERSON >

Splitting

Flattening

NE tagging

Flattening Flattening 

NE tagging NE tagging

Figure 2
Example of extraction of canonical triples from tabular inputs.
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We also use a DBPedia lookup1 based on exact string matching in situations where
NER is unable to recognize the named entity. String matching is done with either the
URI-labels or the anchor-texts referring to the URI to identify the relevant tag. This
is helpful in the detection of peculiar multiword named entities like The Silence of the
Lambs, which will not be recognized by Spacy due to lack of context. All DBPedia
classes have been manually mapped to 18 Spacy NER types. As a fallback mechanism,
any entity not recognized through DBPedia lookup is assigned with the UNK tag. This
process produces somewhat domain-independent canonical representations from the
tables, as seen in Figure 2. The NER tags and the corresponding original entries are
carried forward and remain available for use in stages 2 and 3. At stage 2, these tags are
replaced with the original entries to form proper sentences. The tags and the original
entries are also used for language enrichment in stage 3.

Unlike tables, for input types like knowledge graphs and key-value pairs, extraction
of canonical triples is straightforward. Knowledge graphs typically follow the triple
form with nodes representing entities and edges representing relations. Similarly, a pair
of key-value entries can be flattened and a triple can be extracted. All these formats,
thus, can be standardized to a collection of canonical triples with named entity (NE)
tags acting as placeholders.

In the following section, we describe how a simple sentence can be extracted from
each canonical triple. A collection of canonical triples obtained from a table (or other
input types) will produce a collection of simple sentences, which is compounded to
form a coherent description.

4. Simple Language Generation

The simple language generation module takes each canonical triple and generates a
simple sentence in natural language. For instance, the triple 〈PERSON birth place
GPE〉 will be translated to a simple sentential form like the following:

〈PERSON was born in GPE〉

This will finally be replaced with the original entities to produce a simple sentence as
follows: Albert Einstein was born in Ulm, Germany. The canonical triple set in Figure 2
should produce the following (or similar) simple sentences (refer to Data set 1):

Albert Einstein was born in Ulm, Germany

Albert Einstein has birthday on 14 March 1879

Elsa Lowenthal is the wife of Albert Einstein (1)

This is achieved by the following steps: (1) Preprocessing, which transforms the
canonical triple to a modified canonical triple; (2) TextGen, which converts the mod-
ified canonical triple to a simple sentential form like 〈PERSON was born in GPE〉; (3)
Postprocessing, which puts back the original entities to produce a simple sentence like
Albert Einstein was born in Ulm, Germany; and lastly, (4) Ranking, which selects the best
sentence produced in step 3 when multiple variants of TextGen are run in parallel. The
details of these steps are shared in the following sections.

1 Refer to https://github.com/dbpedia/lookup.
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4.1 Preprocessing

It is possible that the canonical triples will contain words that cannot be easily converted
to a sentence form without additional explicit knowledge. For example, it may not be
easy to transform the vanilla triple 〈PERSON game Badminton〉 to a syntactically correct
sentence 〈PERSON plays Badminton〉.

To convert the relation term into a verb phrase we utilize a preprocessing step.
The step requires two resources to be available—(1) WordNet and (2) Generic Word
embeddings, at least covering the default vocabulary of the language (English). We
use the 300-dimensional glove embeddings for this purpose (Pennington, Socher, and
Manning 2014).

The preprocessing step covers the following two scenarios:

1. Relation term is a single-word term: In this case, the word is lemmatized
and the root form is looked up in a verb lexicon pre-extracted from
WordNet. If the look-up succeeds, the lemma form is retained in the
modified triple. Otherwise, the top N verbs2 that are closest to the word
are extracted using glove vector-based cosine similarity. For example,
through this technique, for the original word “game,” which is not a verb,
related verbs such as “match” and “play” can be extracted. The verb
“play” will be the most suitable one for generating a sentence later. The
most suitable verb is decided as follows. For each extracted verb v related
to the original word o, the synsets for v and o are extracted from WordNet.
The glosses and examples for each synset of o are extracted from WordNet
and combined to form a textual representation (Fo). Similarly, the textual
representation (Fv) considering the glosses and examples of synsets of v is
formed. The degree of co-occurrence of words v and o is computed using
the normalized counts of co-occurrences of v and o in Fo and Fv. The
candidate verb having the highest degree of co-occurrence is selected as
the most appropriate verb. Through this, the word “play” would be
selected as the most appropriate verb for the word “game,” as both words
will co-occur in the glosses and examples of synsets of both “game” and “play.”

2. Relation term is a multiword term: The relation term, in this case, would
contain both content (i.e., non-stopwords) and function words (i.e.,
stopwords). Examples of multiword terms are “country played for” and
“number of reviews.” When such terms are encountered, the main verb in
the phrase is extracted through part-of-speech (POS) tagging. If a verb is
present, the phrase is altered by moving the noun phrase preceding the
verb to the end of the phrase. So, the phrase “country played for,” through
this heuristic, would be transformed to “played for country.” This is based
on the assumption that in tabular forms, noun phrases that convey an
action are actually a transformed version of a verb phrase.

These preprocessing techniques modify the input triple, which we refer to as
modified canonical triple. This step is useful for the TRIPLE2TEXT generation step, as
discussed next.

2 N is set to 10 in our set-up.
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4.2 TextGen

The objective of this step is to generate simple and syntactically correct sentences from
the (modified) canonical triples. We propose three ways to generate sentential forms,
as elaborated below. All three ways are different alternatives to generate a simple
sentential form; hence they can be executed in parallel.

4.2.1 TRIPLE2TEXT. This module is the simplest and is developed using a seq2seq (Klein
et al. 2017) network, which is trained on the curated TRIPLE2TEXT data set (refer to
Section 6 Data set 3). The data set consists of triples curated from various sources of
knowledge bases extracted from open Web-scale text dumps using popular information
extraction techniques (such as Banko et al. 2007; Schmitz et al. 2012). Additionally,
existing resources such as Yago Ontology (Suchanek, Kasneci, and Weikum 2007) and
VerbNet (Schuler 2005) are utilized. The criteria for constructing triples and simple
sentence pairs (used as target for training seq2seq) are different for different resources.
We note that no annotation was needed for creation of this data set, as the simple
sentences were constructed by concatenation of elements in the triples (discussed in
Section 6 Data set 3). Only this variant of generation requires a modified canonical triple,
obtained using the preprocessing step mentioned above. The other variants can work
with the canonical triple without such modification.

4.2.2 MORPHKEY2TEXT (v1 and v2). The conversion of any canonical triple to a sentence
demands the following linguistic operations:

1. Determining the appropriate morphological form for the words/phrase in
the canonical triple, especially the relation word/phrase (e.g.,
transforming the word “play” to “played” or “plays”).

2. Determining the articles and prepositions necessary to construct the
sentences (e.g., transforming “play” to “plays for”).

3. Adding appropriate auxiliary verbs when necessary. This is needed
especially for passive forms (e.g., transforming “location” to “is located at”
by adding the auxiliary verb “is”).

Ideally, any module designed for canonical-triple to sentence translation should dy-
namically select a subset of the above operations based on the contextual clues present
in the input. To this, we propose the MORPHKEY2TEXT module, a variant of seq2seq
network empowered with attention and copy mechanisms. Figure 3 shows a working
example of the MORPHKEY2TEXT system. We skip explaining the well-known seq2seq
framework for brevity. As input, the module takes a processed version of the canonical
triple in which (a) NE tags are retained (b) stopwords are removed if they appear in the
relation terms in the canonical triples, and (c) the coarse POS tags for both the NE tags
and words are appended to the input sequence. The module is expected to generate a
sequence of words along with the fine-grained POS tags (in PENN tagset format) for
the verbs appearing in their lemma form. The rationale behind such an input-output
design is that dealing with the lemma forms at the target side and incorporating additional
linguistic signals in terms of POS should enable the system to apply appropriate changes at
morphological and lexical levels. This will, in turn, help address the problem of lexical and
morphological data-sparsity across domains better. As seen in Figure 3, the canonical
triple 〈PERSON playing country GPE〉 is first transformed into a list of content words
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PERSON

NOUN

country

NOUN

GPE

NOUN

Context
Attention Copy/Gen

PERSON play VBD for country

PERSON played for country 
Post

Processing

PERSON play VBD for<pad>

playing

VERB

GPE

country

GPE

< PERSON playing country GPE >

Stopword removal and
Coarse POS Tagging

Encoder

Decoder

Figure 3
Example demonstrating the working of the MORPHKEY2TEXT TextGen system. Generated words
shown in red are produced via copy operation and those in black are produced via generation
operation.

and their corresponding coarse-grained POS tags. During generation, the input key-
word and POS “playing VERB” are translated to “play VBD” and the output is post-
processed to produce the word “played.” As the system has to deal with lemma forms
and NE and POS tags at both input and output sides, it allows the system to just copy
input words, which makes the system robust across domains.

Preparing training data for the MORPHKEY2TEXT design requires only a monolin-
gual corpus and a few general purpose NLP tools and resources such as POS tagger, NE
Tagger, and WordNet. A large number of simple sentences extracted from Web-scale text
dumps (such as Wikipedia) are first collected. The sentences are then POS tagged and
the named entities are replaced with NE tags. Stopwords (function words) such as arti-
cles and prepositions are dropped from the sentences by looking up in a stopword lex-
icon. Because the POS tagger produces fine-grained POS tags, the tags are converted to
coarse POS tags using a predefined mapping. This produces the source (input) side of the
training example. As the target (output), the named entities in the original sentences are
replaced with NE tags, the other words are lemmatized using WordNet lemmatizer, and
the fine-grained POS tags of the words are augmented if the lemma form is not the same
as the base form. Figure 4 illustrates construction of a training example from unlabeled
data.

We implement two different variants of the MORPHKEY2TEXT system. The
MORPHKEY2TEXT V1 module is trained based on the MORPHKEY2TEXT data set (ver-
sion v1) that was created from monolingual corpora (explained in Section 6 Data set 2).

747



Computational Linguistics Volume 45, Number 4

Albert Einstein married Elsa Lowenthal in 1919 .

PERSON NOUN married VERB PERSON NOUN DATE NOUN .
1. Coarse POS Tagging
2. NE Replacement
3. Stopword Removal

1. Fine-grained POS Tagging
2. POS retention for VERBs
3. NE Replacement

PERSON marry VBD PERSON in DATE

Source

Target

Original Sentence

Figure 4
Extraction of a single training instance from an unlabeled sentence for the MORPHKEY2TEXT
TextGen system.

The MORPHKEY2TEXT V2 is trained on a different version (v2) of the MORPHKEY2TEXT
data set (details in Section 6 Data set 2).

4.3 Postprocessing

This step restores the original entities from the input by replacing the tagged forms
generated from the step above. Additionally, if possessive nouns are detected in the sen-
tence, apostrophes are added to such nouns. Possessives are checked using the follow-
ing heuristic: if the POS tag for the word following the first entity is not a verb, the word is a
potential possessive candidate. Postprocessing is applied to each of the competing modules
enlisted in the above step.

The variants TRIPLE2TEXT, MORPHKEY2TEXT v1, and MORPHKEY2TEXT v2 can run
in parallel to produce different translations of the canonical triple. Out of these, the best
produced sentence are selected by the ranking step mentioned next.

4.4 Scoring and Ranking

To select the most appropriate output from the TextGen systems discussed earlier, a
RANKER is utilized; it sorts the sentence based on a composite score as given here:

score(i, s) = f (s)× g(i, s) (2)

where i and s represent the canonical triple and generated sentence. Functions f (.) and
g(.) represent the fluency (grammaticality) of the output sentence and adequacy (factual
overlap between input and output). The fluency function f is defined as:

f (s) = LM(s) = LM(w1, w2, ..., wN ) (3)

where for a sentence of N words w1, w2, ..., wN, the LM, an n-gram language model, re-
turns the likelihood of the sentence. For this, a 5-gram general purpose language model
is built using Wikipedia dump and KenLM (Heafield 2011). The adequacy function g is
defined as:

g(i, s) =
#co-occurring words in i and s

#words in i (4)

Before applying the RANKER, we use heuristics to filter incomplete and unnatural
sentences. Sentences without verbs or entities and sentences that are disproportionately
larger or smaller than the input are discarded. Once the RANKER produces the best
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simple sentence per input triple, the simple sentences are then combined into a coherent
paragraph, as explained subsequently.

5. Discourse Synthesis and Language Enrichment

In this section, we discuss how to combine the collection of generated simple sentences
set 1 from Section 4 to produce a paragraph by merging sentences as shown here:

Albert Einstein was born in Ulm, Germany and has birthday on 14 March 1879. Elsa
Lowenthal is the wife of Albert Einstein.

This paragraph is produced by a sentence compounding module followed by a corefer-
ence replacement module to produce the final coherent paragraph:

Albert Einstein was born in Ulm, Germany and has birthday on 14 March 1879. Elsa
Lowenthal is the wife of him.

5.1 Sentence Compounding

This module takes a pair of simple sentences and produces a compound or complex
sentence. Every simple sentence is split into a 〈e1, rvp, e2〉 form where e1 and e2 are enti-
ties that appear in the input and rvp is the relation verb phrase. For a pair of sentences,
if both sentences share the same first entity e1 or both have the same second entity e2,
then the compounded version can be obtained by ‘AND’-ing of the relation phrases. In
cases where the second entity of one matches the first entity of the following sentence,
then a clausal pattern can be created by adding “who” or “which.” In all other cases, the
sentences can be merged by ‘AND’-ing both the sentences. Algorithm 1 elaborates on
this heuristic. This module can also generate different variations of paragraphs based
on different combinations of sentences.

Algorithm 1 COMPOUND (s1,s2,D)
1: e11,rvp1,e12 ← SplitIntoTuple (Sentence s1, D)
2: e21,rvp2,e22 ← SplitIntoTuple (Sentence s2, D)
3: REM The function SplitIntoTuple splits a sentence s into a triple by considering the entities and their

corresponding types, the mapping is provided by dictionary D.
4: if e11 = e21 & rvp1 = rvp2 then
5: REM e.g., Jordan played basketball and football.
6: return “e11 rvp1 e12 and e22”
7: else if e11 = e21 then
8: REM e.g., Jordan played basketball and represented U.S.A.
9: return “e11 rvp1 e12 and rvp2 e22”

10: else if e12 = e22 & rvp1 = rvp2 then
11: REM e.g., Jordan and Kurt played basketball.
12: return “e11 and e21 rvp1 e22”
13: else if e12 = e22 then
14: REM e.g., Jordan loved and Kurt hated basketball.
15: return “e11 rvp1 and e21 rvp2 e22”
16: else if e12 = e21 & TypeOf(e12 ) = PERSON then
17: REM e.g., Jordan married Prieto who is a model from Cuba.
18: return “e11 rvp1 e12 who rvp2 e22”
19: else if e12 = e21 then
20: REM e.g., Jordan played basketball which featured in movie Space Jam.
21: return “e11 rvp1 e12 which rvp2 e22”
22: end if
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5.2 Coreference Replacement

To enhance paragraph coherence, it is often desirable to replace entities that repeat
within or across consecutive sentences with appropriate coreferents. For this, we use
a heuristic that replaces repeating entities with pronominal anaphora.

If an entity is encountered twice in a sentence or appears in consecutive sentences,
it is marked as a potential candidate for replacement. The number and gender of the
entity are decided using POS tags and an off-the-shelf Gender Predictor module. The
module is a CNN-based classifier that trains on people’s names gathered from various
Web sites. The entity’s role is determined based on whether it appears to the left of
the verb (i.e., Agent) or to the right (Object). Based on the gender, number, role, and
possessives, the pronouns (he/she/their/him/his, etc.) are selected, and they replace
the entity. We ensure that we replace only one entity in a sentence to avoid incoherent
construction due to multiple replacements in close proximity.

We remind our reader about Figure 1, which presents an overview of our system.
Thanks to its modular nature, our system enjoys interpretability; each stage in the
pipeline is conditioned on the output of the previous stage. Moreover, all the modules,
in principle, can adapt to newer domains. The data sets used for training do not
have any domain-specific characteristics and thus these modules can work well across
various domains, as will be seen in Section 7 (Experiments). The whole pipeline can
be developed without any parallel corpora of structured table to text. Any data used
for training any individual module can be curated from monolingual corpora. The
subsequent section discusses such data sets in detail.

6. Data Sets

The section discusses three data sets; Data set 1 contains tables from various domains
and their summaries and can be used for benchmarking any table descriptor generator.
Data sets 2 and 3 are developed to train our TextGen modules (Section 4). These
data sets can be downloaded for academic use from https://github.com/parajain/

structscribe. We also release the code and resources to create similar data sets on a
larger scale.

6.1 Data Set 1: Descriptions from WikiTable (WIKITABLEPARA)

We prepare a benchmark data set for multi-sentence description generation from tables.
For gathering input tables, we rely on the WIKITABLE data set (Pasupat and Liang 2015),
which is a repository of more than 2,000 tables. Most of the tables still suffer from the
following issues: (a) they do not provide enough context information, as they were
originally a part of a Wikipedia page, (b) they are concatenations of multiple tables,
and (c) they contain noisy entries. After filtering such tables, we extract 171 tables. Four
reference descriptions in the form of paragraphs were manually generated. The average
number of sentences for each description in each reference is 12 and the average number
of words is between 740 and 780, respectively. The descriptions revolve around one
column of the table, which acts as the primary-key.

6.2 Data Set 2: Morphologic Variation–Based Keywords-to-Text (MORPHKEY2TEXT)

This is created from monolingual corpora released by Thorne et al. (2018), which is
a processed version of Wikipedia dump. We create the first version of the data set
following the technique discussed in Section 4.2.2, using POS- and NE taggers.
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The second version (V2) is slightly different in the sense that it uses a higher-recall–
oriented entity tagging mechanism with the help of POS tags and dependency parse
trees of sentences. This is necessary as there are entities such as “A Song of Ice and
Fire,” which will not be recognized by the NE tagger used to create V1. Such multiword
entities can be detected by a simple heuristic that looks for a sequence of proper nouns
(in this case “Song,” “Ice” and “Fire”) surrounded by stopwords but do not include any
punctuation. Moreover, it should not have any verb marked as root by the dependency
parser. Through this technique, it is also possible to handle cases where an entity such
as “Tony Blair,” which is detected as two entity tags PERSON and UNK by popular NE
taggers such as Spacy, instead of the single entity-tag PERSON.

6.3 Data Set 3: Knowledge Base Triples to Text (TRIPLE2TEXT)

For this, a large number of triples and corresponding sentential forms are gathered
from the following resources. (i) Yago Ontology: A total of 6,198,617 parallel triples and
sentences extracted from Yago (Suchanek, Kasneci, and Weikum 2007). Our improvised
NER discussed in Section 3 is used for obtaining tags for entities in the triples. (ii)
OpenIE on WikiData: A total of 53,066,988 parallel triples and sentences synthesized
from relations from Reverb Clueweb (Banko et al. 2007) and all possible combinations
of NE tags. (iii) VerbNet: A total of 149,760 parallel triples and sentences synthesized
from verbs (in the first person singular form) from VerbNet (Schuler 2005) and possible
combinations of NE tags. For all the knowledge resources considered for this data set,
concatenation of the elements in the triples yielded simple sentences; hence there was
no manual effort needed for creation of this data set.

Various statistics for Data Sets 2 and 3 are presented in Table 2. For training the
TextGen systems, the data sets were randomly divided into train, validation, and test
splits of 80%:10%:10%.

7. Experiments

The simple language generator in Section 4 requires training seq2seq networks using
the MORPHKEY2TEXT (v1 and v2) and the TRIPLE2TEXT data sets. For this we use the
OPENNMT framework in PyTorch, using the default hyperparameter settings. The best
epoch model is chosen based on accuracy on the validation split of these data sets. Once
these modules are trained, they are used in inference mode in our pipeline.

Through experiments, we show the efficacy of our proposed system on
WIKITABLEPARA and other public data-to-text benchmark data sets even though it is
not trained on those data sets. Additionally, we also assess the generalizability of our
and other existing end-to-end systems in unseen domains. We use BLEU-4, METEOR,

Table 2
Statistics for Data sets 2 and 3.

Data set # Instances Avg. # words in target # Target vocabulary

TRIPLE2TEXT 33,188,424 3.45 5,594
MORPHKEY2TEXT-V1 9,481,470 9.74 876,153
MORPHKEY2TEXT-V2 9,346,617 8.51 477,302
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ROUGE-L, and Skip-Thoughts–based Cosine Similarity (denoted as STSim) as the evalu-
ation metrics.3 We also perform a human evaluation study, where a held-out portion of
the test data is evaluated by linguists who assign scores to the generated descriptions
pertaining to fluency, adequacy, and coherence. Mainly, we try to answer the following
research questions through our empirical study:

1. Can other existing end-to-end systems adapt to unseen domains? For
this, we consider two pretrained representative models: (a)
WIKIBIOMODEL (Nema et al. 2018), a neural model trained on the
WIKIBIO data set (Lebret, Grangier, and Auli 2016), and (b)
WEBNLGMODEL4, a seq2seq baseline trained on the WEBNLG data set
(Colin et al. 2016; Gardent et al. 2017). These models are tested on the
WIKITABLEPARA data set, which is not restricted to any particular
domain. Additionally, they are also tested on two popular tuple-to-text
data sets such as E2E (Novikova, Dusek, and Rieser 2017) and
WIKITABLETEXT (Bao et al. 2018). Thus, the performance of the existing
systems can be assessed on a wide variety of domains that may not have
been present in the data sets used for developing the systems.

2. How well does our system adapt to new domains? We evaluate our
proposed system also on the table-to-descriptions WIKITABLEPARA
benchmark data set to contrast the performance with the above pretrained
models. Additionally, we also assess our system on related (table-to-text
summarization) data sets: (1) WEBNLG, (2) WIKIBIO, (3)
WIKITABLETEXT, and (4) E2E. The WIKITABLETEXT data set, like ours, is
also derived from WikiTables. However, it contains only tabular-rows and
their summary in one sentence. The generation objective becomes different
from ours, as it does not require paragraph level operations such as
compounding and coreference resolution. Therefore, for brevity, we only
report our system’s performance on the data set without further analysis.

3. How interpretable is our approach? By leveraging the modularity of our
system, we analyze the usefulness of major components in the proposed
system and perform error analysis.

7.1 Experimental Set-up

We now discuss how the various systems are configured for evaluation on multiple
data sets.

• PROPOSED SYSTEM: Our proposed system is already designed to work
with the format of the WIKITABLEPARA data set. Each table in the data set
is converted to M× (N − 1) canonical triples leading to the output table
description (refer to Section 3). To test our system for other input types
such as Knowledge Graphs and Key-Value dictionaries, we use the
WEBNLG and WIKIBIO data sets, respectively. From the WIKIBIO data set,
JSONs containing N key-value pairs 〈key1:value1, key2:value2, ... , keyN:valueN〉

3 https://github.com/Maluuba/nlg-eval.
4 http://webnlg.loria.fr/pages/baseline.html.
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are converted to N − 1 triples. Each triple is in the form 〈 value1, keyI, valueI〉,
where I 6= 1. It is assumed that the first key is the primary key and typically
contains names and other keywords for identifying the original Wikipedia
infobox. For the WEBNLG data set, the triples in a group are directly used
by our system to produce the output. For the WIKITABLETEXT data set,
which contains one tuple per instance, each input is converted into N − 1,
triples, in a similar manner as the WIKITABLEPARA data set. For the E2E
data set, each instance already is in triple-to-text form, and is used as is.

• WEBNLGMODEL: The WEBNLGMODEL is designed to be trained and
tested on the WEBNLG data set. An already trained WEBNLGMODEL
model (similar to the one by Gardent et al., 2017) is evaluated on
WIKITABLEPARA and WIKIBIO data sets. For the WIKITABLEPARA data
set, we convert every table to M× (N − 1) triples. For each triple, the
model infers a sentence and sentences for all the triples representing a
table are concatenated to produce a paragraph description. For the
WIKIBIO data set, each JSON is converted to N − 1 triples for N key-value
pairs, which are then passed to the model for final output. Tuples in
WIKITABLETEXT data set are converted to N − 1 triples; and instances in
E2E data set, which are already in triple-to-text, are used directly without
any transformation.

• WIKIBIOMODEL: The WIKIBIOMODEL is designed to get trained and
tested on the WIKIBIO data set that contains key-value pairs at the input
side and summaries at the output. An already trained model (similar to
the one by Nema et al., 2018) is evaluated on WIKITABLEPARA and
WEBNLG data sets. For the WIKITABLEPARA data set, we convert every
table to M× (N − 1) JSONs in WIKIBIO format. Each JSON contains a pair
of key-value pairs, where the first key-value pair always represents the
primary-key and its corresponding entry in the table (hence, N − 1 JSONs
are produced). The inferred sentences for all M× (N − 1) JSONs from the
model are concatenated to produce the required paragraph description.
For the WEBNLG data set, each triple is converted to a JSON of a pair of
key-value pairs. A triple 〈e1 , r , e2〉 is converted to a JSON format of
{default key : e1 , r : e2} (the default key is set to “name”). For each instance
in the WEBNLG data set, sentences are inferred for all the triples
belonging to the instance, and they are concatenated to produce the final
output. Inputs from WIKITABLETEXT and E2E data sets are converted to
JSON, as explained above.

Please note that both WIKIBIOMODEL and WEBNLGMODEL are capable of process-
ing single and multi-tuple inputs. For our data set, we try giving these models inputs
in both single and multi-tuple format. In single-tuple input mode, the model processes
one triple at a time and produces a sentence; the sentences are concatenated to produce
paragraphs. In multi-tuple mode, all triples extracted from a single row of the table are
simultaneously passed to the model as input. The model variants with subscript “M”
represent these cases in the result tables. For the above evaluations, only the test splits
for WIKIBIO and WEBNLG data sets are used, whereas there is no train:test split for
the WIKITABLEPARA data set (the entire data set is used for evaluation). The results for
these are summarized in Tables 3 and 4.
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Table 3
Various models on WIKITABLEPARA data set.

System BLEU METEOR ROUGE-L STSim

WIKIBIOMODEL 0.0 15.5 14.8 64.1
WEBNLGMODEL 7.9 24.8 27.9 78.2
PROPOSED 33.3 39.7 64.1 86.5

Table 4
Evaluation of all models across data sets (domains). Suffix M represents multi-tuple input.

Model Data set BLEU METEOR ROUGE-L STSim

Proposed

WEBNLG 24.8 34.9 52.0 82.6
WIKITABLETEXT 12.9 33.6 37.1 73.2
WIKIBIO 2.5 17.6 19.3 72.9
E2E 6.6 27.1 29.2 71.1
WIKITABLEPARA 33.3 39.7 64.1 86.5

WIKIBIOMODEL

WEBNLG 2.8 16.9 26.4 72.1
WIKITABLETEXT 1.3 10.5 21.5 66.5
E2E 1.3 9.0 22.7 61.6
WIKITABLEPARA 0.0 15.5 14.8 64.1
WIKITABLEPARAM 0.0 10.3 13.7 65.8

WEBNLGMODEL

WIKITABLETEXT 3.6 16.5 25.2 68.9
WIKIBIO 1.6 9.3 18.6 69.4
E2E 2.1 13.2 19.0 66.0
WIKITABLEPARA 7.9 24.8 27.9 78.2
WIKITABLEPARAM 0.5 20.0 26.1 75.6

7.1.1 Ablation Study. Apart from comparing our system with the existing ones, we
also try to understand how different stages of our pipeline contribute to the overall
performance. For such an ablation study, we prepare the different variants of the system
based on the following two scenarios and compare their performance against that of the
complete system.

• Instead of using the ensemble (RANKER), each participating TextGen
system (viz., TRIPLE2TEXT, MORPHKEY2TEXT V1, and MORPHKEY2TEXT
V2) is treated as a separate system. The intention is to show the advantage
of using an ensemble of generators and the ranking mechanism.

• Language enrichment modules such as compounding and coreference
replacement modules are removed both individually and together. Simple
sentences are just concatenated to produce the table descriptions. The
intention is to test our hypothesis that removing such modules will make the
generated paragraphs somewhat incoherent and deviate from constructs produced
by humans, thereby resulting in a reduced system performance.
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8. Results and Discussion

Table 3 illustrates how the various pretrained models fare on the WIKITABLEPARA
benchmark data set compared with our proposed system. We observe that the end-
to-end WEBNLGMODEL does better than WIKIBIOMODEL. However, our proposed
system clearly gives the best performance, demonstrating the capability of generalizing
in unseen domains and structured data in a more complex form such as a multi-row
and multi-column table.

It may be argued that although the proposed model is not trained on parallel data,
it takes advantage of the fact that the textual resources used for development come
from the same sources as the test data (i.e., Wikipedia). Thus, the better performance
can be attributed to having a better vocabulary coverage (covering more entities, verbs,
nouns, etc.), which WEBNLGMODEL and WIKIBIOMODEL are deprived of. This is not
true, however, because of two reasons: (1) the WIKIBIO and WEBNLG data sets use
information from Wikipedia (in the form of Infoboxes and DBPedia entries), or (2) use
pretrained GloVe embeddings (Pennington, Socher, and Manning 2014), which offer a
much richer vocabulary than what is considered in our setting. Hence, it is evident that
the performance of these baseline systems is low on the WIKITABLEPARA data set not
because of vocabulary unseenness but for the very fact that these systems are rigid with
respect to the language patterns seen in the data they are trained on.

It may also seem unfair to compare standalone systems like WIKIBIOMODEL and
WEBNLGMODEL with an ensemble model like ours, as the latter may have infused
more knowledge because of the inclusion of supporting modules. Again, this is not
entirely true. The WIKIBIOMODEL under consideration is more sophisticated than a
vanilla sequence-to-sequence model and uses attention mechanisms at various levels to
handle intricacies in content selection and language generation (Nema et al. 2018). The
WEBNLGMODEL utilizes various normalization and postprocessing steps to adapt to
newer domains and language patterns. In sum, these models are capable of handling
nuances in data-to-text generation and, hence, we deem them fit for comparison.

Table 4 shows the performance of our proposed system on the test splits of
various data sets (including the whole WIKITABLEPARA data set). The performance
measures (especially the STSim metric) indicate that our system can be used as it
is for other input types coming from diverse domains. Despite the fact that the
WIKITABLETEXT, WEBNLG, and WIKIBIO data sets are summarization data sets and
are not designed for complete description generation, our system still performs reason-
ably well, without having been trained on any of these data sets. It is clearly observed
that the existing end-to-end models such as WEBNLGMODEL and WIKIBIOMODEL
exhibit inferior cross-domain performance compared with our system.5 For example,
our system attains BLEU scores of 24.8 and 2.5 on WEBNLG and WIKIBIO data sets,
respectively, whereas the WIKIBIOMODEL performs with a BLEU score of 2.8 (with
a reduction of 89%) on the WEBNLG data set and the WEBNLGMODEL performs
with a BLEU score of 1.6 (with a reduction of 36%) on the WIKIBIO data set. For
other data sets such as WIKITABLETEXT and E2E, on which none of the proposed
or comparison systems are trained, our system’s performance is significantly better
than the comparison systems. For the E2E data set, we observe that our system’s

5 Please note that the WIKIBIOMODEL trained on the WIKIBIO data set (in-domain) would have
considerably higher evaluation scores (refer Nema et al. 2018); the same holds for the WEBNLGMODEL
(Gardent et al. 2017). Because our objective is to highlight cross-domain performance (where testing is
done on data sets different from training data), the in-domain results are not discussed for brevity.
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Table 5
Ablation study: Performance of individual TextGen systems with the ensemble system enabled
with RANKER. Here, MKT denotes MORPHKEY2TEXT, CP refers to the Compounding Module,
and CR means Coreference Replacement. The symbols ‘+’ and ‘−’ signify “with” and “without,”
respectively.

RANKER MKTV1 MKTV2 TRIPLE2TEXT

BLEU

− CP − CR 17.7 16.2 14.9 20.3
+ CP − CR 30.1 29.7 27.9 30.3
− CP + CR 29.6 29.3 28 27.8
+ CP + CR 33.3 30.6 29.4 30.5

METEOR

− CP − CR 33.1 33.4 32.6 31.6
+ CP − CR 38.8 39.3 38.4 36.7
− CP + CR 37.1 37 37 34.8
+ CP + CR 39.7 38.1 38.1 35.4

ROUGE-L

− CP − CR 50.2 51 49.1 50.6
+ CP − CR 61.8 62.3 60.7 61
− CP + CR 59.2 59 58.7 58.4
+ CP + CR 64.1 63.9 62.2 62.2

STSim

− CP − CR 44.1 40.2 40.2 57.8
+ CP − CR 85.3 85.6 85.2 83.3
− CP + CR 82.3 82 82 79.8
+ CP + CR 86.5 85.9 85.9 83.9

outputs convey similar semantics as the reference texts but have considerable syntac-
tic differences. For example, the triples 〈Taste of Cambridge eat type restaurant〉, and
〈Taste of Cambridge customer rating 3 out of 5〉 are translated to “Taste of Cambridge is
an eat type of restaurant and has a customer rating of 3 out of 5.” by one of our model
variants, but the reference text is “Taste of Cambridge is a restaurant with a customer
rating of 3 out of 5.” This may have affected the BLEU scores; the METEOR and semantic
relatedness scores are still better.

We performed ablation on our proposed system at multiple levels; Table 5 shows
the performance of individual simple language generation systems and also the per-
formance of the RANKER module. The results suggest that RANKER indeed improves
the performance of the system. To measure the effectiveness of our proposed sentence
compounding and coreference replacement modules, we replaced these modules with a
simple sentence concatenation module. As observed in the same table, the performance
of the system degrades compared with when compounding and coreference replace-
ment modules are individually used. Best results are obtained when both the modules
are activated. One of the possible reasons is that a simple sentence concatenation re-
sults in generated paragraphs having more redundant occurrences of entity terms and
phrases, which all of the evaluation metrics tend to penalize heavily. Overall, this study
shows that the enrichment modules indeed play an important role, especially when it
comes to paragraph description generation.

8.1 Human Evaluation

Because quantitative evaluation metrics such as BLEU and Skip-Thought similarity are
known to have limited capabilities in judging sentences that are correct but different
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Table 6
Human evaluation using 50 samples from the WIKITABLEPARA data set. The fluency, adequacy,
and coherence scores are averaged across evaluators and instances. Evaluator correlation is the
Pearson correlation, which shows the agreement between evaluators.

System Fluency Adequacy Coherence

WIKIBIOMODEL 1.44 1.24 1.08
WEBNLGMODEL 2.04 2.05 1.66
PROPOSED 3.29 4.20 3.72

GOLD-standard 4.53 4.78 4.59

Evaluator Correlation 0.74 0.80 0.76

from the gold-standard reference, we perform a human evaluation study. For this, the
first 50 instances from the WIKITABLEPARA data set were selected. For each instance,
the table, the reference paragraph, and outputs from our proposed system and WIKIBIO
and WEBNLG models were shuffled and shown to four linguists. They were instructed
to assign three scores related to fluency, adequacy, and coherence of the generated and
gold-standard paragraphs. The minimum and maximum scores for each category are 1
and 5, respectively. Table 6 reports the evaluation results. Although we expected that
the gold-standard output would obtain maximum average scores in all aspects, the
scores for our proposed systems are quite superior to the existing systems and are also
sometimes close to those for the gold-standard paragraphs. This shows that a modular
approach like ours can be effective for generating tabular descriptions. Moreover, the
average Pearson correlation coefficient values for scores across systems and evaluator-
pairs are high, showing a strong inter-evaluator agreement.

Reference (Source: WikiBIO): charley speed -lrb- born 28 july 1979 -rrb- is a british model and actor.

Predicted: Charley speed 's birth name was charles rufus felix speed and his birth date is 28 july 1979. 
Charley speed 's birth place is windsor , berkshire , england and he had a height of 6 ft 1.5 in. Charley 
speed 's hair colour is light brown and his eye colour is green. Charley speed has shoe size uk 9.5 - us 
10 - eu 44 and his an agency of Models 1 Agency JAM Agency. He has website -lsb-
charleyspeed.co.uk -rsb-.K
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Yamato flat 
inland plain 837.27 1,282 1,531
Yamato 
highland 506.89 56 110
Goj, 
Yoshino 2,346.84 92 39
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Reference (Source: Our WikitablePara Dataset):Yamato flat inland plain has an area of 837.27 
sq. kms and has a population of 1,282. Its population density per kilometre is 1,531. Yamato 
highland has an area of 506.89 sq. kms and has a population of 56. Its population density per 
kilometre is 110. Goj, Yoshino has an area of 2,346.84 sq. kms and has a population of 92. Its 
population density per kilometer is 39.

Predicted: Yamato flat inland plain has area size 837.27 and its population is 1,282. It has density 
per 1,531. Yamato highland has area size 506.89 and has a population of 56. He has density per 
110. Goj, Yoshino has area size 2,346.84 and has a population of 92. Its density per km is 39.

Input

Airey 
Neave

K
no

w
le

dg
e

G
ra

ph

Battle of
France

Hugo 
Sperrle

battles commander
Reference (Source: WebNLG) : Airey Neave was involved in the Battle of France in 
which Hugo Sperrle was a commander. 

Predicted: Airey Neave 's battles Battle of France and its commander was Hugo Sperrle.

Image: https://en.wikipedia.org/wiki/Charley_Speed

Figure 5
Examples of generated descriptions by our proposed system on different data sets.
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23%

24%

53%

TRIPLE2TEXT

MORPHKEY2TEXT-V1

MORPHKEY2TEXT-V2

Figure 6
Contribution of each TextGen system in terms of percentage of times the output of these systems
was selected by the RANKER for the WIKITABLEPARA data set.

On manual inspection of the descriptions generated by our system across data sets
(some examples are shown in Figure 5), we find that our system results in a promising
performance in addition to the quantitative evaluation metrics mentioned before.

8.2 Effectiveness of the Individual Modules

We also examine whether, for TextGen, using an ensemble of generators followed by
a ranking mechanism was effective. We intend to study whether all the participating
systems were chosen by the RANKER for a significant number of examples. Figure 6
shows the percentage of the times the output of the three TextGen systems were selected
by the RANKER. As we can see, all systems are significantly involved in producing the
correct output in the test data. However, the TRIPLE2TEXT system is selected a fewer
number of times than the other two systems. This is a positive result, as the TRIPLE2TEXT
system requires data obtained from specific resources such as OpenIE and Yago as
opposed to the MORPHKEY2TEXT systems that require just a monolingual corpus.

8.3 Error Analysis

Because our system is modular, we could inspect the intermediate outputs of different
stages and perform error analysis. We categorize the errors into the following:

• Error in Tagging of Entities: One of the crucial steps in the
canonicalization stage is tagging the table entries. Our modified NE
taggers sometimes fail to tag entities primarily because of lack of context.
For example, the original triple in our data set 〈 Chinese Taipei, gold medals
won, 1 〉 is converted to a triple 〈 UNK, gold medals won, CARDINAL 〉.
Because of the wrong NE tagging of the entity Chinese Taipei, the text
generation stage in the pipeline did not get enough context and failed to
produce a fluent output as shown here:

Chinese Taipei’s gold medals have been won by 0.

This error affected all the subsequent stages. Although it is hard to resolve
this with existing NLP techniques, maintaining and incrementally
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building gazetteers of domain-specific entities for look-up–based tagging
can be a temporary solution.

• Error in the TextGen: We observe that all the TextGen systems discussed
in Section 4.2 are prone to syntactic errors, which are mostly of types
subject-verb disagreement, noun-number disagreement, and article and
preposition errors. An example of such an erroneous output is shown
below:

Republican’s active voters is 13,916. Republican was inactive in voters 5,342

We believe such errors can be avoided by adding more training examples,
judiciously prepared from large-scale monolingual data from different
domains.

• Error in Ranking: This error impacts the performance of our system the
most. We consistently observe that even though one of the individual
systems is able to produce fluent and adequate output, it is not selected by
the RANKER module. In hindsight, scorers based on simple language
models and content-overlaps (Equation (2)) are not able to capture diverse
syntactic and semantic representations of the same context (e.g., passive
forms, reordering of words). Moreover, language models are known to
capture n-gram collocations better than the overall context of the
sentences, and tend to penalize grammatically correct sentences more than
the incorrect sentences that have more likely collocations of n-grams.
Furthermore, longer sentences are penalized more by the language model
than shorter ones. To put this into perspective, consider the following
example from our data set. For the input triple 〈Bischofsheim, building type,
Station building〉, the output from the TextGen systems are as follows:

TRIPLE2TEXT: Bischofsheim has building type Station Building.
MORPHKEY2TEXT-V1: Bischofsheim’s building is a type of Station Building.
MORPHKEY2TEXT-V2: Bischofsheim is a building type of Station Building.

The RANKER unfortunately selects an imperfect output produced by the
MORPHKEY2TEXT-V2 system. We believe that the presence of highly
probable bigrams such as building type and type of would have bolstered
the language model score and, eventually, the overall score. A possible
solution to overcome this would be to train neural knowledge language
models (Ahn et al. 2016) that not only consider contextual history but also
factual correctness of the generated text. Gathering more monolingual
data for training such models may help as well.

• Error in Coreference Determination: Error in coreference determination
happens due to two reasons : (a) The entities are incorrectly tagged
(e.g., a PERSON is mis-tagged as ORG, leading to a wrong pronominal
anaphora), and (b) The gender of the entity is incorrectly classified
(e.g., Esther Ndiema’s nationality is Kenya and his rank is 5). Although
improving the tagger is important for this and the overall system, the
gender detector could be improved through more training data and better
tuning of hyperparameters. The current module does have limitations due
to the fact that it is based on a very small number of heuristics and relies
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on data-driven POS-taggers and gender predictors, which may not
provide accurate information about the number and gender of the
mentions. For example, for an entity “Mariya Papulov,” even though POS
tagger and the canonicalized entity tag (PERSON) help determine the
number of the coreference correctly, the gender predictor assigns the
gender tag as male. This results in a wrong co-reference assignment.

A deeper issue with the sentence enrichment modules is that they are agnostic of the
sentence order. If the TextGen systems do not provide sentences in an appropriate order
to these modules, the cohesiveness of the generated paragraph is compromised. For
example, the output from our system “Melania Corradini played for Italy and was
on the run of distance 54.72 KMs. She had the rank of 5.” provides a less natural feel
than “Melania Corradini played for Italy and had the rank of 5. She was on the run of
distance 54.72 KMs.” This clearly calls for a technique to determine the optimal order of
sentences to ensure more naturalness in the output.

We would also like to point out that language enrichment through simple con-
catenation and heuristic based replacement is a rudimentary solution. Better solutions
for compounding and producing coherent paragraphs may involve syntactic analysis
and restructuring of sentences (Narayan et al. 2017) and discourse aware coherent
generation (Kibble and Power 2004; Narayan et al. 2017; Bosselut et al. 2018).

9. Related Work

Data-to-text NLG has received considerable attention recently, especially due to the in-
creasing demands of such systems for industrial applications. Several such systems are
based on rule-based, modular statistical and hybrid approaches and are summarized by
Nema et al. (2018). Recently, end-to-end neural generation systems have been preferred
over others. Some of the most recent ones are based on the WIKIBIO data set (Lebret,
Grangier, and Auli 2016), a data set tailor-made for summarization of structured data
in the form of key-value pairs. Such systems include the ones by Lebret, Grangier, and
Auli (2016), who use conditional language model with copy mechanism for generation,
Liu et al. (2017), who propose a dual attention Seq2Seq model, Nema et al. (2018), who
use gated orthogonalization along with dual attention, and Bao et al. (2018), who in-
troduce a flexible copying mechanism that selectively replicates contents from the table
in the output sequence. Other systems revolve around popular data sets such as the
WEATHERGOV data set (Liang, Jordan, and Klein 2009; Jain et al. 2018), ROBOCUP data
set (Chen and Mooney 2008), ROTOWIRE and SBNATION (Wiseman, Shieber, and Rush
2017), and the WEBNLG data set (Gardent et al. 2017). Recently Bao et al. (2018) and
Novikova, Dusek, and Rieser (2017) have introduced a new data set for table/tuple to
text generation, and both supervised and unsupervised systems (Fevry and Phang 2018)
have been proposed and evaluated against these data sets. The objective of creating such
data sets and systems is, however, entirely different from ours. For instance, Bao et al.’s
(2018) objective is to generate natural language summary for a region of the table, such
as a row, whereas we intend to translate the complete table into paragraph descriptions.
This requires additional discourse level operations (such as sentence compounding
and coreference insertion). The data set also contains tabular rows at the input side
and summaries at the output side. Because the objective is summarization of a tabular
region, a fraction of the entries are dropped and not explained, unlike ours, which aims
to translate the complete table into natural language form.
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It is worth noting that recent work for keyword-to-question generation (Reddy et al.
2017), and set-to-sequence generation (Vinyals, Bengio, and Kudlur 2016) can also act
as building blocks for generation from structured data. However, none of these works
consider the morphologic and linguistic variations of output words as we consider for
simple language generation. Also, the work on a neural knowledge language model
(Ahn et al. 2016) incorporates facts toward a better language model, which is a different
goal from ours as we attempt to describe the full table of facts in natural language in a
coherent manner. However, irrespective of the generation paradigms we use, the bottom
line remains the same: Modular data–driven approaches like ours can produce robust
and scalable solutions for data-to-text NLG.

It is also worth noting that there exist well-studied information extraction (IE)
techniques to obtain tuples from sentences, which could be used to prepare additional
parallel training data for improving any data-to-text NLG solution. Here, the tuples can
be used as source and the original (or preprocessed) sentences can be used as the target
for training supervised generators. Popular IE techniques include Open Information
Extraction (Banko et al. 2007) and Open Language Learning for Information Extraction
(Schmitz et al. 2012). These systems leverage POS taggers and dependency parsers to
extract relation tuples and are in line with our method for data generation. However,
they do not consider lexical and morphologic aspects of the sentences considered, as
we did for MORPHKEY2TEXT. From the domain of relation extraction, works such as
Mintz et al. (2009), which extract training data sets for relation annotation using distant
supervision techniques, can also be improvised and used in our setting.

10. Conclusion and Future Directions

We presented a modular framework for generating paragraph-level natural language
description from structured tabular data. We highlighted the challenges involved and
contended why a modular data–driven architecture like ours could tackle them better
as opposed to end-to-end neural systems. Our framework uses modules for obtain-
ing standard representations of tables, generating simple sentences from them, and
finally combining the sentences to form coherent and fluent paragraphs. Because no
benchmark data set for evaluating discourse level description generation was available,
we created one to evaluate our system. Our experiments on our data set and various
other data-to-text type data sets reveal that: (a) our system outperforms the existing
ones in producing discourse level descriptions without undergoing end-to-end training
on such data, and (b) the system can realize good quality sentences for various other
input data-types such as knowledge graphs in the form of tuples and key-value pairs.
Furthermore, the modularity of the system allows us to interpret the system’s output
better. In the future, we would like to incorporate additional modules into the system for
tabular summarization. Extending the framework for multilingual tabular description
generation is also on our agenda.
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