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To ensure readability, text is often written and presented with due formatting. These text
formatting devices help the writer to effectively convey the narrative. At the same time, these
help the readers pick up the structure of the discourse and comprehend the conveyed information.
There have been a number of linguistic theories on discourse structure of text. However, these
theories only consider unformatted text. Multimedia text contains rich formatting features that
can be leveraged for various NLP tasks. In this article, we study some of these discourse features
in multimedia text and what communicative function they fulfill in the context. As a case study,
we use these features to harvest structured subject knowledge of geometry from textbooks. We
conclude that the discourse and text layout features provide information that is complementary
to lexical semantic information. Finally, we show that the harvested structured knowledge can
be used to improve an existing solver for geometry problems, making it more accurate as well as
more explainable.

1. Introduction

The study of discourse focuses on the properties of text as a whole and how meaning
is conveyed by making connections between component sentences. Writers often use
certain linguistic devices to make a discourse structure that enables them to effec-
tively communicate their narrative. The readers, too, comprehend text by picking up
these linguistic devices and recognizing the discourse structure. There are a number
of linguistic theories on discourse relations (Van Dijk 1972; Longacre 1983; Grosz and
Sidner 1986; Cohen 1987; Mann and Thompson 1988; Polanyi 1988; Moser and Moore
1996) that specify relations between discourse units and how to represent the discourse
structure of a piece of text (i.e., discourse parsing; Duverle and Prendinger 2009; Subba
and Di Eugenio 2009; Feng and Hirst 2012; Gosh, Riccardi, and Johansson 2012; Feng
and Hirst 2014; Ji and Eisenstein 2014; Li et al. 2014; Li, Ng, and Kan 2014; Wang and
Lan 2015). These discourse features have been shown to be useful in a number of NLP
applications such as summarization (Dijk 1979; Marcu 2000; Boguraev and Neff 2000;
Louis, Joshi, and Nenkova 2010; Gerani et al. 2014), information retrieval (Wang et al.
2006; Lioma, Larsen, and Lu 2012), information extraction (Kitani, Eriguchi, and Hara
1994; Conrath et al. 2014), and question answering (Chai and Jin 2004; Sun and Chai
2007; Narasimhan and Barzilay 2015; Sachan et al. 2015).

Most linguistic theories of discourse consider written text without much format-
ting. However, in this multimedia age, text is often richly formatted. Be it newsprint,
textbooks, brochures, or even scientific articles, text is usually appropriately formatted
and stylized. For example, the text may have a heading. It may be divided into a number
of sections with section subtitles. Parts of the text may be italicized or boldfaced to place
appropriate emphasis wherever required. The text may contain itemized lists, footnotes,
indentations, or quotations. It may refer to associated tables and figures. The tables
and figures, too, usually have associated captions. All these text layout features ensure
that the text is easy to read and understand. Even articles accepted for Computational
Linguistics follow a due formatting scheme.

These text layout features are in addition to other linguistic devices such as syntactic
arrangement or rhetorical forms. Relations between textual units that are not necessarily
contiguous can thus be expressed thanks to typographical or dispositional markers.
Such relations, which are out of reach of standard NLP tools, have only been studied
within some specific layout contexts (Hovy 1998; Pascual 1996; Bateman et al. 2001a,
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Figure 1
An excerpt of a textbook from our data set that introduces the Pythagorean theorem. The
textbook has many typographical features that can be used to harvest this theorem: The textbook
explicitly labels it as a “theorem”; there is a colored bounding box around it; an equation sets
down the rule and there is a supporting figure. Our model leverages such rich contextual and
typographical information (when available) to accurately harvest axioms and then parses them
to horn-clause rules.

inter alia)1 and there are not many comprehensive studies on the various kinds of
discourse features and how they can be leveraged to improve NLP tasks.

In this article, we study some of these discourse features in multimedia text and
what communicative function they fulfill in the context. As a case study, we study the
problem of harvesting structured subject knowledge of geometry from textbooks and
show that the formatting devices can indeed be used to improve a strong information
extraction system in that domain. We show that the discourse and text layout features
provide information that is complementary to lexical semantic information commonly
used for information extraction.

With the intent of making the subject material easy to grasp and remember for stu-
dents, textbooks often contain rich discourse and formatting features. Crucial material
such as axioms or theorems are presented with stylistic highlighting or bounding boxes.
Often, mathematical information such as equations are presented in a separate color and
font size. Often, theorems are numbered or named (e.g., Theorem 8.4). For example,
Figure 1 shows a snapshot of a math textbook that describes the Pythagorean theorem.
The textbook explicitly labels it as a “theorem”; there is a colored bounding box around
it; an equation sets down the rule and there is a supporting figure. In this article, we will
try to answer the question: Can this rich contextual and typographical information (whenever
available) be used to harvest these axioms in the form of structured rules? Our goal is to not
only extract the axiom mentioned in Figure 1 but also map it to a rule corresponding to
the Pythagorean theorem:

isTriangle(ABC) ∧ perpendicular(AC, BC) =⇒ BC2 + AC2 = AB2

We present an automatic approach that can (a) harvest such subject knowledge
from textbooks, and (b) parse the extracted knowledge to structured rules. We propose
novel models that perform sequence labeling and alignment to extract redundant axiom
mentions across various textbooks, and then parse the redundant axioms to structured
rules. These redundant structured rules are then resolved to achieve the best correct
structured rule for each axiom. We conduct a comprehensive feature analysis of the
usefulness of various discourse features: shallow discourse features based on discourse
markers, a deep one based on Rhetorical Structure Theory (Mann and Thompson 1988),

1 Please see related work (Section 2) for a complete list of references.
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and various text layout features in a multimedia document (Hovy 1998) for the various
stages of information extraction. Our experiments show the usefulness of all the various
typographical features over and above the various lexical semantic and discourse level
features considered for the task.

We use our model to extract and parse axiomatic knowledge from a novel data set
of 20 publicly available math textbooks. We use this structured axiomatic knowledge
to build a new axiomatic solver that performs logical inference to solve geometry
problems. Our axiomatic solver outperforms GEOS on all existing test sets introduced
in Seo et al. (2015) as well as a new test set of geometry questions collected from these
textbooks. We also performed user studies on a number of school students studying
geometry who found that our axiomatic solver is more interpretable and useful com-
pared with GEOS.

2. Background and Related Work

Discourse Analysis: Discourse analysis is the analysis of semantics conveyed by a
coherent sequence of sentences, propositions, or speech. Discourse analysis is taken
up in a variety of disciplines in the humanities and social sciences and a number of
discourse theories have been proposed (Mann and Thompson 1988; Kamp and Reyle
1993; Lascarides and Asher 2008, inter alia). Their starting point lies in the idea that
text is not just a collection of sentences, but also includes relations between all these
sentences that ensure its coherence. It is often assumed that discourse analysis is a three-
step process:

1. splitting the text into discourse units (DUs),

2. ensuring the attachment between DUs, and then

3. labeling links between DUs with discourse relations.

Discourse relations may be divided into two categories: nucleus-satellite (or subordi-
nate) relations, which link an important argument to an argument supporting back-
ground information, and multinuclear (or coordinate) relations, which link arguments
of equal importance. Most discourse theories (DRT, RST, SDRT, etc.) acknowledge that
a discourse is hierarchically structured thanks to discourse relations. A number of
discourse relations have been proposed under various theories for discourse analysis.

Discourse analysis has been shown to be useful for many NLP tasks, such as
question answering (Chai and Jin 2004; Lioma, Larsen, and Lu 2012; Jansen, Surdeanu,
and Clark 2014), summarization (Louis, Joshi, and Nenkova 2010), and information
extraction (Kitani, Eriguchi, and Hara 1994). However, to the best of our knowledge,
we do not have a theory or a working model of discourse in a multimedia setting.

Formatting in Discourse: Psychologists and educationists have frequently studied mul-
timedia issues such as the impact of illustrations (pictures, tables, etc.) in text, design
principles of multimedia presentations, and so forth (Dwyer 1978; Fleming, Levie, and
Levie 1978; Hartley 1985; Twyman 1985). However, these discussions are usually too
general and hard to build on from a computational perspective. Thus, most studies of
multimedia text have only been theoretical in nature. Larkin and Simon (1987), Mayer
(1989), and Petre and Green (1990) attempt to answer questions: whether a graphical
notation is superior to text notation, what makes a diagram (sometimes) worth ten
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thousand words, how illustration effects thinking. Hovy (1998), Arens and Hovy (1990),
Arens (1992), and Arens, Hovy, and Van Mulken (1993) provide a theory of the commu-
nicative function fulfilled by various formatting devices and use it in text planning. In
a similar vein, Dale (1991b, a), White (1995), Pascual and Virbel (1996), Reed and Long
(1997), and Bateman et al. (2001b) discuss the textual function of punctuation marks and
use it in the text generation process. André et al. (1991) and André (2000) build a system
WIP that generates multimedia presentations via layered architecture (composed of the
control layer, content layer, design layer, realization layer, and the presentation layer)
and with the help of various content, design, user, and application experts. Mackinlay
(1986) discuss the automatic generation of tables and charts. Luc, Mojahid, and Virbel
(1999) study enumerations. Feiner (1988), Arens et al. (1988), Neal et al. (1990), Feiner
and McKeown (1991), Wahlster et al. (1992), Arens, Hovy, and Vossers (1992), and
Maybury (1998) discuss various aspects of processing and knowledge required for
automatically generating multimedia. Finally, Stock (1993) discusses using hypermedia
features for the task of information exploration.

However, all the aforementioned studies were merely theoretical. All the models
were hand-coded and not trained from multimedia corpora. In this paper, we provide
a corpus analysis of multimedia text and use it to show that the formatting devices
can indeed be used to improve a strong information extraction system in the geometry
domain.

Solving Geometry Problems: Although the problem of using computers to solve geom-
etry questions is old (Feigenbaum and Feldman 1963; Schattschneider and King 1997;
Davis 2006), NLP and computer vision techniques were first used to solve geometry
problems in Seo et al. (2015). Seo et al. (2014) only aligned geometric shapes with
their textual mentions, but Seo et al. (2015) also extracted geometric relations and built
GEOS, the first automated system to solve SAT style geometry questions. GEOS used a
coordinate geometry based solution by translating each predicate into a set of manually
written constraints. A Boolean satisfiability problem posed with these constraints was
used to solve the multiple-choice question. GEOS had two key issues: (a) It needed
access to answer choices that may not always be available for such problems, and (b)
It lacked the deductive geometric reasoning used by students to solve these problems.
In this article, we build an axiomatic solver that mitigates these issues by performing
deductive reasoning using axiomatic knowledge extracted from textbooks. Further-
more, we use ideas from discourse to automatically extract these axiom rules from
textbooks.

Automatic approaches that use logical inference for geometry theorem proving,
such as the Wus method (Wen-Tsun 1986), Grobner basis method (Kapur 1986), and
angle method (Chou, Gao, and Zhang 1994), have been used in tutoring systems such
as Geometry Expert (Gao and Lin 2002) and Geometry Explorer (Wilson and Fleuriot 2005).
There has also been research in synthesizing geometry constructions, given logical
constraints (Gulwani, Korthikanti, and Tiwari 2011; Itzhaky et al. 2013) or generating
geometric proof problems (Alvin et al. 2014) for applications in tutoring systems. Our
approach can be used to provide the axiomatic information necessary for these works.

Other Related Tasks: Our work is also related to Textbook Question Answering
(Kembhavi et al. 2017), which proposes the task of multimodal machine comprehension
where the context needed to answer questions composes of both text and images. The
TQA data set is built from middle school science textbooks and pairs a given question to
a limited span of knowledge needed to answer it. Also related is the work on Diagram
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QA (Kembhavi et al. 2016), which proposes the task of understanding and answering
questions based on diagrams from textbooks, and FigureSeer (Siegel et al. 2016), which
parses figures in research papers.

Information Extraction from Textbooks: Our model for extracting structured rules of
geometry from textbooks builds upon ideas from information extraction (IE), which is
the task of automatically extracting structured information from unstructured and/or
semi-structured documents. Although there has been a lot of work in IE on domains
such as Web documents (Chang, Hsu, and Lui 2003; Etzioni et al. 2004; Cafarella et al.
2005; Chang et al. 2006; Banko et al. 2007; Etzioni et al. 2008; Mitchell et al. 2015)
and scientific publication data (Shah et al. 2003; Peng and McCallum 2006; Saleem
and Latif 2012), work on IE from educational material is much more sparse. Most of
the research in IE from educational material deals with extracting simple educational
concepts (Shah et al. 2003; Canisius and Sporleder 2007; Yang et al. 2015; Wang et al.
2015; Liang et al. 2015; Wu et al. 2015; Liu et al. 2016b; Wang et al. 2016) or binary
relational tuples (Balasubramanian et al. 2002; Clark et al. 2012; Dalvi et al. 2016)
using existing IE techniques. On the other hand, our approach extracts axioms and
parses them to horn-clause rules. This is much more challenging. Raw application of
rule mining or sequence labeling techniques used to extract information from Web
documents and scientific publications to educational material usually leads to poor
results as the amount of redundancy in educational material is lower and the amount
of labeled data is sparse. Our approach tackles these issues by making judicious use of
typographical information, the redundancy of information, and ordering constraints to
improve the harvesting and parsing of axioms. This has not been attempted in previous
work.

Language to Programs: After harvesting axioms from textbooks, we also parse the
axiom mentions to horn-clause rules. This work is related to a large body of work
on semantic parsing (Zelle and Mooney 1993, 1996; Kate et al. 2005; Zettlemoyer and
Collins 2012, inter alia). Semantic parsers typically map natural language to formal
programs such as database queries (Liang, Jordan, and Klein 2011; Berant et al. 2013;
Yaghmazadeh et al. 2017, inter alia), commands to robots (Shimizu and Haas 2009;
Matuszek, Fox, and Koscher 2010; Chen and Mooney 2011, inter alia), or even general
purpose programs (Lei et al. 2013; Ling et al. 2016; Yin and Neubig 2017; Ling et al.
2017). More specifically, Liu et al. (2016a) and Quirk, Mooney, and Galley (2015) learn
“If-Then” and “If-This-Then-That” rules, respectively. In theory, these works can be
adapted to parse axiom mentions to horn-clause rules. However, this would require
a large amount of supervision, which would be expensive to obtain. We mitigated this
issue by using redundant axiom mention extractions from multiple textbooks and then
combining the parses obtained from various textbooks to achieve a better final parse for
each axiom.

3. Data Format

Large-scale corpus studies of multimedia text have been rare because of the difficulty in
obtaining rich multimedia documents in analyzable data structures. A large proportion
of text today is typeset using some typesetting software such as LaTeX, Word, HTML,
and so on. These features can also serve as useful cues in downstream applications and
a model for text formatting is required.
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Table 1
Some more excerpts of textbooks from our data set that describe (a) complementary angles,
(b) exterior angles, and (c) parallelogram diagonal bisection axioms. Each excerpt contains rich
typographical features that can be used to harvest the axioms. (a) For the complementary angles
mention, the textbook explicitly labels the section name “5.2.1 Complementary Angles” with
boldface and color; the axiom name “complementary angles” is in bold font, and there is a
supporting figure. (b) For the exterior angles mention, the axiom statement is boldfaced, the
axiom rule is mentioned via an equation (which is emphasized with the boldfaced string
“To show”), and there is a supporting figure. (c) For the parallelogram diagonal bisection
mention, the axiom statement is emphasized with the boldfaced string “Property,” the axiom
statement itself is italicized, there is a supporting figure, and the axiom rule is written as an
equation. Our model will leverage such rich contextual and typographical information (when
available) to accurately harvest axioms and then parses them to horn-clause rules.
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Table 2
Corresponding JSON file for the example textbook excerpts shown in Figure 1. We mark the
various typographical features that can be used to harvest the axioms in red: features such as the
heading, the bounding box, a supporting figure, and the equation.

{ 
 “frame-type”: “heading”, 

“text”: “Theorem 8.4 Pythagorean Theorem”, 
“font-style”=”bold” 
} 
{ 

 “frame-type”: “bounding box”, 
“box color”: “yellow”, 
“box-elements”:[ 

  { 
  “frame-type”: “text”, 
  “frame-style”: { 

 “font-size”=24px, 
 “font-style”=”normal”, 
 }, 

“text”: “In a right triangle, the sum of squares of the measures of the legs equals the square of the 
measure of the hypotenuse.” 

}, 
  { 
  “frame-type”: “text”, 
  “frame-style”: { 

 “font-size”=24px, 
 “font-style”=”mixed”, 
 “bold-faced”=”1-2” 
 }, 

“text”: “Symbols: pow(a, 2) + pow(b, 2) = pow(c, 2)” 
}, 
{ 
“frame-type”: “figure”, 
“figure-url”: “14133.jpg” 
} 

] 
} 

 

Table 1 shows some excerpts of textbooks from our data set that describe com-
plementary angles, exterior angles, and parallelogram diagonal bisection axioms. As
described, each excerpt contains rich typographical features, such as the section head-
ings, italicization, boldface, coloring, explicit axiom name, supporting figures, and equa-
tions that can be used to harvest the axioms. We wish to leverage such rich contextual
and typographical information to accurately harvest axioms and then parse them to
horn-clause rules. The textbooks are provided to us in rich JSON format, which retains
the rich typesetting of these textbooks as shown in Tables 2 and 3. For demonstration, we
have manually marked the various typographical features that can be used to harvest
the axioms. We will show how we can use these features to harvest axioms of geometry
from textbooks and then parse them to structured rules.

4. Text Formatting Elements in Discourse

In this section, we review various text formatting devices used in a typical multimedia
system and identify what communicative function they serve. This will help us come up
with a theory for text formatting in discourse and also motivate how these features can
be used in a typical NLP application like information extraction. This theory is inspired
from various style suggestions for English writing (Strunk 2007). The goal of a text
formatting device in a multimedia text is to delimit the portion of text for which certain
exceptional conditions of interpretation hold. We categorize text formatting devices into
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Table 3
Corresponding JSON files for the example textbook excerpts shown in Table 1. We mark
the various typographical features that can be used to harvest the axioms in red:
(a) For the complementary angles mention, we have features such as the subsubsection
“5.2.1 Complementary Angles” with boldface and color; the axiom name “complementary
angles” is in bold font, and there is a supporting figure. (b) For the exterior angles mention, the
axiom statement is boldfaced, the axiom rule is mentioned via an equation (which is emphasized
with the boldfaced string “To show”), and there is a supporting figure. (c) For the parallelogram
diagonal bisection mention, the axiom statement is emphasized with the boldfaced string
“Property,” the axiom statement itself is italicized, there is a supporting figure, and the axiom
rule is written as an equation.
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four broad categories: depiction, position, composition, and substantiation, and describe the
various text formatting devices here:

• Depiction: Depiction features concern with how a string of text is
presented in the multimedia. These include features such as capitalization,
font size/color, boldface, italicization, underline, strikethrough,
parenthesis, quotation marks, use of bounding boxes, and so forth.

• Position: Position features concern with the positioning of a piece of
text relative to the remaining material in the document. These features
include in-lining, text offset, footnotes, headers and footers, text separation
or isolation (a block of text separated from the rest to create a special
effect).

• Composition: Composition features are concerned with the internal
structuring of a piece of text. Examples include graphical markers such as
paragraph breaks, sections (having sections, chapters, etc., in the
document), lists (itemization, enumeration), concept definition using a
parenthesis or colon, and so on.

• Substantiation: Substantiation features are used to further substantiate
the discourse argument. Examples include associated figures or tables,
references to tables, figures (e.g., Figure 1.2), or external links that are very
important in understanding a complex multimedia document.

5. Text Formatting Features for Information Extraction?

A key question for research is: Are these text formatting features useful for NLP tasks? In
particular, in this article, we will try to identify whether these text formatting features
are useful for information extraction. In a typical multimedia document, authors use
various text formatting devices to better communicate the content to their readers. This
helps the readers digest the material quickly and much more easily. Thus, can these text
formatting features be useful in an information extraction system too? We experimen-
tally validate our hypothesis in the application of harvesting axioms of geometry from
richly formatted textbooks.

Then, we show that these harvested axioms can improve an existing solver for
answering SAT style geometry problems. SAT geometry tests the student’s knowledge
of Euclidean geometry in its classical sense, including the study of points, lines, planes,
angles, triangles, congruence, similarity, solid figures, circles, and analytical geometry.
A typical geometry problem is provided in Figure 2. Geometry questions include a
textual description accompanied by a diagram. Various levels of understanding are
required to solve geometry problems. An important challenge is understanding both the
diagram (which consists of identifying visual elements in the diagram, their locations,
their geometric properties, etc.) and the text simultaneously, and then reasoning about
the geometrical concepts using well-known axioms of Euclidean geometry.

We first recap GEOS, a completely automatic solver for geometry problems. We
will then use the rich contextual and typographical information in textbooks to extract
structured knowledge of geometry. This structured knowledge of geometry will then be
used to improve GEOS.
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Figure 2
An example SAT style geometry problem. The problem consists of a diagram as well as the
question text. In order to solve such a question, the system is required to understand both
the diagram as well as the question text, and also reason about geometrical concepts using
well-known axioms of Euclidean geometry.

6. Background: GEOS

Our work reuses GEOS (Seo et al. 2015) to parse the question text and diagram into
its formal problem description as shown in Figure 3. GEOS uses a logical formula, a
first-order logic expression that includes known numbers or geometrical entities (e.g.,
4 cm) as constants, unknown numbers or geometrical entities (e.g., O) as variables,
geometric or arithmetic relations (e.g., isLine, isTriangle) as predicates, and properties
of geometrical entities (e.g., measure, liesOn) as functions.

This is done by learning a set of relations that potentially correspond to the question
text (or the diagram) along with a confidence score. For diagram parsing, GEOS uses a
publicly available diagram parser for geometry problems (Seo et al. 2014) to obtain the
set of all visual elements, their coordinates, their relationships in the diagram, and their

Figure 3
A logical expression that represents the meaning of the text description and the diagram in
the geometry problem in Figure 2. GEOS derives a weighted logical expression where each
predicate also carries a weighted score, but we do not show them here for clarity.
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alignment with entity references in the question text. The diagram parser also provides
confidence scores for each literal to be true in the diagram. For text parsing, GEOS takes
a multistage approach, which maps words or phrases in the text to their corresponding
concepts, and then identifies relations between identified concepts.

Given this formal problem description, GEOS uses a numerical method to check
the satisfiablity of literals by defining a relaxed indicator function for each literal.
These indicator functions are manually engineered for every predicate. Each predicate is
mapped into a set of constraints over point coordinates.2 These constraints can be non-
trivial to write, requiring significant manual engineering. As a result, GEOS’s constraint
set is incomplete and it cannot solve a number of SAT style geometry questions. Fur-
thermore, this solver is not interpretable. As our user studies show, it is not natural for a
student to understand the solution of these geometry questions in terms of satisfiability
of constraints over coordinates. A more natural way for students to understand and
reason about these questions is through deductive reasoning using axioms of geometry.

7. Set-up for the Axiomatic Solver

To tackle the aforementioned issues with the numerical solver in GEOS, we replace
the numerical solver with an axiomatic solver. We extract axiomatic knowledge from
textbooks and parse them into horn-clause rules. Then we build an axiomatic solver
that performs logical inference with these horn-clause rules and the formal problem
description. A sample logical program (in prolog notation) that solves the problem in
Figure 2 is given in Figure 4. The logical program has a set of declarations from the
GEOS text and diagram parsers that describe the problem specification; and the parsed
horn-clause rules describe the underlying theory. Normalized confidence scores from
question text and diagram and axiom parsing models are used as probabilities in the
program. Figure 5 shows a block diagram of the overall system that solves geometry
problems. Also, Figure 6 pictorially shows the two step procedure for obtaining struc-
tured axiomatic knowledge from textbooks:

1. Axiom Identification and Alignment: In this stage, we identify axiom
mentions in all textbooks and align the mentions of the same axiom across
different textbooks.

2. Axiom Parsing: In this stage, we parse each of these axiom mentions into
implication rules and then resolve the implication rules for various axiom
mentions referring to the same axiom mention.

Next, we describe how we harvest structured axiomatic knowledge from textbooks.

8. Harvesting Axiomatic Knowledge

We present a structured prediction model that identifies axioms in textbooks and then
parses them. Because harvesting axioms from a single textbook is a very hard problem,
we use multiple textbooks and leverage the redundancy of information to accurately

2 For example, the predicate isPerpendicular(AB, CD) is mapped to the constraint yB−yA
xB−xA

× yD−yC
xD−xC

= −1.
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sort	point	=	{A,	B,	C,	D,	O,	M}	
sort	line	=	{AB,	BC,	CA,	BD,	DA,	OA,	OM}	//Symmetrically	define	BA,	CB,	…	
sort	angle	=	{ABC,	BCA,	CAB,	ABD,	BDA,	DAB,	AMO,	MOA,	OAM,	BMO}	//Symmetrically	define	CBA,	ACB,	…	
sort	triangle	=	{ABC,	ABD,	AMO}	//Symmetrically	define	CBA,	ACB,	…	
sort	circle	=	{O}	
	
0.4	perpendicular(OM,	AB)	
0.8	measure(ADB,	x)	
0.9	liesOn(A,	O)	
0.9	liesOn(B,	O)	
0.9	liesOn(C,	O)	
0.9	liesOn(D,	O)	
0.9	liesOn(M,	AB)	
0.9	liesInInterior(M,	AOB)	
	
0.9	measure(OAM,	30)	
0.9	measure(radius(O),	4	cm)	
0.9	query(x,	_)	
	
	
0.8	measure(ABC,	90.0)	:-	perpendicular(AB,	CD),	liesOn(B,	CD)	
0.8	measure(XAC,	180-t)	:-	liesOn(A,	BC),	measure(XAB,	t)	
0.7	equals(length(AX),	length(XB))	:-	liesOn(A,	O),	liesOn(B,	O),	perpendicular(OX,	AB),	liesOn(X,	AB)	
0.7	similar(ABC,	DEF)	:-	equals(length(BC),	length(EF)),	equals(measure(ABC),	measure(DEF)),	

equals(measure(BCA),	measure(EFD))	//	ASA	rule.	Similar	rules	for	SAS,	SSS,	RHS	rules	of	similarity	
0.7	equals(measure(CAB),	measure(FED))	:-	similar(ABC,	DEF)	//	Similar	rules	for	other	corresponding	angles	
0.7	equals(measure(ABC),	u+v))	:-	equals(measure(ABD),	u)),	equals(measure(DBC),	v)),	liesInInterior(D,	ABC)	
0.6	equals(measure(ADB),	t/2)	:-	equals(measure(AOB),	t),	liesOn(A,	O),	liesOn(B,	O)		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

1	
2	
3	
4	
	
	

5	
6	
7	

D
atastructures	

D
iagram

	Parse		
Text	Parse		

Axiom
atic	Rules	

Figure 4
A sample logical program (in prolog style) that solves the problem in Figure 2. The program
consists of a set of data structure declarations that correspond to types in the prolog program, a
set of declarations from the diagram and text parse, and a subset of the geometry axioms written
as horn-clause rules. The axioms are used as the underlying theory with the aforementioned
declarations to yield the solution upon logical inference. Normalized confidence weights from
the diagram, text, and axiom parses are used as probabilities. For reader understanding, we list
the axioms in the order (1 to 7) they are used to solve the problem. However, this ordering is not
required. Other (less probable) declarations and axiom rules are not shown here for clarity but
they can be assumed to be present.

Figure 5
Block diagram of our overall system that solves geometry problems. We use GEOS (Seo et al.
2015) — previous work that parses geometry questions into a formal problem description. In this
article, we describe an approach to harvest geometry axioms from textbooks and then parse
them to rules. Then, we use an off-the-shelf prolog style probabilistic reasoner (solver) to
perform logical inference with these horn-clause rules and the formal problem description to
obtain the answer. Our focus in this article is on the task of harvesting knowledge of geometry
from textbooks.
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A1 A2 A3 …

a à b

a à b
a à b

a à b

a à b

a à b

a à b
a à b

a à b

a'àb’ a’'àb’’ a’’'àb’’’

Figure 6
Pictorial representation of our two step procedure for obtaining structured axiomatic knowledge
from textbooks. Left: In the first step, we identify axiom mentions in all the textbooks (shown in
blue) and align the mentions of the same axiom across different textbooks (shown in red). Right:
In the second step, we parse each of these identified axiom mentions into implication rules and
then resolve the implication rules for various axiom mentions referring to the same axiom
mention.

extract and parse axioms. We first define a joint model that identifies axiom mentions
in each textbook and aligns repeated mentions of the same axiom across textbooks.
Then, given a set of axioms (with possibly multiple mentions of each axiom), we define
a parsing model that maps each axiom to a horn-clause rule by utilizing the various
mentions of the axiom.

Given a set of textbooks B in machine readable form (JSON in our experiments), we
extract chapters relevant for geometry in each of them to obtain a sequence of discourse
elements (with associated typographical information) from each textbook. We assume
that the textbook comprises an ordered set3 of discourse elements where a discourse
element could be a natural language sentence, heading, title, figure, table, or caption.
The discourse element (e.g., a sentence) could have additional typographical features.
For example, the sentence could be written in boldface, underline, and so forth. These
properties of discourse elements will be useful features that can be leveraged for the
task of harvesting axioms. Let Sb = {s(b)

0 , s(b)
1 , . . . s(b)

|Sb|
} denote the sequence of discourse

elements in textbook b. |Sb| denotes the number of discourse elements in textbook b.

8.1 Axiom Identification and Alignment

We decompose the problem of extracting axioms from textbooks into two tractable
sub-problems:

1. identification of axiom mentions in each textbook using sequence labeling

2. alignment of repeated mentions of the same axiom across textbooks

Then, we combine the learned models for these sub-problems into a joint optimization
framework that simultaneously learns to identify and align axiom mentions.

3 Given a textbook in JSON format, we can construct this ordered set by preorder traversal of the JSON tree.
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8.1.1 Axiom Identification. Linear-chain conditional random field formulation (Lafferty,
McCallum, and Pereira 2001) can be used for the subproblem of axiom identification.
Given {Sb|b ∈ B}, a sequence of discourse elements (with associated typographical
information) from each textbook, the model labels each discourse element s(b)

i as Before,
Inside, or Outside an axiom. Hereon, a contiguous block of discourse elements labeled
B or I will be considered as an axiom mention. Let T = {B, I, O} denote the tag set. Let
y(b)

i be the tag assigned to s(b)
i and Yb be the tag sequence assigned to Sb. The conditional

random field defines:

p(Yb|Sb;θθθ) ∝
|Sb|∏
k=1

exp

∑
i,j∈T

θθθT
ijfij(y

(b)
k−1, y(b)

k ,Sb)



We find the parameters θθθ using maximum-likelihood estimation with L2 regularization:

θθθ∗ = arg max
θθθ

∑
b∈B

log p(Yb|Sb;θθθ)− λ||θθθ||22

We use limited memory BFGS (L-BFGS) to optimize the objective and Viterbi decoding
for inference. λ is tuned on the dev set.

Features: Features f look at a pair of adjacent tags y(b)
k−1, y(b)

k , the input sequence Sb,
and where we are in the sequence. The features (listed in Table 4) include various
content-based features encoding various notions of similarity between pairs of dis-
course elements (in terms of semantic overlap, more refined match of geometry entities,
and certain keywords) as well as various typographical features such as whether the
discourse elements are annotated as an axiom (or theorem or corollary) in the textbook;
contain equations, diagrams, or text that is bold or italicized; are in the same node of the
JSON hierarchy; are contained in a bounding box, and so forth. We also use features
directly from an existing RST parser (Feng and Hirst 2014); discourse structure can
be useful to understand if two consecutive discourse elements are together part of an
axiom (or not).

Some extracted axiom mentions contain pointers to a diagram (e.g., “Figure 2.1”).
In all these cases, we consider the diagram to be a part of the axiom mention. We
will discuss the impact of the various content- and typography-based features later in
Section 11.

8.1.2 Axiom Alignment. Next, we leverage the redundancy of information and the rela-
tively fixed ordering of axioms in various textbooks. Most textbooks typically present
all axioms of geometry in approximately the same order, moving from easier concepts
to more advanced concepts. For example, all textbooks will introduce the definition
of a right-angled triangle before introducing the Pythagorean theorem. We leverage
this structure by aligning various mentions of the same axiom across textbooks and
introducing structural constraints on the alignment.
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Table 4
Feature set for our axiom identification model. The features are based on content and
typography.

C
on

te
nt

Sentence
overlap

Semantic textual similarity between the current and next discourse
element. We include features that compute the proportion of com-
mon unigrams and bigrams across the two discourse elements.
This feature is conjoined with the tag assigned to the current and
next sentence.

Geometry
entities

Number of geometry entities (constants, predicates, and
functions)—normalized by the number of tokens in this discourse
element. This feature is conjoined with the tag assigned to the
current discourse element.

Keywords
Indicator that the current discourse element contains any one of the
following words: hence, if, equal, twice, proportion, ratio, product. This
feature is conjoined with the tag assigned to the current discourse
element.

D
is

co
ur

se

RST edge
Indicator for the RST relation between the current and next dis-
course element. This feature is conjoined with the tag assigned to
the current and next sentence.

Axiom,
Theorem,
Corollary
Mention

(a) The current (or previous) discourse element is mentioned as
an Axiom, Theorem, or Corollary (e.g., Similar Triangle Theorem or
Corollary 2.1).
(b) The section or subsection in the textbook containing the current
(or previous) discourse element mentions an Axiom, Theorem, or
Corollary.
This feature is conjoined with the tag assigned to the current (and
previous) discourse element.

Equation
The current (or next) discourse element contains an equation (e.g.,
PA× PB = PT2). This feature is conjoined with the tag assigned to
the current (and next) sentence.

Associated
diagram

The current discourse element contains a pointer to a figure (e.g.,
“Figure 2.1”). This feature is conjoined with the tag assigned to the
current discourse element.

Bold/
Underline

The discourse element (or previous discourse element) contains
text that is in bold font or underlined. Conjoined with the tag
assigned to the current (and previous) discourse element.

Bounding
box

Indicator that the current and previous discourse elements are
bounded by a bounding box in the textbook. Conjoined with the
tag assigned to the current (and previous) discourse element.

JSON
structure

Indicator that the current and previous discourse element are in the
same node of the JSON hierarchy. Conjoined with the tag assigned
to the current (and previous) discourse element.

Let Ab =
(

A(b)
1 , A(b)

2 , . . . , A(b)
|Ab|

)
be the axiom mentions extracted from textbook b.

Let A denote the collection of axiom mentions extracted from all textbooks. We assume
a global ordering of axioms A∗ =

(
A∗1 , A∗2 , . . . , A∗U

)
where U is some predefined upper
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bound on the total number of axioms in geometry. Then, we emphasize that the axiom
mentions extracted from each textbook (roughly) follow this ordering. Let Z(b)

ij be a

random variable that denotes if axiom A(b)
i extracted from book b refers to the global

axiom A∗j . We introduce a log-linear model that factorizes over alignment pairs:

P(Z|A;φφφ) = 1
Z(A;φφφ)

× exp


∑

b1,b2∈B
b1 6=b2

∑
1≤k≤U

∑
1≤i≤|Ab1

|
1≤j≤|Ab2

|

Z(b1 )
ik Z(b2 )

jk φφφ
Tg(A(b1 )

i , A(b2 )
j )


Here, Z(A;φφφ) is the partition function of the log-linear model. g denotes a feature

function that measures the similarity of two axiom mentions (described in detail later).
We introduce the following constraints on the alignment structure:

C1: An axiom appears in a book at most once.

C2: An axiom refers to exactly one theorem in the global ordering.

C3: Ordering Constraint: If ith axiom in a book refers to the jth axiom in the global
ordering then no axiom succeeding the ith axiom can refer to a global
axiom preceding j.

Learning with Hard Constraints: We find the optimal parameters φφφ using maximum-
likelihood estimation with L2 regularization:

φφφ∗ = arg max
φφφ

log P(Z|A;φφφ)− µ||φφφ||22

We use L-BFGS to optimize the objective. To compute feature expectations appearing in
the gradient of the objective, we use a Gibbs sampler. The sampling equations for Zb

ik
are:

P(Z(b)
ik |rest) ∝ exp (Tb(i, k)) (1)

Tb(i, k) = Z(b)
ik

∑
b′∈B
b′ 6=b

∑
1≤j≤|Ab′ |

Z(b′ )
jk φφφ

Tg(A(b)
i , A(b′ )

j )

Note that the constraints C1 . . . 3 define the feasible space of alignments. Our sam-
pler always samples the next Z(b)

ik in this feasible space. µ is tuned on the development
set.

Learning with Soft Constraints: We might want to treat some constraints, in par-
ticular, the ordering constraints C3 as soft constraints. We can write down the constraint
C3 using the alignment variables:

Z(b)
ij ≤ 1− Z(b)

kl

∀ 1 ≤ i < k ≤ |Ab|, 1 ≤ l < j ≤ U

∀ b ∈ B
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To model these constraints as soft constraints, we penalize the model for violating these

constraints. Letthepenaltyforviolatingthisconstraintsbethe exp
(
νmax

(
0, 1− Z(b)

ij − Z(b)
kl

))
.

Thus, we introduce a new regularization term:

R(Z) =
∑

1≤i<k≤|Ab|
1≤l<j≤U

b∈B

exp
(
νmax

(
0, 1− Z(b)

ij − Z(b)
kl

))

Here ν is a hyper-parameter to tune the cost of violating a constraint. We write down
the following regularized objective:

φφφ∗ = arg max
φφφ

log P(Z|A;φφφ)− R(Z)− µ||φφφ||22

We use L-BFGS to find the optimal parameters φφφ∗. We perform Gibbs sampling to
compute feature expectations. The sampling equation for Z(b)

ik is similar (Equation (1)),
but:

Tb(i, k) =
∑
b′∈B
b′ 6=b

∑
1≤j≤|Ab′ |

Z(b)
ik Z(b′ )

jk φφφ
Tg(A(b)

i , A(b′ )
j )

+ ν
∑
b′∈B
b′ 6=b

∑
i<j≤|Ab′ |

∑
1≤l<k

(
1− Z(b)

ik − Z(b′ )
jl

)

+ ν
∑
b′∈B
b′ 6=b

∑
1≤j<i|

∑
k<l≤U

(
1− Z(b)

ik − Z(b′ )
jl

)

Features: Now, we describe the features g. These too include content-based features
encoding various notions of similarity between pairs of axiom mentions (such as un-
igram, bigram, dependency and entity overlap, longest common subsequence [LCS],
alignment, MT, and summarization scores) as well as various typographical features,
such as matching of the current (and parent) node of axiom mentions in respective JSON
hierarchies, equation template matching, and image caption matching. The features
are listed in Table 5. We will further discuss the impact of the various content- and
typography-based features later in Section 11.

8.1.3 Joint Identification and Alignment. Joint modeling of axiom identification and align-
ment components is useful as both problems potentially help each other. Correct axiom
identification can help predict correct alignments and axiom alignments can help pre-
dict correct axiom mention boundaries. Hence, we combine the respective models for
identification and alignment into a joint model. Let Y(b)

ij denote that the discourse
element s(b)

i from book b has tag j. We reuse the definitions of the alignment variables
Z(b)

ij as before. We further define Z(b)
i0 such that it denotes that the ith axiom in textbook b
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Table 5
Feature set for our axiom alignment model. The features are based on content and typography.

C
on

te
nt

Unigram,
Bigram,
Dependency
and Entity
Overlap

Real valued features that compute the proportion of common unigrams,
bigrams, dependencies, and geometry entities (constants, predicates, and
functions) across the two axioms. When comparing geometric entities, we
include geometric entities derived from the associated diagrams when avail-
able.

Longest
Common
Subsequence

Real valued feature that computes the length of longest common sub-
sequence of words between two axiom mentions normalized by the total
number of words in the two mentions.

Number of
discourse
elements

Real valued feature that computes the absolute difference in the number of
discourse elements in the two mentions.

Alignment
Scores

We use an off-the-shelf monolingual word aligner—JACANA (Yao et al.
2013) pretrained on PPDB—and compute alignment score between axiom
mentions as the feature.

MT Metrics We use two common MT evaluation metrics METEOR (Denkowski and
Lavie 2010) and MAXSIM (Chan and Ng 2008), and use the evaluation
scores as features. While METEOR computes n-gram overlaps controlling
on precision and recall, MAXSIM performs bipartite graph matching and
maps each word in one axiom to at most one word in the other.

Summarization
Metrics

We also use Rouge-S (Lin 2004), a text summarization metric, and use the
evaluation score as a feature. Rouge-S is based on skip-grams.

D
is

co
ur

se
(T

yp
og

ra
ph

y) JSON structure Indicator matching the current (and parent) node of axiom mentions in
respective JSON hierarchies; i.e., are both nodes mentioned as axioms, di-
agrams or bounding boxes?

Equation
Template

Indicator feature that matches templates of equations detected in the axiom
mentions. The template matcher is designed such that it identifies various
rewritings of the same axiom equation, e.g., PA× PB = PT2 and PA× PB =

PC2 could refer to the same axiom with point T in one axiom mention being
point C in another mention.

Image Caption Proportion of common unigrams in the image captions of the diagrams
associated with the axiom mentions. If both mentions do not have associated
diagrams, this feature does not fire.

is not aligned with any global axiom. We again define a log-linear model with factors
that score axiom identification and axiom alignments.

p(Y, Z|{Sb};θθθ,φφφ) ∝ fAI(Y|{Sb};θθθ)× fAA(Z|Y, {Sb};φφφ)

Here, the factors:

fAI = exp(
∑
b∈B

|Sb|∑
k=1

∑
i,j∈T

Y(b)
k−1iY

(b)
kj θθθ

T
ijfij(i, j,Sb))

fAA = exp(
∑

b1,b2∈B
b1 6=b2

∑
1≤k≤U

∑
1≤i≤|Ab1

|
1≤j≤|Ab2

|

Z(b1 )
ik Z(b2 )

jk φφφ
Tg(A(b1 )

i , A(b2 )
j ))
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Note that an error in axiom identification would result in a change in the axiom align-
ment feature function g and hence would worsen the quality of axiom alignments. This
motivates our joint modeling of axiom identification and alignment.

We again have the following model constraints:

C1′: Every discourse element has a unique label

C2′ Tag O cannot be followed by tag I

C3′ Consistency between Ys and Zs, i.e., axiom boundaries defined by Ys and Zs
must agree.

C4′ = C3.

We use L-BFGS for learning. To compute feature expectations, we use a Metropolis
Hastings sampler that samples Ys and Zs alternatively. Sampling for Zs reduces to Gibbs
sampling and the sampling equations are the same as before (Section 8.1.2). For better
mixing, we sample Y in blocks. Consider blocks of Ys which denote axiom boundaries at
time stamp t; we define three operations to sample axiom blocks at the next time stamp.
The operations (shown in Figure 7) are:

Update axiom: The axiom boundary can be shrunk, expanded, or moved. The new
axiom, however, cannot overlap with other axioms.

Delete axiom: The axiom can be deleted by labeling all its discourse elements as O.

Introduce axiom: Given a contiguous sequence of discourse elements labeled O, a new
axiom can be introduced.

Note that these three operations define an ergodic Markov chain. We use the axiom
identification part of the model as the proposal:

Q(Ȳ|Y) ∝ exp

∑
b∈B

|Sb|∑
k=1

∑
i,j∈T

Ȳ(b)
k−1iȲ

(b)
kj θθθ

T
ijfij(i, j,Sb)



B	
I	
I	
I	

B	
I	
I	

B	
I	
I	
I	

Update Axiom Delete Axiom Create Axiom 

B	
I	
I	
I	

Figure 7
An illustration of the three operations to sample axiom blocks.
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Hence, the acceptance ratio only depends on the alignment part of the model: R(Ȳ|Y) =

min
(

1, U(Ȳ)
U(Y)

)
where U(Y) = fAA. We again have two variants, where we model the

ordering constraints (C4′) as soft or hard constraints.

8.2 Axiom Parsing

After harvesting axioms, we build a parser for these axioms that maps raw axioms
to horn-clause rules. The axiom harvesting step provides us a multiset of axiom ex-
tractions. Let A = {A1, A2, . . . , A|A|} represent the multiset where each axiom Ai is
mentioned at least once. Each axiom mention, in turn, comprises a contiguous sequence
of discourse elements and optionally an accompanying diagram.

Semantic parsers map natural language to formal programs such as database
queries (Liang, Jordan, and Klein 2011, inter alia), commands to robots (Shimizu and
Haas 2009, inter alia), or even general purpose programs (Yin and Neubig 2017). More
specifically, Liu et al. (2016a) learn “If-Then” program statements and Quirk, Mooney,
and Galley (2015) learn “If-This-Then-That” rules. In theory, these works can be used
to parse axioms to horn-clause rules. However, semantic parsing is a hard task and
would require a large amount of supervision. In our setting, we can only afford a modest
amount of supervision. We mitigate this issue by using the redundant axiom mention
extractions from multiple sources (textbooks) and combining the parses obtained from
various textbooks to achieve a better final parse for each axiom.

First, we describe a base parser that parses axiom mentions to horn-clause rules.
Then, we utilize the redundancy of axiom extractions from various sources (textbooks)
to improve our parser.

8.2.1 Base Axiomatic Parser. Our base parser identifies the premise and conclusion portions
of each axiom and then uses GEOS’s text parser to parse the two portions into a logical
formula. Then, the two logical formulas are put together to form horn-clause rules.

Axiom mentions (for example, the Pythagorean theorem mention in Figure 1) are
often accompanied by equations or diagrams. When the mention has an equation, we
simply treat the equation as the conclusion and the rest of the mention as the premise.
When the axiom has an associated diagram, we always include the diagram in the
premise. We learn a model to predict the split of the axiom text into two parts, forming
the premise and the conclusion spans. Then, the GEOS parser maps the premise and
conclusion spans to premise and conclusion logical formulas, respectively.

Let Zs represent the split that demarcates the premise and conclusion spans. We
score the axiom split as a log-linear model: p(Zs|a; w) ∝ exp

(
wTh(a, Zs)

)
. Here, h are

feature functions described later. We found that in most cases (>95%), the premise and
conclusion are contiguous spans in the axiom mention where the left span corresponds
to the premise and the right span corresponds to the conclusion. Hence, we search over the
space of contiguous spans to infer Zs. Joint search over the latent variables Zs, Zp, and
Zc is exponential. Hence, we use a greedy procedure, beam search, with a fixed beam
size (10) for inference. That is, in each step, we only expand the ten most promising
candidates so far given by the current score. We first infer Zs to decide the split of the
axiom and then infer Zp and Zc to obtain the parse of the premise and the conclusion,
using the two-part approach described before. We use L-BGFGS for learning.

Features: We list the features h defined over candidate spans forming the text split in
Table 6. The features are similar to those used in previous work on discourse analysis,
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Table 6
Feature set for our axiom parsing model.

C
on

te
nt

Span
Similarity

Proportion of (a) words, (b) geometry relations, and (c) relation-arguments
shared by the two spans.

Number of
Relations

Number of geometry relations represented in the two spans. We use the
Lexicon Map from GEOS to compute the number of expressed geometry
relations.

Span
Lengths

The distribution of the two text spans is typically dependent on their
lengths. We use the ratio of the length of the two spans as an additional
feature.

Relative
Position

Relative position of the two lexical heads and the text split in the discourse
element sentence. We use the difference between the lexical head position
and the text split position as the feature.

D
is

co
ur

se
(T

yp
og

ra
ph

y)

Discourse
Markers

Discourse markers (connectives, cue-words, or cue-phrases, etc.) have been
shown to give good indications on discourse structure (Marcu 2000). We
build a list of discourse markers using the training set, considering the first
and last tokens of each span, culled to top 100 by frequency. We use these
100 discourse markers as features. We repeat the same procedure by using
part-of-speech (POS) instead of words and use them as features.

Punctuation
Punctuation at the segment border is another excellent cue for the segmen-
tation. We include indicator features to show whether there is punctuation
at the segment border.

Text Orga-
nization

Indicator that the two text spans are part of the same (a) sentence, (b)
paragraph.

RST Parse
We use an off-the-shelf RST parser (Feng and Hirst 2014) and include an
indicator feature that shows that the segmentation matches the parse seg-
mentation. We also include the RST label as a feature.

Soricut and
Marcu
Segmenter

Soricut and Marcu (2003) (section 3.1) presented a statistical model for de-
ciding elementary discourse unit boundaries. We use the probability given
by this model retrained on our training set as a feature. This feature uses
both lexical and syntactic information.

Head/
Common
Ancestor/
Attachment
Node

Head node is defined as the word with the highest occurrence as a lexical
head in the lexicalized tree among all the words in the text span. The at-
tachment node is the parent of the head node. We use features for the
head words of the left and right spans, the common ancestor (if any), the
attachment node, and the conjunction of the two head node words. We
repeat these features with part-of-speech (POS) instead of words.

Syntax
Distance to (a) root, and (b) common ancestor for the nodes spanning the
respective spans. We use these distances and the difference in the distances
as features.

Dominance
Dominance (Soricut and Marcu 2003) is a key idea in discourse that looks at
syntax trees and studies sub-trees for each span to infer a logical nesting
order between the two. We use the dominance relationship as a feature.
See Soricut and Marcu (2003) for details.

JSON
structure

Indicator that the two spans are in the same node in the JSON hierarchy.
Conjoined with the indicator feature that shows that the two spans are part
of the same paragraph.

in particular on the automatic detection of elementary discourse units (EDUs) in rhe-
torical structure theory (Mann and Thompson 1988) and discourse parsing (Marcu
2000; Soricut and Marcu 2003). These include ideas such as the use of a list of dis-
course markers, punctuation, and natural text and JSON organization as an indicator of
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discourse boundaries. We also use an off-the-shelf discourse parser and an EDU seg-
menter from Soricut and Marcu (2003). Then we also used syntax-based cues, such
as span lengths, head node attachment, distance to common ancestor/root, relative
position of the two lexical heads and the text split; and dominance, which have been
found to be useful in discourse parsing (Marcu 2000; Soricut and Marcu 2003). Finally,
we also used some semantic features, such as the similarity of the two spans (in terms of
common words, geometry relations and relation-arguments), and number of geometry
relations in the respective span parses. We will discuss the impact of the various features
later in Section 11. Given a beam of premise and conclusion splits, we use the GEOS parser
to obtain premise and conclusion logical formulas for each split in the beam and obtain a
beam of axiom parses for each axiom in each textbook.

8.2.2 Multisource Axiomatic Parser. Now, we describe a multisource parser that utilizes
the redundancy of axiom extractions from various sources (textbooks). Given a beam
of 10-best parses for each axiom from each source, we use a number of heuristics to
determine the best parse for the axiom:

1. Majority Voting: For each axiom, pick the parse that occurs most
frequently across beams.

2. Average Score: Pick the parse that has the highest average parse score
(only counting top 5 parses for each source) for each axiom.

3. Learn Source Confidence: Learn a set of weights {µ1,µ2, . . . ,µS}, one for
each source, and then pick the parse that has the highest average weighted
parse score for each axiom.

4. Predicate Score: Instead of selecting from one of the top parses across
various sources, treat each axiom parse as a bag of premise predicates and
a bag of conclusion predicates. Then, pick a subset of premise and
conclusion predicates for the final parse, using average scoring with
thresholding.

9. Experiments

Data Sets and Baselines: We use a collection of grade 6–10 Indian high school math
textbooks by four publishers/authors (NCERT, R S Aggarwal, R D Sharma, and M L
Aggarwal)—a total of 5× 4 = 20 textbooks to validate our model. Millions of students in
India study geometry from these books every year and these books are readily available
online. We manually marked chapters relevant for geometry in these books and then
parsed them using Adobe Acrobat’s pdf2xml parser and AllenAI’s Science Parse project.4

Then, we annotated geometry axioms, alignments, and parses for grade 6, 7, and 8
textbooks by the four publishers/authors. We use grade 6, 7, and 8 textbook annotations
for development, training, and testing, respectively. Grade 9 and 10 data are used as
unlabeled data. Thus our method is semi-supervised. During training our axiom iden-
tification, alignment, and joint axiom identification and alignment models, the latent
variables Z are fixed for the training set and are not sampled. For the remaining data,
these variables are sampled using our Gibbs sampler. All the hyper-parameters in all

4 https://github.com/allenai/science-parse
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the models are tuned on the development set using grid search. Then, these hyper-
parameter values are fixed and the entire training + development set is used for training
(along with the unlabeled data) and all the models are evaluated on the test set.

GEOS used 13 types of entities and 94 functions and predicates. We add some more
entities, functions, and predicates to cover other more complex concepts in geometry
not covered in GEOS. Thus, we obtain a final set of 19 entity types and 115 functions
and predicates for our parsing model. We use Stanford CoreNLP (Manning et al. 2014)
for feature generation. We use two data sets for evaluating our system: (a) practice and
official SAT style geometry questions used in GEOS, and (b) an additional data set of
geometry questions collected from the aforementioned textbooks. This data set consists
of a total of 1,406 SAT style questions across grades 6–10, and is approximately 7.5 times
the size of the data set used in GEOS. We split the data set into training (350 questions),
development (150 questions), and test (906 questions), with equal proportion of grade
6–10 questions. We annotated the 500 training and development questions with ground-
truth logical forms. We use the training set to train another version of GEOS with the
expanded set of entity types, functions, and predicates. We call this system GEOS++,
which will be used as a baseline for our method.

Results: We first evaluate the axiom identification, alignment, and parsing models
individually.

For axiom identification, we compare the results of automatic identification with
gold axiom identifications and compute the precision, recall, and F-measure on the
test set. We use strict as well as relaxed comparison. In strict comparison mode the
automatically identified mentions and gold mentions must match exactly to get credit,
whereas in the relaxed comparison mode only a majority (>50%) of sentences in the
automatically identified mentions and gold mentions must match to get credit. Table 7
shows the results of axiom identification, where we clearly see improvements in perfor-
mance when we jointly model axiom identification and alignment. This is due to the fact
that both components reinforce each other. We also observe that modeling the ordering
constraints as soft constraints leads to better performance than modeling them as hard
constraints. This is because the ordering of presentation of axioms is generally (yet not
always) consistent across textbooks.

To evaluate axiom alignment, we first view it as a series of decisions, one for
each pair of axiom mentions, and compute precision, recall, and F-score by comparing
automatic decisions with gold decisions. Then, we also use a standard clustering metric,
Normalized Mutual Information (NMI) (Strehl and Ghosh 2002) to measure the quality

Table 7
Test set Precision, Recall, and F-measure scores for axiom identification when performed alone
and when performed jointly with axiom alignment. We show results for both strict as well as
relaxed comparison modes. For the joint model, we show results when we model ordering
constraints as hard or soft constraints.

Strict Comp. Relaxed Comp.
P R F P R F

Identification 64.3 69.3 66.7 84.3 87.9 86.1
Joint-Hard 68.0 68.1 68.0 85.4 87.1 86.2
Joint-Soft 69.7 71.1 70.4 86.9 88.4 87.6
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Table 8
Test set Precision, Recall, F-measure, and NMI scores for axiom alignment when performed
alone and when performed jointly with axiom identification. For the joint model, we show
results when we model ordering constraints as hard or soft constraints.

P R F NMI

Alignment 71.8 74.8 73.3 0.60
Joint-Hard 75.0 76.4 75.7 0.65
Joint-Soft 79.3 81.4 80.3 0.69

of axiom mention clustering. Table 8 shows the results on the test set when gold axiom
identifications are used. We observe improvements in axiom alignment performance
too when we jointly model axiom identification and alignment jointly both in terms of
F-score as well as NMI. Modeling ordering constraints as soft constraints again leads to
better performance than modeling them as hard constraints in terms of both metrics.

To evaluate axiom parsing, we compute precision, recall, and F-score in (a) deriving
literals in axiom parses, as well as for (b) the final axiom parses on our test set. Table 9
shows the results of axiom parsing for GEOS (trained on the training set) as well as
various versions of our best performing system (GEOS++ with our axiomatic solver)
with various heuristics for multisource parsing. The results show that our system (single
source) performs better than GEOS, as it is trained with the expanded set of entity types,
functions, and predicates. The results also show that the choice of heuristic is important
for the multisource parser—though all the heuristics lead to improvements over the
single source parser. The average score heuristic that chooses the parse with the highest
average score across sources performs better than majority voting, which chooses the
best parse based on a voting heuristic. Learning the confidence of every source and
using a weighted average is an even better heuristic. Finally, predicate scoring, which
chooses the parse by scoring predicates on the premise and conclusion sides, performs
the best leading to 87.5 F1 score (when computed over parse literals) and 73.2 F1
score (when computed on the full parse). The high F1 score for axiom parsing on the
test set shows that our approach works well and we can accurately harvest axiomatic
knowledge from textbooks.

Table 9
Test set Precision, Recall, and F-measure scores for axiom parsing. These scores are computed
over literals derived in axiom parses or full axiom parses. We show results for the old GEOS
system; for the improved GEOS++ system with expanded entity types, functions, and
predicates; and for the multisource parsers presented in this paper.

Literals Full Parse
P R F P R F

GEOS 86.7 70.9 78.0 64.2 56.6 60.2

G
EO

S+
+ Single Src. 91.6 75.3 82.6 68.8 60.4 64.3

Maj. Voting 90.2 78.5 83.9 70.0 63.3 66.5
Avg. Score 90.8 79.6 84.9 71.7 66.4 69.0
Src. Confid. 91.0 79.9 85.1 73.3 68.1 70.6
Pred. Score 92.8 82.8 87.5 76.6 70.1 73.2
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Table 10
Scores for solving geometry questions on the SAT practice and official data sets and a data set of
questions from the 20 textbooks. We use SAT’s grading scheme that rewards a correct answer
with a score of 1.0 and penalizes a wrong answer with a negative score of 0.25. Oracle uses gold
axioms but automatic text and diagram interpretation in our logical solver. All differences
between GEOS and our system are significant (p < 0.05 using the two-tailed paired t-test).

Practice Official Textbook

GEOS 61 49 32
Our System 64 55 51
Oracle 80 78 72

Finally, we use the extracted horn-clause rules in our axiomatic solver for solving
geometry problems. For this, we over-generate a set of horn-clause rules by generating
three horn-clause parses for each axiom and use them as the underlying theory in prolog
programs such as the one shown in Figure 4. We use weighted logical expressions
for the question description and the diagram derived from GEOS++ as declarations,
and the (normalized) score of the parsing model multiplied by the score of the joint
axiom identification and alignment model as weights for the rules. Table 10 shows the
results for our best end-to-end system and compares it to GEOS on the practice and
official SAT data set from Seo et al. (2015) as well as questions from the 20 textbooks.
On all the three data sets, our system outperforms GEOS. Especially on the data set
from the 20 textbooks (which is indeed a harder data set and includes more problems
that require complex reasoning based on geometry), GEOS does not perform very well,
whereas our system still achieves a good score. Oracle shows the performance of our
system when gold axioms (written down by an expert) are used along with automatic
text and diagram interpretations in GEOS++. This shows that there is scope for further
improvement in our approach.

10. Explainability

Students around the world solve geometry problems through rigorous deduction,
whereas the numerical solver in GEOS does not provide such explainability. One of the
key benefits of our axiomatic solver is that it provides an easy-to-understand student-
friendly deductive solution to geometry problems.

To test the explainability of our axiomatic solver, we asked 50 grade 6–10 students
(10 students in each grade) to use GEOS and our system (GEOS++ with our axiomatic
solver) as a Web-based assistive tool while learning geometry. The tool uses the proba-
bilistic prolog solver (Fierens et al. 2015) to derive the most probable explanation (MPE)
for a solution. Then, it lists, one by one, the various axioms used and the conclusion
drawn from the axiom application, as shown in Figure 8. The students were each asked
to rate how ‘explainable’ and ‘useful’ the two systems were on a scale of 1–5. Table 11
shows the mean rating by students in each grade on the two facets. We can observe
that students of each grade found our system to be more interpretable as well as more
useful to them than GEOS. This study lends support to our claims about the need for an
interpretable deductive solver for geometry problems.
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2. Similar triangle theorem
=>   MOB ~    MOA
=>    MOB =    MOA = 60o

3.    AOB =     MOB +    MOA
=>    AOB = 120o

4. Angle subtended by a chord at the 
center is twice the angle subtended at 
the circumference
=>    ADB = 0.5 x     ADB

   = 60o

1.  Sum of interior angles of triangle is 
180o

=>     OAM+   AMO +   MOA = 180o

=>     MOA  = 60o

Figure 8
An example demonstration on how to solve the problem in Figure 1: (1) Use the theorem that the
sum of interior angles of a triangle is 180◦ and additionally the fact that ∠AMO is 90◦ to conclude
that ∠MOA is 60◦. (2) Conclude that4MOA ∼4MOB (using a similar triangle theorem) and
then conclude that ∠MOB = ∠MOA = 60◦ (using the theorem that corresponding angles of
similar triangles are equal). (3) Use angle sum rule to conclude that ∠AOB = ∠MOB + ∠MOA =
120◦. (4) Use the theorem that the angle subtended by an arc of a circle at the center is double the
angle subtended by it at any point on the circle to conclude that ∠ADB = 0.5× ∠AOB = 60◦.

11. Feature Ablation

In this section, we will measure the value of the various features in our axiom har-
vesting and parsing pipeline. Note that we have described three sets of features f, g,
and h—corresponding to the various steps in our pipeline: axiom identification, axiom
alignment, and axiom parsing in Tables 4, 5, and 6. We will ablate each of the three
features one by one via backward selection (i.e., we will remove features and observe
how that affects performance).

Table 11
User study ratings for GEOS and our system (O.S.) by students in grades 6–10. Ten students in
each grade were asked to rate the two systems on a scale of 1–5 on two facets: ‘explainability’
and ‘usefulness’. Each cell shows the mean rating computed over ten students in that grade for
that facet.

Explainability Usefulness
GEOS O.S. GEOS O.S.

Grade 6 2.7 2.9 2.9 3.2
Grade 7 3.0 3.7 3.3 3.6
Grade 8 2.7 3.5 3.1 3.5
Grade 9 2.4 3.3 3.0 3.7
Grade 10 2.8 3.1 3.2 3.8
Overall 2.7 3.3 3.1 3.6
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Table 12
Ablation study results for the axiom identification component. We remove features of the axiom
identification component one by one as listed in Table 4 and observe the fall in performance in
terms of the axiom identification performance as well as the overall performance to gauge the
value of the various features.

Axiom Identification F1 SAT Scores

Strict Comp. Relaxed Comp. Practice Official Textbook

C
on

te
nt Sentence Overlap 56.2 73.8 56 43 42

Geometry entities 64.0 80.4 61 49 46
Keywords 67.5 81.0 62 54 48

D
is

co
ur

se
(T

yp
og

ra
ph

y) RST edge 66.6 78.9 58 46 44
Axm, Thm, Corr. 62.6 77.8 57 47 43
Equation 66.2 78.6 57 46 42
Associated Diagram 68.5 84.4 61 52 49
Bold / Underline 68.2 82.0 62 52 48
Bounding box 59.7 75.5 55 47 40
XML structure 67.4 80.6 60 51 46

Unablated 70.4 87.6 64 55 51

11.1 Ablating Axiom Identification Features

Table 12 shows the fall in performance in terms of the axiom identification performance,
as well as the overall performance as we ablate various axiom identification features
listed in Table 4. We can observe that removal of any of the features results in a loss of
performance. Thus, all the content as well as typographical features are important for
performance. We observe that the content features such as sentence overlap, geometry
entity sharing, and keyword usage are clearly important. At the same time, the various
discourse features such as the RST relation, axiom, theorem, corollary annotation,
use of equations and diagrams, bold/underline, bounding box, and XML structure
are all important. Most of these features depend on typographical information that
is vital in performance of the axiom identification component as well as the overall
model. In particular, we can observe that the axiom, theorem, corollary annotation, and
bounding box features contribute most to the performance of the model as they are
direct indicators of the presence of an axiom mention.

11.2 Ablating Axiom Alignment Features

Table 13 shows the fall in performance in terms of the axiom alignment performance
as well as the overall performance as we ablate various axiom alignment features listed
in Table 5. We again observe that removal of any of the features results in a loss of
performance. Thus, the various content as well as typographical features are important
for performance. We observe that the content features such as unigram, bigram and
entity overlap, length of the longest common subsequence, number of sentences and
various aligner, MT, and summarization scores are clearly important. At the same time,
the various discourse features such as the XML structure, equation template, and image
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Table 13
Ablation study results for the axiom alignment component. We remove features of the axiom
alignment component one by one as listed in Table 5 and observe the fall in performance in
terms of the axiom alignment performance, as well as the overall performance to gauge the
value of the various features.

SAT Scores

F1 NMI Practice Official Textbook

C
on

te
nt

Overlap 70.7 0.54 57 45 45
LCS 78.7 0.64 61 53 49
Number of Sentences 78.5 0.65 62 54 48
Alignment Scores 72.6 0.57 59 49 48
MT Metrics 74.8 0.60 62 52 49
Summarization Metrics 75.9 0.63 62 54 50

Ty
po

gr
ap

hy XML Structure 71.5 0.57 58 47 46
Equation Template 76.6 0.61 57 47 43
Image Caption 77.9 0.65 62 53 47

Unablated 80.3 0.69 64 55 51

caption match are all important. Note that these features depend on typographical
information that is again vital in performance. In particular, we can observe that the
overlap and the XML structure features contribute most to the performance of the
model.

11.3 Ablating Axiom Parsing Features

Table 14 shows the fall in performance in terms of the axiom parsing performance
as well as the overall performance as we ablate various axiom parsing features listed
in Table 6. We again observe that removal of any of the features results in a loss of
performance. The axiom parsing component uses a few content-based features, such
as span similarity and number of relations, span lengths, and relative position; and
various discourse features, such as discourse markers, punctuations, text organization,
RST parse, an existing discourse segmentor from Soricut and Marcu (Soricut and Marcu
2003), node attachment, syntax, dominance, and XML structure; and all are clearly
important. In particular, we can observe that span similarity and punctuation features
contribute most to the performance of the model.

12. Axioms Harvested

We qualitatively analyze the structured axioms harvested by our method. We show the
few most probable horn-clause rules for some popular named theorems in geometry in
Figure 9, along with the confidence of our method on the rules being correct. Note that
some horn-clause parsed rules can be incorrect. For example, the second most probable
horn-clause rule for the Pythagorean theorem is partially incorrect (does not state which
angle is 90◦). Similarly, the second and third most probable horn-clause for the circle
secant tangent theorem are also incorrect. Our problog solver can use these redundant
but weighted horn-clause rules for solving geometry problems.
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Table 14
Ablation study results for the axiom parsing component. We remove features of the axiom
parsing component one by one as listed in Table 6 and observe the fall in performance in terms
of the axiom parsing performance as well as the overall performance to gauge the value of the
various features.

F1 SAT Scores
Literals Full Parse Practice Official Textbook

Span Similarity 71.8 64.6 51 40 42
No. of Relations 82.3 70.5 60 51 49
Span Lengths 86.0 72.0 63 54 50
Relative Position 83.9 69.2 60 52 47
Discourse Markers 77.4 68.4 55 48 47
Punctuations 73.5 65.0 52 45 45
Text Organization 74.4 66.2 52 47 46
RST Parse 84.6 70.8 62 52 49
Soricut & Marcu 83.2 69.8 61 52 50
Head Node, etc. 85.3 71.6 62 54 49
Syntax 75.5 66.6 54 47 46
Dominance 73.9 66.1 53 47 44
XML Structure 77.6 68.0 59 51 46

Unablated 87.5 73.2 64 55 51

Figure 9
Horn-clause rules for some popular named theorems in geometry harvested by our approach.
We also show the confidence our method has on the rule being correct (which is used in
reasoning via the problog solver).

13. Example Solutions and Error Analysis

Next, we qualitatively describe some example solutions of geometry problems as well
as perform a qualitative error analysis. We first show some sample questions that our
solver can answer correctly in Table 15. We also show the explanations generated by our

656



Sachan et al. Discourse in Multimedia

Table 15
Some correctly answered questions along with explanations generated by our deductive solver
for these problems.
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Table 16
Some example failure cases of our approach for solving SAT style geometry problems. In (i) the
axiom set contains an axiom that the internal angle of a regular hexagon is 120◦ and that each
side of a regular polygon is equal. But there is no way to deduce that the angle CBO is half of the
internal angle ABC (by symmetry). On the other hand, the coordinate geometry solver can
exploit these three facts as maximizing the satisfiability of the various constraints to answer the
question. (ii) The solver does not contain any knowledge about construction. The question
cannot be correctly interpreted and the coordinate geometry solver also gets it wrong. (iii) The
solver does not contain any knowledge about construction or prisms. The question cannot be
correctly interpreted and the coordinate geometry solver also gets it wrong. (iv) The question as
well as the answer candidates cannot be correctly interpreted (as the concept of perpendicular to
plane is not in the vocabulary). Both solvers get it wrong. (v) The parser cannot interpret that
angle AC is indeed angle AEC. This needs to be understood by context as it defies the standard
type definition of an angle. Both solvers get it wrong. (vi) Both diagram and text parsers fail
here. Both solvers answer incorrectly.

658



Sachan et al. Discourse in Multimedia

deductive solver for these problems (constructed in the same way as described earlier).
Note that these problems are diverse in terms of question types, as well as the reasoning
required to answer them, and our solver can handle them.

We also show some failure cases of our approach in Table 16. There are a number
of reasons that could lead to a failure of our approach to correctly answer a question.
These include an error in parsing the diagram, the text, or an incorrect or incomplete
knowledge in the form of geometry rules. As can be observed in the failure examples,
and also evaluated by us in a small error analysis of 100 textbook questions, our ap-
proach answered 52 questions correctly. Among the 48 incorrectly answered questions,
our diagram parse was incorrect for 12 questions, and the text parse was incorrect for
15 questions. Our formal language was insufficiently defined to handle 6 questions
(i.e., the semantics of the question could not be adequately captured by the formal
language). Twenty-one questions were incorrectly answered due to missing knowledge
of geometry in the form of rules. Note that several questions were incorrectly answered
due to a failure of multiple system components (for example, failure of both the text and
the diagram parser).

14. Conclusion

We presented an approach to harvest structured axiomatic knowledge from math
textbooks. Our approach uses rich features based on context and typography, the re-
dundancy of axiomatic knowledge, and shared ordering constraints across multiple
textbooks to accurately extract and parse axiomatic knowledge to horn-clause rules.
We used the parsed axiomatic knowledge to improve the best previously published
automatic approach to solve geometry problems. A user-study conducted on a number
of school students studying geometry found our approach to be more interpretable and
useful than its predecessor. While this article focused on harvesting geometry axioms
from textbooks as a case study, we would like to extend it to obtain valuable structured
knowledge from textbooks in areas such as science, engineering, and finance.
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Bandyopadhyay, Winfried Graf, and
Thomas Rist. 1992. Wip: The coordinated
generation of multimodal presentations
from a common representation. In A.
Ortony, editor, Communication from an
Artificial Intelligence Perspective, Springer,
pages 121–143.

Wang, D. Y., Robert Wing Pong Luk, Kam-Fai
Wong, and K. L. Kwok. 2006. An information
retrieval approach based on discourse type. In
International Conference on Application of
Natural Language to Information Systems,
pages 197–202, Klagenfurt.

Wang, Jianxiang and Man Lan. 2015. A
refined end-to-end discourse parser. In
CoNLL Shared Task, pages 17–24, Beijing.

Wang, Shuting, Chen Liang, Zhaohui Wu,
Kyle Williams, Bart Pursel, Benjamin
Brautigam, Sherwyn Saul, Hannah
Williams, Kyle Bowen, and C. Lee Giles.
2015. Concept hierarchy extraction from
textbooks. In Proceedings of the 2015 ACM
Symposium on Document Engineering,
pages 147–156.

Wang, Shuting, Alexander Ororbia, Zhaohui
Wu, Kyle Williams, Chen Liang, Bart
Pursel, and C. Lee Giles. 2016. Using
prerequisites to extract concept maps from
textbooks. In Proceedings of the 25th ACM
International Conference on Information and
Knowledge Management, pages 317–326,
Indianapolis.

Wen-Tsun, Wu. 1986. Basic principles of
mechanical theorem proving in elementary
geometries. Journal of Automated Reasoning,
2(3):221–252.

664



Sachan et al. Discourse in Multimedia

White, Michael. 1995. Presenting
punctuation. CoRR, abs/cmp-lg/9506012.

Wilson, Sean and Jacques D. Fleuriot.
2005. Combining dynamic geometry,
automated geometry theorem proving
and diagrammatic proofs. In Workshop
on User Interfaces for Theorem Proving
(UITP).

Wu, Jian, Jason Killian, Huaiyu Yang, Kyle
Williams, Sagnik Ray Choudhury,
Suppawong Tuarob, Cornelia Caragea,
and C. Lee Giles. 2015. PDFMEF: A
multi-entity knowledge extraction
framework for scholarly documents and
semantic search. In Proceedings of the 8th
International Conference on Knowledge
Capture, Palisades.

Yaghmazadeh, Navid, Yuepeng Wang, Isil
Dillig, and Thomas Dillig. 2017. Type-
and content-driven synthesis of SQL
queries from natural language. CoRR,
abs/1702.01168.

Yang, Yiming, Hanxiao Liu, Jaime G.
Carbonell, and Wanli Ma. 2015. Concept
graph learning from educational data. In
Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining,
pages 159–168, Shanghai.

Yao, Xuchen, Benjamin Van Durme, Chris
Callison-Burch, and Peter Clark. 2013. A
lightweight and high performance
monolingual word aligner. In Proceeding of
ACL, Volume 2, pages 702–707, Sofia.

Yin, Pengcheng and Graham Neubig. 2017. A
syntactic neural model for general-
purpose code generation. In the 55th
Annual Meeting of the Association for
Computational Linguistics (ACL),
pages 440–450 Vancouver.

Zelle, John M. and Raymond J. Mooney.
1993. Learning semantic grammars with
constructive inductive logic programming.
In Proceedings of the 11th National Conference
on Artificial Intelligence, pages 817–822,
Washington, DC.

Zelle, John M. and Raymond J. Mooney.
1996. Learning to parse database queries
using inductive logic programming. In
Proceedings of the Thirteenth National
Conference on Artificial Intelligence,
pages 1050–1055, Portland.

Zettlemoyer, Luke S. and Michael Collins.
2012. Learning to map sentences to logical
form: Structured classification with
probabilistic categorial grammars. arXiv
preprint arXiv:1207.1420.

665


	Introduction
	Background and Related Work
	Data Format
	Text Formatting Elements in Discourse
	Text Formatting Features for Information Extraction?
	Background: GEOS
	Set-up for the Axiomatic Solver
	Harvesting Axiomatic Knowledge
	Axiom Identification and Alignment
	Axiom Parsing

	Experiments
	Explainability
	Feature Ablation
	Ablating Axiom Identification Features
	Ablating Axiom Alignment Features
	Ablating Axiom Parsing Features

	Axioms Harvested
	Example Solutions and Error Analysis
	Conclusion

