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I want to begin by expressing my deep appreciation to the Nominating and Executive
Committees and the Association at large for this tremendous honor. I am especially
proud to join my collaborators and friends who previously received the Lifetime
Achievement Award: Bill Woods, Martin Kay, Lauri Karttunen, and Joan Bresnan. They
have profoundly influenced the contributions for which I think I am being recognized
today, as have many other colleagues and students that I have worked with closely over
the years.

I will follow the tradition set down by most previous LTA recipients by describing
how events in my personal history propelled me toward the concepts, theories, and
algorithms I have helped to develop and have become known for. This historical per-
spective is quite different from a paper setting forth some current technical results.

Some former recipients, Martin Kay for example, were intrigued by language from
a very early age. That was not the case for me. I started as an undergraduate at the
University of California Berkeley with a major concentration in physics. I decided at
one point that physical reality was a little too messy, and I also discovered that I was
not interested in spending long hours in a laboratory. So after a year or two I switched
to math. That carried me forward to the middle of my fourth and final year, when I
began to contemplate a future as a mathematician. That also seemed a little dry and
unappealing. I thought I should look around, even at that late date, and maybe find a
specialization that was a little more social and, for me, a little more engaging.

1. Getting Started

I mentioned this to a friend during a brief ride in an elevator. He told me about a
professor in the Psychology Department who was offering an individual major in what
he called “language behavior.” The major wasn’t actually inside a department because
it combined material from a bunch of separate disciplines: psychology, linguistics, phi-
losophy, anthropology, and maybe even mathematics. That sounded pretty interesting,
and an important property at that late stage of my undergraduate career was that it had
no official prerequisite courses.
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The professor, Dan Slobin, was an expert in child language acquisition, and, as
I later learned, child language acquisition played a prominent ideological role in the
newly popular approach to linguistics, transformational grammar. I looked at some of
the courses that other students had put into their individual-major schedules and at
some of the core readings in psycholinguistics that they had included. The field was
brand new, it didn’t have the long history of other disciplines, and therefore not a
lot of material to be mastered before jumping in. And I realized that this was a neat
application of formal mathematical methods to a collection of humanistic problems. All
to the good—I signed up with Dan.

I also decided to take the few remaining math courses that I needed to complete
that major as well. So at that point I guess I had become, if only by accident, a math-
ematical psycholinguist. I was awarded a double-major undergraduate degree, and I
was admitted to graduate school in social psychology, which is where psycholinguistics
was located at Harvard.

I encountered a few high-level ideas during that undergraduate period that have
reverberated throughout the course of my career. Chomsky’s (1965) Aspects of the Theory
of Syntax had appeared just a few years before. It provided some formal details of the
first main revision to the basic machinery of transformational grammar, but that wasn’t
what struck me. Rather, there was a simple statement at the beginning that set forth a
particular view of the relation between a speaker’s knowledge of language, the result
of learning a language, and the ability to put that knowledge to use in comprehension
and production. He said:

No doubt, a reasonable model of language use will incorporate, as a basic component,
the generative grammar that expresses the speaker-hearer’s knowledge of the language;
but this generative grammar does not, in itself, prescribe the character or functioning of
a perceptual model or a model of speech production. (Chomsky 1965, page 9)

This is a clear statement of what became known as the Competence Hypothesis. I
understood it as making two claims: First, that a representation of linguistic knowl-
edge should play a causal role in the mental processes of everyday communication by
language. And second, that linguistic knowledge was only one of many components of
a larger model of language performance.

The first claim, I thought, distinguished this application of formal descriptions
from the way that mathematical characterizations are deployed in most other sciences.
The sun, for example, behaves according to the partial differential equations for energy
transport, but presumably it does not solve a representation of those equations in order
to decide what to do next. But the proposition here is that the psychological system
encodes and then interprets something that correlates with generalizations about the
properties of language that emerge from linguistic investigation. That would be a very
neat state of affairs, if it were true.

The second claim places this in the context of another powerful conception, the
notion of a “nearly decomposable system” that Herb Simon put forward in a short
essay entitled The Architecture of Complexity (Simon 1962). Simon argued that apparently
complicated systems, if created artificially or through an evolutionary process, are likely
to be recursively decomposable into collections of separate components. Such systems
appear complicated because these components interact in non-negligible ways. But
those interactions are relatively simple compared to the interaction of elements within
the individual components. It is thus fruitful, Simon would say, to construct scientific
explanations of such systems by treating each of the components independently at first,
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and then layering on top an account of their interactions. Chomsky’s statement was
consistent with this kind of decomposable architecture, although he never got around
to the layering-on-top part. That became the focus of some of my work.

You will have noticed that my story so far has not included a mention of computers
or computation. I had been involved in computing during my physics period—I had a
summer job computing the fluorescent signature of a high-altitude nuclear explosion,
very topical in those days. And I had taken numerical methods courses in the math cur-
riculum. But there was as yet no connection between computing and language behavior.

Because I had finished up at an odd time, in the spring of 1968, there was a six-
month interlude between leaving Berkeley and starting up at Harvard. I went home to
Los Angeles to look for a temporary job. In another chance encounter, another friend
with connections to the Rand Corporation told me that Rand had a linguistic group that
maybe I could hook up with. I sent in my papers and went for an interview. I found
that they did have an interest in mathematical psycholinguistics, of all things, and that
I could come on as a six-month intern.

Dave Hays was the head of a group that included Martin Kay, and Lauri Karttunen
was there just finishing his dissertation. You may know that Dave was one of the
founders of our field. He coined the term “computational linguistics,” helped to create
the American precursor organization of the ACL, and was involved in setting up the
international COLING conferences. He was also a very smart man, in many ways ahead
of his time. He was an early advocate for dependency grammar, for example, as a
counter to transformational grammar and immediate constituent approaches (Hays
1964). And in my case I remember that he strongly urged me to learn about regular
languages and finite-state machines. Having read Syntactic Structures (Chomsky 1957),
I knew of course that regular languages were totally uninteresting. And coming from
Berkeley I thought that the acronym FSM stood for Free Speech Movement. But I did
try to learn at least a little bit.

For my first project, Dave sent me down the hall to work with Lauri on some
semantic issues. As I recall, our computational task was to implement a semantic
network within a Rand time-sharing system. I was also involved in Lauri’s linguistic
investigation into some properties of noun-phrase reference—the contexts in which
definite and indefinite descriptions can be properly used. Semantics turned out not to
be so hard. I went back to Dave after a few months and told him that we had finished
that project. We now wanted to add on a front end to make it easier to interact with our
system.

He told me to go down the hall in the other direction and see what I could get from
Martin Kay. Martin had developed a parsing program that was not based on transfor-
mational grammar but seemed expressive enough to recognize the patterns of natural
language (Kay 1967). It was a system for rewriting sequences of trees into sequences of
trees, with Turing machine power. But it used a very efficient data structure, called the
chart, to hold the intermediate state of the computation. There was a missing ingredient,
however: Martin had the program, but he didn’t yet have an English grammar to drive
it. That became my project for the rest of the summer, and in some sense, for the rest of
my life. That was how I learned about parsing; that was my entry into computational
linguistics.

2. Psycholinguistics

The summer came to an end and I reverted to my psycholinguistic studies at Harvard.
My advisor was Roger Brown, probably the pre-eminent figure in child language
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acquisition at the time, and language acquisition was still a focus particularly at
Harvard. As a first experiment, I decided to see whether two-year-olds were able to
make some of the definite/indefinite reference distinctions that Lauri and I had worked
on. The experiment failed—the children ignored both what I said to them and the
rubber ducks that I gave them to play with. On the basis of that experience I decided
I didn’t have the patience or interest needed to work with children. I shifted to adult
comprehension.

As per Chomsky’s suggestion in Aspects, psycholinguists had investigated a the-
ory of comprehension that incorporated transformational grammar as its repository of
linguistic knowledge. They tested the simple assumption that, if that were the case, the
complexity of sentence comprehension ought to be proportional to the number of gram-
matical transformations that applied in the linguistic derivation of a sentence. This idea,
called the Derivational Theory of Complexity, received some initial empirical support.
The measurement techniques of that era were crude at best, but it appeared in early
studies that passive and negative sentences, involving two transformations, were more
difficult for people to deal with than simple declaratives (Miller and McKean 1964).
Later experiments, however, showed the opposite effect: application of an additional
transformation had the effect of reducing psychological complexity. Slobin (1968), for
example, observed this in the case of the transformation that deletes the agent by-phrase
of a passive sentence. The sentence gets shorter, and easier to process.

By the late 1960s psycholinguists had more or less given up on the Derivational
Theory of Complexity. In fact, they had basically given up on Chomsky’s suggestion that
a model of performance would incorporate a representation of the native speaker’s lin-
guist knowledge. They began to operate independently of linguistics, to form heuristic
models of language behavior by generalizing just from experimental results, to summa-
rize experimental results in a collection of what they called “perceptual strategies.” One
strategy, that the first Noun-Verb-Noun sequence in an English sentence is taken as the
Agent-Action-Object, worked for simple actives but not for passives, thus accounting
for the fact that passives seem to be harder to process. The problem, of course, was that
this did not explain how passives could be understood at all—there was no obvious
back-off when a strategy failed to apply.

Although the Derivational Theory of Complexity did not work out, retreating to a
collection of disconnected perceptual strategies seemed like an overly weak response.
The problem, I thought, was not in the general conception laid out in the Compe-
tence Hypothesis that systematic knowledge of language should be incorporated in
performance models. Rather, the mistake was in choosing a grammatical framework,
the transformational formalism, whose processing characteristics were so obviously
unrealistic. Mainstream linguistics was locked onto that formalism, but I knew from my
work with Martin’s parser that there might be other sufficiently expressive alternatives
and perhaps some that are psychologically more plausible.

My reputation as a grammar engineer somehow followed me from Rand to
Cambridge. A project was starting up at Bolt Beranek and Newman to build a natural
language interface that would enable lunar geologists to access geophysical data on
the moon rocks that had been brought back from the Apollo missions. Bill Woods
was heading the project, and one of the system’s key components was the Augmented
Transition Network parser that he had developed (Woods 1970).

As is well known, an ATN grammar, as illustrated in Figure 1, consists of a collection
of finite-state transition networks, each of which describes how a phrase of a given
category (S, NP, etc.) can be realized, and a recursive control that allows for one phrase
to be embedded in another. The transitions are augmented with actions that can store
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S/ S/SUBJ VP/V S/VP
PUSH NP/

1
CAT V

2

POP (SBUILD)

PUSH NP

3

JUMP

4

NP/ NP/DET NP/N
CAT DET

5
CAT N

6

POP (NPBUILD)

Arc Condition Action Arc Condition Action
1 (SETR SUBJ *) 5 (SETR DET *)
2 (SVAGR SUBJ *) (SETR ACTION *) 6 (SETR HEAD *)
3 (TRANS ACTION) (SETR OBJ *)
4 (INTRANS ACTION)

Figure 1
A schematic ATN grammar for transitive and intransitive sentences.

information in local variables, called registers, and registers are passed forward to con-
dition what may happen on later transitions. Whenever a network traversal reaches a
final state, information in the local registers is used to build a tree intended to imitate the
deep structure that a linguistically motivated transformational grammar might assign
to that constituent.

I took over the task of extending an English grammar written in the ATN notation,
and that was my contribution to the first version of the Lunar question-answering
system (Woods and Kaplan 1971). Bonnie Webber joined us and extended the semantics
and other features for the second version (Woods, Kaplan, and Nash-Webber 1972).
Lunar and its ATN parser and grammar are described at greater length in Bill’s LTA
acceptance paper (Woods 2006) and elsewhere. The coverage and accuracy of the Lunar
grammar demonstrated the power of the ATN formalism to provide relatively simple
descriptions of complicated English sentences.

The ATN formalism also had psycholinguistic potential. In the natural order of
execution for the transformational formalism, the entire input string is scanned once for
every transformation. That seemed psychologically implausible on its face. To the extent
that a transformation encodes separate syntactic generalizations, this direct interpreta-
tion pits the needs of the language learner—presumably to identify as many indepen-
dent generalizations as possible—against the needs of the language understander—to
focus on the words at hand. In contrast, the natural order of execution is reversed in
the ATN set up. Discounting failures resulting from incorrect heuristic choices, the ATN
parser makes a single pass through the surface phrase structure of the input string,
applying only the grammatical options and constraints that are relevant at each phrasal
position. This seemed to comport better with the view that the human language faculty
is an evolutionary compromise between the requirements that languages be easy to
learn, easy to produce, and easy to comprehend.

I wrote an early paper (Kaplan 1972) describing how the ATN parser and a simple
ATN grammar could be organized to model the complexity predictions of some of the
proposed perceptual strategies. I showed that those strategies could be simulated by
carefully fixing the order of arcs leaving each state and using depth-first backtracking
for recovery when a chosen arc does not lead to a successful traversal.

My colleagues Eric Wanner, Mike Maratsos, and I investigated the ATN modeling
approach in a different way. The relative-clause sentences in Example (1) are equal
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in terms of their grammatical complexity and they both express essentially the same
predicate argument relations. But clearly they differ in their psychological complexity.

a. The dog that the rat that the cat ate bit died. (1)

hold retrievehold-list memory

b. The cat ate the rat that bit the dog that died.

The ATN uses some special actions and a special memory, the so-called hold-list, to
handle the long-distance filler-gap dependencies in relative clauses and questions. The
different nouns in Example (1a) get stacked up in that memory, perhaps overloading
it, while in Example (1b) the early noun is removed before the later one is added. We
proposed that the hold-list is a particularly costly psychological resource and set out to
test what we called the “hold hypothesis”.

One set of experiments was enough to get me a Ph.D. The sentences in Example (2)
are the same except for the relative clause verbs:

a. The driver that the patrolman told to stop had exceeded the speed limit. (2)
predicted complexity difference

b. The driver that the patrolman failed to stop had exceeded the speed limit.

By virtue of the different lexical properties of told and failed, the hold-list is empty at
the word stop in Example (2a) but still contains a representation of the driver in Exam-
ple (2b). If the hold-list memory is expensive, processing load should be higher at stop in
Example (2b) than Example (2a) and the difference should die out at exceeded. As shown
in Figure 2, this prediction was borne out using a reaction-time monitoring task as a
measure of transient processing load and a variant of these sentences with more words
in the region of contrast (Kaplan 1974). Wanner and Maratsos (1978) found further
support for this hypothesis with other measures and a different syntactic contrast.

ms

failed
told

quite stop exceeded... ...

-10

0

10

20

35 ms = 1 Ph.D.

Figure 2
Hold hypothesis: failed–told reaction time differences from (Kaplan 1974).
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In my thesis I also articulated a particular architecture for performance models with
components that were relatively independent and could be studied separately, along the
lines of (Simon 1962). Such a model would include

• a grammar in some formalism, as a repository of linguistic knowledge,

• a processor that allocates computational resources to interpret that
formalism,

• an agenda of order and preference specifications to govern a presumably
nondeterministic search, and

• a vector of coefficients that map processor resources into predictions of
cognitive load.

The individual components should be evaluated as to how well they fit into an overall
model, but they should also be evaluated as explanatory artifacts in their own domains.
The grammar as a repository of linguistic knowledge should be a revealing encoding
of linguistic generalizations, while the processor should admit of a well-engineered
implementation.

A combination of linguistic and implementation considerations led me to propose
some basic changes to Bill’s ATN framework. As I mentioned, the internal state of an
ATN network traversal was determined by mini-procedures on the arcs and recorded in
a collection of local registers. These were converted to deep-structure trees at the end of
a valid path, in imitation of conventional linguistic theories. I noticed that information
was often lost in this conversion, because it was overlooked in the specification or
because there was no natural place in a tree for some of the features to reside. Moreover,
the parser contained extra routines for constructing trees from registers at the end of
each traversal, and additional tree-walking code to inspect those trees at higher levels
of recursion.

Information loss could be avoided and many subroutines could be eliminated by
changing the underlying representation produced at each level of recursion and for the
entire input string. Instead of converting to deep tree structures, I proposed (Kaplan
1974) simply taking the collection of registers, encoded as a hierarchical attribute-value
list, as the output of the parsing process. Figure 3 illustrates the migration from a
deep-structure tree to an attribute-value representation for a passive sentence with an
embedded relative clause (Example (3)).

The rat that bit the dog was eaten by the cat (3)

Attribute-value matrices of this type are the original, primitive representations of what
became the functional structures of Lexical Functional Grammar and the feature struc-
tures of other unification formalisms.

A second observation motivated a substantial reduction in the inventory of actions
and conditions that could be used to set and test the values of registers during a network
traversal. A parade example of ATN elegance is the customary way of relating the
passive sentence in Example (3) to its corresponding active in Example (4).

The cat ate the rat that bit the dog. (4)
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N
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V

eat

NP

N

cat

Det

the

⇒



SUBJ

[
HEAD ‘CAT’
DEF +

]
ACTION ‘EAT‘
TENSE PAST

OBJ



HEAD ‘RAT’
DEF +

RELATIVE



SUBJ

[
HEAD ‘RAT’
DEF +

]
ACTION ‘BITE’
TENSE PAST

OBJ

[
HEAD ‘DOG’
DEF +

]







Figure 3
Migration from a deep-structure tree to a hierarchical attribute-value matrix.

Roughly, for both the active and passive the top-level sentence network first guesses that
the initial NP is the subject and the immediately following verb is the action. This guess
is corroborated when the verb is followed by an object NP, as in Example (4). If instead
a participle like eaten is encountered after was, as in Example (3), the network branches
to an alternative path set up to handle passives. On that path the register contents are
rearranged so that the participle becomes the action, what was initially guessed as the
subject becomes the object, and the NP after by becomes the final subject, correcting the
initial guess. In the end the active and passive sentences are assigned essentially the
same attribute-value structures with the subject and object values denoting the logical
arguments of the action eat, as shown in Figure 3. An attractive aspect of this analysis
is that it involves no backtracking over strings or recomputation of phrases, just the
ability to modify register values. The perceptual strategy complexity difference could
be attributed to this extra fix-up computation.

This simple solution breaks down in the face of tag questions:

a. Mary kissed John, didn’t she? (5)

b. John was kissed by Mary, wasn’t he?

The pronoun in the tag agrees with the original surface subject, not the logical subject,
whether the main clause is active or passive, and the auxiliary verb in the tag is deter-
mined by the initial verb of the main clause. The initial settings of those registers must
be preserved, if the tag is to be analyzed correctly. The motivation for the original ATN
register operations is further weakened by the grammaticality contrast in Example (6).

a. The sheep that eats grass runs. (6)

b. *The sheep that eats grass run.

The verbs of the main and relative clauses must match in number when the first noun-
phrase is understood as the subject of both clauses. If the number of the first noun is
explicitly marked, this would follow indirectly from the local agreement of each verb
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with its own subject in the normal left-to-right order of register calculations (the SVAGR
condition in Figure 1). But the number of sheep is naturally unspecified and there is
no common value for the verbs to agree with separately through standard register
operations.

I concluded from these and other examples that the set of register actions and
conditions could and should be replaced by one composite operation defined to merge
two attribute-value structures provided they do not contain conflicting values, and that
that operation must be transitive and order-free. I called this the SAME predicate: It
asserts that two structures have exactly the same attributes and values. This was the
seed of the equality predicate of LFG and the unification operator in Martin’s Functional
Unification Grammar (Kay 1979, 1984) and other formalisms in that tradition.

My early ATN account of perceptual strategies relied on a carefully tuned, fixed
ordering of arcs leaving each state in the grammar. Mehler and Carey (1967) conducted
a really quite trivial experiment that suggested that this was not a good arrangement.
Still thinking about the psychological reality of transformational grammar, they wanted
to see whether listeners were sensitive to differences in surface-structure grouping, as
in Example (7a,b), and differences in deep-structure relations (Example (7c,d)).

a. They [are forecasting] cyclones. (7)

b. They are [conflicting desires].

c. They are delightful to embrace. (= Someone embraces them.)

d. They are hesitant to travel. (= They travel.)

Without getting into the details of their primitive experiment, Mehler and Carey found
that a sentence of one type (say Example (7a)) is easier to process after presenting ten
sentences of the same type rather than priming with ten sentences of the contrasting
type (Example (7b)). It seems that comprehension strategies can be influenced by very
immediate, short-term syntactic experience, yet we would not want to say that the
listener’s knowledge of English is so unstable and changes so quickly. Rather, preference
order should not be embedded in the grammar but encoded as an independent and
perhaps rapidly fluctuating overlay. This is the separate agenda component of the mod-
eling architecture I have sketched. As an aside, I think such short-term variability poses
a conceptual challenge for psycholinguistic models that might be based on modern
probabilistic and deep learning approaches, if preferences and structural constraints
are tightly coupled or even inseparable.

My original account also depended on the default top–down depth-first search
policy of the ATN parser. Back-tracking from a failed hypothesis could be very ex-
pensive, and fluctuating preferences might increase the likelihood that subsequent
choices would be incorrect. It was well known that cubic-time performance could be
achieved for any reasonable context-free parser simply by incorporating a memory
for previously analyzed constituents and partial constituents. That is a very good
engineering trade-off: quadratic space for exponential time. It seemed reasonable to
think that the psychological system would also make such a trade-off, to mitigate the
damaging effect of incorrect heuristic choices. I stripped down the ATN parser to its
bare essentials and then combined it with Martin’s chart data structure to represent the
well-formed partial constituents. Martin and I later developed a simplified and more
abstract implementation of this idea, which we later called an “active-chart parser.” He
describes this evolution also in his LTA acceptance paper (Kay 2006).
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That was the end of my stint at Harvard. I have mentioned a few core ideas that
emerged from these psycholinguistic and computational considerations: the compo-
sitional architecture for performance models, with separate knowledge, process, and
strategy components; hierarchical attribute-value structures as an underlying represen-
tation for syntax; a single SAME operation for imposing constraints on attributes and
values; and the integration of memory for previously recognized constituents. These
ideas are the background for much of my later research.

3. Fundamental Issues

I met Danny Bobrow while working on the Lunar project. He was the vice president for
Artificial Intelligence at BBN, and nominally Bill’s boss. He left BBN to create a language
understanding group at Xerox’s new research center in Palo Alto. He invited me to join
the group when it looked like I was about to finish my degree. Being a little wary of
industry, I asked him how long we would have before Xerox expected us to impact
their products. He replied that we would be one of their long-term investments, and
that we had a 15-year horizon. I thought I could manage that. I suggested that he also
invite Martin Kay, so that we could continue our productive collaboration. We arrived
at the same time, in the fall of 1974. I expected to carry forward with psycholinguistic
modeling at PARC, but I found that it was much easier to have an impact in linguistic
theory and computational linguistics. Experimental psychology is hard.

As the language understanding project started up, we set to work on different
components of an overall system. Danny and Terry Winograd worked on knowledge
and reasoning, while Martin and I focused on syntax and morphology. This was all
in service of developing a Conversational User Interface, in contrast to the graphical
interface that others at PARC were exploring. We expected to assemble the separate
components into a prototype system, after a few years of work. We eventually did lash
the components together in, again, a Simon-esque way. A student, Henry Thompson,
volunteered to deal with the non-negligible interactions of components so that we could
protect the simplicity of our individual modules. The result was GUS, the early mixed-
initiative frame-based dialog system described by Bobrow et al. (1977).

Martin and I had the luxury at PARC of being able to examine fundamental com-
putational and linguistic issues over several years without otherwise showing much
incremental progress. We were lucky that our work was not being peer-reviewed and
that we did not have to apply for grants. Although ATNs had become a standard
platform for many natural language applications, Martin and I argued at great length
to identify and converge on the most primitive and abstract operations for parsing.
And we had long, stimulating, and enjoyable debates about the nature of grammatical
formalisms and syntactic representations. We agreed on attribute-value matrices as the
basic encoding of underlying structure and something akin to the SAME predicate as
the primitive descriptive device. We found further computational motivation for SAME:
Its order-free property made it easy to configure an active-chart parser to implement
bidirectional, island-driving parse strategies of the sort that were being proposed for
some early approaches to speech recognition. But we had different and strongly held
views about how to proceed from there.

Roughly, Martin was attracted to the idea that the grammar itself could be coded
as elaborated feature structures, and that parsing consisted of applying implicitly a
SAME-like operator—unification—to combine the grammar matrices recursively with
attribute-value representations of the input words. The effect is to minimize the number
of representations and entities, as Occam’s razor would suggest.
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Figure 4
Compilation and composition of morphological rules.

Again taking Herb Simon as a guide, I maintained a separate grammar as a system
of constraints in its own formalism, the use of explicit trees to represent the hierarchical
traversal of surface constituents, and attribute-value matrices only as the underlying
representation. I thought of the SAME predicate as just that, a predicate that candidate
feature structures did or did not satisfy, and not an operation defined by a sequence
of computations. I would say that I tended towards the model theory side of the logic
while Martin tended towards the proof theory side. Martin developed his conception
into what became Functional Unification Grammar. I will describe next how the formal-
ism of Lexical-Functional Grammar derived from the approach that I was pursuing.

4. Finite State Morphology

First, on either approach we knew that the parser needed a front end for morphological
analysis and dictionary look-up. Suffix-stripping routines for English and similar lan-
guages were commonplace, but we set ourselves a more ambitious goal: We wanted
a universal system, one that would work not only for suffixing languages but also
for languages that displayed the full range of morphological variation. We wanted an
approach that would handle the complexities of Turkish and Finnish just as easily as
English.

Linguistic treatments at that time were specified in the generation/production
direction, as cascades of context-sensitive rewriting rules. They started from abstract
lexical and morphological formatives and applied rules in sequence until an actual word
emerged (see Figure 4 a). These rules were of the form

α→ β/λ ρ (8)

indicating that a string in a regular language α can be rewritten to any string in β if
it appears immediately after a left context in a regular language λ and before a right
context in ρ. We needed an efficient algorithm for running individual rules backwards
and then reversing the cascade sequence. This turned out to be a hard problem. The
code for interpreting individual rules, let alone the entire cascade, looked to be much
more complicated than the code needed for syntactic parsing. We knew that couldn’t be
right: Syntax is hard, morphology is easy. There had to be a trick.

We realized that the expressive power of such a morphological grammar is drasti-
cally reduced if an individual rule is not allowed to apply to its own output, either at a
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single level in a cascade or in a cyclic repeat of the cascade. In fact, we realized that the
input–output mapping under that restriction of each individual rule could be computed
exactly by a finite-state transducer (Figure 4b), and that a finite cascade of rules could
be simulated by the composition of their equivalent transducers (Figure 4c).

Knowing that there exists a transducer equivalent to each rule was not the same
as knowing how to construct such a transducer for a rule automatically. We struggled
with that problem on and off for a number of years. For any rule, we could go to the
white board, fiddle around with states and transitions, and eventually end up with what
looked like the target transducer. But even a simple rule would end up with quite a few
states and a large number of criss-crossing transitions, and we almost always would
leave out a transition or two, or maybe even a state.

Standing back, we saw that the actual rewrite, the α→ β part, was easy to imple-
ment. The difficult part was to recognize all and only the occurrences of the context
strings in λ and ρ, and to ensure that the rewrite only took place when surrounded by
the proper contexts. This is what took several years of fooling around.

I had one of those “aha” moments, lying in bed on a Saturday morning. Our
problem, abstractly, was to translate a universally quantified specification, a rule, into
basically an existential device, a finite-state machine. We needed a machine that would
identify and mark all substrings ending in a left context or beginning with a right
context, not just some of them. Framed in that way, there was an obvious analogy to
the simple and direct equivalence between universally and existentially quantified for-
mulas in first order logic (Example (9a)), or to simple conditionals in the propositional
calculus (Example (9b)).

a. ∀xφ(x) iff ¬ ∃x¬φ(x) (9)

b. P→ Q iff ¬ (P & ¬Q)

Double negation is the key in both of these logical identities, and these relationships
carry over by analogy to properties of strings and substrings. Because the regular lan-
guages are closed under complementation and the contexts in rewriting rules are regu-
lar, expression (10a) defines a regular language that includes a string only if every prefix
ending in λ is followed immediately by a bracket< unmistakably marking a left-context
occurrence. Conversely, for the strings in the language defined by Example (10b), every
left-context-marking bracket is immediately preceded by a substring in λ.

a. Σ∗λ < Σ∗ (10)

b. Σ∗λ < Σ∗

Regular languages are closed under intersection, and the intersection of these two
languages contains all and only strings where left-contexts are properly marked. And
of course there is a finite-state machine that accepts exactly that intersection language.
With this formulation we were able easily to implement an automatic compiler for
rewriting rules of arbitrary complexity, and prove that the resulting transducers had the
desired input/output properties. This high-level insight enabled us also to construct
a compiler for Koskenniemi’s (1983) two-level formalism for morphology (Karttunen,
Koskenniemi, and Kaplan 1987).
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We solved the rule translation and composition problems in the early 1980s. At the
same time we realized that the lexicon could also be treated as a regular relation and
could be composed at the top of the rule cascade (Figure 4d). There was then no need
for separate dictionary lookup code. This worked well for most of the languages we
investigated, with simple suffixing or prefixing morphology. Unsurprisingly, Finnish
turned out to be a computational challenge. It was impractical, in space and in time, to
combine the productive rules of Finnish morphology, whether presented as a rewriting
cascade or as a collection of two-level constraints.

Lauri joined us at PARC and later made a crucial observation. The problem becomes
tractable if the inventory of lexical items is introduced as a constraint early in the
construction process rather than as the very last step. The order of combination can be
inverted (Figure 4e) because of the associativity of composition (and intersection), and
the result is a lexicalized morphological transducer typically with orders of magnitude
fewer states and arcs than the lexical and morphological transducers taken separately
(Karttunen, Kaplan, and Zaenen 1992). The end result, even for Finnish, is an effi-
cient one-step reversible mapping from surface strings to lexemes and morphological
features. From a psycholinguistic perspective, this exemplifies an alternative way of
relating competence, the morphological generalizations expressed in a succinct collec-
tion of rules, to performance models embodied in equivalent transducers: compilation
instead of interpretation. Dual spaces with exactly the same input/output mappings
but with completely different principles of optimization, different strategies for run-
time execution, and different profiles of computational resources.

We languished in our efforts to write up these results, because of other distracting
targets of opportunity. As it turned out, this technology was not only useful as a parsing
component, it had many stand-alone applications. We carefully engineered the finite-
state algorithms and together with John Maxwell we developed exceedingly compact
ways of encoding large transducers. In 1985 we worked with a spin-off company,
Microlytics, to deploy the technology in after-market spell checkers for the installed base
of Xerox electronic typewriters, to meet a competitive threat from other manufacturers.
With respect to Danny Bobrow’s description of the 15-year product horizon, I like to
point out that we came in about 5 years ahead of schedule. Together with Microlytics,
we subsequently created a family of hand-held spell-checkers, conjugators, thesauruses,
and even electronic books, all based on this technology, as illustrated in Figure 5. Mi-
crolytics also embedded the technology in multiple-language spell-checkers that were
licensed to most of the mainstream word-processors of that era. Another PARC spin-
out, Inxight Software, licensed morphological analyzers for indexing and retrieval in
search engine applications. Eventually, in 1994, Martin and I got around to publishing a
description of our theoretical results (Kaplan and Kay 1994). We are pleased that it was
recognized as a finalist for the 25-year test-of-time award.

5. Lexical-Functional Grammar

Finite-state morphology was a productive and valuable detour from the central con-
cerns of syntax. A year after I moved to PARC, I went back to Cambridge to participate
in a series of cross-disciplinary workshops that George Miller and Morris Halle were
organizing at MIT. They had received a large grant from AT&T to stage a symposium
to celebrate the 100th anniversary of the invention of the telephone. They invited me
and my Harvard psycholinguistic colleagues, other psychologists, philosophers, and
computer scientists, and a number of traditional linguists. That’s where Joan Bresnan
and I met for the first time.
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Figure 5
A sample of hand-held products created with PARC finite-state technology, circa 1990.

The workshop met once a month over the course of a year, with each group having
a day or so to present their work and to lead a discussion. Eric Wanner, Mike Maratsos,
and I described our psychologically motivated alternative to transformational grammar
in one session. In another session Joan introduced her conception of lexical redundancy
rules as a better way of describing many syntactic phenomena within a transformation
framework (Bresnan 1978). We chatted in the breaks and at breakfast in the hotel,
and gradually came to see some common interests and develop some mutual respect.
She saw that psycholinguistic considerations and perhaps even the non-derivational
organization of ATN models could serve as possible supports for her redundancy
approach. I realized that lexical redundancy rules could solve some residual descriptive
and explanatory problems that surfaced in ATN grammars after register operations had
been reduced to SAME.

We met again in Italy, in the summer of 1977. Antonio Zampolli organized the IV
International Summer School in Computational Linguistics in Pisa, and Joan, Lauri,
Martin, and I, along with quite a few others, were invited to teach. My course was
called Computational Psycholinguistics, and I covered the psycholinguistic modeling
approach within the simplified and reduced formal framework that I was evolving from
the early ATN. Joan’s course was on realistic transformational grammar. I sat in her
course and she sat in mine, and we went out drinking together at the end of the day.
Our interactions grew intense, as we saw our work connect in more and more ways. If
any of you were there, 40 years ago, you may remember how upset Antonio was when
Joan and I got deep into a theoretical discussion when we should have been looking
out at the countryside from the rooftops at San Gimignano. But that’s when Joan and I
decided to team up.

I arranged for her to visit PARC several times during the following year, and she
arranged for me to have a mini-sabbatical at MIT in the fall of 1978. We decided to
combine forces and together teach a course called Computational Psycholinguistics.
We agreed that we would teach psychology, computation, and linguistics from a single
formalism no matter what. We started with the formalism I had developed at PARC:
surface-structure traversals producing feature structure representations by means of a
SAME predicate. The challenge was to demonstrate convincingly that linguistic general-
izations could be captured in that formalism and those representations. Week by week
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Figure 6
The description and correspondence architecture of Lexical-Functional Grammar.

we had to make adjustments. In some cases we had to sneak in adjustments to the
adjustments we had announced just the week before.

The pressure from linguistics helped to clarify the fundamental notions that lay at
the core of the syntactic architecture. I developed a completely declarative interpretation
to replace the lingering procedural aspects of the formal set up. The surface constituent
structure (c-structure) and the deep functional structure (f-structure) in Figure 6 are
representations of formally different types, again in a Simon-esque way, and together
they are responsible for characterizing the syntactic aspects of the sound-to-meaning
mapping. But both are seen as models, in the mathematical sense, for type-specific
collections of constraints. Thus, grammatical rules (11a) and the lexicon provide conven-
tional context-free admissibility conditions that mother/daughter/sister nodes of the
surface tree must satisfy. The annotations on the rules are instantiated at the c-structure
nodes to produce a description that an associated f-structure must satisfy, given the
assumption of a piece-wise correspondence function φ that projects from nodes of the
tree to units of the attribute-value matrix.

a. S→ NP VP (11)
(↑ SUBJ) = ↓ ↑ = ↓

b. (φ(n1) SUBJ) = φ(n2) ∧φ(n1) = φ(n3)

The meta-variable ↓ on a category denotes the f-structure unit corresponding to the
matching node (e.g., ↓ on the NP category instantiates to φ(n2) in this case) and ↑ refers
to φ(n1), the f-structure corresponding to the mother S node. Any f-structure projected
from this tree must be a minimal model for the description composed of the equations
in (11b) and the constraints instantiated from the rules admitting all other nodes. The
attribute-value matrix in Figure 6 meets this condition. The power to characterize non-
context-free dependencies comes from the fact that the historical SAME predicate is
respecified here as ordinary mathematical equality, and the c-structure to f-structure
correspondence φ is many-to-one.

This briefly summarizes the formal foundation of Lexical-Functional Grammar as it
emerged from that course (Kaplan and Bresnan 1982), and this picture of the underly-
ing grammatical architecture is still accurate after 40 years. This conception of formal
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descriptions derived from structural correspondences and projection functions was
extended and refined in subsequent research (Kaplan 1987, 1989), and it now stands
as a general framework for characterizing the interactions between syntax and other
relatively independent modules of linguistic analysis. Halvorsen and Kaplan (1988)
and Halvorsen (1988) make use of a correspondence between f-structure and semantic
structure to create descriptions of logical formulas, and a projection function maps
f-structure units to linear–logic meaning constructors in the “glue” approach to se-
mantic interpretation (Dalrymple 1999). As another application of this architecture,
Dalrymple and Mycock (2011) have formalized the three-way interaction of syntax,
semantics, and prosody by means of a particular configuration of structural corre-
spondences. Descriptions and correspondences are cornerstones of the LFG formalism
and distinguish it from Montague Grammar, HSPG, Categorial Grammar, and other
grammatical systems.

6. High-Speed Parsing and Large-Scale Grammars: XLE and Pargram

In this completely declarative, constraint-based formulation, grammatical specifications
were even less connected to a particular implementation. That created the need and
opportunity to investigate new strategies for parsing. This is the problem that I started
to work on after I returned to PARC and that I continued in close collaboration with
John Maxwell. Equality was originally implemented as an attribute-value unification
algorithm, and a standard context-free chart parser was used to interpret the surface-
structure grammar. Those algorithms were combined in the obvious way, by using
unification to prune the chart-parser constituents in a bottom–up fashion. This was
effective, but not efficient, even though unification and chart parsing are both fast.

It was easy to identify the potential sources of exponential behavior. The formal-
ism encoded certain kinds of syntactic ambiguity by allowing quickly solvable equa-
tions to appear under disjunction and negation, in Boolean combinations. And those
combinations emerge from the enumeration of all subtrees determined by a context-
free grammar that could be exponentially ambiguous. We first attacked the Boolean
satisfiability problem. A straightforward Boolean solver might convert to disjunctive
normal form so that all inconsistencies, even from distant parts of a sentence, can be
easily recognized. But this is a bad strategy if distant equations are unlikely to interact,
as we thought should be the case for natural language. We arrived at a method that
optimizes for the independence of disjunctions in distant equations rather than their
inconsistency. After several years of hard work, we reduced the method to a very simple
lemma (Example (12)) with a trivial two-line proof (Maxwell and Kaplan 1991).

α ∨ β iff p→ α ∧ ¬p→ β, for p a new Boolean variable. (12)

This is a variant of conjunctive normal form for which there is a sound and complete
satisfiability procedure. The complexity of that procedure depends only on the size of
subsets of inconsistent equations. When distant equations are in fact relatively indepen-
dent, the effect for a Boolean combination of size n is to reduce the complexity from 2n

to roughly n2k for k� n.
This method applies not just to speed up syntactic computations. It also allows

for efficient ambiguity management when independent components of different formal
types are composed in a nearly decomposable architecture. It is not necessary to unpack
and enumerate representations of alternative structures when they are passed across a
component boundary. Crouch and King (2006) and Bobrow et al. (2007) take advantage
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of this to preserve compact encodings of ambiguity as they translate first from syntax to
semantics and then to knowledge representations that support inferences of entailment
and contradiction. Systematic ambiguity management also reduces the incentive for
premature attempts at ambiguity resolution based on soft probabilities within one
component before the hard constraints of other components or of nonlinguistic context
can be taken into account.

John and I also investigated strategies for intermixing equation solving with the
ambiguities of chart-parser constituent formation (Maxwell and Kaplan 1993). We even-
tually arrived at a technique that optimizes in a different way for the intuition that
natural languages are mostly, though not always, context-free (Maxwell and Kaplan
1996). The result was a high-speed, largely polynomial, commercial-grade parser
and generator for interpreting broad-coverage LFG grammars, and composing them
with finite-state morphologies (Crouch et al. 2008). We called it the Xerox Linguistic
Environment—XLE. I am currently working with Jürgen Wedekind on a mathematical
analysis of the LFG formalism that might provide a formal explanation, retrospectively,
for the effectiveness of the heuristic techniques in XLE. Previously we investigated the
mathematical and algorithmic properties of the generation problem for LFG and similar
formalisms (Wedekind and Kaplan 2012).

Together with colleagues initially at the University of Stuttgart and the Xerox re-
search center in Grenoble, we created the Parallel Grammar project, Pargram. Its goal
was to build, in XLE, large-scale LFG grammars for a variety of languages and to assign
parallel f-structures to related syntactic constructions (Butt et al. 1999; 2002). Miriam
Butt, Mary Dalrymple, Helge Dyvik, Tracy King, Hiroshi Masuichi, Christian Rohrer,
and Annie Zaenen are among the many people in many institutions who worked to
produce those commercial-grade grammars and otherwise contributed to the Pargram
effort. I might also mention that Chris Manning worked with us as a student and wrote
one of the early versions of the English grammar. And an important later addition to
XLE’s techniques for ambiguity management and robustness was an efficient module
for probabilistic ranking of alternatives, contributed by Stefan Riezler and Mark Johnson
(Riezler et al. 2002). XLE and the English Pargram grammar were the key language
technologies for the semantic search engine developed years later at Powerset, a PARC
spin-out subsequently acquired by Microsoft.

7. Conclusion

I have been fortunate in my career to work on intriguing problems in psychology,
linguistics, and computation, with some of the very best collaborators. In the mid-
1980s I formed the Natural Language Theory and Technology group at PARC. The
NLTT group included Martin, Lauri, and Joan—previous LTA recipients—and many
of the other people I have mentioned. The name I chose for the group turned out to be
very prophetic: I have recited here just some of the contributions to both theory and
technology that group members were able to make over the 25 years of its life. That is
quite a long time in research-group years.

I left PARC for Powerset when our language technology seemed ready to scale for
practical applications, and we calculated that the high margins of search advertising
made the extra cost of semantic search economically attractive. I have suggested more
recently, as a technical leader at Nuance and Amazon, that sophisticated natural lan-
guage technologies are crucially needed to improve the fairly poor performance of the
conversational systems that ordinary people are now encountering in their everyday
lives. The rapid advances in machine learning, particularly the varieties of deep learning
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models coupled with the massive amounts of data that can now be collected, are
obviously having a major positive impact. But to be truly effective, such systems must
bring together information of many different types and from many different sources,
and much of it cannot be observed directly in end-to-end stimulus/response interac-
tions. Learning by observation, even when possible, may not be the most complete,
effective, or efficient way of acquiring the necessary understanding of language, human
interaction styles, specific application domains, or the world at large. Some influences
on conversational interaction are more accessible, or perhaps only accessible, from
the knowledge and wisdom that experts have already accumulated by introspection,
scientific analysis, and reasoning, and from curated repositories that may already be
available.

This returns to one of my persistent themes. Just as for cognitive models of human
language performance, we should assume that conversational systems, and other highly
capable language-based applications, are nearly decomposable and that their modules
are of widely varying pedigrees. Going forward, I think the outstanding scientific and
practical challenge will be to characterize and implement the non-negligible interactions
of these components. It will take every arrow in our quiver to construct conversational
systems that are helpful, informative, and pleasant to interact with.

I want to close by again thanking the selection committees and the Association for
this tremendous honor.
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