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Participants in an asynchronous conversation (e.g., forum, e-mail) interact with each other
at different times, performing certain communicative acts, called speech acts (e.g., question,
request). In this article, we propose a hybrid approach to speech act recognition in asynchronous
conversations. Our approach works in two main steps: a long short-term memory recurrent neu-
ral network (LSTM-RNN) first encodes each sentence separately into a task-specific distributed
representation, and this is then used in a conditional random field (CRF) model to capture the
conversational dependencies between sentences. The LSTM-RNN model uses pretrained word
embeddings learned from a large conversational corpus and is trained to classify sentences into
speech act types. The CRF model can consider arbitrary graph structures to model conversa-
tional dependencies in an asynchronous conversation. In addition, to mitigate the problem of
limited annotated data in the asynchronous domains, we adapt the LSTM-RNN model to learn
from synchronous conversations (e.g., meetings), using domain adversarial training of neural
networks. Empirical evaluation shows the effectiveness of our approach over existing ones: (i)
LSTM-RNNs provide better task-specific representations, (ii) conversational word embeddings
benefit the LSTM-RNNs more than the off-the-shelf ones, (iii) adversarial training gives better
domain-invariant representations, and (iv) the global CRF model improves over local models.

1. Introduction

With the advent of Internet technologies, communication media like e-mails and dis-
cussion forums have become commonplace for discussing work, issues, events, and
experiences. Participants in these media interact with each other asynchronously by
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writing at different times. This generates a type of conversational discourse, where
information flow is often not sequential as in monologue (e.g., news articles) or in syn-
chronous conversation (e.g., instant messaging). As a result, discourse structures such as
topic structure, coherence structure, and conversational structure in these conversations
exhibit different properties from what we observe in monologue or in synchronous
conversation (Joty, Carenini, and Ng 2013; Louis and Cohen 2015).

Participants in an asynchronous conversation interact with each other in com-
plex ways, performing certain communicative acts like asking questions, requesting
information, or suggesting something. These are called speech acts (Austin 1962). For
example, consider the excerpt of a forum conversation1 from our corpus in Figure 1. The
participant who posted the first comment, C1, describes his situation in the first two
sentences, and then asks a question in the third sentence. Other participants respond
to the query by suggesting something or asking for clarification. In this process, the
participants get into a conversation by taking turns, each of which consists of one
or more speech acts. The two-part structures across posts like question-answer and
request-grant are called adjacency pairs (Schegloff 1968).

Identification of speech acts is an important step toward deep conversational
analysis (Bangalore, Di Fabbrizio, and Stent 2006), and has been shown to be use-
ful in many downstream applications, including summarization (Murray et al. 2006;
McKeown, Shrestha, and Rambow 2007), question answering (Hong and Davison 2009),
collaborative task learning agents (Allen et al. 2007), artificial companions for people
to use the Internet (Wilks 2006), and flirtation detection in speed-dates (Ranganath,
Jurafsky, and McFarland 2009).

Availability of large annotated corpora like the Meeting Recorder Dialog Act
(MRDA) (Dhillon et al. 2004) or the Switchboard-DAMSL (SWBD) (Jurafsky, Shriberg,
and Biasca 1997) corpus has fostered research in data-driven automatic speech act
recognition in synchronous domains like meeting and phone conversations (Ries 1999;
Stolcke et al. 2000; Dielmann and Renals 2008).2 However, such large corpora are not
available in the asynchronous domains, and many of the existing (small-sized) corpora
use task-specific speech act tagsets (Cohen, Carvalho, and Mitchelle 2004; Ravi and Kim
2007; Bhatia, Biyani, and Mitra 2014) as opposed to a standard one. The unavailability
of large annotated data sets with standard tagsets is one of the reasons for speech act
recognition not getting much attention in asynchronous domains.

Previous attempts in automatic (sentence-level) speech act recognition in asyn-
chronous conversations (Jeong, Lin, and Lee 2009; Qadir and Riloff 2011; Tavafi et al.
2013; Oya and Carenini 2014) suffer from at least one of the following two technical
limitations.

First, they use a bag-of-words (BOW) representation (e.g., unigram, bigram) to en-
code lexical information of a sentence. However, consider the Suggestion sentences
in the example. Arguably, a model needs to consider the structure (e.g., word order)
and the compositionality of phrases to identify the right speech act for an utterance.
Furthermore, BOW representation could be quite sparse, and may not generalize well
when used in classification models. Recent research suggests that a condensed dis-
tributed representation learned by a neural model on the target task (e.g., speech act
classification) is more effective. The task-specific training can be further improved by
pretrained word embeddings (Goodfellow, Bengio, and Courville 2016).

1 Taken from http://www.qatarliving.com/forum/advice-help/posts/study-canada.
2 Speech acts are also known as “dialog acts” in the literature.
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Second, existing approaches mostly disregard conversational dependencies between
sentences inside a comment and across comments. For instance, consider the example in
Figure 1 again. The Suggestions are answers to Questions asked in a previous comment.
We therefore hypothesize that modeling inter-sentence relations is crucial for speech
act recognition. We have tagged the sentences in Figure 1 with human annotations
(HUMAN) and with the predictions of a local (LOCAL) classifier that considers word
order for sentence representation but classifies each sentence separately or individually.
Prediction errors are underlined and highlighted in red. Notice the first and second
sentences of comment C4, which are mistakenly tagged as Statement and Response,
respectively, by our best local classifier. We hypothesize that some of the errors made by
the local classifier could be corrected by utilizing a global joint model that is trained to
perform a collective classification, taking into account the conversational dependencies
between sentences (e.g., adjacency relations like Question-Suggestion).

C1: My son wish to do his bachelor degree in Mechanical Engineering in an affordable Canadian
university.
⇒ HUMAN: Statement, LOCAL: Statement, GLOBAL: Statement

The information available in the net and the people who wish to offer services are too many
and some are misleading.
⇒ HUMAN: Statement, LOCAL: Statement, GLOBAL: Statement

The preliminary preparations, eligibility, the require funds etc., are some of the issues which
I wish to know from any panel members of this forum who is aware and had gone through
similar procedures to obtain an admission in an university abroad.
⇒ HUMAN: Question, LOCAL: Statement, GLOBAL: Statement

C3: [truncated] take a list of canadian universities and then create a table and insert all the
relevant information by reading each and every program info on the web.
⇒ HUMAN: Suggestion, LOCAL: Suggestion, GLOBAL: Suggestion

Without doing a research my advice would be to apply to UVIC... for the following
reasons... 1. good egineering school, 2 affordable, 3 strong co-op, 4. beautiful and safe city.
⇒ HUMAN: Suggestion, LOCAL: Suggestion, GLOBAL: Suggestion

UBC is good too... but it is expensive particularly for international students due to tuition
differential.... and pls pls pls.. dont waste your money on intermediaries or so called
consultants... do it yourself.. most of them accept on-line application or email application.
⇒ HUMAN: Suggestion, LOCAL: Suggestion, GLOBAL: Suggestion

most of them accept on-line or email application.
⇒ HUMAN: Statement, LOCAL: Statement, GLOBAL: Statement

Good luck !!
⇒ HUMAN: Polite, LOCAL: Polite, GLOBAL: Polite

C4: snakyy21: UVIC is a short form of? I have already started researching for my brother and
found “College of North Atlantic” and planning to visit their branch in Qatar to inquire
about more details
⇒ HUMAN: Question, LOCAL: Statement, GLOBAL: Question
but not sure about the reputation..
⇒ HUMAN: Statement, LOCAL: Response, GLOBAL: Statement

C5: thank you for sharing useful tips will follow your advise.
⇒ HUMAN: Polite, LOCAL: Polite, GLOBAL: Polite

Figure 1
Example of a forum conversation (truncated) with HUMAN annotations and automatic
predictions by a LOCAL classifier and a GLOBAL classifier for speech acts (e.g., Statement,
Suggestion). The incorrect decisions are underlined and marked with red color.
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However, unlike synchronous conversations (e.g., meeting, phone), modeling con-
versational dependencies between sentences in an asynchronous conversation is chal-
lenging, especially when the thread structure (e.g., “reply-to” links between comments)
is missing, which is also our case. The conversational flow often lacks sequential depen-
dencies in its temporal/chronological order. For example, if we arrange the sentences
as they arrive in the conversation, it becomes hard to capture any dependency between
the act types because the two components of the adjacency pairs can be far apart in
the sequence. This leaves us with one open research question: How do we model the
dependencies between sentences in a single comment and between sentences across
different comments? In this article, we attempt to address this question by designing
and experimenting with conditional structured models over arbitrary graph structures
of the conversation. Apart from the underlying discourse structure (sequence vs. graph),
asynchronous conversations differ from synchronous conversations in style (spoken vs.
written) and in vocabulary usage (meeting conversations on some focused topics vs.
conversations on any topic of interest in a public forum). In this article, we propose
to use domain adaptation methods in the neural network framework to model these
differences in the sentence encoding process.

More concretely, we make the following contributions in speech act recognition
for asynchronous conversations. First, we propose to use a recurrent neural network
(RNN) with a long short-term memory (LSTM) hidden layer to compose phrases in
a sentence and to represent the sentence using distributed condensed vectors (i.e.,
embeddings). These embeddings are trained directly on the speech act classification
task. We experiment with both unidirectional and bidirectional RNNs. Second, we train
(task-agnostic) word embeddings from a large conversational corpus, and use it to boost
the performance of the LSTM-RNN model. Third, we propose conditional structured
models in the form of pairwise conditional random fields (CRF) (Murphy 2012) over
arbitrary conversational structures. We experiment with different variations of this
model to capture different types of interactions between sentences inside the comments
and across the comments in a conversational thread. These models use the LSTM-
encoded vectors as feature vectors for learning to classify sentences in a conversation
collectively.

Furthermore, to address the problem of insufficient training data in the asyn-
chronous domains, we propose to use the available labeled data from synchronous
domains (e.g., meetings). To make the best use of this out-of-domain data, we adapt
our LSTM-RNN encoder to learn task-specific sentence representations by modeling the
differences in style and vocabulary usage between the two domains. We achieve this by
using the recently proposed domain adversarial training methods of neural networks
(Ganin et al. 2016). As a secondary contribution, we also present and release a forum
data set annotated with a standard speech act tagset.

We train our models in various settings with synchronous and asynchronous cor-
pora, and we evaluate on one synchronous meeting data set and three asynchronous
data sets—two forum data sets and one e-mail data set. We also experimented with
different pretrained word embeddings in the LSTM-RNN model. Our main findings
are: (i) LSTM-RNNs provide better sentence representation than BOW and other un-
supervised methods; (ii) bidirectional LSTM-RNNs, which encode a sentence using
two vectors, provide better representation than the unidirectional ones; (iii) word
embeddings pretrained on a large conversational corpus yield significant improve-
ments; (iv) the globally normalized joint models (CRFs) improve over local models for
certain graph structures; and (v) domain adversarial training improves the results by
inducing domain-invariant features. The source code, the pretrained word embeddings,
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and the new data sets are available at https://ntunlpsg.github.io/demo/project/
speech-act/.

After discussing related work in Section 2, we present our speech act recognition
framework in Section 3. In Section 4, we present the data sets used in our experiments
along with our newly created corpus. The experiments and analysis of results are
presented in Section 5. Finally, we summarize our contributions with future directions
in Section 6.

2. Related Work

Three lines of research are related to our work: (i) compositionality with LSTM-RNNs,
(ii) conditional structured models, and (iii) speech act recognition in asynchronous
conversations.

2.1 LSTM-RNNs for Composition

RNNs are arguably the most popular deep learning models in natural language process-
ing, where they have been used for both encoding and decoding a text—for example,
language modeling (Mikolov 2012a; Tran, Zukerman, and Haffari 2016), machine trans-
lation (Bahdanau, Cho, and Bengio 2015), summarization (Rush, Chopra, and Weston
2015), and syntactic parsing (Dyer et al. 2015). RNNs have also been used as a sequence
tagger, as in opinion mining (Irsoy and Cardie 2014; Liu, Joty, and Meng 2015), named
entity recognition (Lample et al. 2016), and part-of-speech tagging (Plank, Søgaard, and
Goldberg 2016).

Relevant to our implementation, Kalchbrenner and Blunsom (2013) use a simple
RNN to model sequential dependencies between act types for speech act recognition
in phone conversations. They use a convolutional neural network (CNN) to compose
sentence representations from word vectors. Lee and Dernoncourt (2016) use a similar
model, but they also experiment with RNNs to compose sentence representations. Simi-
larly, Khanpour, Guntakandla, and Nielsen (2016) use an LSTM-based RNN to compose
sentence representations. Ji, Haffari, and Eisenstein (2016) propose a latent variable
RNN that can jointly model sequences of words (i.e., language modeling) and discourse
relations between adjacent sentences. The discourse relations are modeled with a latent
variable that can be marginalized during testing. In one experiment, they use coherence
relations from the Penn Discourse Treebank corpus as the discourse relations. In another
setting, they use speech acts from the SWBD corpus as the discourse relations. They
show improvements on both language modeling and discourse relation prediction
tasks. Shen and Lee (2016) use an attention-based LSTM-RNN model for speech act
classification. The purpose of the attention is to focus on the relevant part of the
input sentence. Tran, Zukerman, and Haffari (2017) use an online inference technique
similar to the forward pass of the traditional forward-backward inference algorithm to
improve upon the greedy decoding methods typically used in the RNN-based sequence
labeling models. Vinyals and Le (2015) and Serban et al. (2016) use RNN-based encoder-
decoder framework for conversation modeling. Vinyals and Le (2015) use a single RNN
to encode all the previous utterances (i.e., by concatenating the tokens of previous
utterances), whereas Serban et al. (2016) use a hierarchical encoder—one to encode the
words in each utterance, and another to connect the encoded context vectors.

Li et al. (2015) compare recurrent neural models with recursive (syntax-based)
models for several NLP tasks and conclude that recurrent models perform on par with
the recursive for most tasks (or even better). For example, recurrent models outperform
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recursive on sentence level sentiment classification. This finding motivated us to use
recurrent models rather than recursive ones.

2.2 Conditional Structured Models

There has been an explosion of interest in CRFs for solving structured output problems
in NLP; see Smith (2011) for an overview. The most common type of CRF has a linear
chain structure that has been used in sequence labeling tasks like part-of-speech (POS)
tagging, chunking, named entity recognition, and many others (Sutton and McCallum
2012). Tree-structured CRFs have been used for parsing (e.g., Finkel, Kleeman, and
Manning 2008).

The idea of combining neural networks with graphical models for speech act
recognition goes back to Ries (1999), in which a feed-forward neural network is used
to model the emission distribution of a supervised hidden Markov model (HMM). In
this approach, each input sentence in a dialogue sequence is represented as a BOW
vector, which is fed to the neural network. The corresponding sequence of speech acts
is given by the hidden states of the HMM. Surendran and Levow (2006) first use support
vector machines (SVMs) (i.e., local classifier) to estimate the probability of different
speech acts for each individual utterance by combining sparse textual features (i.e., bag
of n-grams) and dense acoustic features. The estimated probabilities are then used in
the Viterbi algorithm to find the most probable tag sequence for a conversation. Julia
and Iftekharuddin (2008) use a fusion of SVM and HMM classifiers with textual and
acoustic features to classify utterances into speech acts.

More recently, Lample et al. (2016) proposed an LSTM-CRF model for named entity
recognition (NER), which first generates a bi-directional LSTM encoding for each input
word, and then it passes this representation to a CRF layer, whose task is to encourage
global consistency of the NER tags. For each input word, the input to the LSTM consists
of a concatenation of the corresponding word embedding and of character-level bi-
LSTM embeddings for the current word. The whole network is trained end-to-end with
backpropagation, which can be done effectively for chain-structured graphs. Ma and
Hovy (2016) proposed a similar framework, but they replace the character-level bi-
LSTM with a CNN. They evaluated their approach on POS and NER tagging tasks.
Strubell et al. (2017) extended these models by substituting the word-level LSTM with
an iterated dilated convolutional neural network, a variant of CNN, for which the effec-
tive context window in the input can grow exponentially with the depth of the network,
while having a modest number of parameters to estimate. Their approach permits fixed-
depth convolutions to run in parallel across entire documents, thus making use of GPUs,
which yields up to 20-fold speed up, while retaining performance comparable to that
of LSTM-CRF. Speech act recognition in asynchronous conversation posits a different
problem, where the challenge is to model arbitrary conversational structures. In this
work, we propose a general class of models based on pairwise CRFs that work on
arbitrary graph structures.

2.3 Speech Act Recognition in Asynchronous Conversation

Previous studies on speech act recognition in asynchronous conversation have used
supervised, semi-supervised, and unsupervised methods.

Cohen, Carvalho, and Mitchell (2004) first use the term e-mail speech act for classi-
fying e-mails based on their acts (e.g., deliver, meeting). Their classifiers do not capture
any contextual dependencies between the acts. To model contextual dependencies,
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Carvalho and Cohen (2005) use a collective classification approach with two different
classifiers, one for content and one for context, in an iterative algorithm. The content
classifier only looks at the content of the message, whereas the context classifier takes
into account both the content of the message and the dialog act labels of its parent and
children in the thread structure of the e-mail conversation. Our approach is similar
in spirit to their approach with three crucial differences: (i) our CRFs are globally
normalized to surmount the label bias problem, while their classifiers are normalized
locally; (ii) the graph structure of the conversation is given in their case, which is not the
case with ours; and (iii) their approach works at the comment level, whereas we work
at the sentence level.

Identification of adjacency pairs like question-answer pairs in e-mail discussions
using supervised methods was investigated in Shrestha and McKeown (2004) and
Ravi and Kim (2007). Ferschke, Gurevych, and Chebotar (2012) use speech acts to
analyze the collaborative process of editing Wiki pages, and apply supervised models to
identify the speech acts in Wikipedia Talk pages. Other sentence-level approaches use
supervised classifiers and sequence taggers (Qadir and Riloff 2011; Tavafi et al. 2013;
Oya and Carenini 2014). Vosoughi and Roy (2016) trained off-the-shelf classifiers (e.g.,
SVM, naive Bayes, Logistic Regression) with syntactic (e.g., punctuations, dependency
relations, abbreviations) and semantic feature sets (e.g., opinion words, vulgar words,
emoticons) to classify tweets into six Twitter-specific speech act categories.

Several semi-supervised methods have been proposed for speech act recognition in
asynchronous conversation. Jeong, Lin, and Lee (2009) use semi-supervised boosting
to tag the sentences in e-mail and forum discussions with speech acts by inducing
knowledge from annotated spoken conversations (MRDA meeting and SWBD telephone
conversations). Given a sentence represented as a set of trees (i.e., dependency, n-gram
tree, and POS tag tree), the boosting algorithm iteratively learns the best feature set
(i.e., sub-trees) that minimizes the errors in the training data. This approach does not
consider the dependencies between the act types, something we successfully exploit in
our work. Zhang, Gao, and Li (2012) also use semi-supervised methods for speech act
recognition in Twitter. They use a transductive SVM and a graph-based label propaga-
tion framework to leverage the knowledge from abundant unlabeled data. In our work,
we leverage labeled data from synchronous conversations while adapting our model to
account for the shift in the data distributions of the two domains. In our unsupervised
adaptation scenario, we do not use any labeled data from the target (asynchronous)
domain, whereas in the semi-supervised scenario, we use some labeled data from the
target domain.

Among methods that use unsupervised learning, Ritter, Cherry, and Dolan (2010)
propose two HMM-based unsupervised conversational models for modeling speech
acts in Twitter. In particular, they use a simple HMM and a HMM+Topic model to
cluster the Twitter posts (not the sentences) into act types. Because they use a unigram
language model to define the emission distribution, their simple HMM model tends
to find some topical clusters in addition to the clusters that are based on speech acts.
The HMM+Topic model tries to separate the act indicators from the topic words. By
visualizing the type of conversations found by the two models, they show that the
output of the HMM+Topic model is more interpretable than that of the HMM one;
however, their classification accuracy is not empirically evaluated. Therefore, it is not
clear whether these models are actually useful, and which of the two models is a better
speech act tagger. Paul (2012) proposes using a mixed membership Markov model to
cluster sentences based on their speech acts, and show that this model outperforms a
simple HMM. Joty, Carenini, and Lin (2011) propose unsupervised models for speech
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act recognition in e-mail and forum conversations. They propose a HMM+Mix model
to separate out the topic indicators. By training their model based on a conversational
structure, they demonstrate that conversational structure is crucial to learning a better
speech act recognition model. In our work, we also demonstrate that conversational
structure is important for modeling conversational dependencies, however, we do not
use any given structure; rather, we build models based on arbitrary graph structures.

3. Our Approach

Let sn
m denote the m-th sentence of comment n in an asynchronous conversation; our

goal is to find the corresponding speech act tag yn
m ∈ T , where T is the set of available

tags. Our approach works in two main steps, as outlined in Figure 2. First, we use a RNN
to encode each sentence into a task-specific distributed representation (i.e., embedding)
by composing the words sequentially. The RNN is trained to classify sentences into
speech act types, and is adapted to give domain-invariant sentence features when trained
to leverage additional data from synchronous domains (e.g., meetings). In the second
step, a structured model takes the sentence embeddings as input, and defines a joint
distribution over sentences to capture the conversational dependencies. In the following
sections, we describe these steps in detail.

3.1 Learning Task-Specific Sentence Representation

One of our main hypotheses is that a sentence representation method should consider
the word order of the sentence. To this end, we use a RNN to encode each sentence
into a vector by processing its words sequentially, at each time step combining the
current input with the previous hidden state. Figure 3(a) demonstrates the process
for three sentences. Initially, we create an embedding matrix E ∈ R|V|×D, where each
row represents the distributed representation of dimension D for a word in a finite
vocabulary V . We construct V from the training data after filtering out the infrequent
words.

Figure 2
Our two-step inference framework for speech act recognition in asynchronous conversation.
Each sentence in the conversation is first encoded into a task-specific representation by a
recurrent neural network (RNN). The RNN is trained on the speech act classification task, and
leverages large labeled data from synchronous domains (e.g., meetings) in an adversarial
domain adaptation training method. A structured model (CRF) then takes the encoded sentence
vectors as input, and performs joint prediction over all sentences in a conversation.

866

https://www.mitpressjournals.org/action/showImage?doi=10.1162/coli_a_00339&iName=master.img-000.jpg&w=382&h=124


Joty & Mohiuddin Modeling Speech Acts in Asynchronous Conversations

Lookup layer

LSTM layer

Word tokens

Output layer

s11 s12s21
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(a) Bidirectional LSTM-based RNN model (b) An LSTM cell.

Figure 3
A bidirectional LSTM-RNN to encode each sentence sn

m into a condensed vector zn
m. The network

is trained to classify each sentence into its speech act type.

Given an input sentence s = (w1, · · · , wT ) of length T, we first map each word wt to
its corresponding index in E (equivalently, in V). The first layer of our network is a look-
up layer that transforms each of these indices to a distributed representation xt ∈ RD by
looking up the embedding matrix E. We consider E a model parameter to be learned
by backpropagation. We can initialize E randomly or using pretrained word vectors
(to be described in Section 4.2). The output of the look-up layer is a matrix in RT×D,
which is fed to the recurrent layer.

The recurrent layer computes a compositional representation
−→
h t at every time step

t by performing nonlinear transformations of the current input xt and the output of
the previous time step

−→
h t−1. We use LSTM blocks (Hochreiter and Schmidhuber 1997)

in the recurrent layer. As shown in Figure 3(b), each LSTM block is composed of four
elements: (i) a memory cell c (a neuron) with a self-connection, (ii) an input gate i to
control the flow of input signal into the neuron, (iii) an output gate o to control the effect
of neuron activation on other neurons, and (iv) a forget gate f to allow the neuron to
adaptively reset its current state through a self-connection. The following sequence of
equations describe how the memory blocks are updated at every time step t:

it = sigh(Uiht−1 + Vixt) (1)

ft = sigh(Uf ht−1 + Vf xt) (2)

ct = it � tanh(Ucht−1 + Vcxt) + ft � ct−1 (3)

ot = sigh(Uoht−1 + Voxt) (4)

ht = ot � tanh(ct) (5)

where U and V are the weight matrices between two consecutive hidden layers, and
between the input and the hidden layers, respectively.3 The symbols sigh and tanh
denote hard sigmoid and hard tan nonlinear functions, respectively, and the symbol
� denotes an element-wise product of two vectors. LSTM-RNNs, by means of their
specifically designed gates (as opposed to simple RNNs), are capable of capturing long-
range dependencies. We can interpret ht as an intermediate representation summarizing

3 There is bias associated with each nonlinear transformation, which we have omitted for notational
simplicity.
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the past, that is, the sequence (w1, w2, . . . , wt). The output of the last time step hT = z can
thus be considered as the representation of the entire sentence, which can be fed to the
classification layer.

The classification layer uses a softmax for multi-class classification. Formally, the
probability of the k-th class for classifying into K speech act classes is

p(y = k|s, W,θ) =
exp (wT

k z)∑K
k=1 exp (wT

k z)
(6)

where W are the classifier weights, and θ = {E, U, V} are the encoder parameters. We
minimize the negative log likelihood of the gold labels. The negative log likelihood for
one data point is:

Lc(W,θ) = −
K∑

k=1

I(y = k) log p(y = k|s, W,θ) (7)

where I(y = k) is an indicator function to encode the gold labels: I(y = k) = 1 if the
gold label y = k, otherwise 0.4 The loss function minimizes the cross-entropy between
the predicted distribution and the target distribution (i.e., gold labels).

Bidirectionality. The RNN just described encodes information that it obtains only from
the past. However, information from the future could also be crucial for recognizing
speech acts. This is especially true for longer sentences, where a unidirectional LSTM
can be limited in encoding the necessary information into a single vector. Bidirectional
RNNs (Schuster and Paliwal 1997) capture dependencies from both directions, thus
providing two different views of the same sentence. This amounts to having a backward
counterpart for each of the equations from (1) to (5). For classification, we use the con-
catenated vector z = [−→z ,←−z ] (equivalently, [

−→
hT,
←−
hT]), where −→z and ←−z are the encoded

vectors summarizing the past and the future, respectively.

3.2 Adapting LSTM-RNN with Adversarial Training

The LSTM-RNN described in the previous section can model long-distance dependen-
cies between words, and, given enough training data, it should be able to compose
a sentence, capturing its syntactic and semantic properties. However, when it comes
to speech act recognition in asynchronous conversations, as mentioned before, not
many large corpora annotated with a standard tagset are available. Because of the large
number of parameters, the LSTM-RNN model usually overfits when it is trained on
small data sets of asynchronous conversations (shown later in Section 5).

One solution to address this problem is to use data from synchronous domains for
which large annotated corpora are available (e.g., MRDA meeting corpus). However,
as we will see, although simple concatenation of data sets generally improves the
performance of the LSTM-RNN model, it does not provide the optimal solution because
the conversations in synchronous and asynchronous domains are different in modality
(spoken vs. written) and in style. In other words, to get the best out of the available
synchronous domain data, we need to adapt our model.

4 This is also known as one-hot vector representation.
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Our goal is to adapt the LSTM-RNN encoder so that it learns to encode sentence
representations z (i.e., features used for classification) that are not only discriminative
for the act classification task, but also invariant across the domains. To this end, we
propose to use the domain adversarial training of neural networks proposed recently
by Ganin et al. (2016).

Let DS = {sn, yn}N
n=1 denote the set of N training instances (labeled) in the source

domain (e.g., MRDA meeting corpus). We consider two possible adaptation scenarios:

(i) Unsupervised adaptation: In this scenario, we have only unlabeled examples
in the target domain (e.g., forum). Let Du

T = {sn}M
n=N+1 be the set of (M−N − 1)

unlabeled training instances in the target domain with M being the total number
of training instances in the two domains.

(ii) Supervised adaptation: In addition to the unlabeled instances Du
T, here we have

access to some labeled training instances in the target domain, Dl
T = {sn, yn}L

n=M+1,
with L being the total number of training examples in the two domains.

In the following, we describe our models for these two adaptation scenarios in turn.

3.2.1 Unsupervised Adaptation. Figure 4 shows our extended LSTM-RNN network trained
for domain adaptation. The input sentence s is sampled either from a synchronous
domain (e.g., meeting) or from an asynchronous (e.g., forum) domain. As before, we
pass the sentence through a look-up layer and a bidirectional recurrent layer to encode
it into a distributed representation z = [−→z ,←−z ], using our bidirectional LSTM-RNN
encoder. For domain adaptation, our goal is to adapt the encoder to generate z, such
that it is not only informative for the target classification task (i.e., speech act recogni-
tion) but also invariant across domains. Upon achieving this, we can use the adapted
LSTM-RNN encoder to encode a target sentence, and use the source classifier (the
softmax layer) to classify the sentence into its corresponding speech act type.

Figure 4
Adversarial LSTM-RNN for domain adaptation.
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To this end, we add a domain discriminator, another neural network that takes
z as input and tries to discriminate the domains of the input sentence (e.g., meeting
vs. forum). Formally, the output of the domain discriminator is defined by a sigmoid
function:

d̂ω = p(d = 1|z,ω,θ) = sigm(wT
d hd) (8)

where d ∈ {0, 1} denotes the domain of the sentence s (1 for meeting, 0 for forum), wd are
the final layer weights of the discriminator, and hd = g(Udz) defines the hidden layer of
the discriminator with Ud being the layer weights, and g(.) being the ReLU activations
(Nair and Hinton 2010). We use the negative log-probability as the discrimination
loss:

Ld(ω,θ) = −d log d̂ω − (1− d) log
(

1− d̂ω
)

(9)

The composite network (Figure 4) has three players: (i) the encoder (E), (ii) the clas-
sifier (C), and (iii) the discriminator (D). During training, the encoder and the classifier
play a co-operative game, while the encoder and the discriminator play an adversarial
game. The training objective of the composite model can be written as follows:

L(W,θ,ω) =
N∑

n=1

Ln
c (W,θ)︸ ︷︷ ︸

act classification (source)

−λ
[ N∑

n=1

Ln
d (ω,θ)︸ ︷︷ ︸

domain discrimination (source)

+
M∑

n=N+1

Ln
d (ω,θ)︸ ︷︷ ︸

domain discrimination (target)

]

(10)

where θ = {E, U, V} are the parameters of the LSTM-RNN encoder, W are the classi-
fier weights, and ω = {Ud, wd} are the parameters of the discriminator network.5 The
hyper-parameter λ controls the relative strength of the two networks. In training, we
look for parameter values that satisfy a min-max optimization criterion as follows:

θ∗ = argmin
W,θ

max
Ud,wd

L(W,θ,ω) (11)

which involves a maximization (gradient ascent) with respect to {Ud, wd} and a min-
imization (gradient descent) with respect to θ and W. Maximizing L(W,θ,ω) with
respect to {Ud, wd} is equivalent to minimizing the discriminator loss Ld(ω,θ) in
Equation (9), which aims to improve the discrimination accuracy. When put together,
the updates of the shared encoder parameters θ = {E, U, V} for the two networks work
adversarially with respect to each other.

In our gradient descent training, the min-max optimization is achieved by reversing
the gradients (Ganin et al. 2016) of the domain discrimination loss Ld(ω,θ), when
they are backpropagated to the encoder. As shown in Figure 4, the gradient reversal

5 For simplicity, we list U and V parameters of LSTM in a generic way rather than being specific to the
gates.
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is applied to the recurrent and embedding layers. This optimization set-up is related
to the training method of Generative Adversarial Networks (Goodfellow et al. 2014),
where the goal is to build deep generative models that can generate realistic images. The
discriminator in Generative Adversarial Networks tries to distinguish real images from
model-generated images, and thus the training attempts to minimize the discrepancy
between the two image distributions. When backpropagating to the generator network,
they consider a slight variation of the reverse gradients with respect to the discrimi-
nator loss. In particular, if d̂ω is the discriminator probability for real images, rather
than reversing the gradients of − log(1− d̂ω), they backpropagate the gradients of
− log d̂ω to the generator. Reversing the gradient is just a different way of achieving the
same goal.

Algorithm 1 presents pseudocode of our training algorithm based on stochastic
gradient descent (SGD). We first initialize the model parameters by sampling from
Glorot-uniform distribution (Glorot and Bengio 2010). We then form minibatches of
size b by randomly sampling b/2 labeled examples fromDS and b/2 unlabeled examples
from Du

T. For labeled instances, both Lc(W,θ) and Ld(ω,θ) losses are active, while only
Ld(ω,θ) is active for unlabeled instances.

The main challenge in adversarial training is to balance the two components (the
task classifier and the discriminator) of the network. If one component becomes smarter,
its loss to the shared layer becomes useless, and the training fails to converge (Arjovsky,
Chintala, and Bottou 2017). Equivalently, if one component gets weaker, its loss over-
whelms that of the other, causing training to fail. In our experiments, we found the
domain discriminator to be weaker; initially, it could not distinguish the domains often.
To balance the two components, we would need the error signals from the discriminator
to be fairly weak initially, with full power unleashed only as the classification errors
start to dominate. We follow the weighting schedule proposed by Ganin et al. (2016,
page 21), who initialize λ to 0, and then change it gradually to 1 as training progresses.
That is, we start training the task classifier first, and we gradually add the discrimina-
tor’s loss.

Algorithm 1: Model training with stochastic gradient descent.

Input : Data DS = {sn, yn}N
n=1, Du

T = {sn}M
n=N+1 and batch size b

Output: Adapted model parameters θ = {E, U, V}, W
1. Initialize model parameters;
2. repeat

(a) Randomly sample b
2 labeled examples from DS

(b) Randomly Sample b
2 unlabeled examples from Du

T
(c) Compute Lc(W,θ) and Ld(ω,θ)
(d) Set λ = 2

1+exp(−10∗p) − 1; p is the training progress linearly changing form
0 to 1.

// Classifier & Encoder
(e) Take a gradient step for 2

b∇W,θLc(W,θ)
// Discriminator
( f ) Take a gradient step for 2λ

b ∇Ud,wd
Ld(ω,θ)

// Gradient reversal to fool Discriminator
(g) Take a gradient step for − 2λ

b ∇θLd(ω,θ)
until convergence;
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3.2.2 Supervised Adaptation. It is quite straightforward to extend our adaptation method
to a supervised setting, where we have access to some labeled instances in the target
domain. Similar to the instances in the source domain (DS), the labeled instances in the
target domain (Dl

T) are used for act classification and domain discrimination. The total
training loss in the supervised adaptation setting can be written as

L(W,θ,ω) =
N∑

n=1

Ln
c (W,θ)︸ ︷︷ ︸

act classif. (source)

+
L∑

n=M+1

Ln
c (W,θ)︸ ︷︷ ︸

act classif. (target)

−λ
[ N∑

n=1

Ln
d (ω,θ)︸ ︷︷ ︸

dom classif. (source)

+
L∑

n=N+1

Ln
d (ω,θ)︸ ︷︷ ︸

dom classif. (target)

]

(12)

where the second term is the classification loss on the labeled target data setDl
T, and the

last term is the discrimination loss on both labeled and unlabeled data in the target
domain. We modify the training algorithm accordingly. Specifically, each minibatch
in SGD training is formed by labeled instances from both DS and Dl

T, and unlabeled
instances from Du

T.

3.3 Conditional Structured Model for Conversational Dependencies

Given the vector representation of the sentences in an asynchronous conversation, we
explore two different approaches to learn classification functions. The first and the
traditional approach is to learn a local classifier, ignoring the structure in the output
and using it for predicting the label of each sentence separately. Indeed, this is the
approach we took in the previous subsection when we fed the output layer of the
LSTM RNNs (Figures 3 and 4) with the sentence vectors. However, this approach does
not model the conversational dependency between sentences in a conversation (e.g.,
adjacency relations between question-answer and request-accept pairs).

The second approach, which we adopt in this article, is to model the dependencies
between the output variables (i.e., speech act labels of the sentences), while learning the
classification functions jointly by optimizing a global performance criterion. We repre-
sent each conversation by a graph G = (V, E), as shown in Figure 5. Each node i ∈ V is
associated with an input vector zi = zn

m (extracted from the LSTM-RNN), representing

z11

y11

z12

y12 y21

z21
(a) A linear chain CRF

z11

y11

z12

y12

y21

z21
(b) A fully connected CRF

Figure 5
Examples of conditional structured models for speech act recognition in asynchronous
conversation. The sentence vectors (zn

m) are extracted from the LSTM-RNN model.
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the encoded features for the sentence sn
m, and an output variable yi ∈ {1, 2, · · · , K}, rep-

resenting the speech act type. Similarly, each edge (i, j) ∈ E is associated with an input
feature vector φ(zi, zj), derived from the node-level features, and an output variable
yi,j ∈ {1, 2, · · · , L}, representing the state transitions for the pair of nodes. We define the
following conditional joint distribution:

p(y|v, w, z) = 1
Z(v, w, z)

∏
i∈V

ψn(yi|z, v)︸ ︷︷ ︸
node factor

∏
(i,j)∈E

ψe(yi,j|z, w)︸ ︷︷ ︸
edge factor

(13)

where ψn and ψe are the node and the edge factors, and Z(.) is the global normalization
constant that ensures a valid probability distribution. We use a log-linear representation
for the factors:

ψn(yi|z, v) = exp(vTφ(yi, z)) (14)

ψe(yi,j|z, w) = exp(wTφ(yi,j, z)) (15)

where φ(.) is a feature vector derived from the inputs and the labels. This model is
essentially a pairwise conditional random field (Murphy 2012). The global normaliza-
tion allows CRFs to surmount the so-called label bias problem (Lafferty, McCallum,
and Pereira 2001), allowing them to take long-range interactions into account. The log
likelihood for one data point (z, y) (i.e., a conversation) is:

f (θ) =
∑
i∈V

vTφ(yi, z) +
∑

(i,j)∈E

wTφ(yi,j, z)− log Z(v, w, z) (16)

This objective is convex, so we can use gradient-based methods to find the global
optimum. The gradients have the following form:

f ′(v) =
∑
i∈V

φ(yi, z)− E[φ(yi, z)] (17)

f ′(w) =
∑

(i,j)∈E

φ(yi,j, z)− E[φ(yi,j, z)] (18)

where the E[φ(.)] denote the expected feature vectors. In our case, the node or sentence
features are the task-specific sentence embeddings extracted from the bi-directional
LSTM-RNN model (possibly domain adapted by adversarial training), and for edge
features, we use the hadamard product (i.e., element-wise product) of the two corre-
sponding node vectors.

3.3.1 Training and Inference in CRFs. Traditionally, CRFs have been trained using offline
methods like limited-memory BFGS (Murphy 2012). Online training of CRFs using SGD
was proposed by Vishwanathan et al. (2006). Because RNNs are trained with online
methods, to compare our two methods, we use an SGD-based algorithm to train our
CRFs. Algorithm 2 gives the pseudocode of the training procedure.

We use Belief Propagation (BP) (Pearl 1988) for inference in our CRFs. BP is guar-
anteed to converge to an exact solution if the graph is a tree. However, exact inference
is intractable for graphs with loops. Despite this, Pearl (1988) advocates for BP in loopy
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Algorithm 2: Online learning algorithm for conditional random fields.
1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V, E) do
(a) Compute node and edge factors ψn(yi|z, v) and ψe(yi,j|z, w);
(b) Infer node and edge marginals using sum-product loopy BP;
(c) Update: v = v− η 1

|V| f
′(v);

(d) Update: w = w− η 1
|E| f
′(w);

end
until convergence;

graphs as an approximation (see Murphy 2012, page 768). The algorithm is then called
loopy BP. Although loopy BP gives approximate solutions for general graphs, it often
works well in practice (Murphy, Weiss, and Jordan 1999), outperforming other methods
such as mean field (Weiss 2001).

3.3.2 Variations of Graph Structures. One of the advantages of the pairwise CRF in Equa-
tion (13) is that we can define this model over arbitrary graph structures, which allows
us to capture conversational dependencies at various levels. Modeling the arbitrary
graph structure can be crucial, especially in scenarios where the reply-to structure of
the conversation is not known. By defining structured models over plausible graph
structures, we can get a sense of the underlying conversational structure. We distinguish
between two types of conversational dependencies:

(i) Intra-comment connections: This defines how the speech acts of the sentences
inside a comment are connected with each other.

(ii) Across-comment connections: This defines how the speech acts of the sentences
across comments are connected in a conversation.

Table 1 summarizes the connection types that we have explored in our CRF models.
Each configuration of intra- and across-connections yields a different pairwise CRF.
Figure 6 shows four such CRFs with three comments — C1 being the first comment,
and Ci and Cj being two other comments in the conversation. Figure 6(a) shows the
structure for the NO-NO configuration, where there is no link between nodes of both
intra- and across-comments. In this setting, the CRF model boils down to the MaxEnt
model. Figure 6(b) shows the structure for LC-LC configuration, where there are linear

Table 1
Connection types in CRF models.

Tag Connection type Applicable to

NO No connection between nodes intra & across
LC Linear chain connection intra & across
FC Fully connected intra & across
FC1 Fully connected with first comment only across
LC1 Linear chain with first comment only across
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(a) NO-NO (MaxEnt) (b) LC-LC

(c) LC-LC1 (d) LC-FC1

(e) FC-LC (f) FC-FC

Figure 6
CRFs over different graph structures.

chain relations between nodes of both intra- and across-comments. The linear chain
across comments refers to the structure, where the last sentence of each comment is
connected to the first sentence of the comment that comes next in the temporal order.

Figures 6(c) shows the CRF for LC-LC1, in which the sentences inside a comment
have linear chain connections, and the last sentence of the first comment is connected
to the first sentence of the other comments. Figure 6(d) shows the graph structure
for LC-FC1 configuration, in which the sentences inside comments have linear chain
connections, and sentences of the first comment are fully connected with the sentences
of the other comments. Similarly, Figures 6(e) and 6(f) show the graph structures for
FC-LC and FC-FC configurations.

4. Corpora

In this section, we describe the data sets used in our experiments. We use a number of
labeled data sets to train and test our models, one of which we constructed in this work.
Additionally, we use a large unlabeled conversational data set to train our (unsupervised)
word embedding models.

4.1 Labeled Corpora

There exist large corpora of utterances annotated with speech acts in synchronous
spoken domains, for example, Switchboard-DAMSL (SWBD) (Jurafsky, Shriberg, and
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Table 2
Dialog act tags and their relative frequencies in the BC3 and TripAdvisor (TA) corpora.

Tag Description BC3 TA

S Statement 69.56% 65.62%
P Polite mechanism 6.97% 9.11%
QY Yes-no question 6.75% 8.33%
AM Action motivator 6.09% 7.71%
QW Wh-question 2.29% 4.23%
A Accept response 2.07% 1.10%
QO Open-ended question 1.32% 0.92%
AA Acknowledge and appreciate 1.24% 0.46%
QR Or/or-clause question 1.10% 1.16%
R Reject response 1.06% 0.64%
U Uncertain response 0.79% 0.65%
QH Rhetorical question 0.75% 0.08%

Biasca 1997) and Meeting Recorder Dialog Act (MRDA) (Dhillon et al. 2004). How-
ever, the asynchronous domain lacks such large corpora. Some prior studies (Cohen,
Carvalho, and Mitchell 2004; Feng et al. 2006; Ravi and Kim 2007; Bhatia, Biyani,
and Mitra 2014) tackle the task at the comment level, and use task-specific tagsets. In
contrast, in this work we are interested in identifying speech acts at the sentence level,
and also using a standard tagset like the ones defined in SWBD or MRDA.

Several studies attempt to solve the task at the sentence level. Jeong, Lin, and Lee
(2009) created a data set of TripAdvisor (TA) forum conversations annotated with the
standard 12 act types defined in MRDA. They also remapped the BC3 e-mail corpus
(Ulrich, Murray, and Carenini 2008) according to this tagset. Table 2 shows the tags and
their relative frequency in the two data sets. Subsequent studies (Joty, Carenini, and
Lin 2011; Tavafi et al. 2013; Oya and Carenini 2014) use these data sets. We also use
these data sets in our work. Table 3 shows some basic statistics about these data sets.
On average, BC3 conversations are longer than those of TripAdvisor in terms of both
number of comments and number of sentences.

Since these data sets are relatively small in size with sparse tag distributions, we
group the 12 act types into 5 coarser classes to learn a reasonable classifier. Some prior
work (Tavafi et al. 2013; Oya and Carenini 2014) has also taken the same approach.
More specifically, all the question types are grouped into one general class Question, all
response types into Response, and appreciation and polite mechanisms into the Polite
class.

In addition to the asynchronous data sets – TA, BC3, and QC3 (to be introduced
subsequently), we also demonstrate the performance of our models on the synchronous

Table 3
Statistics about TripAdvisor (TA), BC3, and QC3 corpora.

Asynchronous

TA BC3 QC3

Total number of conversations 200 39 47
Average number of comments per conversation 4.02 6.54 13.32
Average number of sentences per conversation 18.56 34.15 33.28
Average number of words per sentence 14.90 12.61 19.78
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Table 4
Distribution of speech acts (in percentage) in our corpora.

Asynchronous Synchronous

Tag Description TA BC3 QC3 MRDA

SU Suggestion (Action motivator) 7.71 5.48 17.38 5.97
R Response (Accept, Reject, Uncertain) 2.4 3.75 5.24 15.63
Q Questions (Yes-no, Wh, Rhetorical,

Or-clause, Open-ended)
14.71 8.41 12.59 8.62

P Polite (Acknowledge & appreciate, Polite) 9.57 8.63 6.13 3.77
ST Statement 65.62 73.72 58.66 66.00

Table 5
Cohen’s κ agreement for different speech acts in QC3.

Tag Speech act Cohen’s κ

SU Suggestion 0.86
R Response 0.43
Q Question 0.87
P Polite 0.75
ST Statement 0.78

MRDA meeting corpus, and use it for domain adaptation. Table 4 shows the label
distribution of the resulting data sets; Statement is the most dominant class, followed
by Question, Polite, and Suggestion.

4.1.1 QC3 Conversational Corpus: A New Asynchronous Data Set. Because both TripAdvisor
and BC3 are quite small to make a general comment about model performance in
asynchronous conversations, we have created a new annotated data set of forum con-
versations called Qatar Computing Conversational Corpus or QC3.6 We selected 50
conversations from a popular community question answering site named Qatar Living7

for our annotation. We used three conversations for our pilot study and used the
remaining 47 for the actual study. The resulting corpus, as shown in the last column
of Table 3, on average contains 13.32 comments and 33.28 sentences per conversation,
and 19.78 words per sentence.

Two native speakers of English annotated each conversation using a Web-based
annotation framework (Ulrich, Murray, and Carenini 2008). They were asked to anno-
tate each sentence with the most appropriate speech act tag from the list of five speech
act types. Because this task is not always obvious, we gave them detailed annotation
guidelines with real examples. We use Cohen’s κ to measure the agreement between the
annotators. The third column in Table 5 presents the κ values for the act types, which
vary from 0.43 (for Response) to 0.87 (for Question).

In order to create a consolidated data set, we collected the disagreements between
the two annotators, and used a third annotator to resolve those cases. The fifth column

6 Available from https://ntunlpsg.github.io/project/speech-act/.
7 http://www.qatarliving.com/.
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Table 6
Data sets and their statistics used for training the conversational word embeddings.

Domain Data sets Number of Threads Number of Tokens Number of Words

Asynchronous E-mail W3C 23,940 21,465,830 546,921
Forum TripAdvisor 25,000 2,037,239 127,233
Forum Qatar Living 219,690 103,255,922 1,157,757

Synchronus Meeting MRDA - 675,110 18,514
Phone SWBD - 1,131,516 57,075

in Table 4 presents the distribution of the speech acts in the resulting data set. As we can
see, after Statement, Suggestion is the most frequent class, followed by the Question
and the Polite classes.

4.2 Conversational Word Embeddings

One simple way to exploit unlabeled data for semi-supervised learning is to use
word embeddings that are learned from large unlabeled data sets (Turian, Ratinov, and
Bengio 2010). Word embeddings such as word2vec skip-gram (Mikolov, Yih, and Zweig
2013) and Glove vectors (Pennington, Socher, and Manning 2014) capture syntactic and
semantic properties of words and their linguistic regularities in the vector space. The
skip-gram model was trained on part of the Google news data set containing about
100 billion words, and it contains 300-dimensional vectors for 3 million unique words
and phrases.8 Glove was trained on the combination of Wikipedia 2014 and Gigaword
5 data sets containing 6B tokens and 400K unique (uncased) words. It comes with 50d,
100d, 200d, and 300d vectors.9 For our experiments, we use the 300d vectors.

Many recent studies have shown that the pretrained embeddings improve the
performance on supervised tasks (Schnabel et al. 2015). In our work, we have used these
generic off-the-shelf pretrained embeddings to boost the performance of our models.
In addition, we have also trained the word2vec skip-gram model and Glove on a
large conversational corpus to obtain more relevant conversational word embeddings.
Later in our experiments (Section 5) we will demonstrate that the conversational word
embeddings are more effective than the generic ones because they are trained on similar
data sets.

To train the word embeddings, we collected conversations of both synchronous
and asynchronous types. For asynchronous, we collected e-mail threads from W3C
(w3c.org), and forum conversations from TripAdvisor and QatarLiving sites. The raw
data was too noisy to directly inform our models, as it contains system messages and
signatures. We cleaned up the data with the intention of keeping only the headers,
bodies, and quotations. For synchronous, we used the utterances from the SWBD and
MRDA corpora. Table 6 shows some basic statistics about these (unlabeled) data sets.
We trained our word vectors on the concatenated set of all data sets (i.e., 120M tokens).
Note that the conversations in our labeled data sets were taken from these sources (e.g.,
BC3 from W3C, QC3 from QatarLiving, and TA from TripAdvisor.)

8 Available from https://code.google.com/archive/p/word2vec/.
9 Available from https://nlp.stanford.edu/projects/glove/.
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Table 7
Roadmap to our experiments.

Model Tested Training Regime Section Corpora Used

LSTM-RNN In-domain supervised 5.2.2 QC3/TA/BC3/MRDA (all labeled)
Concatenation supervised 5.2.3 QC3+TA+BC3+MRDA (labeled)
Unsup. adaptation 5.2.4 QC3/TA/BC3 (unlabeled) + MRDA (labeled)
Semi-sup. adaptation 5.2.4 QC3/TA/BC3 (labeled) + MRDA (labeled)

CRFs In-domain supervised 5.3 QC3/TA/BC3 (labeled; conversation level)

5. Experiments

In this section, we present our experimental settings, results, and analysis. We start with
an outline of the experiments.

5.1 Outline of Experiments

Our main objective is to evaluate our speech act recognizer on asynchronous conversa-
tions. For this, we evaluate our models on the forum and e-mail data sets introduced
earlier in Section 4.1: (i) our newly created QC3 data set, (ii) the TripAdvisor (TA) data
set from Jeong, Lin, and Lee (2009), and (iii) the BC3 e-mail corpus from (Ulrich, Murray,
and Carenini 2008). In addition, we validate our sentence encoding approach on the
MRDA meeting corpus.

Because of the noisy and informal nature of conversational texts, we performed a
series of preprocessing steps before using it for training or testing. We normalize all
characters to their lowercased forms, truncate elongations to two characters, and spell
out every digit and URL. We further tokenized the texts using the CMU TweetNLP tool
(Gimpel et al. 2011).

For performance comparison, we use both accuracy and macro-averaged F1 score.
Accuracy gives the overall performance of a classifier but could be biased toward the
most populated classes, whereas macro-averaged F1 weights every class equally, and
is not influenced by class imbalance. Statistical significance tests are done using an
approximate randomization test based on the accuracy.10 We used SIGF V.2 (Padó 2006)
with 10,000 iterations.

In the following, we first demonstrate the effectiveness of our LSTM-RNN model
for learning task-specific sentence encoding by training it on the task in three different
settings: (i) training on in-domain data only, (ii) training on a simple concatenation
of synchronous and asynchronous data, and (iii) training it with adversarial training
for domain adaptation. We also compare the effectiveness of different embedding types
in these three training settings. The best task-specific embeddings are then extracted
and fed into the CRF models to learn inter-sentence dependencies. In Section 5.3, we
compare how our CRF models with different conversational graph structure perform.
Table 7 gives an outline of our experimental roadmap.

10 Significance tests operate on individual instances rather than individual classes; thus not applicable for
macro F1.
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Table 8
Number of sentences in train, development, and test sets for different data sets.

Corpora Type Train Dev. Test

QC3 asynchronous 1,252 157 156
TA asynchronous 2,968 372 371
BC3 asynchronous 1,065 34 133
MRDA synchronous 50,865 8,366 10,492

Total (CONCAT) asynchronous + synchronous 56,150 8,929 11,152

5.2 Effectiveness of LSTM RNN

We first describe the experimental settings for our LSTM RNN sentence encoding
model—the data set splits, training settings, and compared baselines. Then we present
our results on the three training scenarios as outlined in Table 7.

5.2.1 Experimental Settings. We split each of our asynchronous corpora randomly into
70% sentences for training, 10% for development, and 20% for testing. For MRDA, we
use the same train:test:dev split as Jeong, Lin, and Lee (2009). Table 8 summarizes the
resulting data sets.

We compare the performance of our LSTM-RNN model with MaxEnt (ME) and
Multi-layer Perceptron (MLP) with one hidden layer.11 In one setting, we fed them with
the bag-of-words (BOW) representation of the sentence, namely, vectors containing
binary values indicating the presence or absence of a word in the training set vocabulary.
In another setting, we use a concatenation of the pretrained word embeddings as the
sentence representation.

We train the models by optimizing the cross entropy in Equation (7) using the
gradient-based learning algorithm ADAM (Kingma and Ba 2014).12 The learning rate
and other parameters were set to the values as suggested by the authors. To avoid over-
fitting, we use dropout (Srivastava et al. 2014) of hidden units and early-stopping based
on the loss on the development set.13 Maximum number of epochs was set to 50 for
RNNs, ME, and MLP. We experimented with dropout rates of {0.0, 0.2, 0.4}, minibatch
sizes of {16, 32, 64}, and hidden layer units of {100, 150, 200} in MLP and LSTMs. The
vocabulary V in LSTMs was limited to the most frequent P% (P ∈ {85, 90, 95}) words in
the training corpus, where P is considered a hyperparameter.

We initialize the word vectors in our model either by sampling randomly from
the small uniform distribution U (−0.05, 0.05), or by using pretrained embeddings. The
dimension for random initialization was set to 128. For pretrained embeddings, we ex-
periment with off-the-shelf embeddings that come with word2vec (Mikolov et al. 2013b)
and Glove (Pennington, Socher, and Manning 2014) as well as with our conversational
word embeddings (Section 4.2).

We experimented with four variations of our LSTM-RNN model: (i) U-LSTMrand,
referring to unidirectional RNN with random word vector initialization; (ii) U-LSTMpre,

11 More hidden layers worsened the performance.
12 Other algorithms like Adagrad or RMSProp gave similar results.
13 l1 and l2 regularization on weights did not work well.
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referring to unidirectional RNN initialized with pretrained word embeddings of type
pre; (iii) B-LSTMrand, referring to bidirectional RNN with random initialization; and (iv)
B-LSTMpre, referring to bidirectional RNN initialized with pretrained word vectors of
type pre.

5.2.2 Results for In-Domain Training. Before reporting the performance of our sentence
encoding model on asynchronous domains, we first evaluate it on the (synchronous)
MRDA meeting corpus where it can be compared to previous studies on a large data set.

Results on MRDA Meeting Corpus. Table 9 presents the results on MRDA for in-domain
training. The first two rows show the best results reported so far on this data set from
Jeong, Lin, and Lee (2009) for classifying sentences into 12 speech act types; the first
row shows the results of the model that uses only n-grams, and the second row shows
the results using all of the features, including n-grams, speaker, part-of-speech, and
dependency structure. Note that our LSTM RNNs and their n-gram model use the same
word sequence information.

The second group of results (third and fourth rows) are for ME and MLP mod-
els with BOW sentence representation. The third group shows the results for uni-
directional LSTM with random and pretrained off-the-shelf embeddings. The fourth
group shows the corresponding results for bi-directional LSTMs. Finally, the fifth row
presents the results for bi-directional LSTM with our conversational embeddings. To
compare our results with the results of Jeong, Lin, and Lee (2009), we ran our models
on 12-class classification task in addition to our original 5-class task.

It can be observed that all of our LSTM-RNNs achieve state-of-the-art results,
and the bi-directional ones with pretrained embeddings generally perform better than
others in terms of the F1-score. The best results are obtained with our conversational
embeddings. Our best model B-LSTMconv-glove (B-LSTM with Glove conversational em-
beddings) gives absolute improvements of about 5.0% and 3.5% in F1 compared to
the n-gram and all-features models, respectively, of Jeong, Lin, and Lee (2009). This is

Table 9
Results on MRDA (synchronous) meeting corpus in macro-averaged F1 and accuracy. Accuracy
numbers are shown in parentheses. Top two rows report results from Jeong, Lin, and Lee (2009)
for their model with n-gram and all feature sets. Best results are boldfaced. Accuracy numbers
significantly superior to the best baselines are marked with *.

MRDA

Pretrained Embedding 5 classes 12 classes

Jeong, Lin, and Lee (2009) (n-gram) - - 57.53 (83.30)
Jeong, Lin, and Lee (2009) (all features) - - 59.04 (83.49)

MEbow - 65.25 (83.95) 57.79 (82.84)
MLPbow - 68.12 (84.24) 58.19 (83.24)
U-LSTMrandom - 71.19 (84.38) 58.72 (83.34)
U-LSTMgoogle-w2v word2vec (Google) 72.32 (84.19) 59.05 (83.26)
U-LSTMglove Glove (off-the-shelf) 72.24 (84.93) 60.02 (83.14)
B-LSTMrandom - 71.26 (84.12) 60.98 (83.04)
B-LSTMgoogle-w2v word2vec (Google) 72.34 (84.39) 61.72 (83.17)
B-LSTMglove Glove (off-the-shelf) 72.41 (84.80) 62.33 (82.82)
B-LSTMconv-w2v word2vec (conversation) 72.13 (85.42*) 62.18 (83.23)
B-LSTMconv-glove Glove (conversation) 72.88 (85.43*) 62.53 (83.61)
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Table 10
Results for in-domain training on QC3, TA, and BC3 asynchronous data sets in macro-averaged
F1 and accuracy (in parentheses). Best results are boldfaced. Accuracy numbers significantly
superior to the best baselines are marked with *.

QC3 TA BC3
Testset 5 folds Testset 5 folds Testset 5 folds

MEbow 55.11 (76.28) 55.15 (73.16) 62.82 (82.47) 62.65 (85.04) 54.37 (84.47) 52.69 (81.78)
MLPbow 56.71 (74.35) 59.72 (72.46) 70.45 (83.83) 65.18 (84.02) 63.98 (84.58) 62.37 (82.04)
U-LSTMrandom 54.52 (70.51) 53.39 (67.22) 64.52 (80.32) 59.20 (80.06) 44.41 (81.95) 42.21 (72.44)
U-LSTMglove 59.95 (72.44) 55.56 (70.03) 67.70 (83.83) 60.82 (83.22) 45.67 (78.95) 43.75 (73.50)
U-LSTMconv-glove 60.59 (75.64) 58.70 (72.78) 69.48 (83.56) 64.64 (83.39) 53.51 (84.21) 49.67 (77.71)
B-LSTMrandom 57.57 (74.35) 58.24 (72.46) 74.70 (86.25*) 67.08 (84.53) 47.12 (81.20) 44.97 (77.59)
B-LSTMglove 59.16 (73.07) 58.86 (72.45) 75.49 (86.77*) 68.31 (83.81) 51.15 (84.21) 50.67 (75.59)
B-LSTMconv-glove 64.72 (77.56*) 63.47 (75.59*) 76.15 (86.52*) 69.59 (86.18*) 61.44 (83.45) 55.84 (79.95)

remarkable because our LSTM-RNNs learn the sentence representation automatically
from the word sequence and do not use any hand-engineered features.

Results on Asynchronous Data Sets. Now let us consider the results in Table 10 for the
asynchronous data sets—QC3, TA, and BC3. We show the results of our models based
on 5-fold cross validation in addition to the random (20%) test set in Table 8. The 5-fold
setting allows us to get more generic performance of the models on a particular data
set. For simplicity, we only report the results for Glove embeddings that were found to
be superior to word2vec embeddings.

We can observe trends similar to those for MRDA: (i) bidirectional LSTMs out-
perform their unidirectional counterparts, (ii) pretrained Glove vectors provide better
results than the randomly initialized ones, and (iii) conversational word embeddings
give the best results among the embedding types. When we compare these results with
those of the baselines (MEbow and MLPbow), we see our method outperforms those on
QC3 and TA (3.8% to 8.0%), but fails to do so on BC3. This is due to the small size of the
data that affects deep neural methods like LSTM-RNNs, which usually require much
labeled data to learn an effective compositional model. In the following, we show the
effect of adding more labeled data from the MRDA meeting corpus.

5.2.3 Adding Meeting Data. To validate our claim that LSTM-RNNs can learn a more
effective model for our task when they are provided with enough training data, we
create a concatenated training setting by merging the training and the development sets
of the four corpora in Table 8 (see the Train and Dev. columns in the last row); the test
set for each data set remains the same. We will refer to this train-test setting as CONCAT.

Table 11 shows the results of the baseline and the B-LSTM models on the three
test sets for this concatenated training setting. We notice that our B-LSTM models
with pretrained embeddings outperform MEbow and MLPbow significantly. Again, the
conversational Glove embeddings prove to be the best word vectors giving the best
results across the data sets. Our best model gives absolute improvements of 2% to 12%
in F1 across the data sets over the best baselines.

When we compare these results with those in Table 10, we notice that with more
heterogeneous data sets, B-LSTM, by virtue of its distributed and condensed represen-
tation, generalizes well across different domains. In contrast, ME and MLP, because of
their BOW representation, suffer from the data diversity of different domains. These
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Table 11
Macro-averaged F1 and Accuracy (in parentheses) results for training on the concatenated
(CONCAT) data set without any explicit domain adaptation. Best results are boldfaced.
Accuracy numbers significantly higher than the best baseline MLPbow are marked with *.

Pretrained Emb QC3 (Testset) TA (Testset) BC3 (Testset)

MEbow - 50.64 (71.15) 72.49 (84.10) 53.17 (76.00)
MLPbow - 58.60 (74.36) 73.07 (85.29) 56.19 (78.00)
B-LSTMgoogle-w2v word2vec (off-the-shelf) 67.00 (79.49*) 74.63 (87.67*) 56.55 (80.04*)
B-LSTMglove Glove (off-the-shelf) 62.71 (80.13*) 76.61 (87.33*) 54.87 (80.00*)
B-LSTMconv-w2v word2vec (conversation) 66.34 (79.48*) 75.03 (86.55*) 58.28 (79.00*)
B-LSTMconv-glove Glove (conversation) 70.51 (80.77*) 78.08 (88.95*) 57.47 (80.00*)

results also confirm that B-LSTM gives better sentence representation than BOW when
it is given enough training data.

Comparison with Other Classifiers and Sentence Encoders. Now, we compare our best
B-LSTM model (i.e., B-LSTMconv-glove) with other classifiers and sentence encoders in the
concatenated (CONCAT) training setting. The models that we compare with are:

(a) MEconv-glove: We represent each sentence as a concatenated vector of its word vec-
tors, and train a MaxEnt (ME) classifier based on this representation. For word
vectors, we use our best performing conversational Glove vectors as we use in our
B-LSTMconv-glove model. We set a maximum sentence length of 100 words, and used
zero-padding for shorter sentences. This model has a total of 100 (input words)×
300 (embedding dimensions)× 5 (class labels) = 150,000 trainable parameters.14

(b) MLPconv-glove: We represent each sentence similarly as above, and train a one-hidden
layer Multi-layer Perceptron (MLP) based on the representation. The hidden layer
has 1, 000 units, which is determined based on the performance on the development
set. This model has a total of 100× 300× 1000× 5 = 150,000,000 parameters.

(c) MEconv-glove-averaging: We represent each sentence as a mean vector of its word vectors,
and train a MaxEnt classifier using this representation. This model has a total of
300× 5 = 1, 500 trainable parameters.

(d) SVMconv-glove-averaging: We train a SVM classifier based on the mean vector.15 In our
training, we use a linear kernel with the default C value of 1.0.

(e) MEskip-thought: We encode each sentence with the skip-thought encoder of Kiros et al.
(2015). The skip-thought model uses an encoder-decoder framework to learn the
sentence representation in a task-agnostic (unsupervised) way. It encodes each sen-
tence with a GRU-RNN (Cho et al. 2014), and uses the encoded vector to decode the
words of the neighboring sentences using another GRU-based RNN as a language
model. The model is originally trained on the BookCorpus16 with a vocabulary size
of 20K words. It then uses the CBOW word2vec vectors (Mikolov et al. 2013a) to
expand the vocabulary size to 930,911 words. Following the recommendation from

14 For simplicity, we excluded the bias vectors from our computation.
15 SVM training with linear kernel did not scale to the concatenated vector.
16 http://yknzhu.wixsite.com/mbweb.
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the authors, we use the combine-skip model that concatenates the vectors encoded
by a uni-directional encoder (uni-skip) and a bi-directional encoder (bi-skip). The
resulting vectors are of 4,800 dimensions—the first 2,400 dimensions is the uni-
skip vector, and the last 2,400 dimensions is the bi-skip vector. We learn a ME
classifier based on this representation. This model has a total of 4,800× 5 = 24,000
parameters.

(f) B-GRU: This is a variation of our B-LSTMconv-glove model, where we replace
the LSTM cells with GRU cells (Cho et al. 2014) in the recurrent layer. This
model has a total of 2 (bi-direction)× 3 (gates)×

(
1282 (hidden-hidden) + 300×

128 (input-hidden)
)
+ 256× 5 = 329,984 trainable parameters (excluding the bi-

ases). Our LSTM-based RNN model uses four gates, which gives a total of 439,552
parameters to train.

We notice that all these models have a large number of parameters to learn an effec-
tive classification model for our task using the sentence representation as input features.
Similar to our B-LSTM, the B-GRU and the skip-thought models are compositional, that
is, they compose the sentence representation from the representation of its words using
the sentence structure. Although the 4,800 dimensional sentence representation for skip-
thought is not learned on the task, the associated weight parameters in the MEskip-thought
model are trained on the task.

Table 12 presents the results. It can be observed that in general the compositional
methods perform better than the non-compositional ones (e.g., averaging, concatena-
tion), and when the compositional method is trained on the task, we get the best
performance on two out of three data sets. In particular, our B-LSTMconv-glove gets the
best results on QC3 and TA, outperforming B-GRUconv-glove by a slight margin in F1.17

The MEskip-thought performs the best on BC3, and close to the best results on TA. This
is not so surprising because the skip-thought model encodes a sentence like a neural
conversation model (Vinyals and Le 2015), and it has been shown that such models
capture information relevant to speech acts (Ritter, Cherry, and Dolan 2010).

To further analyze the cases where B-LSTMconv-glove makes a difference, Figure 7
shows the corresponding confusion matrices for B-LSTMconv-glove and MLPconv-glove on
the concatenated testsets of QC3, TA, and BC3. In general, our classifiers get confused
between Response and Statement, and between Suggestion and Statement the most.
We noticed a similar observation in the human annotations, where annotators had
difficulties with these three acts. It is noticeable that B-LSTMconv-glove is less affected by
class imbalance, and it can detect the Suggestion and Polite acts much more correctly than
MLPconv-glove. This indicates that LSTM-RNNs can model the grammar of the sentence
when composing the words into phrases and sentences sequentially.

5.2.4 Effectiveness of Domain Adaptation. We have seen that semi-supervised learning in
the form of word embeddings learned from a large unlabeled conversational corpus
benefits our B-LSTM model. In the previous section, we witnessed further performance
gains by exploiting more labeled data from the synchronous domain (MRDA). However,
these methods make a simplified assumption that the conversational data comes from
the same distribution. As mentioned before, the conversations in QC3, TA, or BC3 are
quite different from MRDA meeting conversations in terms of style (spoken vs. written)

17 There is no significant difference between the accuracy numbers for B-GRU and B-LSTM.
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Table 12
Comparison of different sentence encoders on the concatenated (CONCAT) data set. Best results
are boldfaced. Accuracies significantly higher than MEskip-thought are marked with *.

Encoder Classifier Model Name QC3 (Testset) TA (Testset) BC3 (Testset)

Concatenation ME MEconv-glove 60.52 (76.28) 75.47 (86.79) 60.46 (79.00)
Concatenation MLP MLPconv-glove 60.47 (73.07) 75.85 (86.52) 55.33 (78.00)
Averaging ME MEconv-glove-averaging 63.32 (76.92) 73.72 (84.09) 45.65 (74.00)
Averaging SVM SVMconv-glove-averaging 18.74 (60.89) 29.46 (64.69) 16.19 (68.00)
Skip-thought ME MEskip-thought 59.65 (78.13) 77.09 (86.22) 71.89 (89.00)
B-GRU ME B-GRUconv-glove 69.45 (81.41*) 77.77 (88.68*) 58.66 (79.00)
B-LSTM ME B-LSTMconv-glove 70.51 (80.77*) 78.08 (88.95*) 58.28 (79.00)

and vocabulary usage. We believe that the results can be improved further by modeling
the shift of domains (or distributions) explicitly.

In Section 3.2, we described two adaptation scenarios: (i) unsupervised, where no
annotated data is available in the target domains, and (ii) supervised, where some anno-
tated data is available in the target domain. We use all the available labels in the
CONCAT data set for our supervised training. This makes the adaptation results compa-
rable with our pre-adaptation results reported earlier in Table 12.

Table 13 presents the results for the adapted B-LSTMconv-glove model under the
above training conditions (last two rows). For comparison, we have also shown the
results for two baselines: (i) a transfer B-LSTMconv-glove model in the first row that is
trained on only MRDA (source domain) data, and (ii) a merge B-LSTMconv-glove model
in the second row that is trained on the concatenation of MRDA and the target domain
data (QC3, TA, or BC3). Recall that the merge model is the one that gave the best results
so far (i.e., last row of Table 11).

We can observe that without any labeled data in the target domain, the adapted
B-LSTMconv-glove in the third row performs worse than the transfer baseline in QC3
and TA. In this case, because the out-of-domain labeled data set (MRDA) is much larger,
it overwhelms the model, inducing features that are not relevant for the task in the target
domain. However, when we provide the model with some labeled in-domain examples

(a) MLPconv-glove (b) B-LSTMconv-glove

Figure 7
Confusion matrices for (a) MLPconv-glove and (b) B-LSTMconv-glove on the test sets of QC3, TA, and
BC3. P stands for Polite, Q for Question, R for Response, ST for Statement, and SU stands for
Suggestion.
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Table 13
Results on the concatenated (CONCAT) data set with adversarial training.

Training Regime QC3 (Testset) TA (Testset) BC3 (Testset)

B-LSTMconv-glove Transfer 60.81 (72.35) 70.26 (83.85) 36.57 (57.14)
B-LSTMconv-glove Concatenation/Merge 70.51 (80.77) 78.08 (88.95) 58.28 (79.00)

Adapted B-LSTMconv-glove Unsupervised adaptation 47.67 (70.51) 66.17 (81.85) 39.97 (67.42)
Adapted B-LSTMconv-glove Supervised adaptation 71.52 (82.48) 81.21 (88.67) 69.30 (88.22)

in the supervised adaptation setting (last row), we observe gains over the merge model
(second row) in all three data sets. Remarkably, the absolute improvements in F1 for
BC3 and TA are more than 11% and 3%, respectively.

To analyze further the performance of our adapted model, Figure 8 presents the
F1 scores with varying amounts of labeled data in the target domain. It can be noticed
that for all three data sets, the largest improvements come from the first 25% of the
labeled data. The gains from the second quartile are also relatively higher than the
last two quartiles for TA and QC3. This demonstrates the effectiveness of our adversarial
domain adaptation method. In the future, it will be interesting to compare adversarial
training with other domain adaptation methods.

5.3 Effectiveness of CRFs

Conversation-Level Data Set for CRFs. To demonstrate the effectiveness of CRFs
in capturing inter-sentence dependencies in an asynchronous conversation, we
create another training setting called CONV-LEVEL (Conversation-level), in which
training instances are entire conversations and the random splits are done at the
conversation level (as opposed to sentence) for the asynchronous corpora. This is re-
quired because the CRFs perform joint learning and inference based on an entire
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Figure 8
F1 scores of our adapted model with varying amounts of labeled in-domain data.
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Table 14
Data sets for CONV-LEVEL (conversation-level) setting to train, validate, and test our CRF
models. Numbers in parentheses indicate the number of sentences.

Train Dev. Test

QC3 38 (1,332) 4 (111) 5 (122)
TA 160 (2,957) 20 (310) 20 (444)
BC3 31 (1,012) 3 (101) 5 (222)

Total 229 (5,301) 27 (522) 30 (788)

conversation. Table 14 shows the resulting data sets that we use to train and evalu-
ate our CRFs. We have 229 conversations for training and 27 conversations for de-
velopment.18 The test sets contain 5, 20, and 5 conversations for QC3, TA, and BC3,
respectively.

Baselines and CRF Variants. We use the following three models as baselines:

(a) MEbow: a MaxEnt model with BOW representation.

(b) Adapted B-LSTMconv-glove (semi-supervised): This model performs adversarial
semi-supervised domain adaptation using labeled sentences from MRDA and
CONV-LEVEL training sets. Note that this is our best system so far (see Table 13).

(c) MEadapt-lstm: a MaxEnt learned from the sentence embeddings extracted from the
adapted B-LSTMconv-glove (semi-supervised), that is, the sentence embeddings are
used as feature vectors.

We experiment with the CRF variants shown in Table 1. Similar to MEadapt-lstm,
the CRFs are trained on the CONV-LEVEL training set using the sentence embeddings
extracted by applying the adapted B-LSTMconv-glove (semi-supervised) model. The CRF
models are therefore the structured versions of the MEadapt-lstm baseline.

Results and Discussion. Table 15 shows our results on the CONV-LEVEL data sets.
We can notice that CRFs generally outperform MEs in accuracy, and for some CRF
variants we get better results in both macro F1 and accuracy. This indicates that there
are conversational dependencies between the sentences in a conversation.

If we compare the CRF variants, we can see that the model that does not consider
any link across comments (CRFLC-NO) performs the worst. A simple linear chain con-
nection between sentences in their temporal order (CRFLC-LC) does not improve much.
This indicates that the linear chain CRF (Lafferty, McCallum, and Pereira 2001) is not the
most appropriate model for capturing conversational dependencies in asynchronous
conversations.

The CRFLC-LC1 is one of the well performing models and performs significantly bet-
ter than the adapted B-LSTMconv-glove.19 This model considers linear chain connections
between sentences in a comment and only to the first comment. When we change this
model to consider relations with every sentence in the first comment (CRFLC-FC1 ), this

18 We use the concatenated sets as train and dev sets.
19 Significance was computed based on the accuracy on the concatenated test set.
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Table 15
Results of CRFs on CONV-LEVEL data set. Best results are boldfaced. Accuracies significantly
higher than adapted B-LSTMconv-glove are marked with *.

QC3 TA BC3

MEbow 57.37 (69.18) 65.39 (85.04) 60.32 (80.74)
Adapted B-LSTMconv-glove (semi-sup) 67.34 (80.15) 70.36 (86.73) 62.65 (83.59)
MEadapt-lstm 62.36 (78.93) 63.31 (85.92) 58.32 (81.43)

CRFLC-NO 67.02 (79.51) 67.82 (86.94) 63.15 (84.65)
CRFLC-LC 67.12 (79.83) 67.94 (86.74) 63.75 (84.10)
CRFLC-LC1

69.32 (81.03*) 68.84 (87.34) 64.22 (84.71)
CRFLC-FC1

70.11 (80.67) 69.73 (86.51) 66.34 (86.51*)
CRFFC-FC 69.65 (80.77) 72.31 (88.61*) 64.82 (86.18*)

improves the performance further, giving the best results in two of the three data sets.
This indicates that there are strong dependencies between the sentences of the initial
comment and the sentences of the rest of the comments, and these dependencies are
better captured if the relations between them are explicitly considered. The CRFFC-FC
also yields as good results as CRFLC-FC1 . This could be attributed to the robustness of
the fully connected CRF, which learns from all possible pairwise relations.

Another interesting observation is that no single graph structure performs the best
across all conversation types. For example, CRFLC-FC1 gives the highest F1 scores for
QC3 and BC3, whereas CRFFC-FC gives the highest results for TA. This shows the
variation and the complicated ways in which participants communicate with each other
in these conversations. One interesting future work would be to learn the underlying
conversational structure automatically. However, we believe that in order to learn an
effective model, this would require more labeled data.

To see some real examples in which CRF by means of its global learning and
inference makes a difference, let us consider the example in Figure 1 again. We notice
that the two sentences in comment C4 were mistakenly identified as Statement and
Response, respectively, by the B-LSTMconv-glove local model. However, by considering
these two sentences together with others in the conversation, the global CRFLC-LC1 ,
CRFLC-FC1 , and CRFFC-FC models were able to correct them (see GLOBAL). CRFLC-LC
could correctly identify the first one as Question.

6. Conclusions and Future Directions

We have presented a novel two-step framework for speech act recognition in asyn-
chronous conversation. An LSTM-RNN first composes sentences of a conversation
into vector representations by considering the word order in a sentence. Then a pair-
wise CRF jointly models the inter-sentence dependencies in a conversation. In order
to mitigate the problem of limited annotated data in the asynchronous domains, we
further adapt the LSTM-RNN to learn from synchronous meeting conversations using
adversarial training of neural networks.

We experimented with different LSTM variants (uni- vs. bi-directional, random
vs. pretrained initialization), and different CRF variants, depending on the under-
lying graph structure. We trained word2vec and Glove conversational word embed-
dings from a large conversational corpus. We trained our models on many different
settings using synchronous and asynchronous corpora, including in-domain training,
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concatenated training, unsupervised adaptation, supervised adaptation, and conversa-
tion level CRF joint training. We evaluated our approach on a synchronous data set
(meeting) and three asynchronous data sets (two forum data sets and one e-mail data
set), one of which is presented in this work.

Our experiments show that conversational word embeddings, especially conver-
sational Glove, are quite beneficial for learning better sentence representations for the
speech act classification task through bidirectional LSTM. This is especially true when
the amount of labeled data in the target domain is limited. Adding more labeled data
from synchronous domains yields improvements for bi-LSTMs, but even more gains can
be achieved by domain adaptation with adversarial training. Further experiments with
CRFs show that global joint models improve over local models given that the models
consider the right graph structure. In particular, the LC-FC1 and FC-FC graph structures
were among the best performers.

This work leads us to a number of future directions. First, we would like to com-
bine CRFs with LSTM-RNNs for doing the two steps jointly, so that the LSTM-RNNs
can learn the embeddings directly using the global thread-level feedback. This would
require the backpropagation algorithm to take error signals from the loopy BP inference.
Second, we would also like to apply our models to conversations, where the graph struc-
ture is extractable using metadata or other clues, for example, the fragment quotation
graphs for e-mail threads (Carenini, Ng, and Zhou 2008). One interesting future work
would be to jointly model the conversational structure (e.g., reply-to structure) and the
speech acts so that the two tasks can inform each other.

In another direction, we would like to evaluate our speech act recognition model on
extrinsic tasks. In a separate thread of work, we are developing coherence models for
asynchronous conversations (Nguyen and Joty 2017; Joty, Mohiuddin, and Tien Nguyen
2018). Such coherence models could be useful for a number of downstream tasks
including next utterance (or comment) ranking, conversation generation, and thread
reconstruction (Nguyen et al. 2017). We are now looking into whether speech act infor-
mation can help us in building better coherence models for asynchronous conversations.
We also plan to evaluate the utility of speech acts in downstream NLP tasks involving
asynchronous conversations like next utterance ranking (Lowe et al. 2015), conversation
generation (Ritter, Cherry, and Dolan 2010), and summarization (Murray, Carenini, and
Ng 2010). Finally, we hope that the new corpus, the conversational word embeddings,
and the source code that we have made publicly available in this work will facilitate
other researchers in extending our work and in applying speech act models to their
NLP tasks.

Bibliographic Note

Portions of this work were previously published in the ACL-2016 conference proceeding
(Joty and Hoque 2016). This article significantly extends the published work in several
ways, most notably: (i) we train new word2vec and Glove word embeddings based
on a large conversational corpus, and show their effectiveness by comparing with
off-the-shelf word embeddings (Section 4.2 and the Results section), (ii) we extend
the LSTM-RNN for domain adaptation using adversarial training of neural networks
(Section 3.2), (iii) we evaluate the domain adapted LSTM-RNN model on meeting and
forum data sets (Section 5.2), and (iv) we train and evaluate CRFs based on sentence
embeddings extracted from the adapted LSTM-RNN (Section 5.3). Beside these ex-
tensions, a significant portion of the article was rewritten to adapt to a journal-style
publication.
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