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In contrast to identity anaphors, which indicate coreference between a noun phrase and its
antecedent, bridging anaphors link to their antecedent(s) via lexico-semantic, frame, or en-
cyclopedic relations. Bridging resolution involves recognizing bridging anaphors and finding
links to antecedents. In contrast to most prior work, we tackle both problems. Our work also
follows a more wide-ranging definition of bridging than most previous work and does not
impose any restrictions on the type of bridging anaphora or relations between anaphor and
antecedent.

We create a corpus (ISNotes) annotated for information status (IS), bridging being one
of the IS subcategories. The annotations reach high reliability for all categories and marginal
reliability for the bridging subcategory. We use a two-stage statistical global inference method
for bridging resolution. Given all mentions in a document, the first stage, bridging anaphora
recognition, recognizes bridging anaphors as a subtask of learning fine-grained IS. We use a
cascading collective classification method where (i) collective classification allows us to inves-
tigate relations among several mentions and autocorrelation among IS classes and (ii) cascaded
classification allows us to tackle class imbalance, important for minority classes such as bridging.
We show that our method outperforms current methods both for IS recognition overall as
well as for bridging, specifically. The second stage, bridging antecedent selection, finds the
antecedents for all predicted bridging anaphors. We investigate the phenomenon of semantically
or syntactically related bridging anaphors that share the same antecedent, a phenomenon we
call sibling anaphors. We show that taking sibling anaphors into account in a joint inference
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model improves antecedent selection performance. In addition, we develop semantic and salience
features for antecedent selection and suggest a novel method to build the candidate antecedent
list for an anaphor, using the discourse scope of the anaphor. Our model outperforms previous
work significantly.

1. Introduction

An anaphor is an expression whose interpretation depends upon a previous expres-
sion in the discourse (the antecedent). Figure 1 shows an excerpt of a news arti-
cle with three anaphoric references: “its” is a pronominal anaphor referring back to
the antecedent “The business,” which itself refers back to “The Bakersfield Super-
market.” Both of these two anaphors refer to the same entity as their antecedents.
Differently, the bridging anaphor “friends” does not refer to the same entity as its
antecedent “its owner.” The phenomena illustrated in (1) and (2) have attracted a
lot of interest under the heading of coreference resolution (Hobbs 1978; Hirschman
and Chinchor 1997; Soon, Ng, and Lim 2001; Lee et al. 2013, 2017, inter alia). This
article, however, focuses on the phenomenon illustrated in (3), known as bridging
(Clark 1975) or associative anaphora (Hawkins 1978). Bridging anaphors are ana-
phoric noun phrases that are not coreferent but instead linked via associative relations
to the antecedent.

Bridging resolution has to recognize bridging anaphors and find links to their
antecedents. In Example (1), the bridging anaphors The windows, The carpets and
walls can be felicitously used thanks to their part-of relation to their antecedent the
Polish center.1

(1) If Mr. McDonough’s plans get executed, as much as possible of the Polish
center will be made from aluminum, steel and glass recycled from Warsaw’s
abundant rubble. [2 sent.] The windows will open. The carpets won’t be
glued down and walls will be coated with non-toxic finishes.

Bridging plays an important role in establishing entity coherence in a text. Barzilay
and Lapata (2008) model local coherence with the entity grid based on coreference
only. However, Example (1) does not exhibit any coreferential entity coherence, and
therefore entity coherence can only be established when bridging is resolved. Further-
more, text understanding applications such as textual entailment (Mirkin, Dagan,
and Padó 2010), context question answering (Voorhees 2001), and opinion mining
(Kobayashi, Inui, and Matsumoto 2007) have been shown to benefit from bridging
resolution.

The main contributions presented in this article lie in the following aspects:

1. We present an English corpus (ISNotes) annotated for a wide range of
information status (IS) categories as well as full anaphoric information for
three anaphora types (coreference, bridging, and comparative; Section 3).
Importantly, we impose no syntactic or relational restrictions on
bridging—that is, bridging anaphora are not limited to definite noun
phrases as in most previous work; antecedents can be noun phrases, verb

1 All examples, if not specified otherwise, are from OntoNotes (Weischedel et al. 2011). Bridging anaphors
are typed in boldface, antecedents in italics throughout this article.
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Figure 1
Coreference anaphora and bridging anaphora.

phrases, or even clauses; and bridging relations are not restricted to
meronymy. We show that bridging anaphora are very diverse. The overall
annotation scheme is highly reliable, with the bridging category being
annotated marginally reliably.2 The corpus is available as an OntoNotes
annotation layer via http://www.h-its.org/en/research/nlp/

isnotes-corpus/.

2. We model bridging anaphora recognition as a subtask of learning
fine-grained information status (Section 4). We integrate discourse
structure, lexico-semantic, and genericity detection features into a
cascading collective classification algorithm. Collective classification
investigates relational autocorrelation among several IS classes whereas
cascading classification addresses the multi-class imbalance problem,
in particular the relative rarity of bridging compared to many other IS
classes. Our model combines these two advantages by using binary
classifiers for minority categories and a collective classifier for all
categories. We beat current models both for overall IS classification
accuracy as well as for bridging anaphora recognition on ISNotes.

3. We explore a joint inference framework for bridging antecedent selection
(Section 5). This model expresses an interesting topological property of
bridging not used before—namely, that semantically or syntactically
related anaphors are likely to share the same antecedent (such as The
windows and walls in Example (1)). In addition, we develop semantic,
syntactic, and salience features based on linguistic insights and present a
novel method for constructing candidate antecedent lists, according to the
anaphor’s discourse scope. Our model significantly outperforms prior
work.

4. Finally, we evaluate bridging resolution as a pipeline consisting of
bridging recognition and antecedent selection (Section 6). This is the first
full bridging resolution system that attempts the unrestricted
phenomenon in a real setting.

All our experiments are performed on ISNotes and therefore all our claims hold
only for the news genre. Although we believe the benefit of joint optimization to hold
across other genres, several of our features are optimized for that particular corpus

2 We consider annotation highly reliable when κ exceeds 0.80 and marginally reliable when between 0.67
and 0.80 (Carletta 1996). The interpretation of κ is still under discussion (Artstein and Poesio 2008).
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and therefore our figures indicate the best possible performance of our approach. The
adaptation to other corpora will likely need additional fine-tuning.3

Connection to previous conference publications. This article synthesizes Markert, Hou, and
Strube (2012) and Hou et al. (2013a, 2013b). It provides more technical details, error
analyses, and also includes the following new aspects. For the corpus, we now include
a detailed analysis of our bridging cases (Section 3.3). In bridging recognition, we now
use Markov Logic Networks instead of iterative collective classification to unify the
approaches to the two tasks.4 With regard to antecedent selection, we introduce several
new features as well as the notion of using the discourse scope of an anaphor to
adjust the set of potential antecedents it can refer back to (Section 5.3). We also now
consider different evaluation paradigms dependent on whether one has access to full
coreference information prior to bridging antecedent selection (mention-entity model)
or not (mention-mention model), whereas before we only considered the mention-
entity model (Section 5.4.4). Finally, we include a pipeline of the two models for
bridging recognition and antecedent selection to evaluate performance of the full task
(Section 6).5

2. Related Work

We first review theoretical studies related to bridging (Section 2.1) before discussing
corpus studies in Section 2.2. Section 2.3 reviews automatic algorithms for bridging
resolution and Section 2.4 discusses bridging and implicit semantic role labeling.

2.1 Bridging: Theoretical Studies

Theoretical studies on bridging include linguistic (Hawkins 1978; Prince 1981, 1992),
psycholinguistic (Clark 1975; Clark and Haviland 1977; Garrod and Sanford 1982),
pragmatic and cognitive (Erkü and Gundel 1987; Gundel, Hedberg, and Zacharski
2000; Matsui 2000; Schwarz 2000), as well as formal accounts (Hobbs et al. 1993; Bos,
Buitelaar, and Mineur 1995; Asher and Lascarides 1998; Löbner 1998; Cimiano 2006;
Irmer 2009).

Our concept of bridging is closest to the notions of associative anaphora in Hawkins
(1978) and (noncontained) inferrables in Prince (1981): noun phrases (NPs) that are not
coreferent to a previous mention but the referent of which is identifiable via a lexico-
semantic, frame, or encyclopedic relation to a previous mention, with this relation not
being syntactically expressed.

Relation types used are very diverse and antecedents can be noun phrases, verb
phrases, or even whole sentences (Clark 1975; Asher and Lascarides 1998, inter alia).
Several studies, such as Hawkins (1978) and Löbner (1998), limit bridging to definite
NPs; we, however, believe that there is no clear difference in information status between
the windows, on the one hand, and walls, on the other hand, in Example (1).6

3 Unfortunately, as we explain in Section 2.2, no other English corpus that is immediately usable for the full
problem of bridging resolution is currently available for us to test our system on.

4 Quantitative results for bridging recognition are very similar to the previous framework, however.
5 We do not include the work that we conducted previously (Hou, Markert, and Strube 2014; Hou 2016), as

these follow very different paradigms, using rule-based and neural network approaches, respectively.
None of these approaches outperform our work in this article.

6 Prince (1992) also gives examples of indefinite bridging cases, so our observation is not new.
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Our bridging notion differs from Clark (1975) in that we do not include corefer-
ential cases: We believe coreference is different both from an IS viewpoint (always
being discourse-old) as well as from a computational perspective in that coreference
needs different methods to resolve than bridging.

2.2 Bridging: Corpus Studies

Fraurud (1990) annotated first-mentioned NPs (which included bridging) versus
subsequent mention NPs. Thirty-six percent of first-mentioned definite NPs have
interpretations that “appear to involve a relation to contextual elements outside the
definite NP itself” (Fraurud 1990, page 406), similar to our bridging definition.

The Vieira/Poesio data set (Poesio and Vieira 1998) contains 150 anaphoric def-
inite NPs without a head match to their antecedents. These cases include what we
call bridging as well as coreferential NPs without the same head. We will call this
definition of bridging lenient bridging from now on. The corpus was used later to
develop computational models (Section 2.3). In a second experiment, the authors delim-
ited bridging proper from coreferential cases with very low agreement (31% per-class
agreement).

Similarly, bridging recognition proved difficult for annotators of the GNOME cor-
pus (Poesio 2004), where only 22% of bridging references were annotated in the same
way by both annotators, although bridging relations were limited to set membership,
subset, and generalized possession (part-of and ownership relations).

Nissim et al. (2004) is the first large-scale annotation study for IS for English.
Based on Prince (1992) and Eckert and Strube (2000), they annotated NP types with
three main categories: an old entity is known to the hearer and has been men-
tioned in the conversation; a new entity is unknown to the hearer and has not been
previously referred to; a mediated entity is newly mentioned in the dialogue but
is inferrable from previously mentioned entities, or generally known to the hearer.
Four of the nine subtypes of the mediated category (part, set, situation, and event)
include bridging instances. Nissim et al. (2004) reported high agreement for the
overall fine-grained IS annotation (with κ = 0.788) on 147 Switchboard dialogues
(LDC 1993). The κ scores for the four bridging subtypes are mostly marginally re-
liable, between 0.594 and 0.794. However, the corpus cannot easily be used for
a computational study of bridging anaphora resolution for the following reasons.
First, antecedents for bridging NPs are not annotated. Second, the four subcate-
gories used to mark up bridging also contain non-anaphoric cases, such as syn-
tactically linked part-of relations (Example: the house’s door). In addition, any such
study would be limited with regard to relation types as several of the bridging cases
are only annotated if the relation to the antecedent is part of certain knowledge
bases (i.e., part-of relations must be part of WordNet and situation relations part of
FrameNet).

The German DIRNDL corpus (Eckart, Riester, and Schweitzer 2012; Björkelund
et al. 2014) contains IS annotations for all NPs following the scheme by Riester, Lorenz,
and Seemann (2010). Bridging is one IS category but only used for definite expressions.
They achieved a kappa score of 0.78 for six top-level categories. However, the confu-
sion matrix in Riester, Lorenz, and Seemann (2010) shows that the anaphoric bridging
category is frequently confused with other categories: The two annotators agreed on
fewer than a third of bridging anaphors.

These previous corpus studies on bridging differ from ours in several ways.
First, the definition of bridging is sometimes extended to include coreferential NPs
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with lexical variety (Vieira 1998) or non-anaphoric NPs (Nissim et al. 2004). Second,
they put more restrictions on bridging than we do, limiting to definite NP anaphora
(Poesio and Vieira 1998; Gardent and Manuélian 2005; Caselli and Prodanof 2006;
Riester, Lorenz, and Seemann 2010), to NP antecedents (all prior work), or to few
relation types between anaphor and antecedent (Poesio 2004). Apart from these dif-
ferences in definition of bridging, often reliability is not measured or low, espe-
cially for bridging recognition (Fraurud 1990; Poesio and Vieira 1998; Gardent and
Manuélian 2005; Nedoluzhko, Mı́rovskỳ, and Pajas 2009; Riester, Lorenz, and Seemann
2010).

2.3 Bridging: Computational Approaches

Most computational approaches for resolving bridging focus on antecedent selection.
Some handle bridging anaphora recognition when recognizing fine-grained IS. Only a
few works tackle full bridging resolution—that is, recognizing bridging anaphors and
finding links to antecedents.

Bridging anaphora recognition. Fine-grained IS classification for Switchboard (Nissim
et al. 2004) has been implemented via a combination of rules and a multiclass SVM
(Rahman and Ng 2012). F-scores for the four categories that include bridging (part,
situation, event, set) ranged from 63.3 to 87.2. These results do not necessarily reflect the
real difficulty of the problem, however, because of the restrictions posed on bridging in
the underlying annotation and the inclusion of non-anaphoric cases (Section 2.2).

Cahill and Riester (2012) trained a CRF model for fine-grained IS classification on
the German DIRNDL radio news corpus (Riester, Lorenz, and Seemann 2010), making
use of the assumption that IS classes within sentences tend to follow certain orderings,
for example, old > mediated > new. They did not report the result for the bridging
subcategory.

An attention-based long short-term memory model with pre-trained word embed-
dings and simple features achieved competitive results on ISNotes compared to our
collective classification approach (Hou 2016).

Bridging antecedent selection. Based on the Vieira/Poesio data set (Section 2.2), vari-
ous studies resolved “lenient” definite bridging references. Vieira and Teufel (1997)
and Poesio, Vieira, and Teufel (1997) used heuristics for antecedent selection, exploit-
ing WordNet relations such as synonymy/hyponymy/meronymy. Schulte im Walde
(1998) used word clustering. The bridging anaphors were resolved to the closest
antecedent candidate in a high-dimensional space, the best result being an accuracy of
22.7%.

Poesio et al. (2002) and Markert, Nissim, and Modjeska (2003) acquired mereolog-
ical knowledge for bridging resolution by using syntactic patterns (such as the NP of
NP) on the British National Corpus and the Web, respectively. All of this work was
done on small data sets, numbering in the 10s for test bridging cases when excluding
coreferential cases.

Another line of work applied machine learning techniques. The pairwise model in
Poesio et al. (2004a) combines lexico-semantic and salience features to resolve mere-
ological bridging in the GNOME corpus. However, their results came from a limited
evaluation setting: In the first two experiments they distinguished only between the
correct antecedent and one or three false candidates. The more realistic scenario of
finding the correct antecedent among all possible candidates was tried for just six
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bridging anaphors. On the basis of this method, Lassalle and Denis (2011) developed
a system that resolves mereological bridging in French, with meronymic informa-
tion extracted from raw texts using a bootstrapping method. They reported an accu-
racy of 23% for over 300 meronymy bridging anaphors using the realistic evaluation
scenario.

Full bridging resolution. The rule-based system for processing definite NPs in Vieira and
Poesio (2000) includes bridging cases (using the lenient definition of bridging discussed
in the previous sections) but they do not report results for the bridging category.

Hahn, Strube, and Markert (1996) distinguish bridging resolution from other
anaphora resolution. Their rule-based framework integrates language-independent
conceptual criteria and language-dependent functional constraints. Their conceptual
criteria were based on a knowledge base from the information technology domain that
consists of 449 concepts and 334 relations. They focused on definite bridging anaphora
and certain types of relations only (e.g., has-property, has-physical-part). On a small-scale
technical domain data set (5 texts in German with 109 bridging anaphors), they achieved
a recall of 55.0% and precision of 73.2%. Although the results seem satisfactory, the
system is heavily dependent on the domain knowledge resource.

Sasano and Kurohashi (2009) resolved bridging and zero anaphora in Japanese
simultaneously, using automatically acquired case frames in a probabilistic model.
Although it is not clear how bridging anaphora are distributed in their corpus and
whether this approach can be effectively applied to other languages, the lexical knowl-
edge resource constructed is general and can capture diverse bridging relations.

Rösiger and Teufel (2014) extended a coreference resolution system with semantic
features from WordNet (e.g., hypernymy, meronymy) to find bridging links in scien-
tific text, considering definite NPs only. They used the CoNLL scorer for evaluation.
However, a coreference resolution system and evaluation metric are not suitable for
bridging resolution because bridging is not a set problem.

Discussion. Our study departs from related work by modeling bridging on the discourse
level without limiting it to definite NPs or to certain bridging relations (e.g., part-of).
For bridging anaphora recognition, our cascading collective classification model
(Section 4) addresses multi-class imbalance while keeping the strength of collective
classification. For bridging antecedent selection, our joint inference model (Section 5)
integrates bridging resolution with clustering anaphors that share the same antecedent.
Furthermore, unlike previous work that uses a sentence window to form the set of
antecedent candidates, we propose a method to select antecedent candidates using a
flexible notion of discourse scope of an anaphor. The latter makes use of the discourse
relation Expansion and models salience.

2.4 Implicit Semantic Role Labeling

Semantic role labeling is the task of assigning semantic roles (such as Agent or Theme)
to the semantic arguments associated with a predicate (e.g., a verb or a noun). In frame
semantics (Baker, Fillmore, and Lowe 1998), core semantic roles (also called Core Frame
Elements) are essential to the meaning of semantic situations while non-core semantic
roles (e.g., time, manner) are less central.

The majority of work on semantic role labeling only recognizes semantic arguments
from the sentence where the predicate is present and thus ignores arguments from
the wider discourse context. Ruppenhofer et al. (2010) organized a shared task to
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address the issue of non-local (implicit) argument identification for nominal and verbal
predicates. There is partial overlap between bridging resolution and implicit semantic
role labeling (i.e., in some bridging cases, antecedents are implicit semantic roles of
bridging anaphors). However, bridging resolution considers all possible nominal bridg-
ing anaphors in running text. Some bridging anaphors are not considered “nominal
predicates” in (implicit) semantic role labeling, for example, One man in Example (2).

(2) Still, employees do occasionally try to smuggle out a gem or two. One man
wrapped several diamonds in the knot of his tie.

In addition, implicit semantic role labeling for nominal predicates tries to link all
possible implicit core roles for the nominal predicate in question. Yet not every nominal
predicate under consideration is a bridging anaphor.

Despite differences between implicit semantic role labeling and bridging resolu-
tion, these two tasks can benefit from each other. We explore statistics from NomBank
(Meyers et al. 2004) to predict bridging anaphors (Section 4.3.2). Some of our features for
bridging antecedent selection are inspired by Laparra and Rigau (2013) (Section 5.2.2).

3. ISNotes: A Corpus for Information Status

ISNotes contains 50 texts from the Wall Street Journal portion of OntoNotes (Weischedel
et al. 2011), in which all mentions (10,980 overall) are annotated for IS. The corpus can
be downloaded from http://www.h-its.org/en/research/nlp/isnotes-corpus/.

3.1 ISNotes Annotation Scheme

Information status in ISNotes. Information status describes the degree to which a dis-
course entity is available to the hearer regarding the speaker’s assumption about the
hearer’s knowledge and beliefs (Prince 1992; Nissim et al. 2004). We distinguish eight
IS categories, inspired by Nissim et al. (2004), although with some variations.

A mention is old if it is either coreferent with a previous mention (based on the
OntoNotes coreference annotation), or if it is a generic or deictic pronoun.

Mediated mentions have not been mentioned before but are not autonomous—that
is, they can only be correctly interpreted by reference to another mention or to prior
world knowledge. ISNotes distinguishes six subcategories of mediated mentions:r mediated/worldKnowledge (abbreviated as mediated/WK) mentions are

generally known to the hearer. This category includes many proper names,
such as Poland.r mediated/syntactic mentions are syntactically linked via a possessive
relation, a proper name premodification or a prepositional phrase
postmodification to other old or mediated mentions, such as:

• [[their]old liquor store]mediated/syntactic,

• [the [Federal Reserve]mediated/WK boss]mediated/syntactic, and

• [the main artery into [San Francisco]mediated/WK]mediated/syntacticr mediated/comparative mentions are non-coreference anaphors where the
anaphor is compared to the antecedent (and where both are therefore often
of the same semantic type). They usually include a premodifier or head
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that makes clear that this entity is compared to a previous one, such as
others in Example (3).7,8r mediated/bridging mentions are non-coreference anaphors where a
frame, lexico-semantic, or world knowledge relation holds between
anaphor and antecedent, such as the streets in Example (4) and The
reason in Example (5).r mediated/aggregate mentions are coordinated mentions where
at least one element in the conjunction is old or mediated,
such as [Not only [George Bush]mediated/WK but also [Barack
Obama]mediated/WK]mediated/aggregate.r mediated/function mentions refer to a value of a previously mentioned
function (e.g., 3 points in Example (6)). The function needs to be able to rise
and fall (e.g., were down in Example (6)).

(3) As the death toll from last week’s tremblor climbed to 61, the condition of
freeway survivor Buch Helm, who spent four days trapped under rubble, im-
proved, hospital officials said. Rescue crews, however, gave up hope that
others would be found.

(4) Oranjemund, the mine headquarters, is a lonely corporate oasis of 9,000 residents.
Jackals roam the streets at night . . .

(5) The Bakersfield supermarket went out of business last May. The reason was not
high interest rates or labor costs.

(6) IBM shares were down 3 points.

New mentions have not yet been introduced in the discourse and the entity they
refer to cannot be inferred from either previously mentioned entities/events or general
world knowledge.

Antecedents for mediated/bridging and mediated/comparative. Antecedents for both
mediated/bridging and mediated/comparative categories are annotated.9 The an-
tecedents can be NPs (Example (4)), verb phrases (e.g., went out of business in Exam-
ple (5)), or even clauses. If an NP antecedent has several instantiations within the text,
ISNotes chooses the one which is the closest to the bridging or comparative men-
tion. Other instantiations can be inferred from the coreference annotation. Sometimes,
several non-coreferent antecedents are annotated for a mediated/bridging mention
when the antecedents fill core semantic roles. In Example (7), two antecedents are
necessary to interpret the bridging anaphor Domestic demand.10

(7) Japan’s production of cars, trucks and buses in September fell 4.4% from a year
ago. [. . . ] Domestic demand continues to grow, but . . .

7 Comparative anaphors are typed in boldface, antecedents in italics.
8 Nissim et al. (2004) view comparative anaphora as a subset of bridging. We distinguish them as their

recognition (via lexical clues) and their resolution (often type matches) differ from other bridging cases.
9 Antecedents for old mentions are from the OntoNotes coreference annotation.

10 In ISNotes, only 2.6% of bridging anaphors have at least two antecedents. Our automatic system
currently cannot deal with such cases—we leave this for future work.
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Table 1
Agreement results, overall (top) and for individual categories (bottom).

A-B A-C B-C

Overall Percentage coarse 87.5 86.3 86.5
κ coarse 77.3 75.2 74.7

Percentage fine 86.6 85.3 85.7
κ fine 80.1 77.7 77.3

Individual Categories κ Non-mention 81.5 78.9 86.0
κ old 80.5 83.2 79.3
κ new 76.6 74.0 74.3

κmediated/worldKnowledge 82.1 78.4 74.1
κmediated/syntactic 88.4 87.8 87.6
κmediated/aggregate 87.0 85.4 86.0
κmediated/function 6.0 83.2 6.9

κmediated/comparative 81.8 78.3 81.2
κmediated/bridging 70.8 60.6 62.3

3.2 Agreement Study

An agreement study was carried out among three annotators. Annotator A is the scheme
developer and a computational linguist. Annotators B and C have no linguistic training
or education. Annotator A and B are fluent English speakers, living in English-speaking
countries, but are not native speakers. Annotator C is a native speaker of English.

All potential mentions were pre-marked automatically using the WSJ syntactic
noun phrase annotation. All non-initial mentions in an OntoNotes coreference chain
were pre-marked as old. The annotation task consisted of excluding all non-mentions
(such as non-referential it) and marking all mentions for their information status as well
as the antecedents for comparative and bridging anaphora. The scheme was developed
on nine texts, which were also used for training the annotators. Inter-annotator agree-
ment was measured on 26 new texts, which included 5,905 potential mentions. The
annotations of 1,499 of these were carried over from OntoNotes coreference annotation,
leaving 4,406 potential mentions for annotation and agreement measurement.

Table 1 (top) shows percentage agreement as well as Cohen’s κ (Artstein and
Poesio 2008) between all three possible annotator pairings at the coarse-grained (four
categories: non-mention, old, new, mediated) and the fine-grained level (nine categories:
non-mention, old, new and the six mediated subtypes). As our category distribution
is highly unbalanced, Cohen’s kappa is necessary to report as it corrects for chance
agreement achieved by just using majority categories.11 Table 1 (bottom) shows in-
dividual category agreement, computed by merging all categories but one and then

11 The κ values for the fine-grained scheme are higher than for the coarse-grained one. The hierarchical
scheme is organized such that a category lower down the tree is more often confused with a category
higher up in a different branch of the tree than with its direct siblings in the tree (i.e., mediated/bridging
mentions are often confused with new mentions whereas some mediated categories such as mediated/
syntactic or mediated/comparative are very easy to recognize).
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Table 2
IS distribution in ISNotes. The last column indicates the percentage of each IS category relative
to the total number of mentions.

Texts 50

Sentences 1,726

Mentions 10,980

old 3,237 29.5%

coreferent 3,143 28.6%
generic or deictic pronoun 94 0.9%

mediated 3,708 33.8%

syntactic 1,592 14.5%
world knowledge 924 8.4%

bridging 663 6.0%
comparative 253 2.3%

aggregate 211 1.9%
function 65 0.6%

new 4,035 36.7%

computing κ as usual. High reliability is achieved for most individual categories.12

The reliability of the category bridging is marginally reliable and more annotator-
dependent, although higher than other previous attempts at bridging annotation
(Poesio 2003; Gardent and Manuélian 2005; Riester, Lorenz, and Seemann 2010). The
agreement of selecting bridging antecedents is around 80% for all annotator pairings.

We investigated disagreements between Annotators A and B in bridging recogni-
tion: Almost all cases are instances where one annotator identified bridging and the
other one new. Particularly frequent were borderline cases where the whole document
had one major focus and subsequent NPs with a semantic relation to that focus could be
seen either as new (interpretable without the major focus) or bridging. As an example,
consider a document on the company Toyota and a later sentence stating Output had
gone down. According to our guidelines, most of these cases are bridging, but they are
easily overlooked.

The bridging annotations of the pairing A-B were used to create a consistent gold
standard of the 35 texts (9 training, 26 testing), discussing all disagreed items between
the annotators. Finally, Annotator A annotated a further 15 texts singly.

3.3 Corpus Analysis

IS distribution. Table 2 shows the class distribution. New mentions are the largest
category (36.7%). Syntactic mentions are the largest mediated category.

12 The low reliability of category function, when involving Annotator B, is explained by Annotator B
forgetting about this category completely and only using it once. When two annotators remembered the
category, it was easy to annotate reliably (κ 83.2 for the pairing A-C).
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Bridging anaphora modification. Bridging anaphors can be definite NPs (Examples (9) and
(11), indefinite NPs (Example (10)), or bare NPs (Examples (8), (12)–(14)). The only
syntactic property shared is that bridging anaphora tend to have a simple internal
structure with regard to modification. They are also easily confused with generics:
friends is used as a bridging anaphor in Example (14) but generically in Example (15).

(8) In June, farmers held onto meat, milk and grain, waiting for July’s usual state-
directed price rises. The Communists froze prices instead.

(9) To reduce it at the fund’s building, workers rubbed beeswax instead of
polyurethane on the floors in the executive’s office. [1 sent.] The budget was
only $400,000.

(10) Still, employees do occasionally try to smuggle out a gem or two. [2 sent.] A
food caterer stashed stones in the false bottom of a milk pail.

(11) His truck is parked across the field, in a row of grain sellers. [2 sent.] The
farmer at the next truck shouts, “Wheat!”

(12) The survey found that over a three-year period 22% of the firms said employees
or owners had been robbed on their way to or from work or while on the
job. [1 sent.] Crime was the reason that 26% reported difficulty recruiting
personnel and that 19% said they were considering moving.

(13) Mr. Leavitt, 37, was elected chairman earlier this year by the company’s new
board [. . . ] His father was chairman and chief executive until his death in an
accident five years ago.

(14) She made money, but spent more. Friends pitched in.
(15) Friends are part of the glue that holds life and faith together.

Table 3 shows the bridging anaphora distribution with regard to determiners: Only
38.5% of bridging anaphors are modified by the, 44.9% of bridging anaphors are not
modified by any determiners. This calls into question the strategy of several prior
approaches (Vieira and Poesio 2000; Lassalle and Denis 2011; Cahill and Riester 2012)
to limit themselves to bridging anaphors modified by the.

Bridging pair distance. We define the distance between a bridging anaphor and its
antecedent as the distance between the anaphor and its closest preceding antecedent
instantiation. The distribution of the distance for all 683 anaphor-antecedent pairs is

Table 3
Bridging anaphora distribution with respect to determiners.

NP Type Bridging Anaphors

The 255 (38.5%)
A/An 70 (10.6%)
Other determiner 40 (6.0%)
No determiner 298 (44.9%)

Total 663 (100.0%)
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Figure 2
The distribution of anaphor–antecedent distances in sentences.

Table 4
Bridging pair distribution with respect to relation types.

Relation Type Bridging Pairs

Action 16 (2.3%)
Set/Membership 45 (6.6%)
part-of/attribute-of 92 (13.5%)
Other 530 (77.6%)

Total 683 (100.0%)

shown in Figure 2.13 We see that 77% of anaphors have antecedents occurring in the
same or up to two sentences prior to the anaphor, although that still leaves a substantial
number of instances that need relatively distant antecedents.

Bridging relations. The semantic relations between anaphor and antecedent are extremely
diverse. Among 683 bridging pairs, only 2.3% correspond to an action, 6.6% to a set
membership (see Example (2)) and 13.5% to a part-of/attribute-of relation between
anaphor and antecedent (Table 4). A total of 77.6% of bridging relations fall under the
category “other,” without further distinction. This includes encyclopedic relations such
as restaurant – the waiter as well as context-specific relations such as palms – the thieves.
Among all bridging antecedents, only 39 are represented by verbs or clauses.

Sibling anaphors. We call bridging anaphors “siblings” if they share the same antecedent
(entity), and “non-siblings” are anaphors that do not share an antecedent with any other
anaphor. In Example (1), The windows, The carpets, and walls are sibling anaphors.

13 A small portion of anaphors has more than one antecedent. Therefore, the number of anaphor-antecedent
pairs (683) is slightly higher than the number of anaphors (663) (Section 3.1 and Example (7)).
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In ISNotes, 61.4% of the bridging anaphors are siblings and we will use this to good
effect in our model for bridging antecedent selection.

4. Information Status and Bridging Anaphora Recognition

For IS recognition, each mention is assigned one of the eight classes old, mediated/
syntactic, mediated/WK, mediated/bridging, mediated/comparative, mediated/

aggregate, mediated/function, and new. We make contributions to bridging recogni-
tion as well as for IS recognition in general.

4.1 Motivation for the Task

IS recognition can be beneficial for NLP tasks such as determining constituent order in
generation (Cahill and Riester 2009) or coreference resolution (Rahman and Ng 2011).
Treating bridging anaphora recognition as part of IS recognition prior to antecedent
selection implies that it is possible to recognize bridging anaphors without know-
ing the antecedent. Predicting bridging anaphors and their antecedents jointly might
be more attractive because some antecedents could trigger subsequent bridging. In
Example (1), the antecedent the Polish center could trigger the anaphor walls. How-
ever, bridging anaphors can be solely indicated by referential patterns as nonsense
Example (16) shows that the wug is clearly a bridging anaphor although we do not
know the antecedent.14

(16) The blicket couldn’t be connected to the dax. The wug failed.

In a similar vein, Clark (1975) distinguishes between bridging via necessary, prob-
able, and inducible parts/roles. He argues that only in the first case does the antecedent
trigger the bridging anaphor in the sense that we already think of the anaphor when
we read/hear the antecedent. For instance, walls in Example (1) are necessary parts
of the antecedent the Polish center according to common sense knowledge. However,
windows and carpets are only probable or inducible parts of a building but still
function as bridging anaphors in Example (1).

4.2 Method: Model
4.2.1 Model I: Collective Classification

Motivation. Two mediated subcategories account for accessibility via syntactic links to
another old or mediated mention. Mediated/syntactic is used when at least one child
of a mention is mediated or old, with child relations restricted to:r Possessive pronouns or possessive NPs

(e.g., [[his]old father]mediated/syntactic)r Of-genitives (e.g., [The alcoholism of [his]old father]mediated/syntactic)r Proper name premodifiers
(e.g., [The [Federal Reserve]mediated/WK boss]mediated/syntactic)

14 We thank an anonymous reviewer for bringing up this example.
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r Other prepositional phrases
(e.g., [professors at [Cambridge]mediated/WK]mediated/syntactic)

The subcategory mediated/aggregate is for coordinations in which at least one
of the children is old or mediated, e.g., Not only George Bush but also Barack Obama is
mediated/aggregate as Barack Obama is mediated/WK.

In these two cases, a mention’s IS depends directly on the IS of its children.
This is therefore a case of so-called autocorrelation, a characteristic of relational
data in which the value of one variable for one instance is highly correlated with
the value of the same variable on another instance. By exploiting relational auto-
correlation, collective classification (Jensen, Neville, and Gallagher 2004; Macskassy
and Provost 2007) can significantly outperform independent supervised classification
(Taskar, Segal, and Koller 2001; Neville and Jensen 2003; Domingos and Lowd 2009)
and has been applied, for example, in part-of-speech tagging (Lafferty, McCallum,
and Pereira 2001), Web page categorization (Taskar, Abbeel, and Koller 2002), opinion
mining (Somasundaran et al. 2009; Burfoot, Bird, and Baldwin 2011), and entity linking
(Fahrni and Strube 2012).

Detailed model. M denotes the set of n mentions in a document D, and S the set of eight
IS classes. Let sm be the IS class associated with a mention m ∈M, SM be the IS class
assignments for all mentions in M, Sn

M be the set of all possible IS class assignments for
M. The collective IS classification task can be represented as a log-linear model:

P(SM|M; w) =
exp(w · Φ(M, SM))∑

SM
′∈Sn

M
exp(w · Φ(M, SM

′))
(17)

where w is the model’s weight vector, and Φ(M, SM) is the feature vector that takes all
IS class assignments for all mentions in M into account. We define Φ(M, SM) as:

Φ(M, SM) =
∑
l∈Fl

∑
m∈M

Φl(m, sm) +
∑
g∈Fg

∑
mi,mj∈M

Φg(smi , smj ) (18)

where Φl(m, sm) is a local feature function that looks at the mention m and the target IS
class sm, Fl is the set of local features, Φg(smi , smj ) is a global feature function that looks
at the target IS class assignments for mi and mj at once, and Fg is the global feature
set.

This log-linear model can be represented using Markov logic networks (MLNs)
(Domingos and Lowd 2009). An MLN is a statistical relational learning framework that
combines first order logic and Markov networks. It provides us with a simple yet flexible
language to construct joint models for bridging resolution. Moreover, our task-specific
models can benefit from the advances in inference and learning algorithms for MLNs.

A Markov logic network is defined as a set of pairs ( fi, wi), where fi is a formula in
first-order logic and wi is a real number (Domingos and Lowd 2009). In first-order logic,
formulas are constructed using four types of symbols: constants, variables, functions, and
predicates. Constant symbols represent objects that we are interested in (mentions in our
problem, such as his father or his), variable symbols range over objects in the domain,
function symbols map objects to objects, and predicate symbols represent relations
among objects or attributes of objects (e.g., hasIS in Table 5).

251



Computational Linguistics Volume 44, Number 2

Table 5
Hidden predicates and formulas used for bridging anaphora recognition. m represents a
mention, M the set of mentions in the whole document, s an IS class, S the set of eight IS classes,
and w the weight learned from the data for the specific formula.

Hidden predicates
p1 hasIS(m, s)

Formulas
Hard constraints
f 1 ∀m ∈M : |s ∈ S : hasIS(m, s)| = 1

Joint inference formula template
fg (w) ∀mi, mj ∈M ∀smi

, smj
∈ S : jointInferenceFormula Constraint (mi, mj)

→ hasIS(mi, smi
) ∧ hasIS(mj, smj

)

Non-joint inference formula template
fl (w) ∀m ∈M ∀s ∈ S : non-jointInferenceFormula Constraint (m, s)→ hasIS(m, s)

In a ground Markov network, the probability distribution over the possible world
SM is given by

P(SM) = 1
Zexp

(∑
i

wini(SM)

)
(19)

where ni(SM) is the number of true groundings of a local or a global feature function Fi
in SM, wi is the weight for Fi, and Z is the partition function. Table 5 shows the formula
templates to model IS recognition in MLNs. p1 is the hidden predicate that we want
to predict (i.e., the information status s of a mention m). f 1 models that each mention
can only belong to one IS class, and fg and fl are templates of joint inference formulas
and non-joint inference formulas, respectively.15 Details of specific formulas (features)
instantiating fg and fl are described in Sections 4.3.1 and 4.3.2.

4.2.2 Model II: Cascading Collective Classification

Motivation for the model. As shown in Section 3, bridging anaphors have different deter-
miners and few easily identifiable surface features. In addition, they are relatively rare,
making up only 6% of noun phrases in our data. Such multi-class imbalance problems
are an open research topic (Abe, Zadrozny, and Langford 2004; Zhou and Liu 2010;
Wang and Yao 2012). Classification accuracy may be artificially high in case of extremely
imbalanced data: Majority classes are favored, and minority classes are not recognized.
Such a bias becomes stronger within the multi-class setting. To address this problem
while still keeping the strength of collective inference within a multi-class setting, we

15 fg and fl correspond to Fg and Fl, respectively, in Equation (18).
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Figure 3
The cascading collective classification system.

integrate our collective classification model (Section 4.2.1) into a cascading collective
classification system inspired by Omuya, Prabhakaran, and Rambow (2013).

Detailed Model. Unlike in the multi-class setting, learning from imbalanced data in the
binary setting has been well studied (He and Garcia 2009). Therefore, our cascading
collective classification system, shown in Figure 3, combines binary classifiers for mi-
nority categories and a collective classifier for all categories in a pipeline. Specifically,
for the five classes mediated/function, mediated/aggregate, mediated/comparative,
mediated/bridging, and mediated/WK that each constitutes less than the expected one-
eighth of the instances, we develop five binary classifiers with SVMlight (Joachims 1999).
These classifiers use only non-joint inference formulae, but have the advantage that we
can tune the SVM parameter against data imbalance on the training set. We arrange
them from the rarest to the most frequent category. Whenever a minority classifier
predicts true, this class is assigned. When all minority classifiers say false, we back off
to multi-class collective inference (Section 4.2.1). Omuya, Prabhakaran, and Rambow
(2013, page 805) motivate a rarest to most frequent ordering on the task of dialogue
act tagging by “the observation that the less frequent classes are also hard to predict
correctly” and we follow their procedure. Such a framework substantially improves
bridging anaphora recognition without jeopardizing performance on other IS classes
(Section 4.4.3).

4.3 Method: Features

Section 4.3.1 details the relational features that instantiate the joint inference formula
template fg in Table 5. Section 4.3.2 details non-relational features that instantiate the
non-joint inference formula template fl in Table 5. Apart from the ISNotes corpus,
for some non-relational features we use additional resources with manual annotation,
namely, NomBank (Meyers et al. 2004), WordNet, the General Inquirer (Stone et al.
1966), and the ACE2 annotations for genericity (Mitchell et al. 2002).
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4.3.1 Relational Features

Syntactic hasChild relations. We link a mention m1 to a mention m2 via a hasChild relation
if (i) m2 is a possessive or prepositional modification of m1; or (ii) m2 is a proper name
premodifier of m1. For instance, the mention [professors at Cambridge] is linked to the
mention [Cambridge] via a hasChild relation.

Syntactic hasChildCoordination relations. We link a mention m1 to a mention m2 via a
hasChildCoordination relation if m1 is a coordination and m2 is one of its children. For
example, the mention [Not only George Bush but also Barack Obama] is linked to the
mention [Barack Obama] via a hasChildCoordination relation.

Syntactic ConjoinedTo relations. Conjoined mentions may have the same IS class. We link
a mention m1 to a mention m2 via a ConjoinedTo relation if both m1 and m2 are the
children of a coordination. For example, [George Bush] is linked to [Barack Obama] via
a ConjoinedTo relation as both are the children of the coordination [Not only George Bush
but also Barack Obama].

4.3.2 Non-relational Features. Table 6 shows all non-relational features for IS recognition.

Features p1–p8 from previous work. We adapt features p1–p8 from Nissim (2006) and
Rahman and Ng (2011). A mention with complete string match to a previous one is
likely to be old (p1, p2). The head match feature p3 (from Nissim’s PartialpreMention
feature as well as coreference resolution [Vieira and Poesio 2000; Soon, Ng, and
Lim 2001]) identifies old and mediated categories such as comparative anaphora.
p4 NPlength is motivated by Arnold et al. (2000, page 34): “items that are new to the
discourse tend to be complex and items that are given tend to be simple.” There is a
tendency for indefinite NPs to be new (Hawkins 1978) (p5). Subjects are likely to be old

(p6) (Prince 1992). Pronouns tend to be old (p7). Rahman and Ng (2011) explore lexical
features (p8), for example, mentions which include the lexical unit his are likely not
to be new.

New features for identifying several IS classes (non-bridging). The new features (g1–g5)
capture the classes old as well as mediated/WK, mediated/comparative, and mediated/

function. g1 HeadMatchTime and g2 ContentWordPreMention are string match variations,
giving a categorical version of p3 HeadMatch and a partial mention match going beyond
the mention’s head, respectively.

Proper names not previously mentioned in the text but appearing in many other
documents are likely to be hearer-old (IS class mediated/WK). To approximate this, g3
IsFrequentProperName measures if the mention is a proper name, occuring in at least
100 documents in the Tipster corpus (Harman and Liberman 1993).

Mediated/comparative mentions are often indicated by surface clues such as pre-
modifiers (e.g., other, another). In g4 PreModByCompMarker, we check for such markers16

as well as the presence of adjectives or adverbs in the comparative form.

16 The full list is: {other, another, such, different, similar, additional, comparable, same, further, extra}.
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Table 6
Non-relational features for IS classification. “b” indicates binary features, “n” nominal features,
“l” lexical features, “int” integer. A nominal feature draws the feature value from a restricted set.
A lexical feature indicates the presence or absence of a lexical unit in a mention. The value “NA”
stands for “not applicable” and is used for pronouns.

Feature Value

Features from previous work (Nissim 2006; Rahman and Ng 2011)

p1 FullPrevMention (n) {yes, no, NA}1

p2 FullMentionTime (n) {first, second, more, NA}
p3 HeadMatch (n) {yes, no, NA}
p4 NPlength (int) numeric, e.g., 5
p5 Determiner (n) {def, indef, dem, poss, bare, NA}
p6 GrammaticalRole (n) {subject, subjpass, object, predicate, pp, other}
p7 NPType (n) {common noun, proper noun, pronoun, other}
p8 Unigrams (l) e.g., his, the, China

New features for identifying several IS classes (non-bridging)
g1 HeadMatchTime (n) {first, second, more, NA}
g2 ContentWordPreMention (b) {yes, no, NA}
g3 IsFrequentProperName (b) {yes, no}
g4 PreModByCompMarker (b) {yes, no}
g5 DependOnChangeVerb (b) {yes, no}

New features for recognizing bridging anaphora
Discourse structure
f 1 IsCoherenceGap (b) {yes, no}
f 2 IsSentFirstMention (b) {yes, no}
f 3 IsDocFirstMention (b) {yes, no}
Lexico-semantics
f 4 IsArgumentTakingNP (b) {yes, no}
f 5 IsWordNetRelationalNoun (b) {yes, no}
f 6 IsInquirerRoleNoun (b) {yes, no}
f 7 SemanticClass (n) a list of 16 classes, e.g., location, organization
f 8 IsBuildingPart (b) {yes, no}
f 9 IsSetElement (b) {yes, no}
f 10 ModSpatialTemporal (b) {yes, no}
f 11 IsYear (b) {yes, no}
f 12 PreModifiedByCountry (b) {yes, no}
Identifying generic NPs
f 13 AppearInIfClause (b) {yes, no}
f 14 NPNumber (n) {singular, plural, unknown}
f 15 VerbPosTag (l) e.g., VBG, MD, VB
f 16 IsFrequentGenericNP (b) {yes, no}
f 17 GeneralWorldKnowledge(l) e.g., the sun, the wind
f 18 PreModByGenericQuantifier (b) {yes, no}
Mention syntactic structure
f 19 HasChildMention (b) {yes, no}

1 We changed the value of “f 1 FullPrevMention” from “numeric” to {yes, no, NA}.
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g5 DependOnChangeVerb determines whether a number mention is the object of an
increase/decrease verb and therefore is likely to be the IS class mediated/function.17

New features for recognizing bridging anaphors. Bridging anaphors are rarely marked by
surface features but are often licensed because of discourse structure and/or lexical
or world knowledge. Motivated by these observations, we develop discourse structure
and lexico-semantic features indicating bridging anaphora. We also design features to
separate genericity from bridging anaphora.

Discourse structure features (Table 6, f 1–f 3). Bridging is sometimes the only means
to establish entity coherence to previous sentences/clauses (Grosz, Joshi, and Weinstein
1995; Poesio et al. 2004b). This is especially true for topic NPs (Halliday and Hasan 1976).
We therefore define coherence gap sentences as sentences that have none of the following
three coherence elements: (1) entity coreference to previous sentences, as approximated
via string match or the presence of pronouns; (2) comparative anaphora approximated
by mentions modified via 10 comparative markers, or by the presence of adjectives or
adverbs in the comparative (see also g4 PreModByCompMarker); or (3) proper names.18

Bridging Examples (1), (9), (10), (11), (12), (14), and (16) occur in coherence gap sentences
under our definition. We approximate the topic of a sentence via the first mention ( f 2
IsSentFirstMention). f 3 IsDocFirstMention models that bridging anaphors do not appear
at the beginning of a text.

Lexico-semantic features (Table 6, f 4–f 12). Drawing on theories of noun types
(Löbner 1985) and bridging sub-classes (Clark 1975; Poesio and Vieira 1998; Lassalle
and Denis 2011), we capture lexical properties of head nouns of bridging.

Löbner (1985) distinguishes between relational nouns that take on at least one core
semantic role (such as friend) and sortal nouns (such as table or flower). He points out
that relational nouns are more frequently used for bridging than sortal nouns (see
Examples (8), (9), (13), and (14)). f 4 IsArgumentTakingNP and f 5 IsWordNetRelationalNoun
capture relational nouns. f 4 decides whether the argument taking ratio of a mention’s
head is bigger than some threshold k. We calculate the argument taking ratio α for a
mention using NomBank (Meyers et al. 2004). For each mention, α is calculated via its
head frequency in the NomBank annotation divided by the head’s total frequency in
the WSJ corpus on which the NomBank annotation is based. The value of α reflects
how likely an NP is to take arguments. For instance, the value of α is 0.90 for husband
but 0.31 for children. We also extract around 4,000 relational nouns from WordNet, then
determine whether the mention head appears in the list or not ( f 5 IsWordNetRelational-
Noun). The core semantic role for a relational noun can of course also be filled NP-
internally instead of anaphorically. We use the features f 12 PreModifiedByCountry (such
as the Egyptian president) and f 19 HasChildMention (for complex NPs that are likely to fill
needed roles NP-internally) to address this.

Role terms (e.g., chairman) and kinship terms (e.g., husband) are also relational
nouns. f 6 IsInquirerRoleNoun determines whether the mention head appears under the
role category in the General Inquirer lexicon (Stone et al. 1966). The feature f 7 Semantic-
Class puts each mention into one of 16 coarse-grained semantic classes: {rolePerson,
relativePerson, person∗, organization, geopolitical entity (GPE), location, nationality or

17 We extract increase/decrease verbs from the General Inquirer lexicon (Stone et al. 1966). The list contains
the verbs {increase, raise, rise, climb, swell, ascend, jump, leap, scale, stretch, become, double, extend, grow,
improve, strengthen, fall, drop, cut, slow, ease, reduce, descend, lower, slip}.

18 Note that we use the notion of a coherence gap as missing entity coherence to all previous sentences, not
just the adjacent one as discussed in Grosz, Joshi, and Weinstein (1995).
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religious or political group (NORP), event, product, date, time, percent, money, ordinal,
cardinal, other}, using the OntoNotes annotation for named entities and WordNet for
common nouns. The category rolePerson matches person mentions whose head noun
specifies a professional role such as mayor, director, or president, using a list of 100 such
nouns from WordNet. The category relativePerson matches person mentions whose
head noun specifies a family or friend role such as husband, daughter, or friend, using
a list of 100 such nouns from WordNet. The category person∗ is assigned to all other
person mentions.

Because part-of relations are typical bridging relations (see Example (1) and Clark
[1975]), f 8 IsBuildingPart determines whether the mention head might be a part of a
building, using a list of 45 nouns from the General Inquirer under the BldgPt category.

f 9 IsSetElement is used to identify set-membership bridging cases (see Example (12)),
by checking whether the mention head is a number or indefinite pronoun (one, some,
none, many, most) or modified by each, one. However, not all numbers are bridging
cases, and we use f 11 IsYear to exclude some such cases.

Some bridging anaphors are indicated by spatial or temporal modifiers (see
Example (11) and also Lassalle and Denis [2011]). We use f 10 ModSpatialTemporal to
detect these cases by compiling 22 such modifiers from the General Inquirer (Stone
et al. 1966).19

Features to detect generic NPs (Table 6, f 13–f 18). Generic NPs (Example (15)) are
easily confused with bridging. Inspired by Reiter and Frank (2010), we develop features
( f 13–f 18) to exclude generics.

First, hypothetical entities are likely to refer to generic entities (Mitchell et al.
2002). We approximate this by determining whether the NP appears in an if-clause
( f 13 AppearInIfClause). Also the NP’s number (e.g., singular or plural) and the clause
tense/mood may play a role to decide genericity (Reiter and Frank 2010). The former
is detected on the basis of the POS tag of the mention’s head word ( f 14 NPNumber).
The latter is often reflected by the verb form of the clause where the mention is present,
such as VBG or MD VB VBG. So we use the POS tags of the clause verbs as lexical
features ( f 15 VerbPosTag).

The ACE-2 corpus (Mitchell et al. 2002) (distinct from our corpus) contains annota-
tions for genericity. We collect all NPs from ACE-2 that are always used generically ( f 16
IsFrequentGenericNP). We also try to learn NPs that are uniquely identifiable without
further description or anaphoric links such as the sun or the pope, by extracting common
nouns that are annotated as mediated/WK from the training set and use these as lexical
features ( f 17 GeneralWorldKnowledge).

Motivated by the ACE-2 annotation guidelines, f 18 PreModByGenericQuantifier
identifies six quantifiers that may indicate genericity (all, no, neither, every, any, most).

4.4 Results and Discussion
4.4.1 Experimental Set-up. Because of the still limited size of our annotated corpus,
especially for the rarer IS categories, we conduct experiments via document-wise 10-
fold cross-validation. We use the OntoNotes named entity and syntactic annotation
for feature extraction. The value of the parameter k in the feature f 4 IsArgument-
TakingNP (Table 6) is estimated for each fold separately: We first choose ten

19 The whole list is: {final, first, last, next, prior, succeeding, second, nearby, previous, close, above, adjacent, behind,
below, bottom, early, formal, future, before, after, earlier, later}.
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documents randomly from the training set for each fold as the development set to
estimate k’s value via a grid search over k ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, then the whole train-
ing set is trained again using the optimized parameter. We use recall, precision, and
F-score to measure the performance per category. Accuracy measures overall perfor-
mance on all IS categories. Statistical significance is measured using McNemar’s χ2 test
(McNemar 1947).

4.4.2 Evaluation of New Non-relational Features. We reimplemented the two local IS
classifiers in Nissim (2006) and Rahman and Ng (2011) as baselines (henceforth
Nissim and RahmanNg), using their feature and algorithm choices. We then add our
new features from Table 6 in Section 4.3.2 to the two baselines, yielding the following
six systems.

Nissim. Algorithm Nissim is a J48 decision tree with standard settings in WEKA (Witten
and Frank 2005), using features p1–p7 from Table 6. p8 is not used in Nissim, because
lexical features are not handled well by J48 (Nissim 2006).

Nissim plus g1–g5. Features g1–g5 from Table 6 are added to Nissim. These new fea-
tures are designed for the categories old, mediated/WK, mediated/comparative, and
mediated/function.

Nissim plus g1–g5 plus f 1–f 19. Features f 1–f 19 from Table 6 designed for mediated/

bridging are added. As for algorithm Nissim, we again exclude lexical features ( f 15
VerbPosTag and f 17 GeneralWorldKnowledge).

RahmanNg. Rahman and Ng (2011) use a binary SVM with a composite kernel (Joachims
1999; Moschitti 2006) on the Switchboard corpus. They use the one-versus-all strategy
for multi-class classification and the features p1–p8 from Table 6. In addition, they use
a tree kernel feature where the context of a mention is represented by its parent and
its sibling nodes (without lexical leaves). Although this feature captures the syntactic
context of a mention, it does not capture the internal structure of the mention itself nor
the interaction between the IS of a mention and its children or parents.

RahmanNg plus g1–g5. Features g1–g5 from Table 6 are added.

RahmanNg plus g1–g5 plus f 1–f 19. Features f 1–f 19 (Table 6) are added.

Results for adding the new features to Nissim are shown in Table 7 (top) and
to RahmanNg in Table 7 (bottom). The final algorithm improves significantly over all
previous models in overall accuracy, showing the effectiveness of our new features.
Comparative anaphors are recognized reliably via a small set of comparative mark-
ers. Including features g3 IsFrequentProperName and g5 DependOnChangeVerb improves
results for mediated/WK and mediated/function, respectively.

Features f 1–f 19 from Table 6 were specifically designed for bridging: They help
Nissim plus g1–g5 plus f 1–f 19 improve the results for bridging substantially over
Nissim plus g1–g5. They also help to delimit several other IS classes better, such as
mediated/syntactic for Nissim plus g1–g5 plus f 1–f 19 and RahmanNg plus g1–g5 plus
f 1–f 19.

The new features f1–f19 only have limited effect on bridging recognition in
RahmanNg plus g1–g5 plus f 1–f 19 compared with RahmanNg. Unigrams in RahmanNg
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Table 7
Experimental results: compared to the baseline Nissim (top) and Rahman (bottom). Bolded scores
indicate significant improvements relative to all other models (p < 0.01).

Nissim Nissim plus g1–g5 Nissim plus g1–g5
plus f 1–f 19

R P F R P F R P F
old 85.1 82.7 83.9 85.6 82.5 84.0 85.6 85.4 85.5
med/worldKnowledge 62.3 64.4 63.3 64.2 72.0 67.8 63.3 76.3 69.2
med/syntactic 41.6 59.7 49.0 44.8 61.8 52.0 59.2 63.9 61.4
med/aggregate 28.4 36.8 32.1 31.8 44.7 37.1 34.6 44.5 38.9
med/function 0.0 NA NA 38.5 89.3 53.8 58.5 76.0 69.2
med/comparative 0.4 7.7 0.7 84.6 82.0 83.3 83.0 78.1 80.5
med/bridging 4.4 23.0 7.4 5.3 24.5 8.9 20.7 41.5 27.6
new 82.7 62.3 71.1 82.0 65.4 72.8 79.7 68.7 73.8

Accuracy 67.6 70.4 72.6

RahmanNg RahmanNg RahmanNg
plus g1–g5 plus g1–g5

plus f 1–f 19

R P F R P F R P F
old 85.3 87.1 86.2 85.7 86.9 86.3 86.8 86.7 86.8
med/worldKnowledge 66.6 69.6 68.0 67.1 73.5 70.1 64.9 81.2 72.2
med/syntactic 57.3 72.2 63.9 55.8 72.8 63.2 66.3 71.7 68.9
med/aggregate 26.5 75.7 39.3 25.1 73.6 37.5 29.4 78.5 42.8
med/function 24.6 51.6 33.3 56.9 84.1 67.9 44.6 85.3 58.6
med/comparative 26.5 85.9 40.5 79.4 81.7 80.6 79.1 81.0 80.0
med/bridging 11.6 45.6 18.5 8.9 44.7 14.8 12.4 61.2 20.6
new 87.8 66.7 75.8 87.6 67.6 76.3 87.4 70.0 77.8

Accuracy 73.3 74.4 76.2

may cover the lexical knowledge for bridging anaphora recognition that we model
explicitly via features. Also although the overall IS classification performance of
RahmanNg plus g1–g5 plus f 1–f 19 is significantly better than Nissim plus g1–g5 plus
f 1–f 19, the former is worse than the latter with regard to bridging anaphora recog-
nition. The one-versus-all strategy for a multi-class setting in Rahman and Ng (2011)
is not suitable for identifying a minority class which lacks strong indicators such as
bridging.

4.4.3 Evaluation of Collective and Cascaded Collective Classification. We now compare
the best local classifier, RhamanNg plus g1–g5 plus f 1–f 19, to collective and cascaded
collective classifiers (Collective and CascadedCollective). The MLN classifier Collective
(Section 4.2.1) uses the non-relational features from Table 6 and adds the rela-
tional features from Section 4.3.1. We use thebeast20 to learn weights and to perform

20 http://code.google.com/p/thebeast.

259



Computational Linguistics Volume 44, Number 2

Table 8
Experimental results: Comparing the best local to collective and cascaded collective classifiers.
Bolded scores indicate significant improvements compared to previous model (p < 0.01).

RahmanNg Collective CascadedCollective
plus g1–g5
plus f 1–f 19

R P F R P F R P F
old 86.8 86.7 86.8 85.7 84.7 85.2 83.1 85.7 84.4
med/worldKnowledge 64.9 81.2 72.2 64.2 80.5 71.4 65.6 79.5 71.9
med/syntactic 66.3 71.7 68.9 82.7 80.1 81.4 82.2 80.5 81.3
med/aggregate 29.4 78.5 42.8 71.6 78.2 74.8 71.1 77.7 74.3
med/function 44.6 85.3 58.6 56.9 90.2 69.8 61.5 83.3 70.8
med/comparative 79.1 81.0 80.0 81.4 84.8 83.1 83.4 82.7 83.1
med/bridging 12.4 61.2 20.6 25.9 49.9 34.1 48.7 43.8 46.1
new 87.4 70.0 77.8 84.5 75.7 79.9 81.3 77.7 79.5

Accuracy 76.2 78.9 78.4

inference.21 thebeast uses cutting plane inference (Riedel 2008) to improve the accuracy
and efficiency of MAP inference for MLNs.

The relational features in Collective lead to significant improvements in accuracy
over the local model (Table 8), in particular for mediated/syntactic and mediated/

aggregate as well as their distinctions from new. Such improvement is in accordance
with the linguistic relations among IS categories we analyzed in Section 4.2.1.22 Collec-
tive also improves the F-score for bridging by 13.5% compared with the local model.
This is mainly through improved recall, where the local model in Table 8 is very
conservative with a recall score of only 12.4%. Collective doubles recall but at a certain
loss to precision.

However, the results for the bridging category, including recall, are still low. In
a multi-class setting, prediction is biased toward the classes with the highest priors.
CascadedCollective classification (Section 4.2.2) addresses this problem by combining
a sequence of minority binary classifiers (based on SVMs, using only non-relational
features) with a final collective classifier (based on MLNs, using non-relational and re-
lational features). CascadedCollective improves bridging F-score and recall substantially
without jeopardizing performance on other IS classes (Table 8, right). One question
is whether the cascading algorithm is sufficient for improved bridging recognition
with our additional non-relational bridging features f1–f19 being superfluous. We ran
Cascaded Collective without these features. Results worsened substantially to 74.4% over-
all accuracy and 29.2 bridging F-measure. Our novel features (addressing linguistic
properties of bridging) and the cascaded algorithm (addressing data sparseness) are
complementary.

21 In 10-fold cross-validation, we have 45 training documents in each fold. In fold0, the ground Markov
network of Collective for the first training instance contains 5,831 variables and it takes around 35 minutes
on an 8 CPU core machine to train the model.

22 The improvement is not due simply to a switch from SVMs to MLNs. If we run the MLN without the
novel relational features, we obtain performance comparable but slightly lower than SVMs.
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Table 9
Confusion matrix of CascadedCollective for bridging anaphora recognition. “C” indicates classifier
tags, “G” gold tags. “brid” stands for mediated/bridging, “syn” mediated/syntactic, “comp”
mediated/comparative, “aggr” mediated/aggregate, “func” mediated/function, “know”
mediated/worldKnowledge.

C→ old new brid syn comp aggr func know
G ↓

old - - 175 - - - - -
new - - 193 - - - - -
brid 66 251 323 10 2 1 0 10
synt - - 10 - - - - -
comp - - 2 - - - - -
aggr - - 0 - - - - -
func - - 0 - - - - -
know - - 35 - - - - -

4.4.4 Error Analysis. Our performance on bridging recognition, although outperforming
reimplementations of previous work, is still under 50% in all measures. We conducted
an error analysis using our best model CascadedCollective. We examine the confusion
matrix (Table 9) of the model, concentrating only on the numbers related to bridging.

The highest proportion of recall errors is due to the fact that 251 bridging anaphors
are misclassified as new. This can be explained as the syntactic form of many new

instances and bridging anaphors are the same, new items are more frequent, and our
lexico-semantic features in particular only pick up on certain types of bridging.

Most precision errors are new and old instances being misclassified as mediated/

bridging. Many old instances misclassified as bridging are definite NPs without further
modification and common noun heads without a string match to a previous mention.
An example would be an NP such as the president, which can easily be coreferent to a
previous president named by proper name (Barack Obama) or a bridging to a country
or company. This coincides with the fact that in coreference resolution, common noun
anaphors without head match are also hardest to detect (Martschat and Strube 2014).
Future work attempting joint bridging and coreference resolution might help here. New
items misclassified as bridging are also NPs with common noun heads and no modifica-
tion (outside determiners) such as control or the back, often generics (see Examples (14)
and (15)). In the latter cases how the phrase is embedded in the discourse plays an
important role and is only partially modeled by our approach. Currently, the lexical
semantic knowledge we explored only indicates that some NPs are more likely to be
used as bridging anaphora than others.

5. Bridging Antecedent Selection

Bridging antecedent selection chooses an antecedent among all possible candidates for
a given bridging anaphor. We make contributions in three areas for antecedent selection:
(i) using joint modeling to tackle what we call sibling anaphora, (ii) developing a range
of semantic and salience features for the problem, and (iii) proposing the novel concept
of an anaphor’s discourse scope to delimit the list of possible candidate antecedents.

From now on we assume that the antecedent is an NP mention—because, among
663 bridging anaphors, only 39 have verbs/clauses as antecedents (see Section 3).
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We do not resolve the latter and count our decisions in these cases as incorrect. The
antecedent can be coreferent with prior mentions of the same entity. In Example (1),
repeated as Example (20), The windows is the bridging anaphor, the Polish center is
the antecedent (mention), and the antecedent is coreferent to the center mentioned
previously. We call such a coreference chain of antecedents the antecedent entity.

If we see bridging as independent of coreference resolution, we can select an-
tecedents among all prior mentions—if not, then among all entities mentioned before
the anaphor. The first case can be seen as a special case of the second one where all
antecedent entities and candidates are chains of length 1 and we know nothing about
their coreference properties. For our general model formulation, we assume the an-
tecedent entity setting as the general case which subsumes the other setting. However,
candidate generation, feature computation, and evaluation will vary for the two settings
and therefore we explore both scenarios in the experiments.

(20) A cake topped with a replica of the center will be auctioned at an AIDS benefit
at Sotheby’s in December. If Mr. McDonough’s plans get executed, as much
as possible of the Polish center will be made from aluminum, steel and glass
recycled from Warsaw’s abundant rubble. [2 sent.] The windows will open.
The carpets won’t be glued down and walls will be coated with non-toxic
finishes.

5.1 Method: A Joint Model

Motivation. Many of our bridging anaphors are siblings—that is, they share the same
antecedent (Section 3). Sibling anaphors clustering tries to identify such siblings. We then
use joint inference to model sibling anaphors clustering and bridging antecedent selection
together.

Detailed model. A denotes the set of n bridging anaphors in document D. E denotes the
set of antecedent candidates in the whole document. Let cai/aj

be a sibling anaphors clus-
tering assignment for bridging anaphors ai, aj ∈ A, CA be a sibling anaphors clustering
result for all bridging anaphors in A, and Cn

A be the set of all possible sibling anaphors
clustering results for A. Let ea be an antecedent assignment for a bridging anaphor a ∈ A,
EA be an antecedent assignment result for all bridging anaphors in A, and En

A be the set
of all possible antecedent assignment results for A. Joint inference for sibling anaphors
clustering and bridging antecedent selection can be represented as a log-linear model:

P(CA, EA|A; w) =
exp(w · Φ(A, CA, EA))∑

EA
′∈En

A , CA
′∈Cn

A
exp(w · Φ(A, CA

′, EA
′))

(21)

where w is the model’s weight vector, Φ(A, CA, EA) is a “global” feature vector that
takes the entire clustering and antecedent assignments for all bridging anaphors in
A into account. We define Φ(A, CA, EA) as:

Φ(A, CA, EA) =
∑
l∈Fc

∑
ai,aj∈A

Φl(ai, aj, cai/aj
) +

∑
k∈Fr

∑
a∈A

Φk(a, ea)

+
∑
g∈Fg

∑
ai,aj∈A

Φg(cai/aj
, eai , eaj )

(22)
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where Φl(ai, aj, cai/aj
) and Φk(a, ea) are local feature functions for sibling anaphors clustering

and bridging antecedent selection, respectively. The former looks at two bridging anaphors
ai and aj, the latter at the bridging anaphor a and the antecedent candidate ea. Fc and Fr
are the sets of local features for these two tasks, respectively. The global feature function
Φg(cai/aj

, eai , eaj ) looks at the antecedent assignments for ai and aj at the same time, and
Fg is the set of global features.

Like our collective classification model (Section 4.2.1), this log-linear model can be
represented using MLNs. In a ground Markov network for this task, the probability
distribution over the possible world CA, EA is given by

P(CA, EA) = 1
Zexp

(∑
i

wini(CA, EA)

)
(23)

where ni(CA, EA) is the number of true groundings of a local or a global feature function
Fi in (CA, EA), wi is the weight for Fi, and Z is the partition function.

Table 10 shows hard constraints and formula templates for this problem in MLNs.
p1 and p2 are hidden predicates that we predict: choosing the antecedent for

anaphor a1 and deciding whether a1 and a2 are sibling anaphors. f 1 models that each

Table 10
Hidden predicates, hard constraints, and formula templates used for bridging antecedent
selection. a1, a2, a3 represent bridging anaphors, A the set of bridging anaphors in the whole
document, e the antecedent candidate, Ea the set of the antecedent candidates for a according to
a’s discourse scope, and E the set of antecedent candidates in the whole document.

Hidden predicates

p1 isBridging(a1, e)
p2 hasSameAntecedent(a1, a2)

Hard Constraints

f 1 ∀a ∈ A : |e ∈ E : isBridging(a, e)| ≤ 1
f 2 ∀a ∈ A ∀e ∈ E : hasPairDistance(e, a, d) ∧ d < 0→ ¬isBridging(a, e)
f 3 ∀a1, a2 ∈ A : a1 6= a2 ∧ hasSameAntecedent(a1, a2)→ hasSameAntecedent(a2, a1)
f 4 ∀a1, a2, a3 ∈ A : a1 6= a2 ∧ a1 6= a3 ∧ a2 6= a3 ∧ hasSameAntecedent(a1, a2)

∧ hasSameAntecedent(a2, a3)→ hasSameAntecedent(a1, a3)
f 5 ∀a1, a2 ∈ A ∀i ∈ E : a1 6= a2 ∧ hasSameAntecedent(a1, a2) ∧ isBridging(a1, e)

→ isBridging(a2, e)
f 6 ∀a1, a2 ∈ A ∀e ∈ E : a1 6= a2 ∧ isBridging(a1, e) ∧ isBridging(a2, e)

→ hasSameAntecedent(a1, a2)

Formula template for sibling anaphors clustering
fc ∀a1, a2 ∈ A : siblingAnaphorsClusteringFormula Template (a1, a2)

→ hasSameAntecedent(a1, a2)

Formula template for bridging antecedent selection
fr1 ∀a ∈ A ∀e ∈ E : bridgingAnaResolutionFormula Template1 (a, e)→ isBridging(a, e)
fr2 ∀a ∈ A ∀e ∈ Ea : bridgingAnaResolutionFormula Template2 (a, e)→ isBridging(a, e)
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bridging anaphor has at most one antecedent.23 f 2 models that a bridging anaphor
should not appear before its antecedent. f 3 and f 4 model the reflexivity and transitivity
of sibling anaphor clustering. f 5 and f 6 model that sibling anaphors share the same
antecedent.

fc is the formula template for sibling anaphor clustering, fr1 and fr2 are the formula
templates for bridging antecedent selection. Specific formulas instantiating fc and fr1/fr2
are described in Sections 5.2.1 and 5.2.2. In formulas instantiating fr2, the set of
antecedent candidates (Ea) for bridging anaphor a is constructed on the basis of the
anaphor’s discourse scope (i.e., local or non-local) (described in Section 5.3).

5.2 Model: Features

We now describe all the features we use. The only additional manually annotated
resource we need for feature extraction is WordNet.

5.2.1 Features for Sibling Anaphor Clustering. Table 11 shows the formulas for predicting
sibling anaphors. Each formula is associated with a weight w learned during training.
The polarity of the weights is indicated by the leading + or −.

f 1 captures that syntactically parallel anaphors are likely to be siblings. We define
bridging anaphors a1 and a2 to be syntactically parallel if (i) a1 and a2 are coordinated
NPs (e.g., opposition and ruling-party members in Example (24)); or (ii) a1 and
a2 are both subjects/objects of verbs in conjoined clauses (e.g., Three and two in
Example (25)).

(24) But this time it’s hurting opposition as well as ruling-party members.

(25) Back in 1964, the FBI had five black agents. Three were chauffeurs for J. Edgar
Hoover, and two cleaned his house.

Semantically related bridging anaphors are likely to be sibling anaphors. f 2 models
this via head match (see the two occurrences of residents in Example (26)).

(26) After being inspected, buildings with substantial damage were color-coded.
Green allowed residents to re-enter; yellow allowed limited access; red
allowed residents one last entry to gather everything they could within
15 minutes.

In f 3, we predict semantically related anaphors which do not share the same head
word (such as limited access and one last entry in Example (26)), using WordNet-based
similarity measures by Pedersen, Patwardhan, and Michelizzi (2004) in SVMlight.24

5.2.2 Features for Bridging Antecedent Selection. Each formula for bridging antecedent
selection (Table 12) is associated with a weight w learned during training. The polarity
of the weights is indicated by leading + or −. For some formulas the final weight
consists of a learned weight w multiplied by a score d (e.g., the inverse distance between

23 We do not model that bridging anaphors have multiple antecedent entities (Example (7)).
24 We could also use word embeddings as similarity measures. The focus of this article is not on similarity

measures but on the joint optimization of antecedent selection. We therefore leave the investigation of
different similarity measures to future work.
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Table 11
Formulas for sibling anaphor clustering. a1, a2 are bridging anaphors, A is the set of bridging
anaphors in the document, and w the weight learned from the data for the specific formula.

Formulas for sibling anaphors clustering

f1 + (w) ∀a1, a2 ∈ A ParallelAnas(a1, a2)→ hasSameAntecedent(a1, a2)
f2 + (w) ∀a1, a2 ∈ A sameHead(a1, a2)→ hasSameAntecedent(a1, a2)
f3 + (w) ∀a1, a2 ∈ A relatedTo(a1, a2)→ hasSameAntecedent(a1, a2)

antecedent and anaphor). In these cases, the final weight for a ground formula does not
just depend on the respective formula, but also on the specific constants.

The numeric features f 5, f 7, and f 11 in Table 12 are normalized to between 0 and
1 among all antecedent candidates of one anaphor. Given a bridging anaphor ai, its
antecedent candidate set Eai (eij ∈ Eai ) and the numeric score Sik for the pair {ai, eik} , the
normalized value of Sik (i.e., NormSik) is calculated as:

NormSik =
Sik −minj Sij

maxj Sij −minj Sij
(27)

In contrast, the variants of these features (i.e., f 6, f 8, and f 12) tell whether the score
of an anaphor-antecedent candidate pair is the highest among all pairs for this anaphor.

Frequent Bridging Relations (Table 12: f 1–f 4). f 1–f 4 capture four bridging relations using
the semantic classes of anaphor and antecedent, namely, the ones between role persons
and GPEs (USA - the president), role persons and organizations (the college - the principal),
relations (She - the husband) and times (September - a year earlier; Example (28)).

(28) Production of cars rose to 801,835 units in September from a year earlier.

For the first two bridging types we do not penalize antecedent candidates that
are far away from the anaphor ( f 1 and f 2). This is because in news it is common
that a globally salient GPE or organization is introduced in the beginning, then later
NPs denoting their roles are used as bridging anaphors throughout the document.
For personal as well as temporal relations we prefer close antecedents by including
the distance between antecedent and anaphor in the weights since these two bridging
relations are local phenomena. These restrictions might be genre-specific.

Semantic features: preposition pattern (Table 12: f 5 and f 6). Corpus-based patterns capture
semantic connectivity between a bridging anaphor and its antecedent. The “NP of NP”
pattern (Poesio et al. 2004a) is useful for part-of and attribute-of relations (e.g., windows
of a room) but cannot cover all bridging relations (such as sanctions against a country).
We therefore generalize it to a preposition pattern to capture diverse semantic relations.

First, we extract the three most highly associated prepositions for each anaphor
from Gigaword (Parker et al. 2011) and Tipster (Harman and Liberman 1993). This
leads to, for example, the prepositions {against, on, in} for the anaphor sanctions. Then
for each anaphor-antecedent candidate pair, we query the corpora using their head
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Table 12
Formulas for bridging antecedent selection. a is a bridging anaphor, A the set of bridging
anaphors in the document, e the antecedent candidate, Ea the set of the antecedent candidates for
a according to a’s discourse scope, and E the set of antecedent candidates in the document.

Formulas for bridging antecedent selection

Semantic class features
f1 + (w) ∀a ∈ A ∀e ∈ E : hasSemanticClass(a, “gpeRolePerson”) ∧

hasSemanticClass(e, “gpe”) ∧ hasPairDistance(e, a, d) ∧ d > 0
→ isBridging(a, e)

f2 + (w) ∀a ∈ A ∀e ∈ E : hasSemanticClass(a, “otherRolePerson”) ∧
hasSemanticClass(e, “org”) ∧ hasPairDistance(e, a, d) ∧ d > 0
→ isBridging(a, e)

f3 + (w · d) ∀a ∈ A ∀e ∈ E : hasSemanticClass(a, “relativePerson”)
∧ hasSemanticClass(e, “person ? ”) ∧ hasPairDistanceInverse(e, a, d)
→ isBridging(a, e)

f4 + (w · d) ∀a ∈ A ∀e ∈ E : hasSemanticClass(a, “date|time”)
∧ hasSemanticClass(e, “date|time”) ∧ hasPairDistanceInverse(e, a, d)
→ isBridging(a, e)

Semantic features
f5 + (w · d) ∀a ∈ A ∀e ∈ Ea : relativeRankPrepPattern(a, e, d)→ isBridging(a, e)
f6 + (w) ∀a ∈ A ∀e ∈ Ea : isTopRelativeRankPrepPattern(a, e)→ isBridging(a, e)
f7 + (w · d) ∀a ∈ A ∀e ∈ Ea : relativeRankVerbPattern(a, e, d)→ isBridging(a, e)
f8 + (w) ∀a ∈ A ∀e ∈ Ea : isTopRelativeRankVerbPattern(a, e)→ isBridging(a, e)
f9 + (w · d) ∀a ∈ A ∀e ∈ Ea : isPartOf (a, e) ∧ hasPairDistanceInverse(e, a, d)

→ isBridging(a, e)

Salience features
f10 + (w) ∀a ∈ A ∀e ∈ Ea : predictedGlobalAnte(e) ∧ hasPairDistance(e, a, d)

∧ d > 0→ isBridging(a, e)
f11 + (w · d) ∀a ∈ A ∀e ∈ Ea : relativeRankDocSpan(a, e, d)→ isBridging(a, e)
f12 + (w) ∀a ∈ A ∀e ∈ Ea : isTopRelativeRankDocSpan(a, e)→ isBridging(a, e)

Lexical features
f13 − (w) ∀a ∈ A ∀e ∈ Ea : isSameHead(a, e)→ isBridging(a, e)
f14 + (w) ∀a ∈ A ∀e ∈ Ea : isPremodOverlap(a, e)→ isBridging(a, e)

Syntactic features
f15 − (w) ∀a ∈ A ∀e ∈ Ea : isCoArgument(a, e)→ isBridging(a, e)
f16 + (w) ∀a ∈ A ∀e ∈ Ea : synParallelStructure(a, e)→ isBridging(a, e)
f17 + (w) ∀a ∈ A ∀e ∈ Ea : isClosestNominalModifer(a, e)→ isBridging(a, e)
f18 + (w) ∀a ∈ A ∀e ∈ Ea : isPredictSetBridging(a, e)→ isBridging(a, e)

words “anaphor preposition antecedent” (e.g. “sanction(s) against/on/in countr(y/ies)”).
We replace proper names with fine-grained named entity types (using a gazetteer). Raw
query hit counts are converted into Dunning root log-likelihood ratio scores25 and then
normalized using Equation (27). Table 13 shows some raw hit counts of the preposition
pattern queries, the corresponding Dunning root log-likelihood ratio scores, and the
normalized scores for the bridging anaphor sanctions and its antecedent candidates.

25 A variation of Dunning log-likelihood ratio (Dunning 1993) proposed by Dunning in http://mail-
archives.apache.org/mod mbox/mahout-user/201001.mbox.
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Table 13
An example of the preposition pattern feature. RootLLR = Dunning root log-likelihood ratio
scores.

Anaphor Antecedent Candidate RawCount RootLLR NormalizedScore

sanctions the country 6,817 81.44 1.00
sanctions apartheid 26 4.8 0.32
sanctions further punishment 9 -1.88 0.26
sanctions . . . . . . . . . . . .

Semantic features: verb pattern (Table 12: f 7 and f 8). Set-membership relations between
anaphor and antecedent evade the preposition pattern, because the anaphor often
has no common noun head (Example (29)). However, in such a bridging relation,
the antecedent is semantically compatible with the verb the anaphor depends on.
In Example (29), farmers travel is more frequent than traveling pigs or dawns. We
measure the compatibility between the antecedent candidates and the verb the ana-
phor depends on.

(29) The cost of raising a pig kept bounding ahead of the return of selling one.
The farmers stayed angry. [1 sent] At dawn on a cool day, hundreds travel to
the private market in Radzymin [. . . ]

Anaphors whose lexical head is an indefinite pronoun or a number are poten-
tial set bridging cases. We extract the verbs on which these potential set bridging
anaphors depend (in our example, the verb travel). Finally, for each antecedent can-
didate, subject-verb, verb-object, or preposition-object queries26 are executed against
the Web 1T 5-gram corpus (Brants and Franz 2006). Raw hit counts are trans-
formed into Dunning root log-likelihood ratio scores, then normalized as described in
Equation (27).

Semantic features: Part-of relation (Table 12: f 9). We use WordNet to decide whether a (pos-
sibly inherited) part-of relation holds between an anaphor and antecedent candidate.

Salience features (Table 12: f 10–f 12). Salient entities are preferred as bridging ante-
cedents. In contrast to Poesio et al. (2004a), we find that bridging anaphors with distant
antecedents are common if the antecedent is the global focus (Grosz and Sidner 1986).

f 10 models global salience by semantic connectivity to all bridging anaphors in the
document. For each bridging anaphor a ∈ A and each entity e ∈ E, let score(a, e) be the
preposition pattern score ( f 5 in Table 12). We calculate the global semantic connectivity
score esal for each e ∈ E as follows: esal =

∑
a∈A score(a, e). If an entity appears in the

headline27 and also has the highest global semantic connectivity score among all entities
in E, then this entity is predicted as globally salient for this document. Not every
document has a globally salient entity.

26 The query form (i.e., subject-verb, verb-object, or preposition-object) is decided by the syntactic relation
between the anaphor and its dependent verb/preposition.

27 The texts in OntoNotes are not shown with headlines. However, the same texts are included in the Tipster
corpus, from which we can extract the headlines.
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f 11 and f 12 capture salience by computing the span of text (measured in sentences)
in which the antecedent candidate entity is mentioned divided by the number of sen-
tences in the document.

Lexical features (Table 12: f 13–f 14). The isSameHead feature (Table 12: f 13) checks whether
antecedent candidates have the same head as the anaphor: This is rarely the case in
bridging (except in some cases of set bridging and spatial/temporal sequence, see
Example (30)) and can therefore be used to exclude antecedent candidates.

(30) His truck is parked across the field, in a row of grain sellers. [2 sent.] The farmer
at the next truck shouts, “Wheat!”

isPremodOverlap (Table 12: f 14) determines the antecedent for compound noun
anaphors whose head is prenominally modified by the antecedent head (see
Example (31)).

(31) . . . it doesn’t make the equipment needed to produce those chips. And IBM worries
that the Japanese will take over that equipment market.

Syntactic features: CoArgument (Table 12: f 15). The CoArgument feature excludes sub-
jects from being antecedents for the object in the same clause, such as excluding
“the Japanese” in Example (31) as antecedent for that equipment market.

Syntactic features: intra-sentential syntactic parallelism (Table 12: f 16). If a noun phrase
precedes a bridging anaphor in a different clause within the same sentence and both
occupy the same syntactic role, it is likely that this noun phrase is the antecedent of
the bridging anaphor. In Example (32), the anaphor and the antecedent are both objects
of the verbs in the conjoined clauses. In Example (33), the anaphor and the antecedent
both occupy the subject positions of the two conjoined clauses.

(32) Poland must privatize industry and eliminate subsidies to stabilize its
currency.

(33) One building was upgraded to red status while people were taking things out,
and a resident who wasn’t allowed to go back inside called up the stairs to
his girlfriend . . .

Syntactic features: inter-sentential syntactic modification (Table 12: f 17). Laparra and Rigau’s
(2013) work on implicit semantic role labeling assumes that different occurrences of the
same predicate in a document likely maintain the same argument fillers. Therefore we
can identify the antecedent of a bridging anaphor a by analyzing the nominal modifiers
in other NPs with the same head word as a.28 Whereas Laparra and Rigau’s work is
restricted to ten predicates, we consider all bridging anaphors in ISNotes. In f 17, we
predict antecedents for bridging anaphors by performing the following two steps:

1. For each bridging anaphor a, we take its head lemma ah and collect all
prenominal, possessive, and prepositional modifiers of other occurrences
of ah in the document. All realizations of these modifications that
precede a form the antecedent candidate set Antea.

28 Note that the bridging anaphor a is not coreferent to these other NPs with the same head word.
Otherwise, its information status would be old and not bridging.
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2. We choose the most recent mention from Antea as the predicted antecedent
for the bridging anaphor a.

In Example (34), to resolve the bridging anaphor heavy damage to its antecedent
the quake, which registered 6.9 on the Richter scale, we first check the other occurrences
of the lemma “damage” and analyze their nominal modifiers—that is, one modifier is
“area” (supported by damage in the six - county San Francisco Bay area) and the other
modifier is “quake” (supported by quake damage). We then collect all mentions whose
syntactic head is “area” or “quake” and that precede the anaphor in Antea (i.e., the
six-county San Francisco Bay area and the quake, which registered 6.9 on the Richter scale).
Finally, the most recent mention in Antea is predicted to be the antecedent.

(34) Estimates of [damage in [the six - county San Francisco Bay area]] neared
$5 billion, excluding the cost of repairing the region’s transportation system.
...

Part of the bridge collapsed in [the quake, which registered 6.9 on the Richter
scale].
... ... ... ...

While many of these buildings sustained heavy damage, little of that involved
major structural damage.
... ...

On Friday, during a visit to California to survey [quake damage], President
Bush promised to “meet the federal government’s obligation” to assist relief
effort.

Syntactic features: hypertheme antecedent prediction for set sibling anaphors (Table 12: f 18).
The VerbPattern features (Table 12: f 7 and f 8) only apply to a few typical set bridging
cases, such as None in Example (10), here repeated as Example (35). Other set bridging
anaphors (i.e., One man and A food caterer) are not covered by these features because
they are not indefinite pronouns or numbers.

(35) Still, [employees]hypertheme do occasionally try to smuggle out a gem or two.
[One man]theme wrapped several diamonds in the knot of his tie.
[A food caterer]theme stashed stones in the false bottom of a milk pail.
[None]theme made it past the body searches and X-rays of mine security.

Set bridging anaphors are often siblings (e.g., One man, A food caterer, and
None are all elements of the set provided by employees in Example (35)). The in-
formation structure pattern we observe here is Hypertheme–theme (Daneš 1974). We
predict heuristically the “themes” (set sibling anaphors) and their “Hypertheme”
(antecedent). We first predict set sibling anaphors by expanding “typical” set bridg-
ing anaphors (e.g., None in Example 35) to their syntactically parallel neighbors
(e.g., One man and A food caterer). We then predict the closest mention among all
plural, subject mentions from the sentence immediately preceding the first anaphor
as the antecedent for all (predicted) set sibling anaphors. If such a mention does
not exist, the closest mention among all plural, object mentions from the sentence
immediately preceding the first anaphor is predicted to be the antecedent. In
Example (35), employees is predicted to be the antecedent for all (predicted) set sibling
anaphors.

269



Computational Linguistics Volume 44, Number 2

5.3 Method: Discourse Scope for Antecedent Candidate Selection

We use a new method, d-scope-salience, to form the list of antecedent candidates on
the basis of the anaphor’s discourse scope and apply it in the formulas f 5–f 18 in
Table 12.29

Motivation. Ranking-based approaches for bridging antecedent selection need to tackle
two interacting problems: (1) first, creating a list of antecedent candidates, (2) then,
choosing an antecedent from this list. Once implausible candidates are removed from
the list in (1), selecting the correct antecedent becomes an easier task in (2). Previous
work (Markert, Nissim, and Modjeska 2003; Poesio et al. 2004a; Lassalle and Denis 2011)
uses a static sentence window to construct the candidate list. However, this approach
is problematic. If the window is too small, we miss too many correct antecedents. For
example, 24% of anaphors in ISNotes would miss their antecedent if we used a two-
sentence window (Section 3). If it is too large, we include too much noise in learning.
In addition, whether more distant antecedents should be included might depend both
on the salience properties of the antecedent and the place that the anaphor has in
discourse.

We address this problem by proposing the discourse scope for an anaphor. Dis-
course entities have different scopes: Some contribute to the main topic and interact
with distant entities (globally salient entities), and others focus on subtopics and only
interact with nearby entities (locally salient entities). In Figure 4, the globally salient
entity Marina in s1 has a long forward lifespan, so that it can be accessed by both
close and distant anaphors, a resident in s2 and residents in s36. In contrast, the
locally salient entity buildings with substantial damage in s24 has a short forward life-
span, therefore it can only be accessed by nearby subsequent anaphors, residents and
limited access in s25. Accordingly, anaphors that have non-local discourse scopes
can access both locally and distant globally salient entities, whereas anaphors that
have local discourse scopes can only access nearby locally salient entities. In conse-
quence, we can add globally or locally salient entities to antecedent candidate lists
for bridging anaphors according to their discourse scopes. The challenge is how to
decide the discourse scopes for bridging anaphors automatically and how to model
salience.

Salience of Antecedents. For each bridging anaphor a ∈ A, we define three antecedent
candidate sets according to different salience measures: EglobalSal1

A , EglobalSal2
A , and ElocalSal

a :

r EglobalSal1
A includes the top p percent salient entities in the text measured

through the numbers of mentions in coreference chains.r EglobalSal2
A is the set of globally salient entities measured by the global

semantic connectivity score (described in f 10 in Table 12). For each
document, we create a list by ranking all entities according to their
semantic connectivity to all anaphors. An entity is added to EglobalSal2

A
if it ranks among the top k in this list and appears in the headline.

29 Semantic class constraints (f 1–f 4 in Table 12) strongly indicate bridging. Hence, the antecedent access
scope of an anaphor in these constraints is not strongly connected to the anaphor’s discourse scope.
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Figure 4
Global and local salience in bridging.

r The set ElocalSal
a consists of locally salient entities. We approximate the

entity’s local salience by the head position of its mention in the parse
tree. Mentions preceding a in the same sentence and in the previous two
sentences are added to ElocalSal

a if the distance from their head to the
root of the sentence’s dependency parse tree is less than threshold t.

Anaphors’ discourse scopes. We postulate that some discourse relations indicate the dis-
course scope of an anaphor. Here we use the discourse relation Expansion as defined in
the Penn Discourse Treebank (Prasad et al. 2008). In this relation, the second argument
elaborates on the first one and therefore most entities in the second argument contribute
to local instead of global entity coherence. Therefore, we define two types of discourse
scopes for bridging anaphora: local and non-local. If a bridging anaphor appears in
argument 2 of an Expansion relation, it has local discourse scope; otherwise, it has non-
local discourse scope.

Antecedent candidate list for an anaphor via d-scope-salience. We select the antecedent can-
didates for an anaphor via its discourse scope: For a local anaphor, only locally salient
entities from the local window (ElocalSal

a ) are allowed; for a non-local anaphor, apart from
ElocalSal

a , globally salient entities (EglobalSal1
A and EglobalSal2

A ) are also allowed.

5.4 Results and Discussion

We conduct experiments on the ISNotes corpus via 10-fold cross-validation on docu-
ments. We use the OntoNotes named entity and syntactic annotation as well as the Penn
Discourse Treebank annotation for feature extraction. In each fold, we first choose ten
documents randomly from the training set as the development set to estimate the values
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of the parameters p, k, and t in EglobalSal1
A , EglobalSal2

A , and ElocalSal
a , respectively,30 then the

whole training set is trained again using the optimized parameters.

5.4.1 Mention-Entity Setting and Mention-Mention Setting. In the mention-entity set-
ting, entity information is based on the OntoNotes coreference annotation. We resolve
bridging anaphors to entity antecedents. Features are extracted by using entity infor-
mation. For instance, the semantic class of an entity is the majority semantic class of
all its mention instantiations. The raw hit counts of the preposition pattern query for
a bridging anaphor a and its antecedent candidate e ( f 5 and f 6 in Table 12) is the
maximum count among all instantiations of e. The distance between a bridging anaphor
a and its antecedent candidate e is the distance between a and the closest mention
instantiation of e preceding a.

In the mention-mention setting, we resolve bridging anaphors to mention an-
tecedents and do not use any coreference information in the model or feature extraction.
In this setting, we use “string match” for f 11/f 12 in Table 12 and EglobalSal1

A in Section 5.3
to measure the salience of the mention antecedent candidates.

5.4.2 Evaluation Metrics. We measure accuracy on the number of bridging anaphors,
instead of on all links between bridging anaphors and their antecedent instantiations.
We calculate how many bridging anaphors are correctly resolved among all bridging
anaphors. In the mention-entity setting, where the gold entity information is given, a
bridging anaphor is counted as correctly resolved if the model links the anaphor to its
entity antecedent. In the mention-mention setting, where the gold entity information
is not given, a bridging anaphor is counted as correctly resolved if the model links
the anaphor to one of its preceding antecedent instantiations. Statistical significance is
measured using McNemar’s χ2 test (McNemar 1947).

5.4.3 Evaluation of Our New Local Features and Antecedent Candidate Selection. To eval-
uate only the impact of our local features (Table 12) and the new antecedent can-
didate selection strategy (d-scope-salience, Section 5.3), we compare several pairwise
machine learning models that successively build on each other. The pairwise model
is widely used in coreference resolution (Soon, Ng, and Lim 2001) and has been
used for bridging in Poesio et al. (2004a). Similar to the latter, we use it for bridging
antecedent selection in the following way: Given an anaphor mention a and the set
of antecedent candidate entities Ea that appear before a, we create a pairwise instance
(a, e) for every e ∈ Ea. A binary decision whether a is bridged to e is made for each
instance (a, e) separately. Finally, we explore the best first strategy (Ng and Cardie 2002)
to choose one antecedent for each bridging anaphor. As we evaluate in the mention-
entity setting, full coreference information is used in feature computation for all models.

baseline1 NB and baseline2 NB. We reimplement the algorithm from Poesio et al. (2004a)
as a baseline. It is a pairwise naive Bayes classifier that classifies every anaphor-potential
antecedent pair as true antecedent or not. We use the standard naive Bayes settings
in WEKA (Witten and Frank 2005) with a best first strategy for choosing the correct
antecedent (as described above).

30 The parameter is estimated using a grid search over p ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3},
k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and t ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
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Table 14
Feature set used in Poesio et al. (2004) and in our three baselines.

Group Feature Value

lexical Google distance numeric
WordNet distance numeric

salience utterance distance numeric
local first mention boolean
global first mention boolean

Because they did not explain whether they conducted the experiments under the
mention-mention or the mention-entity setting, we assume they treated antecedents as
entities. We use a two sentence (baseline1 NB) and five sentence (baseline2 NB) window
for antecedent candidate selection.31

Poesio et al. (2004a) capture meronymy bridging relations via Google distance
and WordNet distance (see Table 14). The former is the inverse value of Google hit
counts for the NP of NP pattern query (e.g., the windows of the center). Because the
Google API is no longer available, we use the Web 1T 5-gram corpus (Brants and Franz
2006) to extract the Google distance feature. We improve it by taking all information
about entities via coreference into account and by replacing proper names with fine-
grained named entity types (using a gazetteer). WordNet distance is the inverse value
of the shortest path length between anaphor and antecedent candidate among all
synset combinations. The other features measure the salience of an antecedent can-
didate. For instance, local first mention checks whether an antecedent candidate is
realized in the first position of a sentence within the previous five sentences of the
anaphor. Global first mention checks whether an antecedent candidate is realized in
the first position of a sentence anywhere.

baseline3 SVM. In baseline3 SVM, we use the same features and the same antecedent
candidate selection method as in baseline1 NB, but replace naive Bayes with SVMlight.32

We stick with a two-sentence window as it performed on a par with the five-sentence
window in the previous baselines.

local1 SVM. In local1 SVM, we use the same classifier and the same antecedent candi-
date selection method as in baseline3 SVM, but replace the lexical features from Poesio
et al. (2004a) (Table 14) with our preposition pattern features ( f 5 and f 6 in Table 12).

local2 SVM. On the basis of local1 SVM, all other features from Table 12 (i.e., f 1–f 4,
f 7–f 18) are added.

31 Poesio et al. (2004a) used a five sentence window for antecedent candidate selection, because all
antecedents in their corpus are within the previous five sentences of the anaphors.

32 We replace naive Bayes with SVMlight because it can potentially deal better with imbalanced data. The
SVMlight parameter that handles data imbalance is set according to the ratio between positive and
negative instances in the training set.
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Table 15
Results for bridging antecedent selection: Comparing pairwise models with different feature sets
and antecedent candidate selection strategies. “Ante.” and “Acc.” stand for “Antecedent” and
“Accuracy,” respectively. The bolded score indicates a significant improvement over all other
models (p < 0.01).

Model Features Ante. candidate list Setting Acc.

baseline1 NB Poesio features 2-sentence-window mention-entity 18.9
baseline2 NB Poesio features 5-sentence-window mention-entity 18.4
baseline3 SVM Poesio features 2-sentence-window mention-entity 19.8

local1 SVM Poesio salience features + 2-sentence-window mention-entity 29.1
PrepPattern features
( f 5 and f 6 from Table 12)

local2 SVM Poesio salience features + 2-sentence-window mention-entity 39.3
all features from Table 12

local3 SVM Poesio salience features + d-scope-salience mention-entity 46.0
all features from Table 12

local3 SVM. On the basis of local2 SVM, we apply our new method (d-scope-salience,
Section 5.3) to select antecedent candidates for bridging anaphors.

local1 SVM already outperforms the three baselines (baseline1 NB, baseline2 NB, and
baseline3 SVM) by about 10% (Table 15). This is due to normalizing the preposition
pattern feature (Equation (27) in Section 5.2.2), and generalizing it (from the prepo-
sition of to appropriate prepositions for each anaphor) to capture more diverse se-
mantic relations. This is important as our preposition pattern feature does not need
more resources than the original Google distance feature in Poesio et al. (2004a) as
it only depends on counts from unannotated corpora. The significant improvements
of local2 SVM indicate the contribution of our other features—however, these features
sometimes need additional annotation in OntoNotes (such as the syntactic annotation)
so the scenario is more idealized. Further improvements are achieved by local3 SVM,
which shows the positive impact of our advanced antecedent candidate selection
strategy.

5.4.4 Evaluation of the Joint Inference Model. Simply porting our local model to MLNs
(without including joint modeling and sibling anaphors clustering) does not improve
performance (see Model local MLN in Table 16). The model jointme is the joint inference
system described in Section 5.1 with all features for sibling anaphors clustering (Sec-
tion 5.2.1) on top of all features for bridging antecedent selection (Section 5.2.2), using a
mention-entity setting. We use thebeast to learn weights for the formulas and to perform
inference.33 jointme performs significantly better than the two local models (Table 16).
This confirms our assumption that additional information from sibling anaphors cluster-
ing helps to resolve bridging anaphora.

33 During training, we have 45 training instances in each fold. In fold0, the ground Markov network of
jointme for the first training instance contains 2361 variables, and it takes around 3 minutes on an 8 CPU
core machine to train the model.
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Table 16
Results for bridging antecedent selection: Comparing the local models to the joint inference
model in different settings. The bolded score indicates a significant improvement over all other
models (p < 0.01).

Setting Model Accuracy

local mention-entity local3 SVM 46.0
mention-entity local MLN 46.4

joint inference mention-entity jointme 50.7
mention-mention jointmm 39.8
mention-entity/mention jointme mm 44.2

The system jointmm includes the same features, sibling clustering, and antecedent
selection as jointme but is trained and tested in the mention-mention setting. jointme mm is
trained in the mention-entity setting but tested in the mention-mention setting.

The performance of jointmm drops dramatically compared with jointme (Table 16).
The representation of sibling anaphors clustering is noisier in this setting (e.g., two
sibling anaphors may no longer share the same antecedent in the mention-mention
setting) and features become weak. In Example (36), two sibling anaphors, Employees
and workers, share the same entity antecedent represented by coreferent mentions
(Mobil Corp., the company’s, and Mobil), but do not share the same mention antecedent
in the mention-mention setting (e.g., Mobil is not the antecedent of the bridging anaphor
Employees). Furthermore, knowing that Mobil is a company when using entity infor-
mation (in the mention-entity setting) helps to resolve the bridging anaphor workers,
whereas this information is not available in the mention-mention setting. In Exam-
ple (36), the mention the company’s is distant from the anaphor workers; therefore it
is not included as an antecedent candidate for the anaphor workers in the mention-
mention setting.

(36) Mobil Corp. is preparing to slash the size of its work force in the U.S., say

individuals familiar with the company’s strategy.
Employees haven’t yet been notified.
. . .

Some Mobil executives were dismayed that a reference to the cutbacks was
included in the earning report before workers were notified.

jointme mm performs significantly better than jointmm. Training the model in the
mention-entity setting represents the phenomenon better than training in the noisy
mention-mention setting.

5.4.5 Error Analysis. We conducted an error analysis for our best model jointme. First,
anaphors with long distance antecedents are harder to resolve (see Table 17).

We now distinguish between sibling anaphors and non-sibling anaphors. The
performance of jointme is 62.2% on sibling anaphors but only 34.8% on non-sibling
anaphors. Global salience and links between related anaphors do indeed help to
capture the behavior of sibling anaphors.

275



Computational Linguistics Volume 44, Number 2

Table 17
Antecedent selection accuracy with regard to anaphor-antecedent distance in jointme.

Sentence distance #pairs jointme

0 175 59.4
1 260 46.9
2 90 50.0
≥3 158 44.3

The semantic knowledge we have is still insufficient. Typical problems are:

(i) Cases with context-specific bridging relations. For example, in one text
about the stealing of sago palms in California, we found the anaphor the
thieves with the antecedent palms, which is not a very common semantic
link.

(ii) More frequently, we have cases where several good antecedents from a
semantic perspective can be found. For example, two laws are discussed
and the subsequent anaphor the veto could be the veto of either bills.
Integration of the wider context apart from the two noun phrases in
question is necessary in these cases. This can include the semantics of
modification, whereas we currently consider only head nouns. Thus, the
anaphor the local council would preferably be interpreted as the council of
a village instead of the council of a state due to the occurrence of local.

Finally, 6% of the anaphors in our corpus have a non-NP antecedent. As we only
extract NP phrases as potential candidate antecedents, we cannot handle these.

6. Unrestricted Bridging Resolution

Unrestricted bridging resolution recognizes bridging anaphors (beyond definite NPs
only) and also finds links to antecedents (beyond meronymic relations only).

6.1 Method

We combine the two models from the previous two sections in a pipeline (Figure 5).
Given extracted mentions, the system first predicts bridging anaphors by applying
cascading collective classification (Section 4). It then predicts antecedents for these
bridging anaphors (in the mention-mention setting) by applying joint inference trained
in the mention-entity setting (Model jointme mm in Section 5).34

6.2 Experiments and Results

We conduct experiments on ISNotes via 10-fold cross-validation on documents. We use
an evaluation metric based on the number of bridging anaphors. The system predicts
one unique antecedent for each predicted bridging anaphor. A link is counted as correct

34 We use this model for antecedent selection for the pipeline model, as having full entity and coreference
information in the test data is unrealistic.
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Figure 5
The two-stage model for unrestricted bridging resolution.

if it recognizes the bridging anaphor correctly and links the anaphor to any instantiation
of its antecedent preceding the anaphor. We use recall, precision, and F-score and the
randomization test35 on F-score for statistical significance.

6.2.1 Baseline. We compare our pipeline model to a learning-based model (pairwise model),
adapted from the pairwise model widely used in coreference resolution (Soon, Ng,
and Lim 2001).36 In the pairwise model we first create an initial list of possible bridg-
ing anaphors Aml, excluding as many obvious non-bridging mentions from the list as
possible. A mention is added to Aml if it (1) does not contain any other mentions,
(2) is not modified by premodifications that strongly indicate comparative NPs, and
(3) is not a pronoun or a proper name. Then for each NP a ∈ Aml, a list of antecedent
candidates Ca is created by including all mentions preceding a from the same as well as

35 We use the package from https://github.com/smartschat/art.
36 In Hou, Markert, and Strube (2014), we reimplement a previous rule-based system (Vieira and Poesio

2000) as the baseline. It suffers from a very low recall because it only considers meronymy bridging and
compound noun anaphors whose head is prenominally modified by the antecedent head. Therefore, we
do not include it in this article as a baseline.
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Table 18
Experimental results for unrestricted bridging resolution. Bolded scores indicate significant
improvements relative to other models (p < 0.01).

Bridging resolution

R P F

pairwise model 20.6 10.2 13.6
pipeline model 22.6 20.6 21.6

from the previous two sentences.37 We create a pairwise instance (a, c) for every c ∈ Ca.
In the decoding stage, the best first strategy (Ng and Cardie 2002) is used to predict
bridging links. Specifically, for each a ∈ Aml, we predict the bridging link to be the most
confident pair (a, cante) among all instances with the positive prediction. We provide
this pairwise model with the same non-relational features as our two-stage model
(Section 6.1); that is, features from Table 6 in Section 4.3.2 and Table 12 in Section 5.2.2.
We use SVMlight to conduct the experiments.38

6.2.2 Results and Discussion. Our pipeline model significantly outperforms the baseline
(Table 18). Although the baseline models bridging anaphora recognition and antecedent
selection together, it suffers from fewer positive training instances for each subtask
because of its antecedent candidate selection strategy. In addition, we observe that
diverse bridging relations in ISNotes, especially many context specific relations such
as pachinko – devotees or palms – the thieves, lead to few training instances for each
type of relation. As a result, generalizing is difficult for the learning-based approach.
This is also the outcome of our earlier work (Hou, Markert, and Strube 2014), in which
we propose a rule-based system for full bridging resolution on the same corpus. In this
work, the rule-based system performs better than a learning-based approach (pairwise
model) that has access to the same knowledge resources. Although the two-stage model
outperforms our earlier rule-based system by 3.0 F-score points on bridging resolution,
the result is still not satisfactory. This is due to the moderate performance in both stages.
On bridging anaphora recognition, our best model (CascadedCollective) achieves an
F-score of 46.1%. The errors in this stage are propagated to the second stage, where the
accuracy of our best model (jointme) to choose antecedents for gold bridging anaphora
is 50.7%. In future work, we would like to provide more training data to check whether
the two-stage model benefits from it.

7. Conclusions

We presented the ISNotes corpus, which is annotated for a wide range of information
status categories and full anaphoric information for the main anaphora types (i.e.,

37 Initial experiments showed that increasing the window size more than two sentences decreases the
performance.

38 To deal with data imbalance, the SVMlight parameter is set according to the ratio between positive and
negative instances in the training set.
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coreference, bridging, and comparative). We developed a two-stage system for full
bridging resolution, where bridging anaphors are not limited to definite NPs and
bridging relations are not limited to meronymy. We proposed two joint inference mod-
els for information status recognition (including bridging recognition) and bridging
antecedent selection, respectively. Our system achieves state-of-the-art performance or
better for the three tasks (i.e., IS and bridging anaphora recognition, bridging antecedent
selection, and bridging resolution) over reimplementations of previous approaches on
ISNotes.

There are several open problems to be addressed. First, the results of our system
might be improved with more annotations in the future. Given the difficulty of the task
itself, we cannot expect that a large-scale corpus for bridging that is reliably annotated
by linguists will appear any time soon. An option is to harvest potential bridging pairs
by exploring semi-supervised or unsupervised learning approaches and combine these
with expert/non-expert annotations. Second, our method should be tested in several
other scenarios, such as its performance on other genres and its performance in less
idealized conditions (such as automatically parsed corpora). Third, classifying bridging
relations into fine-grained categories could be useful for other NLP applications, such
as relation extraction across sentence boundaries and machine reading. Finally, bridging
resolution, textual entailment, and implicit semantic role labeling are three standard
tasks in NLP. They have some common properties and partially overlap. Recently, there
are a few efforts that try to “bridge” boundaries between these tasks: Mirkin, Dagan,
and Padó (2010) show that textual entailment recognition can benefit from bridging
resolution; Stern and Dagan (2014) improve the performance of textual entailment
recognition by exploring implicit semantic role labeling. It would be interesting to
further explore the interactions between these three tasks, such as whether bridging
anaphora recognition can benefit from the rich annotated data from FrameNet (e.g., Null
Instantiations) or whether lexico-semantic resources widely used in textual entailment
systems can be explored for bridging resolution.
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Barzilay, Regina and Mirella Lapata. 2008.
Modeling local coherence: An entity-based
approach. Computational Linguistics,
34(1):1–34.

Björkelund, Anders, Kerstin Eckart, Arndt
Riester, Nadja Schauffler, and Katrin
Schweitzer. 2014. The extended DIRNDL
corpus as a resource for coreference and
bridging resolution. In Proceedings of the

279

https://www.mitpressjournals.org/action/showLinks?doi=10.1162%2Fcoli_a_00315&system=10.1162%2Fcoli.07-034-R2&citationId=p_3
https://www.mitpressjournals.org/action/showLinks?doi=10.1162%2Fcoli_a_00315&crossref=10.1353%2Flan.2000.0045&citationId=p_2
https://www.mitpressjournals.org/action/showLinks?doi=10.1162%2Fcoli_a_00315&crossref=10.1093%2Fjos%2F15.1.83&citationId=p_4
https://www.mitpressjournals.org/action/showLinks?doi=10.1162%2Fcoli_a_00315&system=10.1162%2Fcoli.2008.34.1.1&citationId=p_6


Computational Linguistics Volume 44, Number 2

9th International Conference on Language
Resources and Evaluation, pages 3222–3228,
Reykjavik.

Bos, Johan, Paul Buitelaar, and Anne Marie
Mineur. 1995. Bridging as coercive
accommodation. In Working Notes of the
Edinburgh Conference on Computational
Logic and Natural Language Processing
(CLNLP-95), pages 1–16, Edinburgh.

Brants, Thorsten and Alex Franz. 2006.
Web 1t 5-gram version 1. LDC2006T13,
Philadelphia, PA, Linguistic Data
Consortium.

Burfoot, Clinton, Steven Bird, and Timothy
Baldwin. 2011. Collective classification of
congressional floor-debate transcipts. In
Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 1506–1515,
Portland, OR.

Cahill, Aoife and Arndt Riester. 2009.
Incorporating information status into
generation ranking. In Proceedings of
the Joint Conference of the 47th Annual
Meeting of the Association for Computational
Linguistics and the 4th International Joint
Conference on Natural Language Processing,
pages 817–825, Singapore.

Cahill, Aoife and Arndt Riester. 2012.
Automatically acquiring fine-grained
information status distinctions in German.
In Proceedings of the SIGdial 2012 Conference:
The 13th Annual Meeting of the Special
Interest Group on Discourse and Dialogue,
pages 232–236, Seoul.

Carletta, Jean. 1996. Assessing agreement on
classification tasks: The kappa statistic.
Computational Linguistics, 22(2):249–254.

Caselli, Tommaso and Irina Prodanof. 2006.
Annotating bridging anaphors in Italian:
In search of reliability. In Proceedings of the
5th International Conference on Language
Resources and Evaluation, pages 1173–1176,
Genoa.

Cimiano, Philipp. 2006. Ingredients of a
first-order account of bridging. In
Proceedings of the 5th International Workshop
on Inference in Computational Semantics,
pages 139–144, Buxton.

Clark, Herbert H. 1975. Bridging. In
Proceedings of the Conference on Theoretical
Issues in Natural Language Processing,
pages 169–174, Cambridge, MA.

Clark, Herbert H. and Susan E. Haviland.
1977. Comprehension and the given-new
contract. In Roy Freedle, editor, Discourse
Processes: Advances in Research and
Theory, volume 1. Ablex, Norwood, NJ,
pages 1–40.
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