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In this article, we present a novel approach for parsing argumentation structures. We identify
argument components using sequence labeling at the token level and apply a new joint model
for detecting argumentation structures. The proposed model globally optimizes argument com-
ponent types and argumentative relations using Integer Linear Programming. We show that
our model significantly outperforms challenging heuristic baselines on two different types of
discourse. Moreover, we introduce a novel corpus of persuasive essays annotated with argumen-
tation structures. We show that our annotation scheme and annotation guidelines successfully
guide human annotators to substantial agreement.

1. Introduction

Argumentation aims at increasing or decreasing the acceptability of a controversial
standpoint (van Eemeren, Grootendorst, and Snoeck Henkemans 1996, page 5). It is
a routine that is omnipresent in our daily verbal communication and thinking. Well-
reasoned arguments are not only important for decision making and learning but also
play a crucial role in drawing widely accepted conclusions.

Computational argumentation is a recent research field in computational linguistics
that focuses on the analysis of arguments in natural language texts. Novel methods have
broad application potential in various areas such as legal decision support (Mochales-
Palau and Moens 2009), information retrieval (Carstens and Toni 2015), policy mak-
ing (Sardianos et al. 2015), and debating technologies (Levy et al. 2014; Rinott et al.
2015). Recently, computational argumentation has been receiving increased attention
in computer-assisted writing (Song et al. 2014; Stab et al. 2014) because it allows the
creation of writing support systems that provide feedback about written arguments.
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Argumentation structures are closely related to discourse structures such as those
defined by Rhetorical Structure Theory (RST) (Mann and Thompson 1987), the Penn
Discourse Treebank (PDTB) (Prasad et al. 2008), or Segmented Discourse Representation
Theory (SDRT) (Asher and Lascarides 2003). The internal structure of an argument
consists of several argument components. It includes a claim and one or more premises
(Govier 2010). The claim is a controversial statement and the central component of an
argument, and premises are reasons for justifying (or refuting) the claim. Moreover,
arguments have directed argumentative relations, describing the relationships one
component has with another. Each such relation indicates that the source component
is either a justification for or a refutation of the target component.

The identification of argumentation structures involves several subtasks like sep-
arating argumentative from non-argumentative text units (Moens et al. 2007; Florou
et al. 2013), classifying argument components into claims and premises (Mochales-
Palau and Moens 2011; Rooney, Wang, and Browne 2012; Stab and Gurevych 2014b),
and identifying argumentative relations (Mochales-Palau and Moens 2009; Peldszus
2014; Stab and Gurevych 2014b). However, an approach that covers all subtasks is still
missing. Furthermore, most approaches operate locally and do not optimize the global
argumentation structure. Recently, Peldszus and Stede (2015) proposed an approach
based on Minimum Spanning Trees, which jointly models argumentation structures.
However, it links all argument components in a single tree structure. Consequently,
it is not capable of splitting a text containing more than one argument. In addition
to the lack of end-to-end approaches for parsing argumentation structures, there are
relatively few corpora annotated with argumentation structures at the discourse-level.
Apart from our previous corpus (Stab and Gurevych 2014a), the few existing corpora
lack non-argumentative text units (Peldszus 2014), are not annotated with claims and
premises (Kirschner, Eckle-Kohler, and Gurevych 2015), or the reliability is unknown
(Reed et al. 2008).

Our primary motivation for this work is to create argument analysis methods
for argumentative writing support systems and to achieve a better understanding
of argumentation structures. Therefore, our first research question is whether human
annotators can reliably identify argumentation structures in persuasive essays and
whether it is possible to create annotated data of high quality. The second research ques-
tion addresses the automatic recognition of argumentation structure. We investigate
if, and how accurately, argumentation structures can be identified by computational
techniques. The contributions of this article are the following;:

*  An annotation scheme for modeling argumentation structures derived
from argumentation theory. Our annotation scheme models the
argumentation structure of a document as a connected tree.

*  Anovel corpus of 402 persuasive essays annotated with discourse-level
argumentation structures. We show that human annotators can apply our
annotation scheme to persuasive essays with substantial agreement. This
corpus and the annotation guidelines are freely available.!

*  Anend-to-end argumentation structure parser that identifies argument
components at the token level and globally optimizes component types
and argumentative relations.

1 www.ukp.tu-darmstadt.de/data/argumentation-mining.
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The remainder of this article is structured as follows: In Section 2, we review related
work in computational argumentation and discuss the difference to traditional dis-
course analysis. In Section 3, we derive our annotation scheme from argumentation
theory. Section 4 presents the results of an annotation study and the corpus creation. In
Section 5, we introduce the argumentation structure parser. We show that our model
significantly outperforms challenging heuristic baselines on two different types of dis-
course. We discuss our results in Section 6, and provide our conclusions in Section 7.

2. Related Work

Existing work in computational argumentation addresses a variety of different tasks.
These include, for example, approaches for identifying reasoning type (Feng and Hirst
2011), argumentation style (Oraby et al. 2015), the stance of the author (Hasan and
Ng 2014; Somasundaran and Wiebe 2009), the acceptability of arguments (Cabrio and
Villata 2012), and appropriate support types (Park and Cardie 2014). Most relevant to
our work, however, are approaches on argument mining that focus on the identification
of argumentation structures in natural language texts. We categorize related approaches
into the following three subtasks:

e  Component identification focuses on the separation of argumentative
from non-argumentative text units and the identification of argument
component boundaries.

¢  Component classification addresses the function of argument
components. It aims at classifying argument components into different
types such as claims and premises.

®  Structure identification focuses on linking arguments or argument
components. Its objective is to recognize different types of argumentative
relations such as support or attack relations.

2.1 Component Identification

Moens et al. (2007) identified argumentative sentences in various types of text such as
newspapers, parliamentary records, and online discussions. They experimented with
various different features and achieved an accuracy of 0.738 with word pairs, text
statistics, verbs, and keyword features. Florou et al. (2013) classified text segments
as argumentative or non-argumentative using discourse markers and several features
extracted from the tense and mood of verbs. They report an F1 score of 0.764. Levy et al.
(2014) proposed a pipeline including three consecutive steps for identifying context-
dependent claims in Wikipedia articles. Their first component detects topic-relevant
sentences including a claim. The second component detects the boundaries of each
claim. The third component ranks the identified claims for identifying the most relevant
claims for the given topic. They report a mean precision of 0.09 and a mean recall of
0.73 averaged over 32 topics for retrieving 200 claims. Goudas et al. (2014) presented a
two-step approach for identifying argument components and their boundaries in social
media texts. First, they classified each sentence as argumentative or non-argumentative
and achieved 0.774 accuracy. Second, they segmented each argumentative sentence
using a Conditional Random Field (CRF). Their best model achieved 0.424 accuracy.
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2.2 Component Classification

The objective of the component classification task is to identify the type of argument
components. Kwon et al. (2007) proposed two consecutive steps for identifying differ-
ent types of claims in online comments. First, they classified sentences as claims and
obtained an F1 score of 0.55 with a boosting algorithm. Second, they classified each
claim as either support, oppose, or propose. Their best model achieved an F1 score
of 0.67. Rooney, Wang, and Browne (2012) applied kernel methods for classifying text
units as either claims, premises, or non-argumentative. They obtained an accuracy of
0.65. Mochales-Palau and Moens (2011) classified sentences in legal decisions as claim
or premise. They achieved an F1 score of 0.741 for claims and 0.681 for premises using
a Support Vector Machine (SVM) with domain-dependent key phrases, text statistics,
verbs, and the tense of the sentence. In our previous work, we used a multiclass
SVM for labeling text units of student essays as major claim, claim, premise, or non-
argumentative (Stab and Gurevych 2014b). We obtained an F1 score of 0.726 using
structural, lexical, syntactic, indicator, and contextual features. Recently, Nguyen and
Litman (2015) found that argument and domain words from unlabeled data increase
F1 score to 0.76 in the same experimental setup, and Lippi and Torroni (2015) achieved
an F1 score of 0.714 for identifying sentences containing a claim in student essays using
partial tree kernels.

2.3 Structure Identification

Approaches on structure identification can be divided into macro-level approaches
and micro-level approaches. Macro-level approaches such as presented by Cabrio and
Villata (2012), Ghosh et al. (2014), or Boltuzi¢ and énajder (2014) address relations be-
tween complete arguments and ignore the microstructure of arguments. More relevant
to our work, however, are micro-level approaches, which focus on relations between
argument components. Mochales-Palau and Moens (2009) introduced one of the first
approaches for identifying the microstructure of arguments. Their approach is based on
a manually created Context-Free Grammar and recognizes argument structures as trees.
However, it is tailored to legal argumentation and does not recognize implicit argumen-
tative relations (i.e., relations that are not indicated by discourse markers). In previous
work, we considered the identification of argument structures as a binary classification
task of ordered argument component pairs (Stab and Gurevych 2014b). We classified
each pair as support or not-linked using an SVM with structural, lexical, syntactic,
and indicator features. Our best model achieved an F1 score of 0.722. However, the
approach recognizes argumentative relations locally and does not consider contextual
information. Peldszus (2014) modeled the targets of argumentative relations along with
additional information in a single tagset. His tagset includes, for instance, several labels
denoting whether an argument component at position n is argumentatively related
to preceding argument components n — 1,7 — 2, and so forth, or following argument
components n + 1, n+ 2, and so on. Although his approach achieved a promising
accuracy of 0.48, it is only applicable to short texts. Peldszus and Stede (2015) presented
the first approach that globally optimizes argumentative relations. They jointly modeled
several aspects of argumentation structures using a Minimum Spanning Tree model
and achieved an F1 score of 0.720. They found that the function (support or attack)
and the role (opponent and proponent) of argument components are the most useful
dimensions for improving the identification of argumentative relations. However, the
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texts in their corpus were created artificially using a guideline that promotes having
one opposing argument component in each text (cf. Section 2.4). Therefore, it is unclear
whether the results can be reproduced with real data, which may exhibit arguments
with fewer opposing argument components (Wolfe and Britt 2009). Moreover, their
approach links all argument components in a single tree structure. Thus, it is not capable
of separating several arguments and recognizing unlinked components.

2.4 Existing Corpora Annotated with Argumentation Structures

Existing corpora in computational argumentation cover numerous aspects of argumen-
tation analysis. There are, for instance, corpora that address argumentation strength
(Persing and Ng 2015), factual knowledge (Beigman Klebanov and Higgins 2012),
various properties of arguments (Walker et al. 2012), argumentative relations between
complete arguments at the macro-level (Cabrio and Villata 2014; Boltuzi¢ and Snajder
2014), different types of argument components (Mochales-Palau and Ieven 2009; Kwon
et al. 2007; Habernal and Gurevych 2017), and argumentation structures over several
documents (Aharoni et al. 2014). However, corpora annotated with argumentation
structures at the level of discourse are still rare.

One prominent resource is AraucariaDB (Reed et al. 2008). It includes heterogenous
text types such as newspaper editorials, parliamentary records, judicial summaries,
and online discussions. It also includes annotations describing the type of reasoning
according to Walton’s argumentation schemes (Walton, Reed, and Macagno 2008) and
implicit argument components that were added by the annotators during the analysis.
However, the reliability of the annotations is unknown. Furthermore, recent releases
of AraucariaDB are not appropriate for training end-to-end argumentation structure
parsers because they do not include non-argumentative text units.

Kirschner, Eckle-Kohler, and Gurevych (2015) annotated argumentation structures
in Introduction and Discussion sections of 24 German scientific articles. Their anno-
tation scheme includes four argumentative relations (support, attack, detail, and se-
quence). However, the corpus does not contain annotations for argument component
types.

Peldszus and Stede (2015) created a small corpus of 112 German microtexts with
controlled linguistic and rhetoric complexity. Each document contains a single argu-
ment and does not include more than five argument components. Their annotation
scheme models supporting and attacking relations as well as additional information
like proponent and opponent. They obtained an inter-annotator agreement (IAA) of
k = 0.83? with three expert annotators. Recently, they translated the corpus to English,
resulting in the first parallel corpus for computational argumentation. However, the
corpus does not include non-argumentative text units. Therefore, the corpus is only
of limited use for training end-to-end argumentation structure parsers. Because of
the writing guidelines used (Peldszus and Stede 2013, page 197), it also exhibits an
unusually high proportion of attack relations. In particular, 97 of the 112 arguments
(86.6%) include at least one attack relation. This proportion is rather unnatural, since
authors tend to support their standpoint instead of considering opposing views (Wolfe
and Britt 2009).

2 The kappa coefficient is an IAA measure for categorical items that accounts for agreement by chance. The
formal definition and a comprehensive overview of chance-corrected IAA measures can be found in the
survey of Artstein and Poesio (2008).
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Table 1

Existing corpora annotated with argumentation structures at the discourse-level (#Doc =
number of documents; #Comp = number of argument components; NoArg = presence of non-
argumentative text units).

Source Genre #Doc  #Comp  NoArg  Granularity IAA

(Reed et al. 2008) various ~700 ~2,000 yes clause unknown
(Stab and Gurevych 2014a)  student essays 90 1,552 yes clause o = 0.72
(Peldszus and Stede 2015) microtexts 112 576 no clause Kk =0.83
(Kirschner et al. 2015) scientific articles 24 ~2,700 yes sentence Kk =0.43

In previous work, we created a corpus of 90 persuasive essays, which we selected
randomly from essayforum.com (Stab and Gurevych 2014a). We annotated the corpus
in two consecutive steps: First, we identified argument components at the clause level
and obtained an agreement of x;; = 0.72 between three annotators. Second, we anno-
tated argumentative support and attack relations between argument components and
achieved an agreement of k = 0.8. Because the corpus also includes non-argumentative
text units, it allows for training end-to-end argumentation structure parsers that sep-
arate argumentative from non-argumentative text units. Apart from this corpus, we
are only aware of one additional study on argumentation structures in persuasive
essays. Botley (2014) analyzed 10 essays using argument diagramming for studying
differences in argumentation strategies. Unfortunately, the corpus is too small for com-
putational purposes and the reliability of the annotations is unknown. Table 1 provides
an overview of existing corpora annotated with argumentation structures at the
discourse-level.

2.5 Discourse Analysis

The identification of argumentation structures is closely related to discourse analysis.
Similar to the identification of argumentation structures, discourse analysis aims at
identifying elementary discourse units and discourse relations between them. Exist-
ing approaches on discourse analysis mainly differ in the discourse theory utilized.
RST (Mann and Thompson 1987), for instance, models discourse structures as trees
by iteratively linking adjacent discourse units (Feng and Hirst 2014; Hernault et al.
2010) whereas approaches based on PDTB (Prasad et al. 2008) identify more shallow
structures by linking two adjacent sentences or clauses (Lin, Ng, and Kan 2014). RST
and PDTB are limited to discourse relations between adjacent discourse units, but SDRT
(Asher and Lascarides 2003) also allows long distance relations (Afantenos and Asher
2014; Afantenos et al. 2015). However, similar to argumentation structure parsing, the
main challenge of discourse analysis is to identify implicit discourse relations (Braud
and Denis 2014, page 1694).

Marcu and Echihabi (2002) proposed one of the first approaches for identifying
implicit discourse relations. In order to collect large amounts of training data, they ex-
ploited several discourse markers like “because” or “but”. After removing the discourse
markers, they found that word pair features are useful for identifying implicit discourse
relations. Pitler, Louis, and Nenkova (2009) proposed an approach for identifying four
implicit types of discourse relations in the PDTB and achieved F1 scores between 0.22
and 0.76. They found that using features tailored to each individual relation leads to
the best results. Lin, Kan, and Ng (2009) showed that production rules collected from
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parse trees yield good results and Louis et al. (2010) found that features based on named
entities do not perform as well as lexical features.

Approaches to discourse analysis usually aim at identifying various different types
of discourse relations. However, only a subset of these relations is relevant for argu-
mentation structure parsing. For example, Peldszus and Stede (2013) proposed support,
attack, and counter-attack relations for modeling argumentation structures, whereas our
work focuses on support and attack relations. This difference is also illustrated by the
work of Biran and Rambow (2011). They selected a subset of 12 relations from the RST
Discourse Treebank (Carlson, Marcu, and Okurowski 2001) and argue that only a subset
of RST relations is relevant for identifying justifications.

3. Argumentation: Theoretical Background

The study of argumentation is a comprehensive and interdisciplinary research field.
It involves philosophy, communication science, logic, linguistics, psychology, and
computer science. The first approaches to studying argumentation date back to the
ancient Greek sophists and evolved in the 6th and 5th centuries BCE (van Eemeren,
Grootendorst, and Snoeck Henkemans 1996). In particular, the influential works of
Aristotle on traditional logic, rhetoric, and dialectics set an important milestone and
are a cornerstone of modern argumentation theory. Because of the diversity of the
field, there are numerous proposals for modeling argumentation. Bentahar, Moulin,
and Bélanger (2010) categorize argumentation models into three types: (1) monological
models, (2) dialogical models, and (3) rhetorical models. Monological models address
the internal microstructure of arguments. They focus on the function of argument
components, the links between them, and the reasoning type. Most monological models
stem from the field of informal logic and focus on arguments as product (O'Keefe
1977; Johnson 2000). On the other hand, dialogical models focus on the process of
argumentation and ignore the microstructure of arguments. They model the external
macrostructure and address relations between arguments from several interlocutors.
Finally, rhetorical models consider neither the micro- nor the macrostructure but rather
the way arguments are used as a means of persuasion. They consider the audience’s
perception and aim at studying rhetorical schemes that are successful in practice. In this
article, we focus on the monological perspective, which is well-suited for developing
computational methods (Peldszus and Stede 2013).

3.1 Argument Diagramming

The laying out of argument structure is a widely used method in informal logic (Copi
and Cohen 1990; Govier 2010). This technique, referred to as argument diagramming,
aims at transferring natural language arguments into a structured representation for
evaluating them in subsequent analysis steps (Henkemans 2000, page 447). Although
argumentation theorists consider argument diagramming a manual activity, the dia-
gramming conventions also serve as a good foundation for developing novel argument
mining models (Peldszus and Stede 2013). An argument diagram is a node-link diagram
whereby each node represents an argument component (i.e., a statement represented in
natural language) and each link represents a directed argumentative relation indicating
that the source component is a justification (or refutation) of the target component.
Figure 1 shows some common argument structures. A basic argument includes a
claim supported by a single premise. It can be considered the minimal form that an
argument can take. A convergent argument comprises two premises that support the
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T

(a) basic argument (b) convergent argument (c) serial argument (d) divergent argument (e) linked argument

Figure 1
Microstructures of arguments: Nodes are argument components and links represent
argumentative relations. Nodes at the bottom are the claims of the arguments.

claim individually; an argument is serial if it includes a reasoning chain and divergent
if a premise supports several claims (Beardsley 1950). Complementarily, Thomas (1973)
defined linked arguments (Figure le). Like convergent arguments, a linked argument
includes two premises. However, neither of the two premises independently supports
the claim. The premises are only relevant to the claim in conjunction. More complex
arguments can combine any of the elementary structures illustrated in Figure 1.

On closer inspection, however, there are several ambiguities when applying ar-
gument diagramming to real texts: First, the distinction between convergent and
linked structures is often ambiguous in real argumentation structures (Henkemans
2000; Freeman 2011). Second, it is unclear if the argumentation structure is a graph or
a tree. Third, the argumentative type of argument components is ambiguous in serial
structures. We discuss each of these questions in the following sections.

3.1.1 Distinguishing between Linked and Convergent Arguments. The question of whether
an argumentation model needs to distinguish between linked and convergent argu-
ments is still debated in argumentation theory (Conway 1991; Yanal 1991; van Eemeren,
Grootendorst, and Snoeck Henkemans 1996; Freeman 2011). From a perspective based
on traditional logic, linked arguments indicate deductive reasoning and conver-
gent arguments represent inductive reasoning (Henkemans 2000, page 453). However,
Freeman (2011, page 91ff.) showed that the traditional definition of linked arguments
is frequently ambiguous in everyday discourse. Yanal (1991) argues that the distinction
is equivalent to separating several arguments and Conway (1991) argues that linked
structures can simply be omitted for modeling single arguments. From a computational
perspective, the identification of linked arguments is equivalent to finding groups of
premises or classifying the reasoning type of an argument as either deductive or induc-
tive. Accordingly, it is not necessary to distinguish linked and convergent arguments
during the identification of argumentation structures since this task can be solved in
subsequent analysis steps.

3.1.2 Argumentation Structures as Trees. Defining argumentation structures as trees im-
plies the exclusion of divergent arguments, to allow only one target for each premise
and to neglect cycles. From a theoretical perspective, divergent structures are equiv-
alent to several arguments (one for each claim) (Freeman 2011, page 16). As a result
of this treatment, a great many of theoretical textbooks neglect divergent structures
(Henkemans 2000; Reed and Rowe 2004) and also most computational approaches con-
sider arguments as trees (Cohen 1987; Mochales-Palau and Moens 2009; Peldszus 2014).
However, there is little empirical evidence regarding the structure of arguments. We are
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only aware of one study, which showed that 5.26% of the arguments in political speeches
(which can be assumed to exhibit complex argumentation structures) are divergent.

Essay writing usually follows a claim-oriented procedure (Kemper and Sebranek
2004; Shiach 2009; Whitaker 2009; Perutz 2010). Starting with the formulation of the
standpoint on the topic, authors collect claims in support (or opposition) of their view.
Subsequently, they collect premises that support or attack their claims. The following
example illustrates this procedure. A major claim on abortion, for instance, is “abortion
should be illegal”; a supporting claim could be “abortion is ethically wrong” and the
associated premises “unborn babies are considered human beings” and “killing human
beings is wrong”. Because of this common writing procedure, divergent and circular
structures are rather unlikely in persuasive essays. Therefore, we assume that modeling
the argumentation structure of essays as a tree is a reasonable decision.

3.1.3 Argumentation Structures and Argument Component Types. Assigning argumenta-
tive types to the components of an argument is unambiguous if the argumentation
structure is shallow. It is, for instance, obvious that an argument component ¢; is a
premise and argument component ¢, is a claim, if ¢; supports ¢, in a basic argument
(cf. Figure 1). However, if the tree structure is deeper (i.e., exhibits serial structures),
assigning argumentative types becomes ambiguous. Essentially, there are three different
approaches for assigning argumentative types to argument components. First, accord-
ing to Beardsley (1950) a serial argument includes one argument component which
is both a claim and a premise. Therefore, the inner argument component bears two
different argumentative types (multi-label approach). Second, Govier (2010, page 24)
distinguishes between “main claim” and “subclaim”. Similarly, Damer (2009, page 17)
distinguishes between “premise” and “subpremise” for labeling argument components
in serial structures. Both approaches define specific labels for each level in the argumen-
tation structure (level approach). Third, Cohen (1987) considers only the root node of
an argumentation tree as a claim and the following nodes in the structure as premises
(one-claim approach). In order to define an argumentation model for persuasive essays,
we propose a hybrid approach that combines the level approach and the one-claim
approach.

3.2 Argumentation Structures in Persuasive Essays

We model the argumentation structure of persuasive essays as a connected tree struc-
ture. We use a level approach for modeling the first level of the tree and a one-claim
approach for representing the structure of each individual argument. Accordingly, we
model the first level of the tree with two different argument component types and the
structure of individual arguments with argumentative relations.

The major claim is the root node of the argumentation structure and represents the
author’s standpoint on the topic. It is an opinionated statement that is usually stated
in the introduction and restated in the conclusion of the essay. The individual body
paragraphs of an essay include the actual arguments. They either support or attack the
author’s standpoint expressed in the major claim. Each argument consists of a claim
and at least one premise. In order to differentiate between supporting and attacking
arguments, each claim has a stance attribute that can take the values “for” or “against”.

We model the structure of each argument with a one-claim approach. The claim
constitutes the central component of each argument. The premises are the reasons of
the argument. The actual structure of an argument comprises directed argumentative
support and attack relations, which link a premise either to a claim or to another premise
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(serial arguments). Each premise p has one outgoing relation (i.e., there is a relation that
has p as source component) and none or several incoming relations (i.e., there can be
a relation with p as target component). A claim can exhibit several incoming relations
but no outgoing relation. The ambiguous function of inner premises in serial arguments
is implicitly modeled by the structure of the argument. The inner premise exhibits one
outgoing relation and at least one incoming relation. Finally, the stance of each premise
is indicated by the type of its outgoing relation (support or attack).

The following example illustrates the argumentation structure of a persuasive es-
say.® The introduction of an essay describes the controversial topic and usually includes
the major claim:

Ever since researchers at the Roslin Institute in Edinburgh cloned an adult sheep,
there has been an ongoing debate about whether cloning technology is morally and
ethically right or not. Some people argue for and others against and there is still no
agreement whether cloning technology should be permitted. However, as far as I'm
concerned, [cloning is an important technology for humankind]yyjorciaim since
[it would be very useful for developing novel cures]cigiy.

The first two sentences introduce the topic and do not include argumentative content.
The third sentence contains the major claim (boldfaced) and a claim that supports the
major claim (underlined). The following body paragraphs of the essay include argu-
ments that either support or attack the major claim. For example, the following body
paragraph includes one argument that supports the positive standpoint of the author
on cloning:

First, [cloning will be beneficial for many people who are in need of organ transplants]cipiyy.

[Cloned organs will match perfectly to the blood group and tissue of patientslpremise1
since [they can be raised from cloned stem cells of the patientlpremiser- In addition, [it
shortens the healing processlpremises- Usually, [it is very rare to find an appropriate organ
401101 Ipremises and [by using cloning in order to raise required organs the waiting time
can be shortened tremendouslylpremises.

The first sentence contains the claim of the argument, which is supported by five
premises in the following three sentences (wavy underlined). The second sentence in-
cludes two premises, of which Premise; supports Claim, and Premise, supports Premise; .
Premises in the third sentence supports Claim,. The fourth sentence includes Premisey
and Premises. Both support Premise;. The next paragraph illustrates a body paragraph
with two arguments:

Second, [scientists use animals as models in order to learn about human diseases|premises
and therefore [cloning animals enables novel developments in sciencelcigims.-

Furthermore, [infertile couples can bear children that are eneticall

relatedlpemise7. [Even _same sex couples can have children]premises. Consequently,
[cloning can help couples have children]ciima.

The initial sentence includes the first argument, which consists of Premises and Claims.
The following three sentences include the second argument. Premise; and Premiseg both
support Claim, in the last sentence. Both arguments cover different aspects (develop-
ment in science and cloning humans), which both support the author’s standpoint on

3 The example essay was written by the authors to illustrate all phenomena of argumentation structures in
persuasive essays.
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cloning. This example illustrates that knowing argumentative relations is important for
separating several arguments in a paragraph. The example also shows that argument
components frequently exhibit preceding text units that are not relevant to the argument
but helpful for recognizing the argument component type. For example, preceding dis-
course connectors like “therefore”, “consequently”, or “thus” can signal a subsequent
claim. Discourse markers like “because”, “since”, or “furthermore” could indicate a
premise. Formally, these preceding tokens of an argument component starting at token
t; are defined as the tokens t;_,,...,t;_1 that are not covered by another argument
component in the sentence s = ty, t,...,t, where1 <i <nandi — m > 1. The third body
paragraph illustrates a contra argument and argumentative attack relations:

Admittedly, [cloning could be misused for military purposeslcinys. For example,

[it_could be used to manipulate human genes in_order to create obedient soldiers
with_extraordinary abilities]premisey. However, because [moral and ethical values are
internationally_sharedlpromisero, [it_is very unlikely that cloning will be misused for
nj\l,l\l,mvﬂ\tvq,lﬂvwecnves]wemzsell

The paragraph begins with Claims, which attacks the stance of the author. It is supported
by Premiseqg in the second sentence. The third sentence includes two premises, both of
which defend the stance of the author. Premiseq; is an attack of Claims, and Premiseqq
supports Premise;;. The last paragraph (conclusion) restates the major claim and sum-
marizes the main aspects of the essay:

To sum up, although [permitting cloning might bear some risks like misuse for
military purposes]cizime, 1 strongly believe that [this technology is beneficial to
humanityyajorciaim- It is likely that [this technology bears some important cures which
will significantly improve life conditions]cyimy.

The conclusion of the essay starts with an attacking claim followed by the restatement of
the major claim. The last sentence includes another claim that summarizes the most im-
portant points of the author’s argumentation. Figure 2 shows the entire argumentation
structure of the example essay.

S —— Ja N
( Major Claim 1 & 2 )
X 0 Iy

1
Claim 1 Claim 6 Claim 7
(for) (against) (for)

Body Body Body

Introduction \ Paragraphl ||  Paragraph2 ] Paragraph3 | Conclusion

Figure 2

Argumentation structure of the example essay. Arrows indicate argumentative relations.
Arrowheads denote argumentative support relations and circleheads attack relations. Dashed
lines indicate relations that are encoded in the stance attributes of claims. “P” denotes premises.
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4. Corpus Creation

The motivation for creating a new corpus is threefold: First, our previous corpus is rela-
tively small. We believe that more data will improve the accuracy of our computational
models. Second, we wanted to ensure the reproducibility of the annotation study and
validate our previous results. Third, we improved our annotation guidelines. We added
more precise rules for segmenting argument components and a detailed description of
common essay structures. We expect that our novel annotation guidelines will guide
annotators towards adequate agreement without collaborative training sessions. Our
annotation guidelines comprise 31 pages and include the following three steps:

1.  Topic and stance identification: We found in our previous annotation study
that knowing the topic and stance of an essay improves inter-annotator
agreement (Stab and Gurevych 2014a). For this reason, we ask the
annotators to read the entire essay before starting with the annotation task.

2. Annotation of argument components: Annotators mark major claims,
claims, and premises. They annotate the boundaries of argument
components and determine the stance attribute of claims.

3.  Linking premises with argumentative relations: The annotators identify
the structure of arguments by linking each premise to a claim or another
premise with argumentative support or attack relations.

Three non-native speakers participated in our annotation study. One of the three an-
notators had participated in our previous study (expert annotator).* The two other
annotators learned the task by independently reading the annotation guidelines. We
used the brat rapid annotation tool (Stenetorp et al. 2012). It provides a graphical web
interface for marking text units and linking them.

4.1 Data

We randomly selected 402 English essays with a description of the writing prompt from
essayforum.com. This online forum is an active community that provides correction and
feedback about different texts such as research papers, essays, or poetry. For example,
students post their essays in order to receive feedback about their writing skills while
preparing for standardized language tests. The corpus includes 7,116 sentences with
147,271 tokens.

4.2 Inter-Annotator Agreement

All three annotators independently annotated a random subset of 80 essays. The
remaining 322 essays were annotated by the expert annotator. We evaluate the inter-
annotator agreement of the argument component annotations using two different strate-
gies: First, we evaluate if the annotators agree on the presence of argument components
in sentences using observed agreement and Fleiss’ « (Fleiss 1971). We consider each
sentence as a markable and evaluate the presence of each argument component type

4 Although it would be preferable to have a group of annotators with similar annotation experience (e.g. all
non-experts), because of lack of resources it is a common practice to have mixed annotator groups.
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Table 2
Inter-annotator agreement of argument components.

Component type Observed agreement Fleiss’ k oy

MajorClaim 97.9% 0.877 0.810
Claim 88.9% 0.635 0.524
Premise 91.6% 0.833 0.824

t € {MajorClaim, Claim, Premise} in a sentence individually. Accordingly, the number of
markables for each argument component type f corresponds to the number of sentences
N = 1,441, the number of annotations per markable equals the number of annotators
(n = 3), and the number of categories is k = 2 (¢ or not t). Evaluating the agreement at
the sentence level is an approximation of the actual agreement since the boundaries of
argument components can differ from sentence boundaries and a sentence can include
several argument components.” Therefore, for the second evaluation strategy, we use
Krippendorff’s o; (Krippendorff 2004). In contrast to common alpha coefficients, this
coefficient allows us to evaluate the agreement of unitizing tasks by comparing the
boundaries of the annotation units. We use the squared difference 5> between any two
annotators’ sections as proposed by Krippendorff (2004, page 9) and consider each essay
as a single continuum at the token level. Accordingly, the length L of each continuum
is the number of tokens in an essay. The number of annotators m that unitize the
continuum is 3. We report the average «;; scores over 80 essays. For determining the
inter-annotator agreement, we use DKPro Agreement, whose implementations of inter-
annotator agreement measures are well-tested with various examples from the literature
(Meyer et al. 2014).

Table 2 shows the inter-annotator agreement of each argument component type. The
agreement is best for major claims. The IAA score of 97.9% and k = 0.877 indicate that
annotators are able to reliably identify major claims in persuasive essays. In addition,
the unitized alpha measure of o;; = 0.810 shows that there are only few disagreements
about the boundaries of major claims. The results also indicate good agreement for
premises (k = 0.833 and «; = 0.824). We obtain the lowest agreement of k = 0.635 for
claims, which shows that the identification of claims is more complex than identifying
major claims and premises. The joint unitized measure for all argument components is
oy = 0.767, and thus the agreement improved by 0.043 compared with our previous
study (Stab and Gurevych 2014b). Therefore, we tentatively conclude that overall,
human annotators agree on the argument components in persuasive essays.

For determining the agreement of the stance attribute, we follow the same method-
ology as for the sentence-level agreement described above, but we consider each sen-
tence containing a claim as “for” or “against” according to its stance attribute, and
all sentences without a claim as “none” (N = 1,441; n = 3; k = 3). Consequently, the
agreement of claims constitutes the upper bound for the stance attribute. We obtain
an agreement of 88.5% and k = 0.623, which is slightly below the agreement scores

5 In our evaluation set of 80 essays the annotators identified in 4.3% of the sentences several argument
components of different types. Thus, evaluating the reliability of argument components at the sentence
level is a good approximation of the inter-annotator agreement.
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Table 3
Inter-annotator agreement of argumentative relations.

Relation type ~ Observed agreement  Fleiss” k

Support 92.3% 0.708
Attack 99.6% 0.737

of claims (cf. Table 2). Therefore, human annotators can reliably differentiate between
supporting and attacking claims.

We determined the markables for evaluating the agreement of argumentative rela-
tions by pairing all argument components in the same paragraph. For each paragraph
with argument components cy, ..., ¢,, we consider each pair p = (¢;,¢;) with 1 <i,j <n
and 7 # j as markable. Thus, the set of all markables corresponds to all argument
component pairs that can be annotated according to our guidelines. The number of
argument component pairs is N = 4,922, the number of ratings per markable is n = 3,
and the number of categories k = 2.

Table 3 shows the inter-annotator agreement of argumentative relations. We obtain
kappa scores above 0.7 for both argumentative support and attack relations, which
allows tentative conclusions (Krippendorff 2004). On average, the annotators marked
only 0.9% of the 4,922 pairs as argumentative attack relations and 18.4% as argumen-
tative support relations. Although the agreement is usually much lower if a category is
rare (Artstein and Poesio 2008, page 573), the annotators agree more on argumentative
attack relations. This indicates that the identification of argumentative attack relations is
a simpler task than the identification of argumentative support relations. The agreement
scores for argumentative relations are approximately 0.10 lower compared with our
previous study. This difference can be attributed to the fact that we did not explicitly
annotate relations between claims and major claims, which are easy to annotate because
claims are always linked to major claims (cf. Section 3.2).

4.3 Analysis of Human Disagreement

For analyzing the disagreements between the annotators, we determined Confusion
Probability Matrices (CPMs) (Cinkovd, Holub, and Kriz 2012). Compared with tradi-
tional confusion matrices, a CPM also allows us to analyze confusion if more than two
annotators are involved in an annotation study. A CPM includes conditional probabil-
ities that an annotator assigns a category in the column given that another annotator
selected the category in the row. Table 4 shows the CPM of argument component

Table 4
Confusion probability matrix of argument component annotations (“NoArg” indicates sentences
without argumentative content).

MajorClaim Claim Premise NoArg

MajorClaim 0.771 0.077 0.010 0.142
Claim 0.036 0.517 0.307 0.141
Premise 0.002 0.131 0.841 0.026
NoArg 0.059 0.126 0.054 0.761
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annotations. It shows that the highest confusion is between claims and premises. We
observed that one annotator frequently did not split sentences including a claim. For
instance, the annotator labeled the entire sentence as a claim although it includes an
additional premise. This type of error also explains the lower unitized alpha score
compared with the sentence-level agreements in Table 2. Furthermore, we found that
concessions before claims were frequently not annotated as an attacking premise. For
example, annotators often did not split sentences similarly to the following example:

Although [in_some cases _technology makes people’s life more complicated],remise, [the

convenience of technology outweighs its drawbacks] i,

The distinction between major claims and claims exhibits less confusion. This may
be because major claims are relatively easy to locate in essays since they occur usually
in introductions or conclusions, whereas claims can occur anywhere in the essay.

Table 5 shows the CPM of argumentative relations. There is little confusion between
argumentative support and attack relations. The CPM also shows that the highest con-
fusion is between argumentative relations (support and attack) and unlinked pairs. This
can be attributed to the identification of the correct targets of premises. In particular, we
observed that agreement on the targets decreases if a paragraph includes several claims
or serial argument structures.

4.4 Creation of the Final Corpus

We created a partial gold standard of the essays annotated by all annotators. We use this
partial gold standard of 80 essays as our test data (20%) and the remaining 322 essays
annotated by the expert annotator as our training data (80%). The creation of our gold
standard test data consists of the following two steps: First, we merge the annotation
of all argument components. Thus, each annotator annotates argumentative relations
based on the same argument components. Second, we merge the argumentative rela-
tions to compile our final gold standard test data. Because the argument component
types are strongly related—the selection of the premises, for instance, depends on the
selected claim(s) in a paragraph—we did not merge the annotations using majority
voting as in our previous study. Instead, we discussed the disagreements in several
meetings with all annotators for resolving the disagreements.

4.5 Corpus Statistics

Table 6 gives an overview of the size of the corpus. It contains 6,089 argument compo-
nents, 751 major claims, 1,506 claims, and 3,832 premises. Such a large proportion of

Table 5
Confusion probability matrix of argumentative relation annotations (“Not-Linked” indicates
argument component pairs that are not argumentatively related).

Support Attack Not-Linked

Support 0.605 0.006 0.389
Attack 0.107 0.587 0.307
Not-Linked 0.086 0.004 0.910
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Table 6
Statistics of the final corpus.

all avg. peressay standard deviation

© Sentences 7,116 18 4.2
N Tokens 147,271 366 62.9
”  Paragraphs 1,833 5 0.6
~ Arg. components 6,089 15 3.9

a.  MajorClaims 751 2 0.5
€  Claims 1,506 4 1.2
“  Premises 3,832 10 3.4
£ Claims (for) 1,228 3 1.3
Claims (against) 278 1 0.8

—  Support 3,613 9 3.3
g  Attack 219 1 0.9

claims compared with premises is common in argumentative texts because writers tend
to provide several reasons for ensuring a robust standpoint (Mochales-Palau and Moens
2011).

The proportion of non-argumentative text amounts to 47,474 tokens (32.2%) and
1,631 sentences (22.9%). The number of sentences with several argument components
is 583, of which 302 include several components with different types (e.g., a claim fol-
lowed by premise). Therefore, the identification of argument components requires the
separation of argumentative from non-argumentative text units and the recognition of
component boundaries at the token level. The proportion of paragraphs with unlinked
argument components (e.g., unsupported claims without incoming relations) is 421
(23%). Thus, methods that link all argument components in a paragraph are only of
limited use for identifying the argumentation structures in our corpus.

In total, the corpus includes 1,130 arguments (i.e., claims supported by at least one
premise). Only 140 of them have an attack relation. Thus, the proportion of arguments
with attack relations is considerably lower than in the microtext corpus from Peldszus
and Stede (2015). Most of the arguments are convergent—that is, the depth of the
argument is 1. The number of arguments with serial structure is 236 (20.9%).

5. Parsing Argumentation Structure

Our approach for parsing argumentation structures consists of five consecutive sub-
tasks, depicted in Figure 3. The identification model separates argumentative from non-
argumentative text units and recognizes the boundaries of argument components. The
next three models constitute a joint model for recognizing the argumentation structure.
We train two base classifiers. The argument component classification model labels
each argument component as major claim, claim, or premise, and the argumentative
relation identification model recognizes if two argument components are argumenta-
tively linked or not. The tree generation model globally optimizes the results of the two
base classifiers for finding a tree (or several ones) in each paragraph. Finally, the stance
recognition model differentiates between support and attack relations.
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Joint Model

Argument Component
Classification
Argumenp Qomponent Tree Generation Stanqe.
Identification Recognition

Argumentative Relation
Identification

Figure 3
Architecture of the argumentation structure parser.

For preprocessing, we use several models from the DKPro Framework (Eckart de
Castilho and Gurevych 2014). We identify tokens and sentence boundaries using the
LanguageTool segmenter® and identify paragraphs by checking for line breaks. We
lemmatize each token using the Mate Tools lemmatizer (Bohnet et al. 2013) and apply
the Stanford part-of-speech (POS) tagger (Toutanova et al. 2003), constituent and depen-
dency parsers (Klein and Manning 2003), and sentiment analyzer (Socher et al. 2013).
We use a discourse parser from Lin, Ng, and Kan (2014) for recognizing PDTB-style
discourse relations. We use the DKPro TC text classification framework (Daxenberger
et al. 2014) for feature extraction and experimentation.

In the following sections, we describe each model in detail. For finding the best-
performing models, we conduct model selection on our training data using 5-fold cross-
validation. Then, we conduct model assessment on our test data. We determine the
evaluation scores of each cross-validation experiment by accumulating the confusion
matrices of each fold into one confusion matrix, which has been shown to be the least
biased method for evaluating cross-validation experiments (Forman and Scholz 2010).
We use macro-averaging as described by Sokolova and Lapalme (2009) and report
macro precision (P), macro recall (R), and macro F1 scores (F1). We use a two-sided
Wilcoxon signed-rank test with p = 0.01 for significance testing. Because most evalu-
ation measures for comparing system outputs are not normally distributed (Sogaard
2013), this non-parametric test is preferable to parametric tests, which make stronger
assumptions about the underlying distribution of the random variables. We apply this
test to all reported evaluation scores obtained for each of the 80 essays in our test set.

The remainder of this section is structured as follows: In the following sec-
tion, we introduce the baselines and the upper bound for each task. In Sec-
tion 5.2, we present the identification model that detects argument components and
their boundaries. In Section 5.3, we propose a new joint model for identifying argu-
mentation structures. In Section 5.4, we introduce our stance recognition model. In Sec-
tion 5.5, we report the results of the model assessment on our test data and on the
microtext corpus from Peldszus and Stede (2015). We present the results of the error
analysis in Section 5.6. We evaluate the identification model independently and use the
gold standard argument components for evaluating the remaining models.

6 www.languagetool.org.
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5.1 Baselines and Upper Bound

For evaluating our models, we use two different types of baselines: First, we use major-
ity baselines that label each instance with the majority class. Table A.1 in Appendix A
shows the class distribution in our training data and test data for each task.

Second, we use heuristic baselines, which are motivated by the common struc-
ture of persuasive essays (Whitaker 2009; Perutz 2010). The heuristic baseline of the
identification task exploits sentence boundaries. It selects all sentences as argument
components except the first two and the last sentence of an essay.” The heuristic baseline
of the classification task labels the first argument component in each body paragraph as
claim, and all remaining components in body paragraphs as premise. The last argument
component in the introduction and the first argument component in the conclusion are
classified as major claim and all remaining argument components in the introduction
and conclusion are labeled as claim. The heuristic baseline for the relation identification
classifies an argument component pair as linked if the target is the first component of
a body paragraph. We expect that this baseline will yield good results, because 62%
of all body paragraphs in our corpus start with a claim. The heuristic baseline of the
stance recognition classifies each argument component in the second to last paragraph
as attack. The motivation for this baseline stems from essay writing guidelines, which
recommend including opposing arguments in the second to last paragraph.

We determine the human upper bound for each task by averaging the evaluation
scores of all three annotator pairs on our test data.

5.2 Identifying Argument Components

We consider the identification of argument components as a sequence labeling task at
the token level. We encode the argument components using an IOB-tagset (Ramshaw
and Marcus 1995) and consider an entire essay as a single sequence. Accordingly, we
label the first token of each argument component as “Arg-B”, the tokens covered by an
argument component as “Arg-1”, and non-argumentative tokens as “O”. As a learner,
we use a CRF (Lafferty, McCallum, and Pereira 2001) with the averaged perceptron
training method (Collins 2002). Because a CRF considers contextual information, the
model is particularly suited for sequence labeling tasks (Goudas et al. 2014, page 292).
For each token, we extract the following features (Table 7):

Structural features capture the position of the token. We expect these features to be
effective for filtering non-argumentative text units, since the introductions and conclu-
sions of essays include few argumentatively relevant content. The punctuation features
indicate if the token is a punctuation and if the token is adjacent to a punctuation.

Syntactic features consist of the token’s POS as well as features extracted from

the Lowest Common Ancestor (LCA) of the current token t; and its adjacent tokens

. . . . leaPath(t; t;_
in the constituent parse tree. First, we define LCAeceding(ti) = W, where

|lcaPath(u, v)| is the length of the path from u to the LCA of u and v, and depth the depth

of the constituent parse tree. Second, we define LCAfigwing(ti) = %, which

considers the current token t; and its following token t;,1.> Additionally, we add the
constituent types of both lowest common ancestors to our feature set.

7 Full stops at the end of a sentence are all classified as non-argumentative.
8 We set LCApeceding = —1if t; is the first token in its covering sentence and LCAgjjpuing = —1 if ¢; is the last
token in its covering sentence.
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Table 7
Features used for argument component identification (*indicates genre-dependent features).
Group Feature Description
Token position Token present in introduction or conclusion®; token
is first or last token in sentence; relative and absolute
token position in document, paragraph and sentence
Punctuation Token precedes or follows any punctuation, full
Structural . ) .
stop, comma and semicolon; token is any punctua-
tion or full stop
Position of covering Absolute and relative position of the token’s
sentence covering sentence in the document and paragraph
Part-of-speech The token’s part-of-speech
| Lowest common ancestor Normalized length of the path to the LCA with the
Syntactic | (LCA) following and preceding token in the parse tree
LCA types The two constituent types of the LCA of the current
token and its preceding and following token
LexSyn Lexico-syntactic Combination of lexical and syntactic features as de-
scribed by Soricut and Marcu (2003)
Prob Probability Conditional probability of the current token being
the beginning of a component given its preceding
tokens

Lexico-syntactic features have been shown to be effective for segmenting elemen-
tary discourse units (Hernault et al. 2010). We adopt the features introduced by Soricut
and Marcu (2003). We use lexical head projection rules (Collins 2003) implemented
in the Stanford tool suite to lexicalize the constituent parse tree. For each token ¢, we
extract its uppermost node 1 in the parse tree with the lexical head ¢ and define a lexico-
syntactic feature as the combination of t and the constituent type of n. We also consider
the child node of n in the path to t and its right sibling, and combine their lexical heads
and constituent types as described by Soricut and Marcu (2003).

The probability feature is the conditional probability of the current token ¢; being
the beginning of an argument component (“Arg-B”) given its preceding tokens. We
maximize the probability for preceding tokens of a length up ton = 3:

argmax P(t; = Arg-Blti_p, ..., ti1)
ne{1,2,3}

To estimate these probabilities, we use maximum likelihood estimation on our training
data.

5.2.1 Results of Argument Component Identification. The results of model selection show
that using all features performs best. Table C.1 in Appendix C provides the detailed
results of the feature analysis. Table 8 shows the results of the model assessment on
the test data. The heuristic baseline achieves a macro F1 score of 0.642. It achieves
an F1 score of 0.677 for non-argumentative tokens (“O”) and 0.867 for argumentative
tokens (“Arg-1”). Thus, the heuristic baseline effectively separates argumentative from
non-argumentative text units. However, it achieves a low F1 score of 0.364 for
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Table 8
Model assessment of argument component identification (f = significant improvement over
baseline heuristic).

F1 P R Fl1Arg-B FlArg-I F10
Human upper bound  0.886 0.887 0.885 0.821 0.941 0.892
Baseline majority 0.259 0.212 0.333 0 0.778 0
Baseline heuristic 0.642 0.664 0.621 0.364 0.867 0.677
CREF all features 10.867  10.873  10.861 10.809 10.934 10.857

identifying the beginning of argument components (“Arg-B”). Because it does not split
sentences, it recognizes 145 fewer argument components than the number of gold
standard components in the test data.

The CRF model with all features significantly outperforms the macro F1 score of the
heuristic baseline (p = 7.85 x 10~'%). Compared with the heuristic baseline, it performs
significantly better in identifying the beginning of argument components (p = 1.65 x
10~). Tt also performs better for separating argumentative from non-argumentative
tokens (p = 4.06 x 107!%). In addition, the number of identified argument components
differs only slightly from the number of gold standard components in our test data. It
identifies 1,272 argument components, whereas the number of gold standard compo-
nents in our test data amounts to 1,266. The human upper bound yields a macro F1
score of 0.886 for identifying argument components. The macro F1 score of our model
is only 0.019 less. Therefore, our model achieves 97.9% of human performance.

5.2.2 Error Analysis. For identifying the most frequent errors of our model, we manually
investigated the predicted argument components. The most frequent errors are false
positives of “Arg-1”. The model classifies 1,548 out of 9,403 non-argumentative tokens
(“O”) as argumentative (“Arg-1”). The reason for these errors is threefold: First, the
model frequently labels non-argumentative sentences in the conclusion of an essay as
argumentative. These sentences are, for instance, non-argumentative recommendations
for future actions or summaries of the essay topic. Second, the model does not correctly
recognize non-argumentative sentences in body paragraphs. It wrongly identifies argu-
ment components in 13 out of the 15 non-argumentative body paragraph sentences in
our test data. The reason for these errors may be attributed to the high class imbalance
in our training data. Third, the model tends to annotate lengthy non-argumentative
preceding tokens as argumentative. For instance, it labels subordinate clauses preceding
the actual argument component as argumentative in sentences similar to “In addition
to the reasons mentioned above, [actual “Arg-B”] ...” (underlined text units represent
the annotations of our model).

The second most frequent cause of errors are misclassified beginnings of argument
components. The model classifies 137 of the 1,266 beginning tokens as “Arg-1”. The
model, for instance, fails to identify the correct beginning in sentences like “Hence, from
this case we are capable of stating that [actual “Arg-B”] ... ” or “Apart from the rea-
son I mentioned above, another equally important aspect is that [actual “Arg-B”] ...”.
These examples also explain the false negatives of non-argumentative tokens which are
wrongly classified as “Arg-B”.
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5.3 Recognizing Argumentation Structures

The identification of argumentation structures involves the classification of argument
component types and the identification of argumentative relations. Both argumentative
types and argumentative relations share information (Stab and Gurevych 2014b, p. 54).
For instance, if an argument component is classified as claim, it is less likely to exhibit
outgoing relations and more likely to have incoming relations. On the other hand, an
argument component with an outgoing relation and few incoming relations is more
likely to be a premise. Therefore, we propose a joint model that combines both types
of information for finding the optimal structure. We train two local base classifiers.
One classifier recognizes the type of argument components (Section 5.3.1), and another
identifies argumentative relations between argument components (Section 5.3.2). For
both models, we use an SVM (Cortes and Vapnik 1995) with a polynomial kernel imple-
mented in the Weka machine learning framework (Hall et al. 2009). The motivation for
selecting this learner stems from the results of our previous work, in which we found
that SVMs outperform several other learners in both tasks (Stab and Gurevych 2014b,
page 51). We globally optimize the outcomes of both classifiers in order to find the
optimal argumentation structure using Integer Linear Programming (Section 5.3.3). In
the following three sections, we first introduce the features of the two base classifiers
before describing the Integer Linear Programming model.

5.3.1 Classifying Argument Components. We consider the classification of argument com-
ponent types as multiclass classification and label each argument component as “major
claim,” “claim,” or “premise.” We experiment with the following feature groups:

Lexical features consist of binary lemmatized unigrams and the 2k most frequent
dependency word pairs. We extract the unigrams from the component and its preceding
tokens to ensure that discourse markers are included in the features.

Structural features capture the position of the component in the document and
token statistics (Table 9). Because major claims occur frequently in introductions or
conclusions, we expect that these features are valuable for differentiating component
types.

Indicator features are based on four categories of lexical indicators that we man-
ually extracted from 30 additional essays. Forward indicators such as “therefore”,
“thus”, or “consequently” signal that the component following the indicator is a result
of preceding argument components. Backward indicators indicate that the component
following the indicator supports a preceding component. Examples of this category are
“in addition”, “because”, or “additionally”. Thesis indicators such as “in my opinion”
or “I believe that” indicate major claims. Rebuttal indicators signal attacking premises
or contra arguments. Examples are “although”, “admittedly”, or “but”. The complete
lists of all four categories are provided in Table B.1 in Appendix B. We define for each
category a binary feature that indicates if an indicator of a category is present in the
component or its preceding tokens. An additional binary feature indicates if first-person
indicators are present in the argument component or its preceding tokens (Table 9). We
assume that first-person indicators are informative for identifying major claims.

Contextual features capture the context of an argument component. We define
eight binary features set to true if a forward, backward, rebuttal, or thesis indicator
precedes or follows the current component in its covering paragraph. Additionally,
we count the number of noun and verb phrases of the argument component that are
also present in the introduction or conclusion of the essay. These features are motivated
by the observation that claims frequently restate entities or phrases of the essay topic.
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Table 9
Features of the argument component classification model (*indicates genre-dependent features).

Group Feature Description
Unigrams Binary and lemmatized unigrams of the component
Lexical and its preceding tokens

Dependency tuples Lemmatized dependency tuples (2k most frequent)

Token statistics Number of tokens of component, covering para-
graph and covering sentence; number of tokens pre-
ceding and following the component in its sentence;
ratio of component and sentence tokens

Structural o\ g .

Component position Component is first or last in paragraph; component
present in introduction or conclusion*; Relative posi-
tion in paragraph; number of preceding and follow-
ing components in paragraph

Type indicators Forward, backward, thesis or rebuttal indicators

. present in the component or its preceding tokens
Indicators . L g P N A i 2 :

First-person indicators I”, “me”, “my”, “mine”, or “myself” present in
component or its preceding tokens

Type indicators in context ~ Forward, backward, thesis, or rebuttal indicators

Contextual g;z}cﬁldmg or following the component in its para-

Shared phrases* Shared noun phrases or verb phrases with the intro-
duction or conclusion (number and binary)

Subclauses Number of subclauses in the covering sentence

Depth of parse tree Depth of the parse tree of the covering sentence

Syntactic | Tense of main verb Tense of the main verb of the component
Modal verbs Modal verbs present in the component
POS distribution POS distribution of the component
- Type probability Conditional probability of the component being a
Probability . . . . . . :
major claim, claim or premise, given its preceding
tokens
Di Discourse Triples PDTB-discourse relations overlapping with the cur-
iscourse
rent component
. Combined word embed- Sum of the word vectors of each word of the compo-
Embedding di . !
ings nent and its preceding tokens

Furthermore, we add four binary features indicating if the current component shares a
noun or verb phrase with the introduction or conclusion.

Syntactic features consist of the POS distribution of the argument component, the
number of subclauses in the covering sentence, the depth of the constituent parse tree of
the covering sentence, the tense of the main verb of the component, and a binary feature
that indicates whether a modal verb is present in the component.

The probability features are the conditional probabilities of the current component
being assigned the type t € {MajorClaim, Claim, Premise} given the sequence of tokens
p directly preceding the component. To estimate P(f|p), we use maximum likelihood
estimation on our training data.
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Discourse features are based on the output of the PDTB-style discourse parser
from Lin, Ng, and Kan (2014). Each binary feature is a triple combining the following
information: (1) the type of the relation that overlaps with the current argument com-
ponent, (2) whether the current argument component overlaps with the first or second
elementary discourse unit of a relation, and (3) if the discourse relation is implicit or ex-
plicit. For instance, the feature Contrast_imp_Argl indicates that the current component
overlaps with the first discourse unit of an implicit contrast relation. The use of these
features is motivated by the findings of Cabrio, Tonelli, and Villata (2013). By analyzing
several example arguments, they hypothesized that general discourse relations could
be informative for identifying argument components.

Embedding features are based on word embeddings trained on a part of the Google
news data set (Mikolov et al. 2013). We sum the vectors of each word of an argument
component and its preceding tokens and add it to our feature set. In contrast to common
bag-of-words representations, embedding features have a continuous feature space that
helped to achieve better results in several NLP tasks (Socher et al. 2013).

By experimenting with individual features and several feature combinations, we
found that a combination of all features yields the best results. The results of the model
selection can be found in Table C.2 in Appendix C.

5.3.2 Identifying Argumentative Relations. The relation identification model classifies or-
dered pairs of argument components as “linked” or “not-linked.” In this analysis step,
we consider both argumentative support and attack relations as “linked.” For each
paragraph with argument components cy, ..., ¢, we consider p = (c;, ¢;) with i # j and
1 <i,j < n as an argument component pair. An argument component pair is “linked”
if our corpus contains an argumentative relation with ¢; as source component and
¢j as target component. The class distribution is skewed towards “not-linked” pairs
(Table A.1). We experiment with the following features:

Lexical features are binary lemmatized unigrams of the source and target compo-
nent and their preceding tokens. We limit the number of unigrams for both source and
target component to the 500 most frequent words in our training data.

Syntactic features include binary POS features of the source and target component
and the 500 most frequent production rules extracted from the parse tree of the source
and target component as described in our previous work (Stab and Gurevych 2014b).

Structural features consist of the number of tokens in the source and target com-
ponent, statistics on the components of the covering paragraph of the current pair, and
position features (Table 10).

Indicator features are based on the forward, backward, thesis, and rebuttal indica-
tors introduced in Section 5.3.1. We extract binary features from the source and target
component and the context of the current pair (Table 10). We assume that these features
are helpful for modeling the direction of argumentative relations and the context of the
current component pair.

Discourse features are extracted from the source and target component of each
component pair as described in Section 5.3.1. Although PDTB-style discourse relations
are limited to adjacent relations, we expect that the types of general discourse relations
can be helpful for identifying argumentative relations. We also experimented with
features capturing PDTB relations between the target and source component. However,
those were not effective for capturing argumentative relations.

PMI features are based on the assumption that particular words indicate incoming
or outgoing relations. For instance, tokens like “therefore”, “thus”, or “hence” can

Zam

signal incoming relations, whereas tokens such as “because”, “since”, or “furthermore”
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Table 10
Features used for argumentative relation identification (*indicates genre-dependent features).
Group Feature Description

Unigrams Binary lemmatized unigrams of the source and target
Lexical components including preceding tokens (500 most fre-

quent)

Part-of-speech Binary POS features of source and target components

Syntactic Production rules Production rules extracted from the constituent parse tree

(500 most frequent)

Structural

Token statistics
Component statistics

Position features

Number of tokens of source and target

Number of components between source and target; num-
ber of components in covering paragraph

Source and target present in same sentence; target present
before source; source and target are first or last component
in paragraph; pair present in introduction or conclusion*

Indicator source/ target
Indicators between

Indicator type present in source or target
Indicator type present between source or target

Indicator Indicators context Indicator type follows or precedes source or target in the
covering paragraph of the pair

Discourse | Discourse Triples Binary discourse triples of source and target

Pointwise mutual information ~ Ratio of tokens positively or negatively associated with

PMI incoming or outgoing relations; Presence of words nega-
tively or positively associated with incoming or outgoing
relations

ShNo Shared nouns Shared nouns between source and target components

(number and binary)

may indicate outgoing relations. To capture this information, we use Pointwise Mutual
Information (PMI), which has been successfully used for measuring word associations
(Turney 2002; Church and Hanks 1990). However, instead of determining the PMI of two
words, we estimate the PMI between a lemmatized token ¢ and the direction of a relation
d = {incoming, outgoing} as PMI(t,d) = log pz()t”?d(?j). Here, p(t,d) is the probability that
token t occurs in an argument component with either incoming or outgoing relations.
The ratio between p(t,d) and p(t) p(d) indicates the dependence between a token and
the direction of a relation. We estimate PMI(t,d) for each token in our training data.
We extract the ratio of tokens positively and negatively associated with incoming or
outgoing relations for both source and target components. Additionally, we extract four
binary features, which indicate if any token of the components has a positive or negative
association with either incoming or outgoing relations.

Shared noun features (shNo) indicate if the source and target components share a
noun. We also add the number of shared nouns to our feature set. These features are
motivated by the observation that claims and premises often share the same subject.

For selecting the best performing model, we conducted feature ablation tests and
experimented with individual features. The results show that none of the feature groups
is informative when used individually. We achieved the best performance by removing
lexical features from our feature set (detailed results of the model selection can be found
in Table C.3 in Appendix C).

642



Stab and Gurevych Parsing Argumentation Structures

5.3.3 Jointly Modeling Arqumentative Relations and Arqument Component Types. Both base
classifiers identify argument component types and argumentative relations locally.
Consequently, the results may not be globally consistent. For instance, the relation
identification model does not link 37.1% of all premises in our model selection ex-
periments. Therefore, we propose a joint model that globally optimizes the outcomes
of the two base classifiers. We formalize this task as an Integer Linear Programming
(ILP) problem. Given a paragraph including n argument components,” we define the
following objective function

n n
argmax Z Z Wijxjj (1)
X

i=1 j=1

with variables x;; € {0, 1} indicating an argumentative relation from argument compo-
nent i to argument component j.'° Each coefficient wjj € R is a weight of a relation. It is
determined by incorporating the outcomes of the two base classifiers. To ensure that the
resulting structure is a tree, we define the following constraints:

n
Vi:) x;<1 )
j=1
n n
Z Z xj<n-—1 3)
i=1 j=1
Vi : Xij = 0 (4)

Equation (2) prevents an argument component i from having more than one outgoing
relation. Equation (3) ensures that a paragraph includes at least one root node (i.e., a
node without outgoing relation). Equation (4) prevents an argumentative relation from
having the same source and target component.

To prevent cycles, we adopt the approach described by Kiibler et al. (2008, page 92).
We add the auxiliary variables b;; € {0,1} to our objective function (1) where b; = 1
if there is a directed path from argument component i to argument component j. The
following constraints tie the auxiliary variables b;; to the variables x;;:

Vi VJ . xij — bz] < 0 (5)
Vi V] Vk : bik - bz; - b]k < -1 (6)
Vi: bii =0 (7)

The first constraint ensures that there is a path from i to j represented in variable b;;
if there is a direct relation between the argument components i and j. The second con-
straint covers all paths of length greater than 1 in a transitive way. It states that if there is
a path from argument component i to argument component j (b;; = 1) and another path
from argument component j to argument component k (b, = 1) then there is also a path

9 We consider only claims and premises in our joint model, since argumentative relations between claims
and major claims are modeled with a level approach (cf. Section 3.2).
10 We use the Ipsolve framework (http://1psolve.sourceforge.net) and set each variable in the objective
function to binary mode for ensuring the upper bound of 1.
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from argument component i to argument component k. Thus, it iteratively covers paths
of length / 4 1 by having covered paths of length [. The third constraint avoids cycles by
preventing all directed paths starting and ending with the same argument component.

Having defined the ILP model, we consolidate the results of the two base classifiers.
We consider this task by determining the weight matrix W € R"*" that includes the
coefficients w;; € W of our objective function. The weight matrix W can be considered
an adjacency matrix. The greater the weight of a particular relation is, the higher the
likelihood that the relation appears in the optimal structure found by the ILP-solver.

First, we incorporate the results of the relation identification model. Its result can be
considered as an adjacency matrix R € {0, 1}"*". For each pair of argument components
(1,7) with 1 <i,j <mn, each rj € Ris 1 if the relation identification model predicts an
argumentative relation from argument component i (source) to argument component j
(target), or 0 if the model does not predict an argumentative relation.

Second, we derive a claim score cs; for each argument component i from the pre-
dicted relations in R:

. relin; — relout; + n — 1
T rel +n—1

(8)

Here, relin; = Y [_; ri[i # k] is the number of predicted incoming relations of argument
component i, relout; = > |_; ry[i # 1] is the number of predicted outgoing relations of
argument component i, and rel = Y }_; >_|_; rylk # 1] is the total number of relations
predicted in the current paragraph. The claim score cs; is greater for argument com-
ponents with many incoming relations and few outgoing relations. It becomes smaller
for argument components with fewer incoming relations and more outgoing relations.
By normalizing the score with the total number of predicted relations and argument
components, it also accounts for contextual information in the current paragraph and
prevents overly optimistic scores. For example, if all predicted relations point to argu-
ment component i, which has no outgoing relations, cs; is exactly 1. On the other hand,
if there is an argument component j with no incoming and one outgoing relation in a
paragraph with four argument components and three predicted relations in R, cs; is 3.
Because it is more likely that a relation links an argument component which has a lower
claim score to an argument component with a higher claim score, we determine the
weight for each argumentative relation as:

Crjj = csj — Cs; 9)

By treating cs; of the target component j as a positive term, we assign a higher weight to
relations pointing to argument components that are likely to be a claim. By subtracting
the claim score cs; of the source component i, we assign smaller weights to relations
outgoing argument components with larger claim score.

Third, we incorporate the argument component types predicted by the classifica-
tion model. We assign a higher score to the weight wj; if the target component j is
predicted as claim, because it is more likely that argumentative relations point to claims.
Accordingly, we set ¢;; = 1 if argument component j is labeled as claim and ¢;; = 0 if
argument component j is labeled as premise.

Finally, we combine all three scores to estimate the weights of the objective function:

wij = Gyij + Gercrij + ety (10)
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Table 11
Features used for stance recognition.
Group Feature Description
Lexical Unigrams Binary and lemmatized unigrams of the component and its
preceding token
Subjectivity clues Presence of negative words; number of negative, positive,
and neutral words; number of positive words subtracted
Sentiment by the number of negative words
Sentiment scores Five sentiment scores of covering sentence (Stanford senti-

ment analyzer)

Suntactic POS distribution POS distribution of the component
Y Production rules Production rules extracted from the constituent parse tree
Token statistics Number of tokens of covering sentence; number of pre-
ceding and following tokens in covering sentence; ratio of
Structural component and sentence tokens
Component statistics Number of components in paragraph; number of preceding
and following components in paragraph
Component Position Relative position of the argument component in paragraph
Discourse Discourse Triples PDTB discourse relations overlapping with the current
component
. Combined word embeddings ~ Sum of the word vectors of each word of the component
Embedding

and its preceding tokens

Each ¢ represents a hyperparameter of the ILP model. In our model selection exper-
iments, we found that ¢, = 4 and ¢, = ¢, = 1 yields the best performance. More
detailed results of the model selection are provided in Table C.4 in Appendix C.

After applying the ILP model, we adapt the argumentative relations and argument
types according to the results of the ILP-solver. We revise each relation according to
the determined x;; scores, set the type of all components without outgoing relation to
“claim,” and set the type of all remaining components to “premise.”

5.4 Classifying Support and Attack Relations

The stance recognition model differentiates between argumentative support and attack
relations. We model this task as binary classification and classify each claim and premise
as “support” or “attack.” The stance of each premise is encoded in the type of its
outgoing relation, whereas the stance of each claim is encoded in its stance attribute.
We use an SVM!! and the features listed in Table 11.

5.5 Evaluation
Table 12 shows the F1 scores of the classification, relation identification, and stance

recognition tasks using our test data. The ILP joint model significantly outperforms the
macro F1 score of the heuristic baselines for component classification (p = 1.49 x 10™%)

11 For finding the best learner, we compared naive Bayes (John and Langley 1995), Random Forests
(Breiman 2001), Multinomial Logistic Regression (le Cessie and van Houwelingen 1992), C4.5 Decision
Trees (Quinlan 1993), and SVM (Cortes and Vapnik 1995); we found that an SVM outperforms all other
classifiers.
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Table 12
Model assessment on persuasive essays (T = significant improvement over baseline heuristic; I =
significant improvement over base classifier).

Components Relations Stance recognition
F1 FIMC FICl F1Pr| F1 FlNoLi F1Li| F1 FlSup FlAtt| AvgFl

Human upper bound 0.868 0926 0.754 0924 | 0.854 0954 0755 | 0.844 0975 0.703 | 0.855

Baseline majority 0260 0 0 0780 | 0455 0910 0 0478 0957 0 0398
Baseline heuristic 0759 0759 0620 0899 | 0700 0901 0499 | 0.562 0776 0201 | 0.674
Base classifier 0794 10891 0611 0879 | 0717 0917 0508 [{0.680 10.947 $0.413 | 0.730
ILP joint model 110826 10.891 $0.682 10.903 [{0.751 10.918 110.585 [{0.680 10.947 10413 | 0.752

and relation identification (p = 0.003). It also significantly outperforms the macro F1
score of the base classifier for component classification (p = 7.45 x 10~%). However, it
does not yield a significant improvement over the macro F1 score of the base classifier
for relation identification. The results show that the identification of claims and linked
component pairs benefit most from the joint model. Compared with the base classifiers,
the ILP joint model improves the F1 score of claims by 0.071 (p = 1.84 x 10~%) and the
F1 score of linked component pairs by 0.077 (p = 6.95 x 10~°). The stance recognition
model significantly outperforms the heuristic baseline by 0.118 macro F1 score (p =
0.008). It yields 0.947 F1 score for supporting components and 0.413 for attacking
components.

The human upper bound yields macro F1 scores of 0.868 for component classifi-
cation, 0.854 for relation identification, and 0.844 for stance recognition. The ILP joint
model almost achieves human performance for classifying argument components. Its
F1 score is only .042 lower than human upper bound. Regarding relation identification
and stance recognition, the macro F1 scores of our model are 0.103 and 0.164 lower
than human performance. Thus, our model achieves 95.2% of human performance
for component identification, 87.9% for relation identification, and 80.5% for stance
recognition.

In order to verify the effectiveness of our approach, we also evaluated the ILP joint
model on the English microtext corpus (cf. Section 2.4). To ensure the comparability
to previous results, we used the same repeated cross-validation set-up as described
by Peldszus and Stede (2015). Because the microtext corpus does not include major
claims, we removed the major claim label from our component classification model.
Furthermore, it was necessary to adapt several features of the base classifiers, since the
microtext corpus does not include non-argumentative text units. Therefore, we did not
consider preceding tokens for lexical, indicator, and embedding features and removed

Table 13
Model assessment on microtext corpus from Peldszus and Stede (2015) (f = significant
improvement over baseline heuristic; = significant improvement over base classifier).

Components Relations Stance recognition
F1 F1Cl  F1Pr F1 F1NoLi F1Li F1 Fl1Sup FlAtt | AvgFl
Baseline heuristic 0.712 0.536  0.888 0.618 0.856 0380 | 0542  0.773 0.293 0.624
Base classifier 10.830  10.712  0.937 10.650  10.841 10.446 |10.745 10.855  10.628 0.742
ILP joint model 110857 110.770 10.943 | 110.683 110.881 {10486 |10.745 10.855  10.628 0.762
Best EG 0.869 - - 0.693 - 0502 | 0.710 - - 0.757
MP+p 0.831 - - 0.720 — 0.546 | 0.514 - - 0.688
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the probability feature of the component classification model. Additionally, we removed
all genre-dependent features of both base classifiers.

Table 13 shows the evaluation results of our model on the microtext corpus. Our ILP
joint model significantly outperforms the macro F1 score of the heuristic baselines for
component classification (p = 2.10 x 10719) and relation identification (p=15x 1078).
The results also show that our model yields significantly better macro F1 scores com-
pared to the two base classifiers (p = 0.002 for component classification and p = 7.52 x
107 for relation identification). The stance recognition model achieves 0.745 macro
F1 score on the microtext corpus. It significantly improves the macro F1 score of the
heuristic baseline by 0.203 (p = 7.55 x 10~19).12

The last two rows in Table 13 show the results reported by Peldszus and Stede (2015)
on the English microtext corpus. The Best EG model is their best model for component
classification, and MP+p is their best model for relation identification. Compared with
our ILP joint model, the Best EG model achieves better macro F1 scores for compo-
nent classification and relation identification. However, because the outcomes of their
systems are not available to us, we cannot determine if this difference is significant.
The MP+p model achieves a better macro F1 score for relation identification, but yields
lower results for component classification and stance recognition compared to our ILP
joint model. These differences can be attributed to the additional information about
the function and role attribute incorporated in their joint models (cf. Section 2.3). They
showed that both have a beneficial effect on the component classification and relation
identification in their corpus (Peldszus and Stede 2015, Figure 3). However, the role
attribute is a unique feature of their corpus and the arguments in their corpus exhibit
an unusually high proportion of attack relations. In particular, 86.6% of their arguments
include attack relations, whereas the proportion of arguments with attack relations in
our corpus amounts to only 12.4%. Therefore, we assume that incorporating function
and role attributes will not be beneficial using our corpus.

Overall, the evaluation results show that our ILP joint model significantly outper-
forms challenging heuristic baselines and simultaneously improves the performance of
component classification and relation identification on two different types of discourse.

5.6 Error Analysis

In order to analyze frequent errors of the ILP joint model, we investigated the predicted
argumentation structures in our test data. The confusion matrix of the component
classification task (Table 14) shows that the highest confusion is between claims and
premises. The model classifies 74 actual premises as claims and 82 claims as premises.
By manually investigating these errors, we found that the model tends to label inner
premises in serial structures as claims and wrongly identifies claims in sentences con-
taining two premises. Regarding the relation identification, we observed that the model
tends to identify argumentation structures that are more shallow than the structures in
our gold standard. The model correctly identifies only 34.7% of the 98 serial arguments
in our test data. This can be attributed to the “claim-centered” weight calculation in
our objective function. In particular, the predicted relations in matrix R are the only
information about serial arguments, whereas the other two scores (c;; and cr;;) assign
higher weights to relations pointing to claims.

12 The heuristic baseline for stance recognition on the microtext corpus classifies the fourth component as
“attack” and all other components as “support.”
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Table 14
Confusion matrix of the ILP joint model of component classification on our test data.

predictions
MajorClaim Claim Premise

= MajorClaim 139 12 2
2 Claim 20 202 82
& Premise 0 74 735

In order to determine if the ILP joint model correctly models the relationship
between component types and argumentative relations, we artificially improved the
predictions of both base classifiers as suggested by Peldszus and Stede (2015). The
dashed lines in Figure 4 show the performance of the artificially improved base classi-
fiers. Continuous lines show the resulting performance of the ILP joint model. Figures 4a
and 4b show the effect of improving the component classification and relation identifi-
cation. They show that correct predictions of one base classifier are not maintained after
applying the ILP model if the other base classifier exhibits less accurate predictions. In
particular, less accurate argumentative relations have a more detrimental effect on the
component types (Figure 4a) than less accurate component types do on the outcomes of
the relation identification (Figure 4b). Thus, it is more reasonable to focus on improving
relation identification than component classification in future work.

Figure 4c depicts the effect of improving both base classifiers, which illustrates that
the ILP joint model improves the component types more effectively than argumentative
relations. Figure 4c shows that the ILP joint model improves both tasks if the base
classifiers are improved. Therefore, we conclude that the ILP joint model successfully
captures the natural relationship between argument component types and argumenta-
tive relations.

6. Discussion

Our argumentation structure parser is a pipeline consisting of several consecu-
tive steps. Therefore, potential errors of the upstream models are propagated and

---O-- Improved comp. types —O— Component types

—7x— Argumentative relations

45— Improved arg. relations
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Figure 4
Influence of improving the base classifiers (x-axis shows the proportion of improved predictions
and y-axis the macro F1 score).
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negatively influence the results of the downstream models. For example, errors of the
identification model can result in flawed argumentation structures if argumentatively
relevant text units are not recognized or non-argumentative text units are identified as
relevant. However, our identification model yields good accuracy and an oy; of 0.958
for identifying argument components. Therefore, it is unlikely that identification errors
will significantly influence the outcome of the downstream models when applied to
persuasive essays. However, as demonstrated by Levy et al. (2014) and Goudas et al.
(2014), the identification of argument components is more complex in other text genres
than it is in persuasive essays. Another potential issue of the pipeline architecture is that
wrongly classified major claims will decrease the accuracy of the model because they
are not integrated in the joint modeling approach. For this reason, it is worthwhile to
experiment in future work with structured machine learning methods that incorporate
several tasks in one model (Moens 2013).

In this work, we presented an approach for recognizing argumentation structures
in persuasive essays. Other text genres, however, may exhibit less explicit arguments.
Habernal and Gurevych (2017, page 27), for instance, showed that 48% of the argu-
ments in user-generated Web discourse do not include explicit claims. These incom-
plete arguments, so called enthymemes, make both annotation and automatic analysis
challenging. Although humans may be able to deduce the missing parts by interpreting
the argument, existing argument mining methods fail on that task and may produce
incomplete or even wrong argumentation structures. In particular, the presented ap-
proach is not able to recognize gaps in reasoning (i.e., missing premises) or to infer the
missing components of implicit arguments. Inferring implicit argument components
is challenging since it requires robust methods for capturing the semantics of natural
language arguments and appropriate background knowledge for reconstructing the
missing parts.

The presented argumentation structure parser is an important milestone for im-
plementing argumentative writing support systems. For example, the recognized argu-
mentation structures allow highlighting unwarranted claims, missing major claims, or
different types of quantitative analyses on the number of arguments or their premises.
It is still unknown, however, if this feedback provides an adequate guidance for im-
proving students” argumentation skills. In order to answer this question, it is required
to integrate the proposed model in writing environments and to investigate the effect of
different feedback types on the argumentation skills of students in future research.

7. Conclusion

In this article, we presented an end-to-end approach for parsing argumentation struc-
tures in persuasive essays. Previous approaches suffer from several limitations: Existing
approaches either focus only on particular subtasks of argumentation structure parsing
or rely on manually created rules. Consequently, previous approaches are only of
limited use for parsing argumentation structures in real application scenarios. To the
best of our knowledge, the presented work is the first approach that covers all required
subtasks for identifying the global argumentation structure of documents. We showed
that jointly modeling argumentation structures simultaneously improves the results
of component classification and relation identification. Additionally, we introduced
a novel annotation scheme and a new corpus of persuasive essays annotated with
argumentation structures that represent the largest resource of its kind. Both the corpus
and the annotation guidelines are freely available.
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Appendix A. Class Distributions

Table A.1 shows the class distributions of the training and test data of the persuasive
essay corpus for each analysis step.

Appendix B. Indicators

Table B.1 shows all of the lexical indicators we extracted from 30 persuasive essays. The
lists include 24 forward indicators, 33 backward indicators, 48 thesis indicators, and
10 rebuttal indicators.

Appendix C. Detailed Results of Model Selections

The following tables show the model selection results for all five tasks using 5-fold
cross-validation on our training data. Table C.1 shows the results of using individual
feature groups for the argument component identification task. Lexico-syntactic fea-
tures perform best regarding the macro F1 score, and they perform particularly well for
recognizing the beginning of argument components (“Arg-B”). The second best features
are structural features. They yield the best F1 score for separating argumentative from
non-argumentative text units (“O”).

Syntactic features are useful for identifying the beginning of argument compo-
nents. The probability feature yields the lowest macro F1 score. Nevertheless, we
observe a significant decrease compared with the macro F1 score of the model
with all features when evaluating the system without the probability feature (p=
0.003). We obtain the best results by using all features. Because persuasive essays
exhibit a particular paragraph structure, which may not be present in other text
genres (e.g., user-generated Web discourse), we also evaluate the model without
genre-dependent features (cf. Table 7). This yields a significant difference compared
with the macro F1 score of the model with all features (p= 2.24x10>%).

Table A.1

Class distributions in training data and test data.
Class | Training data | Test data

Identification
ArgB 1823 (41%) | 1,266  (d4.3%)
Arg-1 75,053  (63.6%) | 18,655  (63.6%)
O 38,071  (32.3%) 9,403 (32.1%)
Component classification
MajorClaim | 598 (124%) | 153 (12.1%)
Claim 1,202 (24.9%) | 304  (24.0%)
Premise 3,023  (62.7%) 809 (63.9%)
Relation identification
Not-Linked | 14,227 (82.5%) | 4,113 (83.5%)
Linked 3,023  (17.5%) 809  (16.5%)
Stance recognition

Support 3820 (904%) | 1,021 (91.7%)
Attack 405 (9.6%) 92 (8.3%)
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Table B.1

List of lexical indicators.

Category Indicators

Forward (24) “As a result”, “As the consequence”, “Because”, “Clearly”, “Consequently”, “Consid-

s

ering this subject”, “Furthermore”, “Hence”, “leading to the consequence”, “so”, “So”,
“taking account on this fact”, “That is the reason why”, “The reason is that”, “Therefore”,
“therefore”, “This means that”, “This shows that”, “This will result”, “Thus”, “thus”,
“Thus, it is clearly seen that”, “Thus, it is seen”, “Thus, the example shows”

Backward (33) “Additionally”, “As a matter of fact”, “because”, “Besides”, “due to”, “Finally”, “First
of all”, “Firstly”, “for example”, “For example”, “For instance”, “for instance”, “Further-

”nou nou

more”, “has proved it”, “In addition”, “In addition to this”, “In the first place”, “is due
to the fact that”, “It should also be noted”, “Moreover”, “On one hand”, “On the one

”ou

hand”, “On the other hand”, “One of the main reasons”, “Secondly”, “Similarly”, “since”,

o

“Since”, “So”, “The reason”, “To begin with”, “To offer an instance”, “What is more”

Thesis (48) “All in all”, “All things considered”, “As far as I am concerned”, “Based on some rea-

A

sons”, “by analyzing both the views”, “considering both the previous fact”, “Finally”,
“For the reasons mentioned above”, “From explanation above”, “From this point of

view”, “I agree that”, “I agree with”, “I agree with the statement that”, “I believe”, “I

believe that”, “I do not agree with this statement”, “I firmly believe that”, “I highly
advocate that”, “I highly recommend”, “I strongly believe that”, “I think that”, “I think

the view is”, “I totally agree”, “I totally agree to this opinion”, “I would have to argue
that”, “I would reaffirm my position that”, “In conclusion”, “in conclusion”, “in my

”oou

opinion”, “In my opinion”, “In my personal point of view”, “in my point of view”,
“In my point of view”, “In summary”, “In the light of the facts outlined above”, “it

can be said that”, “it is clear that”, “it seems to me that”, “my deep conviction”, “My

sentiments”, “Overall”, “Personally”, “the above explanations and example shows that”,

i

“This, however”, “To conclude”, “To my way of thinking”, “To sum up”, “Ultimately”

Rebuttal (10) “Admittedly”, “although”, “Although”, “besides these advantages”, “but”, “But”, “Even
though”, “even though”, “However”, “Otherwise”

Table C.1
Argument component identification (f = significant improvement over baseline heuristic).
F1 P R F1Arg-B FlArg-I F10
Baseline majority 0259 0212 0.333 0 0.778 0
Baseline heuristic 0.628 0.647 0.610 0.350 0.869 0.660
CREF only structural ¥0.748 10.757 IO.740 2[0.542 10.906  10.789
CREF only syntactic 0.730 70.752  10.710 0.638 0.868 0.601
CREF only lexSyn 10.762  10.780  10.744 10.714 10.873 0.620
CREF only probability 0.605 10.698  0.534 10.520 0.806 0.217
CRF w/o genre-dependent | 10.847 10.851 10.844 10.778 10925  10.835
CREF all features 10.849 10.853 10.846 10.777 10.927  10.842

Table C.2 shows the model selection results of the classification model. Structural
features are the only features that significantly outperform the macro F1 score of the
heuristic baseline when used individually (p = 4.04x10~°). They are the most effective
features for identifying major claims and claims. The second-best features for identify-
ing claims are discourse features. With this knowledge, we can confirm the assumption
that general discourse relations are useful for component classification (cf. Section 5.3.1).
Embedding features do not perform as well as lexical features. They yield lower F1
scores for major claims and claims. Contextual features are effective for identifying
major claims, since they implicitly capture if an argument component is present in
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Table C.2
Argument component classification (f = significant improvement over baseline heuristic).
F1 P R F1 MajorClaim  F1 Claim  F1 Premise

Baseline majority 0.257 0209 0.333 0 0 0.771
Baseline heuristic 0724 0724 0.723 0.740 0.560 0.870
SVM only lexical 0591 0.603 0.580 0.591 0.405 0.772
SVM only structural 10.746  0.726 10.767 10.803 0.551 0.870
SVM only contextual 0.601  0.603 0.600 0.656 0.248 0.836
SVM only indicators 0.508 0.596 0.443 0.415 0.098 0.799
SVM only syntactic 0.387 0371  0.405 0.313 0 0.783
SVM only probability 0.561 0.715 0.462 0.448 0.002 0.792
SVM only discourse 0.521 0563 0.484 0.016 0.538 0.786
SVM only embeddings 0.588  0.620  0.560 0.560 0.355 0.815
SVM all w/o prob & emb 10.771 10.771 10.772 10.855 0.596 0.863
SVM w/o genre-dependent |10.742 10.745 0.739 10.819 0.560 0.847
SVM all features 10.773  10.774 10.771 10.865 0.592 0.861

the introduction or conclusion (cf. Section 5.3.1). Indicator features are most effective
for identifying major claims, but contribute only slightly to the identification of claims.
Syntactic features are predictive of major claims and premises, but are not effective for
recognizing claims. The probability features are not informative for identifying claims,
probably because forward indicators may also signal inner premises in serial structures.
Omitting probability and embedding features yields the best accuracy. However, we
select the best system by means of the macro F1 score, which is more appropriate for
imbalanced data sets. Accordingly, we select the model with all features (Table C.2).
The model selection results for relation identification are shown in Table C.3. We
report the results of feature ablation tests, since none of the feature groups yields
remarkable results when used individually. Structural features are the most effective
features for identifying relations. The second- and third-most effective feature groups
are indicator and PMI features. Removing the shared noun feature does not yield a
significant difference in accuracy or macro F1 score compared with SVM all features.
We achieve the best macro F1 score by removing lexical features from the feature set.

Table C.3
Argumentative relation identification (} = significant improvement over baseline heuristic; { =
significant difference compared to SVM all features).

F1 P R F1 Not-Linked F1 Linked
Baseline majority 0.455 0.418 0.500 0.910 0
Baseline heuristic 0.660 0.657 0.664 0.885 0.436
SVM all w/o lexical 10.736 110.762 10.711 110.917 10.547
SVM all w/o syntactic 10.729 110.764 10.697 110.917 10.526
SVM all w/o structural 110.715 110.740 10.692 110911 10.511
SVM all w/o indicators 110.719 110.743  110.697 110.912 110.520
SVM all w/o discourse 10.732 10.755 10.709 10.915 10.540
SVM all w/o pmi 110.720 110.745  110.697 110.912 110.521
SVM all w/o shNo 10.733 10.756  10.712 10.915 10.545
SVM w/o genre-dependent | 10.722 10.750 10.700 10.913 10.520
SVM all features 10.733 10.756  10.711 10.915 10.544
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Table C.4

Joint modeling approach ( = significant improvement over base heuristic; { = significant
improvement over base classifier; C1—Pr = number of claims converted to premises; Pr—Cl =
number of premises converted to claims; Trees = Percentage of correctly identified trees).

Parameter Components Relations Statistics

by by b F1 FIMC FICl Fl1Pr F1 FINoLi F1Li |Cl—Pr Pr—Cl Trees
Base heuristic | - - - 0724 0740 0560  0.870 0.660 0.885 0.436 - - 100%
Base classifier | - - - | 10773 {0.865  0.592 0861 | f0.736  0.917  {0.547 - - 20.9%
Base+heuristic - - | 10776 10.865  0.601 0.861 | 10.739  10.917  10.555 0 31 242%
ILP-naive 1 0 0] {0765 {0.865 {0.591  0.761 | §0.732 {10.918  10.530 | 206 1,144 100%
ILP-relation 1 0 |110.809 10865 110.677 10.875 | 110.759 110.919 110.598 | 299 571 100%
ILP-claim 0 0 1| 70740 10.865 0549  0.777 | 0.666 0.894 0434 229 818  100%
ILP-equal 1 1 |110822 10.865 110.699 110.903 | t10.751 10913 110.590 | 294 280  100%
ILP-same 11 1 |110817 10865 110.687 110.898 | t10.738  10.908 110.569 | 264 250  100%
ILP-balanced | 3 1 1 |{10.823 10.865 110.701 110.904 | {10.752 10913 110591 | 297 283 100%

Table C.4 shows the model selection results of the ILP joint model. Base+heuristic
shows the result of applying the baseline to all paragraphs in which the base classifiers
identify neither claims nor argumentative relations. The heuristic baseline is triggered
in 31 paragraphs, which results in 3.3% more trees identified compared with the base
classifiers. However, the difference between Base+heuristic and the base classifiers is
not statistically significant. For this reason, we can attribute any further improvements
to the joint modeling approach. Moreover, Table C.4 shows selected results of the
hyperparameter tuning of the ILP joint model. Using only predicted relations in the
ILP-naive model does not yield an improvement compared with the macro F1 score of
the base classifiers. ILP-relation uses only information from the relation identification
base classifier. It significantly outperforms the macro F1 score of both base classifiers
(p = 6.43x10712 for relations and p = 7.23x10~ 13 for components), but converts a large
number of premises to claims. The ILP-claim model uses only the outcomes of the
argument component base classifier and improves neither component classification nor
relation identification. All three models identify a relatively high proportion of claims
compared to the number of claims in our training data. The reason for this is that many
weights in W are 0. Combining the results of both base classifiers yields a more balanced
proportion of component type conversions. All three models (ILP-equal, ILP-same, and
ILP-balanced) significantly outperform the macro F1 score of the base classifiers. We
identify the best performing system by means of the average macro F1 score for both
tasks. Accordingly, we select ILP-balanced as our best performing ILP joint model.

Table C.5 shows the model selection results for the stance recognition model. Using
sentiment, structural, and embedding features individually does not yield an improve-
ment over the majority baseline. Lexical features yield a significant improvement over
the macro F1 score of the heuristic baseline when used individually (p = 8.02 x 1071°).
Syntactic features significantly improve precision (p = 1.81 x 107%), recall (p = 1.95 x
10~%), F1 Support (p = 1.01 x 10~%7), and F1 Attack (p = 1.53 x 10~%) over the heuristic
baseline, but do not yield a significant improvement over the macro F1 score of the
heuristic baseline. Discourse features significantly outperform the heuristic baseline
regarding precision (p = 3.68 x 1072%), recall (p = 3.43 x 10~%), and F1 Support (p =
1.06 x 10~72). Because omitting any of the feature groups yields a lower macro F1 score,
we select the model with all features as the best performing model.
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Table C.5

Stance recognition ( = significant improvement over baseline heuristic; { = significant difference

compared to SVM all features).

F1 p R F1 Support  F1 Attack

Baseline majority 0.475 0.452 0.500 0.950 0
Baseline heuristic 0.521 0.511 0.530 0.767 0.173
SVM only lexical 10.663  10.677  10.650 10.941 10.383
SVM only syntactic 0.649 10.725 10.587 10.950 10.283
SVM only discourse 0.630 10.746 10.546 10.951 0.169
SVM all w/o lexical 10.696  110.719 10.657 110.948 110.439
SVM all w/o syntactic 10.687 110.691 110.684  110.941 110.433
SVM all w/o sentiment 10.699  110.710 10.688 110.945 110.451
SVM all w/o structural 10.698  110.710 70.686 110.946 110.449
SVM all w/o discourse 10.675  110.685 110.666 110.941 110.408
SVM all w/o0 embeddings  10.692 1i0.703  110.682  110.944 +10.439
SVM all features 10702 10714 10.690  10.946 $0.456
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