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This article presents a new model for word sense disambiguation formulated in terms of evolu-
tionary game theory, where each word to be disambiguated is represented as a node on a graph
whose edges represent word relations and senses are represented as classes. The words simultane-
ously update their class membership preferences according to the senses that neighboring words
are likely to choose. We use distributional information to weigh the influence that each word
has on the decisions of the others and semantic similarity information to measure the strength
of compatibility among the choices. With this information we can formulate the word sense
disambiguation problem as a constraint satisfaction problem and solve it using tools derived
from game theory, maintaining the textual coherence. The model is based on two ideas: Similar
words should be assigned to similar classes and the meaning of a word does not depend on all the
words in a text but just on some of them. The article provides an in-depth motivation of the idea
of modeling the word sense disambiguation problem in terms of game theory, which is illustrated
by an example. The conclusion presents an extensive analysis on the combination of similarity
measures to use in the framework and a comparison with state-of-the-art systems. The results
show that our model outperforms state-of-the-art algorithms and can be applied to different tasks
and in different scenarios.

1. Introduction

Word Sense Disambiguation (WSD) is the task of identifying the intended meaning of
a word based on the context in which it appears (Navigli 2009). It has been studied
since the beginnings of Natural Language Processing (NLP) (Weaver 1955) and today
it is still a central topic of this discipline. This because it is important for many NLP
tasks such as text understanding (Kilgarriff 1997), text entailment (Dagan and Glickman
2004), machine translation (Vickrey et al. 2005), opinion mining (Smrž 2006), sentiment
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analysis (Rentoumi et al. 2009), and information extraction (Zhong and Ng 2012). All
these applications can benefit from the disambiguation of ambiguous words, as a pre-
liminary process; otherwise they remain on the surface of the word, compromising the
coherence of the data to be analyzed (Pantel and Lin 2002).

To solve this problem, over the past few years, the research community has pro-
posed several algorithms based on supervised (Tratz et al. 2007; Zhong and Ng 2010),
semi-supervised (Navigli and Velardi 2005; Pham, Ng, and Lee 2005), and unsupervised
(Mihalcea 2005; McCarthy et al. 2007) learning models. Nowadays, although supervised
methods perform better in general domains, unsupervised and semi-supervised models
are receiving increasing attention from the research community, with performances
close to the state of the art of supervised systems (Ponzetto and Navigli 2010). In
particular, knowledge-based and graph-based algorithms are emerging as promising
approaches to solve the disambiguation problem (Sinha and Mihalcea 2007; Agirre et al.
2009). The peculiarities of these algorithms are that they do not require any corpus
evidence and use only the structural properties of a lexical database to perform the
disambiguation task. In fact, unsupervised methods are able to overcome a common
problem in supervised learning—the knowledge acquisition problem, which requires
the production of large-scale resources, manually annotated with word senses.

Knowledge-based approaches exploit the information from knowledge resources
such as dictionaries, thesauri, or ontologies and compute sense similarity scores to
disambiguate words in context (Mihalcea 2006). Graph-based approaches model the
relations among words and senses in a text with graphs, representing words and senses
as nodes and the relations among them as edges. From this representation the structural
properties of the graph can be extracted and the most relevant concepts in the network
can be computed (Agirre et al. 2006; Navigli and Lapata 2007).

Our approach falls within these two lines of research; it uses a graph structure
to model the geometry of the data points (the words in a text) and a knowledge base
to extract the senses of each word and to compute the similarity among them. The
most important difference between our approach and state-of-the-art graph-based
approaches (Véronis 2004; Sinha and Mihalcea 2007; Navigli and Lapata 2010; Agirre,
de Lacalle, and Soroa 2014; Moro, Raganato, and Navigli 2014) is that in our method
the graph contains only words and not senses. This graph is used to model the pairwise
interaction among words and not to rank the senses in the graph according to their
relative importance.

The starting point of our research is based on two fundamental assumptions:
1. The meaning of a sentence emerges from the interaction of the

components that are involved in it.

2. These interactions are different and must be weighted in order to supply
the right amount of information.

We interpret language as a complex adaptive system, composed of linguistic units
and their interactions (Larsen-Freeman and Cameron 2008; Cong and Liu 2014). The
interactions among units give rise to the emergence of properties, which, in our case, by
problem definition, can be interpreted as meanings. In our model the relations between
the words are weighted by a similarity measure with a distributional approach, increas-
ing the weights among words that share a proximity relation. Weighting the interaction
of the nodes in the graph is helpful in situations in which the indiscriminate use of
contextual information can deceive. Furthermore, it models the idea that the meaning
of a word does not depend on all the words in a text but just on some of them (Chaplot,
Bhattacharyya, and Paranjape 2015).
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This problem is illustrated in these sentences:r There is a financial institution near the river bank.r They were troubled by insects while playing cricket.

In these two sentences1 the meaning of the words bank and cricket can be misinterpreted
by a centrality algorithm that tries to find the most important node in the graph com-
posed of all the possible senses of the words in the sentence. This because the meanings
of the words financial and institution tend to shift the meaning of the word bank toward
its financial meaning and not toward its naturalistic meaning. The same behavior can
be observed for the word cricket, which is shifted by the word insect toward its insect
meaning and not toward its game meaning. In our work, the disambiguation task is
performed imposing a stronger importance on the relations between the words bank
and river for the first sentence and between cricket and play for the second; exploiting
proximity relations.

Our approach is based on the principle that the senses of the words that share a
strong relation must be similar. The idea of assigning a similar class to similar objects
has been implemented in a different way by Kleinberg and Tardos (2002), within a
Markov random field framework. They have shown that it is beneficial in combinatorial
optimization problems. In our case, this idea can preserve the textual coherence—a
characteristic that is missing in many state-of-the-art systems. In particular, it is missing
in systems in which the words are disambiguated independently. On the contrary, our
approach disambiguates all the words in a text concurrently, using an underlying struc-
ture of interconnected links, which models the interdependence between the words. In
so doing, we model the idea that the meaning for any word depends at least implicitly
on the combined meaning of all the interacting words.

In our study, we model these interactions by developing a system in which it is
possible to map lexical items onto concepts exploiting contextual information in a way
in which collocated words influence each other simultaneously, imposing constraints
in order to preserve the textual coherence. For this reason, we have decided to use a
powerful tool, derived from game theory: the non-cooperative game (see Section 4). In
our system, the nodes of the graph are interpreted as players, in the game theoretic
sense (see Section 4), that play a game with the other words in the graph in order
to maximize their utility; constraints are defined as similarity measures among the
senses of two words that are playing a game. The concept of utility has been used
in different ways in the game theory literature; in general, it refers to the satisfaction
that a player derives from the outcome of a game (Szabó and Fath 2007). From our
point of view, increasing the utility of a word means increasing the textual coherence
in a distributional semantics perspective (Firth 1957). In fact, it has been shown that
collocated words tend to have a determined meaning (Gale, Church, and Yarowsky
1992; Yarowsky 1993).

Game theoretic frameworks have been used in different ways to study language
use (Pietarinen 2007; Skyrms 2010) and evolution (Nowak, Komarova, and Niyogi
2001), but to the best of our knowledge, our method is the first attempt to use it in
a specific NLP task. This choice is motivated by the fact that game theoretic models
are able to perform a consistent labeling of the data (Hummel and Zucker 1983; Pelillo

1 A complete example of the disambiguation of the first sentence is given in Section 5.3.
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1997), taking into account contextual information. These features are of great impor-
tance for an unsupervised or semi-supervised algorithm, which tries to perform a WSD
task, because, by assumption, the sense of a word is given by the context in which it
appears. Within a game theoretic framework we are able to cast the WSD problem as a
continuous optimization problem, exploiting contextual information in a dynamic way.
Furthermore, no supervision is required and the system can adapt easily to different
contextual domains, which is exactly what is required for a WSD algorithm.

The additional reason for the use of a consistent labeling system relies on the fact
that it is able to deal with semantic drifts (Curran, Murphy, and Scholz 2007). In fact,
as shown in the two example sentences, concentrating the disambiguation task of a
word on highly collocated words, taking into account proximity (or even syntactic)
information, allows the meaning interpretation to be guided only towards senses that
are strongly related to the word that has to be disambiguated.

In this article, we provide a detailed discussion about the motivation behind our
approach and a full evaluation of our algorithm, comparing it with state-of-the-art
systems in WSD tasks. In a previous work we used a similar algorithm in a semi-
supervised scenario (Tripodi, Pelillo, and Delmonte 2015), casting the WSD task as a
graph transduction problem. Now we have extended that work, making the algorithm
fully unsupervised. Furthermore, in this article we provide a complete evaluation of the
algorithm extending our previous works (Tripodi and Pelillo 2015), exploiting proxim-
ity relations among words.

An important feature of our approach is that it is versatile. In fact, the method can
adapt to different scenarios and to different tasks, and it is possible to use it as unsuper-
vised or semi-supervised. The semi-supervised approach, presented in Tripodi, Pelillo,
and Delmonte (2015), is a bootstrapping graph-based method, which propagates, over
the graph, the information from labeled nodes to unlabeled. In this article, we also
provide a new semi-supervised version of the approach, which can exploit the evidence
from sense tagged corpora or the most frequent sense heuristic and does not require
labeled nodes to propagate the labeling information.

We tested our approach on different data sets from WSD and entity-linking tasks in
order to find the similarity measures that perform better, and evaluated our approach
against unsupervised, semi-supervised, and supervised state-of-the-art systems. The
results of this evaluation show that our method performs well and can be considered as
a valid alternative to current models.

2. Related Work

There are two major paradigms in WSD: supervised and knowledge-based. Supervised
algorithms learn, from sense-labeled corpora, a computational model of the words of
interest. Then, the obtained model is used to classify new instances of the same words.
Knowledge-based algorithms perform the disambiguation task by using an existing
lexical knowledge base, which usually is structured as a semantic network. Then, these
approaches use graph algorithms to disambiguate the words of interest, based on the
relations that these words’ senses have in the network (Pilehvar and Navigli 2014).

A popular supervised WSD system, which has shown good performances in differ-
ent WSD tasks, is It Makes Sense (Zhong and Ng 2010). It takes as input a text and for each
content word (noun, verb, adjective, or adverb) outputs a list of possible senses ranked
according to the likelihood of appearing in a determined context and extracted from a
knowledge base. The training data used by this system are derived from SemCor (Miller
et al. 1993), DSO (Ng and Lee 1996), and collected automatically exploiting parallel
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corpora (Chan and Ng 2005). Its default classifier is LIBLINEAR2 with a linear kernel
and its default parameters.

Unsupervised and knowledge-based algorithms for WSD are attracting great atten-
tion from the research community. This is because supervised systems require training
data, which are difficult to obtain. In fact, producing sense-tagged data is a time-
consuming process, which has to be carried out separately for each language of interest.
Furthermore, as investigated by Yarowsky and Florian (2002), the performance of a
supervised algorithm degrades substantially with an increase of sense entropy. Sense
entropy refers to the distribution over the possible senses of a word, as seen in training
data. Additionally, a supervised system has difficulty in adapting to different contexts,
because it depends on prior knowledge, which makes the algorithm rigid; therefore, it
cannot efficiently adapt to domain specific cases, when other optimal solutions may be
available (Yarowsky and Florian 2002).

One of the most common heuristics that allows us to exploit sense tagged data such
as SemCor (Miller et al. 1993) is the most frequent sense. It exploits the overall sense
distribution for each word to be disambiguated, choosing the sense with the highest
probability regardless of any other information. This simple procedure is very powerful
in general domains but cannot handle senses with a low distribution, which can be
found in specific domains.

With these observations in mind, Koeling et al. (2005) created three domain-specific
corpora to evaluate WSD systems. They tested whether WSD algorithms are able to
adapt to different contexts, comparing their results with the most frequent sense heuris-
tic computed on general domains corpora. They used an unsupervised approach to
obtain the most frequent sense for a specific domain (McCarthy et al. 2007) and demon-
strated that their approach outperforms the most frequent sense heuristic derived from
general domain and labeled data.

This heuristics for the unsupervised acquisition of the predominant sense of a
word consists of collecting all the possible senses of a word and then in ranking these
senses. The ranking is computed according to the information derived from a distribu-
tional thesaurus automatically produced from a large corpus and a semantic similarity
measure derived from the sense inventory. Although the authors have demonstrated
that this approach is able to outperform the most frequent sense heuristic computed on
sense-tagged data on general domains, it is not easy to use it on real world applications,
especially when the domain of the text to be disambiguated is not known in advance.

Other unsupervised and semi-supervised approaches, rather than computing the
prevalent sense of a word, try to identify the actual sense of a word in a determined
phrase, exploiting the information derived from its context. This is the case with
traditional algorithms, which exploit the pairwise semantic similarity among a target
word and the words in its context (Lesk 1986; Resnik 1995; Patwardhan, Banerjee, and
Pedersen 2003). Our work could be considered as a continuation of this tradition, which
tries to identify the intended meaning of a word given its context, using a new approach
for the computation of the sense combinations.

Graph-based algorithms for WSD are gaining much attention in the NLP commu-
nity. This is because graph theory is a powerful tool that can be used both for the
organization of the contextual information and for the computation of the relations
among word senses. It allows us to extract the structural properties of a text. Examples
of this kind of approach construct a graph from all the senses of the words in a text and

2 http://liblinear.bwaldvogel.de.
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then use connectivity measures in order to identify the most relevant word senses in the
graph (Navigli and Lapata 2007; Sinha and Mihalcea 2007). Navigli and Lapata (2007)
conducted an extensive analysis of graph connectivity measures for unsupervised WSD.
Their approach uses a knowledge base, such as WordNet, to collect and organize all the
possible senses of the words to be disambiguated in a graph structure, then uses the
same resource to search for a path (of predefined length) between each pair of senses in
the graph. Then, if it exists, it adds all the nodes and edges on this path to the graph.
These measures analyze local and global properties of the graph. Local measures, such
as degree centrality and eigenvector centrality, determine the degree of relevance of a
single vertex. Global properties, such as compactness, graph entropy, and edge density,
analyze the structure of the graph as a whole. The results of the study show that local
measures outperform global measures and, in particular, that degree centrality and
PageRank (Page et al. 1999) (which is a variant of the eigenvector centrality measure)
achieve the best results.

PageRank (Page et al. 1999) is one of the most popular algorithms for WSD; in fact, it
has been implemented in different ways by the research community (Haveliwala 2002;
Mihalcea, Tarau, and Figa 2004; De Cao et al. 2010; Agirre, de Lacalle, and Soroa 2014).
It represents the senses of the words in a text as nodes of a graph. It uses a knowledge
base to collect the senses of the words in a text and represents them as nodes of a graph.
The structure of this resource is used to connect each node with its related senses in a
directed graph. The main idea of this algorithm is that whenever a link from a node to
another exists, a vote is produced, increasing the rank of the voted node. It works by
counting the number and quality of links to a node in order to determine an estimation
of how important the node is in the network. The underlying assumption is that more
important nodes are likely to receive more links from other nodes (Page et al. 1999).
Exploiting this idea, the ranking of the nodes in the graph can be computed iteratively
with the following equation:

Pr = cMPr + (1− c)v (1)

where M is the transition matrix of the graph, v is an N × 1 vector representing a
probability distribution, and c is the so-called damping factor that represents the chance
that the process stops, restarting from a random node. At the end of the process each
word is associated with the most important concept related to it. One problem of this
framework is that the labeling process is not assumed to be consistent.

One algorithm that tries to improve centrality algorithms is SUDOKU, introduced
by Minion and Sainudiin (2014). It is an iterative approach, which simultaneously
constructs the graph and disambiguates the words using a centrality function. It starts
inserting the nodes corresponding to the senses of the words with low polysemy and
iteratively inserting the more ambiguous words. The advantages of this method are that
the use of small graphs, at the beginning of the process, reduces the complexity of the
problem and that it can be used with different centrality measures.

Recently, a new model for WSD has been introduced, based on an undirected
graphical model (Chaplot, Bhattacharyya, and Paranjape 2015). It approaches the WSD
problem as a maximum a posteriori query on a Markov random field (Jordan and Weiss
2002). The graph is constructed using the content words of a sentence as nodes and
connecting them with edges if they share a relation, determined using a dependency
parser. The values that each node in the graphical model can take include the senses of
the corresponding word. The senses are collected using a knowledge base and weighted
using a probability distribution based on the frequency of the senses in the knowledge
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base. Furthermore, the senses between two related words are weighted using a similar-
ity measure. The goal of this approach is to maximize the joint probability of the senses
of all the words in the sentence, given the dependency structure of the sentences, the
frequency of the senses, and the similarity among them.

A new graph-based, semi-supervised approach introduced to deal with multilin-
gual WSD (Navigli and Ponzetto 2012b) and entity inking problems is Babelfy (Moro,
Raganato, and Navigli 2014). Multilingual WSD is an important task because traditional
WSD algorithms and resources are focused on English language. It exploits the informa-
tion from large multilingual knowledge, such as BabelNet (Navigli and Ponzetto 2012a),
to perform this task. Entity linking consists of disambiguating the named entities in
a text and in finding the appropriate resources in an ontology, which correspond to
the specific entities mentioned in a text. Babelfy creates the semantic signature of each
word to be disambiguated, which consists of collecting, from a semantic network, all
the nodes related to a particular concept, exploiting the global structure of the network.
This process leads to the construction of a graph-based representation of the whole text.
It then applies Random Walk with Restart (Tong, Faloutsos, and Pan 2006) to find the
most important nodes in the network, solving the WSD problem.

Approaches that are more similar to ours in the formulation of the problem have
been described by Araujo (2007). The author reviewed the literature devoted to the
application of different evolutionary algorithms to several aspects of NLP: syntactical
analysis, grammar induction, machine translation, text summarization, semantic analy-
sis, document clustering, and classification. Basically, these approaches are search and
optimization methods inspired by biological evolution principles. A specific evolution-
ary approach for WSD has been introduced by Menai (2014). It uses genetic algorithms
(Holland 1975) and memetic algorithms (Moscato 1989) in order to improve the perfor-
mances of a gloss-based method. It assumes that there is a population of individuals,
represented by all the senses of the words to be disambiguated, and that there is a
selection process, which selects the best candidates in the population. The selection
process is defined as a sense similarity function, which gives a higher score to candidates
with specific features, increasing their fitness to the detriment of the other population
members. This process is repeated until the fitness level of the population regularizes
and at the end the candidates with higher fitness are selected as solutions of the problem.
Another approach, which addresses the disambiguation problem in terms of space
search, is GETALP (Schwab et al. 2013). This uses an Ant Colony algorithm to find the
best path in the weighted graph constructed, measuring the similarity of all the senses
in a text and assigning to each word to be disambiguated the sense corresponding to
the node in this path.

These methods are similar to our study in the formulation of the problem; the main
difference is that our approach is defined in terms of evolutionary game theory. As we
show in the next section, this approach ensures that the final labeling of the data is
consistent and that the solution of the problem is always found. In fact, our system
always converges to the nearest Nash equilibrium from which the dynamics have been
started.

3. Word Sense Disambiguation as a Consistent Labeling Problem

WSD can be interpreted as a sense-labeling task (Navigli 2009), which consists in assign-
ing a sense label to a target word. As a labeling problem we need an algorithm, which
performs this task in a consistent way, taking into account the context in which the target
word occurs. Following this observation, we can formulate the WSD task as a constraint
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satisfaction problem (Tsang 1995) in which the labeling process has to satisfy some
constraints in order to be consistent. This approach gives us the possibility not only to
exploit the contextual information of a word but also to find the most appropriate sense
association for the target word and the words in its context. This is the most important
contribution of our work, which distinguishes it from existing WSD algorithms. In fact,
in some cases using only contextual information without the imposition of constraints
can lead to inconsistencies in the assignment of senses to related words.

As an illustrative example we can consider a binary constraint satisfaction problem,
which is defined by a set of variables representing the elements of the problem and a
set of binary constraints representing the relationships among variables. The problem is
considered solved if there is a solution that satisfies all the constraints. This setting can
be described in a formal manner as a triple (V, D, R), where V = {v1, ..., vn} is the set of
variables; D = {Dv1 , ..., Dvn} is the set of domains for each variable, each Dvi denoting a
finite set of possible values for variable vi; and R = {Rij|Rij ⊆ Dvi ×Dvj} is a set of binary
constraints where Rij describe a set of compatible pairs of values for the variables vi and
vj. R can be defined as a binary matrix of size p× q where p and q are the cardinalities of
domains and variables, respectively. Each element of the binary matrix Rij(λ, λ

′
) = 1

indicates if the assignment vi = λ is compatible with the assignment vj = λ
′
. R is

used to impose constraints on the labeling so that each label assignment is consistent.
This binary case assumes that the constraints are completely violated or completely

respected, which is restrictive; it is more appropriate, in many real-world cases, to
have a weight that expresses the level of confidence about a particular assignment
(Hummel and Zucker 1983). This notion of consistency has been shown to be related
to the Nash equilibrium concept in game theory (Miller and Zucker 1991). We have
adopted this method to approach the WSD task in order to perform a consistent labeling
of the data. In our case, we can consider variables as words, labels as word senses, and
compatibility coefficients as similarity values among two word senses. To explain how
the Nash equilibria are computed we need to introduce basic notions of game theory in
the following section.

4. Game Theory

In this section, we briefly introduce the basic concepts of classical game theory and
evolutionary game theory that we used in our framework; for a more detailed analysis
of these topics, the reader is referred to Weibull (1997), Leyton-Brown and Shoham
(2008), and Sandholm (2010).

4.1 Classical Game Theory

Game theory provides predictive power in interactive decision situations. It was intro-
duced by Von Neumann and Morgenstern (1944) in order to develop a mathematical
framework able to model the essentials of decision-making in interactive situations. In
its normal form representation (which is the one we use in this article) it consists of a
finite set of players I = {1, .., n}, a set of pure strategies for each player Si = {s1, ..., sm},
and a utility function ui : S1 × ...× Sn → R, which associates strategies to payoffs. Each
player can adopt a strategy in order to play a game; and the utility function depends
on the combination of strategies played at the same time by the players involved in
the game, not just on the strategy chosen by a single player. An important assump-
tion in game theory is that the players are rational and try to maximize the value of
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ui; Furthermore, in non-cooperative games the players choose their strategies indepen-
dently, considering what the other players can play and try to find the best strategy
profile to use in a game.

A strategy s∗i is said to be dominant if and only if:

ui(s∗i , s−i) > ui(si, s−i),∀s−i ∈ S−i (2)

where S−i represents all strategy sets other than player i’s.
As an example, we can consider the famous Prisoner’s Dilemma, whose payoff matrix

is shown in Table 1. Each cell of the matrix represents a strategy profile, where the first
number represents the payoff of Player 1 (P1) and the second is the payoff of Player 2
(P2), when both players use the strategy associated with a specific cell. P1 is called the
row player because it selects its strategy according to the rows of the payoff matrix, and
P2 is called the column player because it selects its strategy according to the columns of
the payoff matrix. In this game the strategy confess is a dominant strategy for both players
and this strategy combination is the Nash equilibrium of the game.

Nash equilibria represent the key concept of game theory and can be defined as
those strategy profiles in which each strategy is a best response to the strategy of the
co-player and no player has the incentive to unilaterally deviate from their decision,
because there is no way to do better.

In many games, the players can also play mixed strategies, which are probability
distributions over their pure strategies. Within this setting, the players choose a strategy
with a certain pre-assigned probability. A mixed strategy set can be defined as a vector
x = (x1, . . . , xm), where m is the number of pure strategies and each component xh
denotes the probability that player i chooses its hth pure strategy. For each player, the
strategy set is defined as a standard simplex:

∆ =
{

x ∈ Rn :
m∑

h=1

xh = 1, and xh ≥ 0 for all h ∈ x
}

(3)

Each mixed strategy corresponds to a point on the simplex and its corners correspond
to pure strategies.

In a two-player game we can define a strategy profile as a pair (p, q) where p ∈ ∆i and
q ∈ ∆j. The expected payoff for this strategy profile is computed as follows: ui(p, q) = p ·
Aiq and uj(p, q) = q · Ajp, where Ai and Aj are the payoff matrices of player i and player j,
respectively. The Nash equilibrium is computed in mixed strategies in the same way as
pure strategies. It is represented by a pair of strategies such that each is a best response
to the other. The only difference is that, in this setting, the strategies are probabilities
and must be computed considering the payoff matrix of each player.

Table 1
The Prisoner’s Dilemma.

P1\P2 confess don’t confess

confess −5,−5 0,−6
don’t confess −6,0 −1,−1
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A game theoretic framework can be considered as a solid tool in decision-making
situations because a fundamental theorem by Nash (1951) states that any normal-form
game has at least one mixed Nash equilibrium, which can be used as the solution of the
decision problem.

4.2 Evolutionary Game Theory

Evolutionary game theory was introduced by Smith and Price (1973), overcoming some
limitations of traditional game theory, such as the hyper-rationality imposed on the
players. In fact, in real-life situations the players choose a strategy according to heuris-
tics or social norms (Szabó and Fath 2007). It has been introduced in biology to explain
the evolution of species. In this context, strategies correspond to phenotypes (traits
or behaviors), payoffs correspond to offspring, allowing players with a high actual
payoff (obtained thanks to their phenotype) to be more prevalent in the population. This
formulation explains natural selection choices among alternative phenotypes based on
their utility function. This aspect can be linked to rational choice theory, in which players
make a choice that maximizes their utility, balancing cost against benefits (Okasha and
Binmore 2012).

This intuition introduces an inductive learning process, in which we have a
population of agents who play games repeatedly with their neighbors. The players at
each iteration update their beliefs on the state of the game and choose their strategy
according to what has been effective and what has not in previous games. The strategy
space of each player i is defined as a mixed strategy profile xi, as defined in the previous
section, which lives in the mixed strategy space of the game, given by the Cartesian
product:

Θ = ×i∈I∆i (4)

The expected payoff of a pure strategy eh in a single game is calculated as in mixed
strategies. The difference in evolutionary game theory is that a player can play the
game with all other players, obtaining a final payoff, which is the sum of all the partial
payoffs obtained during the single games. We have that the payoff relative to a single
strategy is: ui(eh

i ) =
∑n

j=1(Aijxj)h. The average payoff ui(x) =
∑n

j=1 xT
i Aijxj, where n is

the number of players with whom the games are played and Aij is the payoff matrix
between players i and j. Another important characteristic of evolutionary game theory
is that the games are played repeatedly. In fact, at each iteration a player can update their
strategy space according to the payoffs gained during the games. They can allocate more
probability to the strategies with high payoff until an equilibrium is reached. In order
to find those states that correspond to the Nash equilibria of the games, the replicator
dynamic equation is used (Taylor and Jonker 1978):

ẋ = [u(eh, x)− u(x, x)] · xh ∀h ∈ x (5)

which allows better than average strategies (best replies) to grow at each iteration.
The following theorem states that with Equation (5) it is always possible to find the

Nash equilibria of the games (see Weibull [1997] for the proof).
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Theorem 1
A point x ∈ Θ is the limit of a trajectory of Equation (5) starting from the interior of Θ if
and only if x is a Nash equilibrium. Further, if point x ∈ Θ is a strict Nash equilibrium,
then it is asymptotically stable, additionally implying that the trajectories starting from
all nearby states converge to x.

As in Erdem and Pelillo (2012), we used the discrete time version of the replicator
dynamic equation for the experiments of this article:

xh(t + 1) = xh(t)u(eh, x)
u(x, x) ∀h ∈ S (6)

where, at each time step t, the players update their strategies according to the strategic
environment until the system converges and the Nash equilibria are met. In classical
evolutionary game theory these dynamics describe a stochastic evolutionary process in
which the agents adapt their behaviors to the environment.

For example, if we analyze the Prisoner’s Dilemma within the evolutionary game
theory framework, we can see that the cooperative strategy (do not confess) tends to
emerge as an equilibrium of the game and this is the best situation for both players,
because this strategy gives a higher payoff than the defect strategy (confess), which is the
equilibrium in the classical game theory framework. In fact, if the players play the game
shown in Table 1 repeatedly and randomize their decisions in each game, assigning
at the beginning a normal distribution to their strategies, their payoffs u(xpi) can be
computed as follows:

u(xp1) = Ap1xp2 =

(
−5, 0
−6, −1

)(
0.5
0.5

)
=

(
−2.5
−3.5

)

u(xp2) = AT
p2xp1 =

(
−5, −6
0, −1

)T (0.5
0.5

)
=

(
−2.5
−3.5

)
where T is the transpose operator required for P2, which chooses its strategies according
to the columns of the matrix in Table 1. This operation makes the matrices Ap1 and Ap2
identical and for this reason in this case the distinction among the two players is not
required because they get the same payoffs. Now we can compute the strategy space of
a player at time t + 1 according to Equation (5):

x1: −1.25/− 3 = 0.42

x2: −1.75/− 3 = 0.58

The game is played with the new strategy spaces until the system converges—that is,
when the difference among the payoffs at time tn and tn−1 is under a small threshold. In
Figure 1 we can see how the cooperate strategy increases over time, reaching a stationary
point, which corresponds to the equilibrium of the game.

5. WSD Games

In this section we describe how the WSD games are formulated. We assume that each
player i ∈ I that participates in the games is a particular word in a text and that each
strategy is a particular word sense. The players can choose a determined strategy
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Figure 1
The dynamics of the repeated Prisoner’s Dilemma.

among the set of strategies Si = {1, ..., c}, each expressing a certain hypothesis about
its membership in a class and c being the total number of classes available. We consider
Si as the mixed strategy for player i as described in Section 4. The games are played
between two similar words, i and j, imposing only pairwise interaction between them.
The payoff matrix Zij of a single game is defined as a sense similarity matrix between the
senses of word i and word j. The payoff function for each word is additively separable
and is computed as described in Section 4.2.

Formulating the problem in this way we can apply Equation (6) to compute the
equilibrium state of the system, which corresponds to a consistent labeling of the data.
In fact, once stability is reached, all players play the strategy with the highest payoff.
Each player arrives at this state not only considering its own strategies but also the
strategies that its co-players are playing. For each player i ∈ I is chosen the strategy
with the highest probability when the system converges (see Equation (7)).

φi = arg max
h=1,...,c

xih (7)

In our framework, a word is not disambiguated only if it is not able to update its strategy
space. This can happen when the player’s strategy space is initialized with a uniform
distribution and either its payoff matrices have only zero entries (i.e., when its senses are
not similar to the senses of the co-players), or it is not connected with other nodes in the
graph. The former assumption depends on the semantic measures used to calculate the
payoffs (see Section 5.2.2); experimentally, we noticed that it does not happen frequently.
The latter assumption can happen when a word is not present in a determined corpus. It
can be avoided using query expansion techniques or connecting the disconnected node
with nodes in its neighborhood, exploiting proximity relations (see Section 5.1.1). With
Equation (7), it is guaranteed that at the end of the process each word is mapped to
exactly one sense. Experimentally, we noticed that when a word is able to update its
strategy space, it is not the case that two strategies in it have the same probability.

5.1 Implementation of the WSD Games

In order to run our algorithm, we need the network that models the interactions among
the players, the strategy space of the game, and the payoff matrices. We adopted the
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following steps in order to model the data required by our framework and, specifically,
for each text to be disambiguated we:

r Extract from the text the list of words I that have an entry in a lexical
databaser compute from I the word similarity matrix W in which are stored the
pairwise similarities among each word with the others and represents the
players’ interactionsr increase the weights between two words that share a proximity relationr extract from I the list C of all the possible senses that represent the
strategy space of the systemr assign for each word in I a probability distribution over the senses in C
creating for each player a probability distribution over the possible
strategiesr compute the sense similarity matrix Z among each pair of senses in C,
which is then used to compute the partial payoff matrices of each gamer apply the replicator dynamics equation in order to compute the Nash
equilibria of the games andr assign to each word i ∈ I a strategy s ∈ C

These steps are described in the following sections. In Section 5.1.1 we describe the
graph construction procedure that we used in order to model the geometry of the data.
In Section 5.1.2 we explain how we implement the strategy space of the game that allows
each player to choose from a predetermined number of strategies. In Section 5.1.3 we
describe how we compute the sense similarity matrix and how it is used to create the
partial payoff matrices of the games. Finally, in Section 5.1.4 we describe the system
dynamics.

5.1.1 Graph Construction. In our study, we modeled the geometry of the data as a graph.
The nodes of the graph correspond to the words of a text, which have an entry in a
lexical database. We denote the words by I = {ij}N

j=1, where ij is the jth word and N is
the total number of words retrieved. From I we construct an N ×N similarity matrix W
where each element wij is the similarity value assigned by a similarity function to the
words i and j. W can be exploited as a useful tool for graph-based algorithms because it
is treatable as a weighted adjacency matrix of a weighted graph.

A crucial factor for the graph construction is the choice of the similarity measure,
sim(·, ·)→R to weight the edges of the graph. In our experiments, we used similarity mea-
sures, which compute the strength of co-occurrence between any two words ii and ij.

wij = sim(ii, ij) ∀i, j ∈ I : i 6= j (8)

This choice is motivated by the fact that collocated words tend to have determined
meanings (Gale, Church, and Yarowsky 1992; Yarowsky 1993), and also because the
computation of these similarities can be obtained easily. In fact, it only required a corpus
in order to compute a vast range of similarity measures. Furthermore, large corpora

43



Computational Linguistics Volume 43, Number 1

such as the BNC corpus (Leech 1992) and the Google Web 1T corpus (Brants and Franz
2006) are freely available and extensively used by the research community.

In some cases, it is possible that some target words are not present in the reference
corpus, because of different text segmentation techniques or spelling differences. In
this case, we use query expansion techniques in order to find an appropriate substi-
tute (Carpineto and Romano 2012). Specifically, we use WordNet to find alternative
lexicalizations of a lemma, choosing the one that co-occurs more frequently with the
words in its context.

The information obtained from an association measure can be enriched by taking
into account the proximity of the words in the text (or the syntactic structure of the
sentence). The first task can be achieved augmenting the similarities among a target
word and the n words that appear on its right and on its left, where n is a parameter
that with small values can capture fixed expressions and with large values can detect
semantic concepts (Fkih and Omri 2012). The second task can be achieved using a
dependency parser to obtain the syntactical relations among the words in the target
sentence, but this approach is not used in this article. In this way, the system is able to
exploit local and global cues, mixing together the one sense per discourse (Kelly and Stone
1975) and the one sense per collocation (Yarowsky 1993) hypotheses.

We are not interested in all the relations in the sentence but we focus only on
relations among target words. The use of a dependency/proximity structure makes
the graph reflect the structure of the sentence and the use of a distributional approach
allows us to exploit the relations of semantically correlated words. This is particularly
useful when the proximity information is poor—for example, when it connects words
to auxiliary or modal verbs. Furthermore, these operations ensure that there are no
disconnected nodes in the graph.

5.1.2 Strategy Space Implementation. The strategy space of the game is created using a
knowledge base to collect the sense inventories Mi = {1, . . . , mi} of each word in a text,
where mi is the number of senses associated with word i. Then we create the list C =
(1, . . . , c) of all the unique concepts in the sense inventories, which correspond to the
space of the game.

With this information, we can define the strategy space S of the game in matrix
form as:

si1 si2 · · · sic
...

... · · ·
...

sn1 sn2 · · · snc

where each row corresponds to the mixed strategy space of a player and each column
corresponds to a specific sense. Each component sih denotes the probability that the
player chooses to play its hth pure strategy among all the strategies in its strategy profile,
as described in Section 4. The initialization of each mixed strategy space can either be
uniform or take into account information from sense-labeled corpora.

5.1.3 The Payoff Matrices. We encoded the payoff matrix of a WSD game as a sense
similarity matrix among all the senses in the strategy spaces of the game. In this way,
the higher the similarity among the senses of two words, the higher the incentive for a
word to choose that sense, and play the strategy associated with it.

44



Tripodi and Pelillo A Game-Theoretic Approach to WSD

The c× c sense similarity matrix Z is defined in Equation (9).

zij = ssim(si, sj) ∀i, j ∈ C : i 6= j (9)

This similarity matrix can be obtained using the information derived by the same
knowledge base used to construct the strategy space of the game. It is used to extract
the partial payoff matrix Zij for all the single games played between two players i and j.
This operation is done extracting from Z the entries relative to the indices of the senses
in the sense inventories Mi and Mj. It produces an mi ×mj payoff matrix, where mi and
mj are the numbers of senses in Mi and Mj, respectively.

5.1.4 System Dynamics. Now that we have the topology of the data W, the strategy space
of the game S, and the payoff matrix Z, we can compute the Nash equilibria of the game
according to Equation (6). In each iteration of the system, each player plays a game with
its neighbors Ni according to the co-occurrence graph W. The payoffs of the hth strategy
is calculated as:

ui(eh, x) =
∑
j∈Ni

(wijZijxj)h (10)

and the player’s payoff as:

ui(x) =
∑
j∈Ni

xT
i (wijZijxj) (11)

In this way we can weight the influence that each word has on the choices that a
particular word has to make on its meaning. We assume that the payoff of word i
depends on the similarity that it has with word j, wij, the similarities among its senses
and those of word j, Zij, and the sense preference of word j, (xj). During each phase of
the dynamics, a process of selection allows strategies with higher payoff to emerge and
at the end of the process each player chooses its sense according to these constraints.

The complexity of each step of the replicator dynamics is quadratic but there are
different dynamics that can be used with our framework to solve the problem more effi-
ciently, such as the recently introduced infection and immunization dynamics (Rota Buló,
Pelillo, and Bomze 2011), which have a linear-time/space complexity per step and are
known to be much faster than, and as accurate as, the replicator dynamics.

5.2 Implementation Details

In this section we describe the association measures used to weight the graph W
(Section 5.2.1), the semantic and relatedness measures used to compare the synsets
(Section 5.2.2), the computation of the payoff matrices of the games (Section 5.2.3), and
the different implementations of the system strategy space (Section 5.2.4) in cases of
unsupervised, semi-supervised, and coarse-grained WSD.

5.2.1 Association Measures. We evaluated our algorithm with different similarity mea-
sures in order to find the measure that performs better; the results of this evaluation
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dice = 2O11
R1+C1

m-dice = log2O11
2O11

R1+C1
pmi = log2

0
E11

t-score = O−E11√
O

odds-r = log (O11+1/2)(O22+1/2)
(O12+1/2)(O21+1/2) z-score = O−E11√

E11

chi-s =
∑

ij
(Oij−Eij )2

Eij
chi-s-c = N(|O11O22−O12O21|−N/2)2

R1R2C1C2

Figure 2
Association measures used to weight the co-occurrence graph W.

wj ¬wj

wi O11 O12 = R1

¬wi O21 O22 = R2

= C1 = C2 = N

wj ¬wj

wi E11 = R1C1/N E12 = R1C2/N

¬wi E21 = R2C1/N E22 = R2C2/N

Figure 3
Contingency tables of observer frequency (on the left) and expected frequency (on the right).

are presented in Section 6.2.1. Specifically, for our experiments, we used eight differ-
ent measures: the Dice coefficient (dice) (Dice 1945), the modified Dice coefficient (mDice)
(Kitamura and Matsumoto 1996), the pointwise mutual information (pmi) (Church and
Hanks 1990), the t-score measure (t-score) (Church and Hanks 1990), the z-score measure
(z-score) (Burrows 2002), the odds ration (odds-r) (Blaheta and Johnson 2001), the chi-
squared test (chi-s) (Rao 2002), and the chi-squared correct (chi-s-c) (DeGroot et al. 1986).

The measures that we used are presented in Figure 2, where the notation refers to
the standard contingency tables (Evert 2008) used to display the observed and expected
frequency distribution of the variables, respectively, on the left and on the right of
Figure 3. All the measures for the experiments in this article have been calculated using
the BNC corpus (Leech 1992) because it is a well balanced general domain corpus.

5.2.2 Semantic and Relatedness Measures. We used WordNet (Miller 1995) and BabelNet
(Navigli and Ponzetto 2012a) as knowledge bases to collect the sense inventories of
each word to be disambiguated.

Semantic and Relatedness Measures Calculated with WordNet. WordNet (Miller 1995) is a
lexical database where the lexicon is organized according to a psycholinguistic theory
of the human lexical memory, in which the vocabulary is organized conceptually rather
than alphabetically, giving a prominence to word meanings rather than to lexical forms.
The database is divided in five parts: nouns, verbs, adjectives, adverbs, and functional
words. In each part the lexical forms are mapped to the senses related to them; in this
way it is possible to cluster words that share a particular meaning (synonyms) and to
create the basic component of the resource: the synset. Each synset is connected in a
network to other synsets, which have a semantic relation with it.
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The relations in WordNet are: hyponymy, hypernymy, antonymy, meronymy, and
holonymy. Hyponymy gives the relations from more general concepts to more specific;
hypernymy gives the relations from particular concepts to more general; antonymy re-
lates two concepts that have an opposite meaning; meronymy connects the concept that
is part of a given concept with it; and holonymy relates a concept with its constituents.
Furthermore, each synset is associated with a definition and gives the morphological
relations of the word forms related to it. Given the popularity of the resource many
parallel projects have been developed. One of them is eXtended WordNet (Mihalcea
and Moldovan 2001), which gives a parsed version of the glosses together with their
logical form and the disambiguation of the term in it.

We have used this resource to compute similarity and relatedness measures in order
to construct the payoff matrices of the games. The computation of the sense similarity
measures is generally conducted using relations of likeness such as the is-a relation in a
taxonomy; on the other hand, the relatedness measures are more general and take into
account a wider range of relations such as the is-a-part-of or is-the-opposite-of.

The semantic similarity measures that we used are the wup similarity (Wu and
Palmer 1994) and the jcn measure (Jiang and Conrath 1997). These measures are based
on the structural organization of WordNet and compute the similarity among the two
senses si, sj according to the depth of the two senses in the lexical database and that of
the most specific ancestor node (msa) of the two senses. The wup similarity, described
in Equation (12), takes into account only the path length among two concepts. The
jcn measure combines corpus statistics and structural properties of a knowledge base.
It is computed as presented in Equation (13), where IC is the information content of a
concept c derived from a corpus3 and computed as IC(c) = log−1P(c).

ssimwup(si, sj) = 2 ∗ depth(msa)/(depth(si) + depth(sj)) (12)

ssimjcn(si, sj) = IC(s1) + IC(s2)− 2IC(msa) (13)

The semantic relatedness measures that we used are based on the computation
of the similarity among the definitions of two concepts in a lexical database. These
definitions are derived from the glosses of the synsets in WordNet. They are used to
construct a co-occurrence vector vi = (w1,i, w2,i...wn,i) for each concept i, with a bag-of-
words approach where w represents the number of times word w occurs in the gloss and
n is the total number of different words (types) in the corpus.4 This representation allows
us to project each vector into a vector space, where it is possible to conduct different kinds
of computations. For our experiments, we decided to calculate the similarity among two
glosses using the cosine distance among two vectors, as shown in Equation (14), where
the nominator is the intersection of the words in the two glosses and ||v|| is the norm of

the vectors, which is calculated as:
√∑n

i=1 w2
i .

cosθ
vi · vj

||vi||||vj||
(14)

3 We used the IC files computed on SemCor (Miller et al. 1993) for the experiments in this article. They are
available at http://wn-similarity.sourceforge.net and are mapped to the corresponding version of
WordNet of each data set.

4 In our case the corpus is composed of all the WordNet glosses.
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This measure gives the cosine of the angle between the two vectors and, in our case,
returns values ranging from 0 to 1 because the values in the co-occurrence vectors are
all positive. Given the fact that small cosine distances indicate a high similarity, we
transform this distance measure into a similarity measure with 1− cos(vi, vj).

The procedure to compute the semantic relatedness of two synsets has been in-
troduced by Patwardhan and Pedersen (2006) as Gloss Vector measure; and we used it
with four different variations for our experiments. The four variations are named: tf-idf,
tf-idfext, vec, and vecext. The difference among them relies on the way the gloss vectors
are constructed. Because the synset gloss is usually short we used the concept of super-
gloss as in Patwardhan and Pedersen (2006) to construct the vector of each synset. A
super-gloss is the concatenation of the gloss of the synset plus the glosses of the synsets,
which are connected to it via some WordNet relations (Pedersen 2012). We used the
WordNet version that has been used to label each data set. Specifically, the different
implementations of the vector construction vary on the way in which the co-occurrence
is calculated, the corpus used, and the source of the relations. tf-idf constructs the co-
occurrence vectors exploiting the term frequency - inverse document frequency weighting
schema (tf-idf ). tf-idfext uses the same information of tf-idf plus the relations derived
from eXtended WordNet (Mihalcea and Moldovan 2001). vec uses a standard bag-of-
words approach to compute the co-occurrences. vecext uses the same information of vec
plus the relations from eXtended WordNet.

Instead of considering only the raw frequency of terms in documents, the tf-idf
method scales the importance of less informative terms taking into account the number
of documents in which a term occurs. Formally, it is the product of two statistics: the
term frequency and the inverse document frequency. The former is computed as the
number of times a term occurs in a document (gloss in our case); the latter is computed
as idft = log N

dft
, where N is the number of documents in the corpus and dft is the number

of documents in which the term occurs.

Relatedness Measure Calculated with BabelNet and NASARI. BabelNet (Navigli and
Ponzetto 2012a) is a wide-coverage multilingual semantic network. It integrates lexi-
cographic and encyclopedic knowledge from WordNet and Wikipedia, automatically
mapping the concepts shared by the two knowledge bases. This mapping generates
a semantic network where millions of concepts are lexicalized in different languages.
Furthermore, it allows linking named entities, such as Johann Sebastian Bach, and concepts,
such as composer and organist.

BabelNet can be represented as a labeled direct graph G = (V, E) where V is the set
of nodes (concepts or named entities) and E ⊆ V × R× V is the set of edges connecting
pairs of concepts or named entities. The edges are labeled with a semantic relation from R,
such as: is-a, given name, or occupation. Each node v ∈ V contains a set of lexicalizations
of the concept for different languages, which forms a BabelNet synset.

The semantic measure, which we developed using BabelNet, is based on NASARI5

(Camacho-Collados, Pilehvar, and Navigli 2015), a semantic representation of the con-
cepts and named entities in BabelNet. This approach first exploits the BabelNet network
to find the set of related concepts in WordNet and Wikipedia and then constructs two
vectors to obtain a semantic representation of a concept b. These representations are
projected in two different semantic spaces, one based on words and the other on synsets.

5 The resource is available at http://lcl.uniroma1.it/nasari/.
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They use lexical specificity6 (Lafon 1980) to extract the most representative words to use
in the first vector and the most representative synsets to use in the second vector.

In this article, we computed the similarity between two senses using the vectors (of
the word-based semantic space) provided by NASARI. These semantic representations
provide for each sense the set of words that best represent the particular concept and
the score of representativeness of each word. From this representation we computed the
pairwise cosine similarity between each concept, as described in the previous section for
the semantic relatedness measures.

The use of NASARI is particularly useful in the case of named entity disambigua-
tion because it includes many entities that are not included in WordNet. On the other
hand, it is difficult to use it in all-words sense disambiguation tasks, since it includes
only WordNet synsets that are mapped to Wikipedia pages in BabelNet. For this reason
it is not possible to find the semantic representation for many verbs, adjectives, and
adverbs that are commonly found in all-words sense disambiguation tasks.

We used the SPARQL endpoint7 provided by BabelNet to collect the sense inven-
tories of each word in the texts of each data set. For this task we filtered the first 100
resources whose label contains the lexicalization of the word to be disambiguated. This
operation is required because in many cases it is possible to have indirect references to
entities.

5.2.3 From Similarities to Payoffs. The similarity and relatedness measures are computed
for all the senses of the words to be disambiguated. From this computation it is possible
to obtain a similarity matrix Z that incorporates the pairwise similarity among all the
possible senses. This computation could have heavy computational cost, if there are
many words to be disambiguated. To overcome this issue, the pairwise similarities can
be computed just one time on the entire knowledge base and used in actual situations,
reducing the computational cost of the algorithm. From this matrix we can obtain the
partial semantic similarity matrix for each pair of players, Zij = m× n, where m and n
are the senses of i and j in Z.

5.2.4 Strategy Space Implementation. Once the pairwise similarities between the words
and their senses, stored in the two matrices W and Z, are calculated, we can pass to the
description of the strategy space of each player. It can be initialized with Equation (15),
which follows the constraints described in Section 4.2 and assigns to each sense an equal
probability.

sij =

{
|Mi|−1, if sense j is in Mi

0, otherwise
(15)

This initialization is used in the case of unsupervised WSD because it does not use any
prior knowledge about the senses distribution. In case we want to exploit information
from prior knowledge, obtained from sense-labeled data, we can assign to each sense
a probability according to its rank, concentrating a higher probability on senses that
have a high frequency. To model this kind of scenario we used a geometric distribution

6 A statistical measure based on the hypergeometric distribution over word frequencies.
7 http://babelnet.org/sparql/.
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that gives us a decreasing probability distribution. This new initialization is defined as
follows:

sij =

{
p(1− p)rj , if sense j is in Mi

0, otherwise
(16)

where p is the parameter of the geometric distribution and determines the scale or statis-
tical dispersion of the probability distribution, and rj is the rank of sense j, which ranges
from 1 (the rank of the most common sense) to m (the rank of the least frequent sense).
Finally, the vector obtained from Equation (16) is divided by

∑
j∈Si

pj in order to make
the probabilities add up to 1. In our experiments, we used the ranked system provided
by the Natural Language Toolkit (version 3.0) (Bird 2006) to rank the senses associated
with each word to be disambiguated. Natural Language Toolkit is a suite of modules
and data sets covering symbolic and statistical NLP. It includes a WordNet reader that
can be queried with a lemma and a part of speech to obtain the list of possible synsets
associated with the specified lemma and the part of speech. The returned synsets are
listed in decreasing order of frequency and can be used as ranking systems by our
algorithm.

We used the method proposed by Navigli (2006) for the experiments on coarse-
grained WSD. With this approach it is possible to cluster the senses of a given word
according to the similarity that the senses share. In this way it is possible to obtain
a set of disjoint clusters O = {o1, ..., ot}, which is ranked according to the information
obtained with the ranking system described earlier for each sense inventory M. The
initialization of the strategy space, in this case, is defined as follows:

sij =

{
p(1− p)ro , if sense j is in cluster o
0, otherwise

(17)

With this initialization it is possible to assign an equal probability to the senses belong-
ing to a determined cluster and to rank the clusters according to the ranking of the
senses in each of them.

5.3 An Example

As an example, we can consider the following sentence, which we encountered before:

r There is a financial institution near the river bank.

We first tokenize, lemmatize, and tag the sentence; then we extract the content words
that have an entry in WordNet 3.0 (Miller 1995), constructing the list of words to be
disambiguated: {is, financial, institution, river, bank}. Once we have identified the
target words we compute the pairwise similarity for each target word. For this task
we use the Google Web 1T 5-Gram Database (Brants and Franz 2006) to compute the
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(a) Co-occurrence graph (b) n-gram graph (c) Similarity n-gram graph

Figure 4
Three graph representations for the sentence: there is a financial institution near the river bank. (a) A
co-occurrence graph constructed using the modified Dice coefficient as similarity measure over
the Google Web 1T 5-Gram Database (Brants and Franz 2006) to weight the edges. (b) Graph
representation of the n-gram structure of the sentence, with n = 1; for each node, an edge is
added to another node if the corresponding word appears to its left or right in a window the size
of one word. (c) A weighted graph that combines the information of the co-occurrence graph
and the n-gram graph. The edges of the co-occurrence graph are augmented by its mean weight
if a corresponding edge exists in the n-gram graph and does not include a stop-word.

modified Dice coefficient8 (Kitamura and Matsumoto 1996). With the information de-
rived by this process we can construct a co-occurrence graph (Figure 4(a)), which indi-
cates the strength of association between the words in the text. This information can be
augmented, taking into account other sources of information such that the dependency
structure of the syntactic relations between the words9 or the proximity information
derived by a simple n-gram model (Figure 4(b), n = 1).

The operation to increment the weights of structurally related words is important
because it prevents the system from relying only on distributional information, which
could lead to a sense shift for the ambiguous word bank. In fact, its association with
the words financial and institution would have the effect of interpreting it as a financial
institution and not as sloping land, as defined in WordNet. Furthermore, using only
distributional information could exclude associations between words that do not appear
in the corpus in use.

In Figure 4(c) we see the final form of the graph for our target sentence, in which
we have combined the information from the co-occurrence graph and from the n-gram
graph. The weights in the co-occurrence graph are increased by the mean weight of
the graph if a corresponding edge exists in the n-gram graph and does not include a
stop-word.10

8 Specifically we used the service provided by the Corpus Linguistics group at FAU Erlangen-Nürnberg,
with a collocation span of four words on the left and on the right and collocates with minimum
frequency: 100.

9 This aspect is not treated in this article.
10 A more accurate representation of the data can be obtained using the dependency structure of the

sentence instead of the n-gram graph; but in this case the results would not have changed, since in both
cases there is an edge between river and bank. In fact, in many cases a simple n-gram model can implicitly
detect syntactical relations. We used the stop-word list available in the Python Natural Language Toolkit,
described earlier.

51



Computational Linguistics Volume 43, Number 1

Figure 5
System dynamics for the words: be, institution, and bank at time step 1, 2, 3, and 12 (system
convergence). The strategy space of each word is represented as a regular polygon of radius 1,
where the distance from the center to any vertex represents the probability associated with a
particular word sense. The values on each radius in a polygon are connected with a darker line
in order to show the actual probability distribution obtained at each time step.

After the pairwise similarities between the words are computed, we access a lexical
database in order to obtain the sense inventories of each word so that each word can
be associated with a predefined number of senses. For this task, we use WordNet 3.0
(Miller 1995). Then, for each unique sense in all the sense inventories, we compute the
pairwise semantic similarity in order to identify the affinity among all the pairwise
sense combinations. This task can be done using a semantic similarity or relatedness
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measure.11 For this example, we used a variant of the gloss vector measure (Patwardhan
and Pedersen 2006), the tf-idf, described in Section 5.2.2.

Having obtained the similarity information, we can initialize the strategy space
of each player with a uniform distribution, given the fact that we are not considering
any prior information about the senses distributions. Now the system dynamics can be
started. In each iteration of the dynamics each player plays a game with its neighbors,
obtaining a payoff for each of its strategies according to Equation (10); once the players
have played the games with their neighbors in W, the strategy space of each player is
updated at time t + 1 according to Equation (6).

We present the dynamics of the system created for the example sentence in Figure 5.
The dynamics are shown only for the ambiguous words at time steps t1, t2, t3, and t12
(when the system converges). As we can see, at time step 1 the senses of each word are
equiprobable, but as soon as the games are played some senses start to emerge. In fact at
time step 2 many senses are discarded, and this in virtue of two principles: a) the words
in the text push the senses of the other words toward a specific sense; and b) the sense
similarity values for certain senses are very low. Regarding the first principle, we can
consider that the word institution, which is playing the games with the words financial
and bank, is immediately driven toward a specific sense, as an organization founded
and united for a specific purpose as defined in WordNet 3.0—thus discarding the other
senses. Regarding the second principle, we can consider many senses of the word bank
that are not compatible with the senses of the other words in the text, and therefore their
values decrease rapidly.

The most interesting phenomenon that can be appreciated from the example is the
behavior of the strategy space of the word bank. It has ten senses according to WordNet
3.0 (Miller 1995), and can be used in different contexts and domains to indicate, among
other things, a financial institution (s22 in Figure 5) or a sloping land (s20 in Figure 5).
When it plays a game with the words financial and institution, it is directed toward
its financial sense; when it plays a game with the word river, it is directed toward its
naturalistic meaning. As we can see in Figure 5 at time step 2, the two meanings (s20
and s22) have almost the same value and at time step 3 the word starts to define a
precise meaning to the detriment of s21 but not of s22. The balancing of these forces
toward a specific meaning is given by the similarity value wij, which allows bank in this
case to choose its naturalistic meaning. Furthermore, we can see that the inclination to
a particular sense is given by the payoff matrix Zij and by the strategy distribution Sj,
which indicates what sense word j is going to choose, ensuring that word i’s is coherent
with this choice.

6. Experimental Evaluation

We now describe how the parameters of the presented method have been found and
how it has been tested and compared with state-of-the-art systems12 in Section 6.1
and Section 6.2, respectively. We describe the data sets used for the tuning and for the
evaluation of our model and the different settings used to test it. The results of our
experiments using WordNet as knowledge base are described in Section 6.2.1, where

11 Semantic similarity and relatedness measures are discussed in Sections 5.2.1 and 5.2.2.
12 The code of the algorithm and the data sets used are available at

http://www.dsi.unive.it/∼tripodi/wsd.
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two different implementations of the system are proposed—the unsupervised and the
supervised. In Section 6.2.1 we compare our results with state-of-the-art systems. Fi-
nally, the results of the experiments using BabelNet as knowledge base, related to WSD
and entity disambiguation, are described in Section 6.2.2. The results are provided as
F1, computed according to the following equation:

F1 = 2 · precision · recall
precision + recall × 100 (18)

F1 is a measure that determines the weighted harmonic mean of precision and recall.
Precision is defined as the number of correct answers divided by the number of pro-
vided answers; and recall is defined as the number of correct answers divided by the
total number of answers to be provided.

6.1 Parameter Tuning

We used two data sets to tune the parameters of our approach, SemEval-2010 task 17
(S10) (Agirre et al. 2009) and SemEval-2015 Task 13 (S15) (Moro and Navigli 2015).
The first data set is composed of three English texts from the ecology domain for
a total of 1,398 words to be disambiguated (1,032 nouns/named entities and 366
verbs). The second data set is composed of four English documents, from different
domains: medical, drug, math, and social issues, for a total of 1,261 instances, including
nouns/named entities, verbs, adjectives, and adverbs. Both data sets have been manu-
ally labeled using WordNet 3.0. The only difference between these data sets is that the
target words of the first data set belong to a specific domain, whereas all the content
words of the second data set have to be disambiguated. We used these two typologies
of data set to evaluate our algorithm in different scenarios; furthermore, we created,
from each data set, 50 different data sets, selecting from each text a random number
of sentences and evaluating our approach on each of these data sets to identify the
parameters that on average perform better than others. In this way it is possible to
simulate a situation in which the system has to work on texts of different sizes and on
different domains. This because, as demonstrated by Søgaard et al. (2014), the results of
a determined algorithm are very sensitive to sample size. The number of target words
for each text in the random data sets ranges from 12 to 571. The parameters that will be
tuned are the association and semantic measures to use to weight the similarity among
words and senses (Section 6.1.1), the n of the n-gram graph used to increase the weights
of near words (Section 6.1.2), and the p of the geometric distribution used by our semi-
supervised system (Section 6.1.3).

6.1.1 Association and Semantic Measures. The first experiment that we present is aimed
at finding the semantic and distributional measures with the highest performances.
Recall that we used WordNet 3.0 as knowledge base and the BNC corpus (Leech 1992)
to compute the association measures. In Tables 2 and 3 we report the average results
on the S10 and S15 data sets, respectively. From these tables it is possible to see that the
performance of the system is highly influenced by the combination of measures used.
As an example of the different representations generated by the measures described
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Table 2
Results as F1 for S10. The first result with a statistically significant difference from the best
(bold result) is marked with * (χ2, p < 0.05).

dice mdice pmi t-score z-score odds-r chi-s chi-s-c

tfidf 55.5 56.3 50.6 45.4 50.1 49.8 39.1 54.4
tfidfext 56.5 55.9 50.1 45.0 49.9 49.5 39.1 54.2
vec 54.7 54.3 49.3 44.1 49.4 53.6 39.3 50.5
vecext 55.0 54.3 48.8 43.8 48.6 53.6 39.1 49.9
jcn 51.3 50.6 40.1 50.1 47.6 52.6* 50.1 50.6
wup 37.2 36.9 35.6 32.2 37.9 36.8 38.4 35.4

Table 3
Results as F1 for S15. The first result with a statistically significant difference from the best
(bold result) is marked with * (χ2, p < 0.05).

dice mdice pmi t-score z-score odds-r chi-s chi-s-c

tfidf 64.1 64.2 63.1 59.0 61.8 65.3 63.3* 62.4
tfidfext 62.9 63.1 62.4 58.7 60.9 63.0 62.0 61.1
vec 62.8 62.3 62.8 59.8 62.3 62.9 61.1 60.3
vecext 60.5 59.9 61.2 57.8 59.7 60.6 60.1 59.4
jcn 57.2 57.6 56.7 57.9 57.0 56.9 57.5 57.6
wup 46.2 45.4 43.8 45.4 45.9 47.4 46.1 45.5

in Section 5.2, we can observe Figures 6 and 7, which depict the matrices Z and the
adjacency matrix of the graph W, respectively, and are computed on the following three
sentences from the second text of S10:

The rivers Trent and Ouse, which provide the main fresh water flow into the Humber,
drain large industrial and urban areas to the south and west (River Trent), and less
densely populated agricultural areas to the north and west (River Ouse). The
Trent/Ouse confluence is known as Trent Falls. On the north bank of the Humber
estuary the principal river is the river Hull, which flows through the city of
Kingston-upon-Hull and has a tidal length of 32 km up to the Hempholme Weir.

resulting in the following 35 content words (names and verbs) and 131 senses.

1. river n 10. area n 19. Ouse n 28. be v
2. Trent n 11. south n 20. confluence n 29. river n
3. Ouse n 12. west n 21. be v 30. flow v
4. provide v 13. River n 22. Trent n 31. city n
5. main n 14. Trent n 23. Falls n 32. have v
6. water n 15. area n 24. bank n 33. length* n
7. flow n 16. River n 25. Humber n 34. km n
8. Humber n 17. Ouse n 26. estuary n 35. Weir n
9. drain v 18. Trent n 27. river n

The first observation that can be made on the results is related to the semantic mea-
sures; in fact, the relatedness measures perform significantly better than the semantic
similarity measures. This is because wup and jcn can be computed only on synsets
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Figure 6
The representations of the payoff matrix Z computed on three sentences of the second text of
S10, with the measures described in Section 5.2.2. All the senses of the words in the text are
sequentially ordered.

Figure 7
The representations of the adjacency matrix of the graph W computed on three sentences of
the second text of S10, with the measures described in Section 5.2.1. The words are ordered
sequentially and reflect the list proposed in the text. For a better visual comparison only positive
values are presented, whereas the experiments are performed considering also negative values.
The last image represents the strategy space of the players.

that have the same part of speech. This limitation affects the results of the algorithm
because the games played between two words with different parts of speech have no
effect on the dynamics of the system, since the values of the resulting payoff matrices
are all zeros. This affects the performances of the system in terms of recall—because
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in this situation these words tend to remain on the central point of the simplex—and
also in terms of precision—because the choice of the meaning of a word is computed
only taking into account the influence of words with the same part of speech. In fact,
from Figure 6 we can see that the representations provided by wup and jcn for the text
described above have many uniform areas; this means that these approaches are not
able to provide a clear representation of the data. On the contrary, the representations
provided by the relatedness measures show a block structure on the main diagonal of
the matrix, which is exactly what is required for a similarity measure. The use of the
tf-idf weighting schema seems to be able to reduce the noise in the data representation;
in fact the weights on the left part of the matrix are reduced by tfidf and tfidf-ext whereas
they have high values in vec and vec-ext. The representations obtained with eXtended
WordNet are very similar to those obtained with WordNet and their performance is also
very close, although on average WordNet outperforms eXtended WordNet.

If we observe the performances of the association measures we notice that on aver-
age the best measures are dice, mdice, chi-s-c, and also odds-r on S15—the other measures
perform almost always under the statistical significance. Observing the representations
in Figure 7 we can see that dice and mdice have a similar structure; the difference between
these two measures are that mdice has values on a different range and tends to better
differentiate the weights, whereas in dice the values are almost uniform. Pmi tends to
take high values when one word in the collocation has low frequency, but this does
not imply high dependency, thus it compromises the results of the games. From its
representation we can observe that its structure is different from the previous two—
in fact, it concentrate its values on collocations such as river Trent and river Ouse and
this has the effect of unbalancing the data representation. In fact, the dice and mdice
concentrate their values on collocations such as river flow and bank estuary. T-score and
z-score have a similar structure, the only difference is in the range of the values. For these
measures we can see that the distribution of the values is quite homogeneous, meaning
that these measures are not able to balance the weights well. On odds-r we recognize a
structure similar to that of pmi, the main difference being that it works on a different
range. The values obtained with chi-s are on a wide range, which compromises the data
representation; in fact, its results are always under the statistical significance. Chi-s-c
works on a narrower range than chi-s and its structure resembles that of dice—in fact,
its results are often high.

6.1.2 n-gram Graph. The association measures are able to provide a good representation
of the text but in many cases it is possible that a word in a specific text is not present in
the corpus on which these measures are calculated; furthermore, it is possible that these
words are used with different lexicalizations. One way to overcome these problems is
to increase the values of the nodes near a determined word; in this way it is possible to
ensure that the nodes in W are always connected. Furthermore, this allows us to exploit
local information, increasing the importance of the words that share a proximity relation
with a determined word; in this way it is possible to give more importance to (possibly
syntactically) related words, as described in Section 5.1.1. To test the influence that the
parameter of the n-gram graph has on the performance of the algorithm we selected
the association and relatedness measures with the highest results and conducted a
series of experiments on the same data sets presented above, with increasing values
of n. The results of these experiments on S10 and S15 are presented in Figure 8(a) and
8(b), respectively. From the plots we can see that this approach is always beneficial
for S15 and that the results increased substantially with values of n greater than 2.
To the contrary, on S10 this approach is not always beneficial but in many cases it is
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(a) S10 (b) S15

Figure 8
Results as F1 on S10 (on the left) and S15 (on the right) with increasing values of neighbor
nodes (n).

possible to notice an improvement. In particular, we notice that the pair of measures
with highest results on both data sets is tfidf-mdice with n = 5. This also confirms our
earlier experiments in which we saw that these two measures are particularly suited for
our algorithm.

6.1.3 Geometric Distribution. Once we have identified the measures to use in our unsu-
pervised system, we can test for the best parameter to use in case we want to exploit
information from sense-labeled corpora. To tune the parameter of the geometric dis-
tribution (described in Section 5.2.4), we used the pair of measures and the value of
n detected with the previous experiments and ran the algorithm on S10 and S15 with
increasing values of p, in the interval [0.05, 0.95].

The results of this experiment are presented in Figure 9(a), where we can see that the
performance of the semi-supervised system on S15 is always better than that obtained
with the unsupervised system (p = 0). On the other hand, the performance on S10 is
always lower than that obtained with the unsupervised system. This behavior is not
surprising because the target words of S10 belong to a specific semantic domain. We
used SemCor to obtain the information about the sense distributions and this resource
is a general domain corpus, which is not tailored for this specific task. In fact, as pointed
out by McCarthy et. al (2007), the distribution of word senses on specific domains is
highly skewed; for this reason, the most frequent sense heuristic calculated on general
domains corpora, such as SemCor, is not beneficial for this kind of text.

From the plot we can see that on S15 the highest results are obtained with values of
p ranging from 0.4 to 0.7 and for the evaluation of our model we decided to use p = 0.4
as parameter for the geometric distribution, because with this value we obtained the
highest result.

6.1.4 Error Analysis. The main problems that we noticed analyzing the results of previous
experiments are related to the semantic measures. As we pointed out in Section 6.1.1,
these measures can be computed only on synsets with the same part of speech and
this influences the results in terms of recall. The adverbs and adjectives are not disam-
biguated with these measures because of the lack of payoffs. This does not happen only
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(a) Tuning. (b) Distributions.

Figure 9
Results as F1 on S10 and S15 with increasing values of p (on the left), p = 0 corresponds to the
results with the unsupervised setting (on the left). An example of geometric distribution with six
ranked senses compared with the uniform distribution (on the right).

in the case of function words with low semantic content but also for verbs with a rich
semantic content, such as generate, prevent, and obtain. The use of the relatedness mea-
sures substantially reduces the number of words that are not disambiguated. With these
measures, a word is not disambiguated only in cases in which the concepts denoted by
it are not covered enough by the reference corpus—for example, in our experiments
we have words such as drawn-out, dribble, and catchment that are not disambiguated.

To overcome this problem we have used the n-gram graph to increase the weights
among neighboring words. Experimentally, we noticed that when this approach is used
with the relatedness measures, it leads to the disambiguation of all the target words and
with n ≥ 1 we have precision = recall. The use of this approach influences the results also
in terms of precision—in fact, if we consider the performance of the system on the word
actor, we pass from F1 = 0 (n = 0) to F1 = 71.4 (n = 5). This is because the number of
relations of the two senses (synsets) of the word actor are not balanced in WordNet 3.0;
in fact, actor as theatrical performer has 21 relations whereas actor as person who acts and
gets things done has only 8 relations, and this can compromise the computation of the
semantic relatedness measures. It is possible to overcome this limitation using the local
information given by the n-gram graph, which allows us to balance the influence of
words in the text.

Another aspect to consider is whether the polysemy of the words influences the
results of the system. Analyzing the results we noticed that the majority of the errors
are made on words such as make-v, give-v, play-v, better-a, work-v, follow-v, see-v, and
come-v, which have more that 20 different senses and are very frequent words difficult
to disambiguate in fine-grained tasks. As we can see from Figure 10, this problem can
be partially solved using the semi-supervised system. In fact, the use of information
from sense-labeled corpora is particularly useful when the polysemy of the words is
particularly high.

6.2 Evaluation Set-up

We evaluated our algorithm with three fine-grained data sets: Senseval-2 English all-
words (S2) (Palmer et al. 2001), Senseval-3 English all-words (S3) (Snyder and Palmer
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Figure 10
Average F1 on the words of S15 grouped by number of senses, using the unsupervised and the
semi-supervised system.

2004), SemEval-2007 all-words (S7) (Pradhan et al. 2007), and one coarse-grained data
set, SemEval-2007 English all-words (S7CG) (Navigli, Litkowski, and Hargraves 2007),13

using as the knowledge base WordNet. Furthermore, we evaluated our approach on two
data sets, SemEval-2013 task 12 (S13) (Navigli, Jurgens, and Vannella 2013) and KORE50
(Hoffart et al. 2012),14 using as the knowledge base BabeNet.

We describe the evaluation using WordNet as the knowledge base in the next
sections, and in Section 6.2.2 we present the evaluation conducted using BabelNet as
the knowledge base. Recall that for all the next experiments we used mdice to weight
the graph W, tfidf to compute the payoffs, n = 5 for the n-gram graph, and p = 0.4
in the case of semi-supervised learning. The results are provided as F1 for all the data
sets except KORE50; for this data set the results are provided as accuracy, as is common
in the literature.

6.2.1 Experiments Using WordNet as Knowledge Base. Table 4 shows the results as F1 for
the four data sets that we used for the experiments with WordNet. The table includes
the results for the two implementations of our system: the unsupervised and the semi-
supervised and the results obtained using the most frequent sense heuristic. For the
computation of the most frequent sense, we assigned to each word to be disambiguated
the first sense returned by the WordNet reader provided by the Natural Language
Toolkit (version 3.0) (Bird 2006). As we can see, the best performance of our system
is obtained on nouns on all the data sets. This is in line with state-of-the-art systems be-
cause in general the nouns have lower polysemy and higher inter-annotator agreement
(Palmer et al. 2001). Furthermore, our method is particularly suited for nouns. In fact,
the disambiguation of nouns benefits from a wide context and local collocations (Agirre
and Edmonds 2007).

We obtained low results on verbs on all data sets. This, as pointed out by Dang
(1975), is a common problem not only for supervised and unsupervised WSD systems

13 We downloaded S2 from www.hipposmond.com/senseval2, S3 from
http://www.senseval.org/senseval3, S7 from
http://nlp.cs.swarthmore.edu/semeval/tasks/index.php, and S7CG from
http://lcl.uniroma1.it/coarse-grained-aw.

14 We downloaded S13 from https://www.cs.york.ac.uk/semeval-2013/task12/index.html and
KORE50 from http://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/aida/downloads/.
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Table 4
Detailed results as F1 for the four data sets studied with tf-idf and mdice as measures. The results
show the performance of our unsupervised (uns) and semi-supervised (ssup) system and the
results obtained using the most frequent sense heuristic (MFS). Detailed information about the
performance of the systems on different parts of speech are provided: nouns (N), verbs (V),
adjectives (A), and adverbs (R).

SemEval 2007 coarse-grained - S7CG
Method All N V A R

WSDuns
games 80.4 85.5 71.2 81.5 76.0

WSDssup
games 82.8 85.4 77.2 82.9 84.6

MFS 76.3 76.0 70.1 82.0 86.0

SemEval 2007 fine-grained - S7
Method All N V A R

WSDuns
games 43.3 49.7 39.9 − −

WSDssup
games 56.5 62.9 53.0 − −

MFS 54.7 60.4 51.7 − −

Senseval 3 fine-grained - S3
Method All N V A R

WSDuns
games 59.1 63.3 50.7 64.5 71.4

WSDssup
games 64.7 70.3 54.1 70.7 85.7

MFS 62.8 69.3 51.4 68.2 100.0

Senseval 2 fine-grained - S2
Method All N V A R

WSDuns
games 61.2 69.8 41.7 61.9 65.1

WSDssup
games 66.0 72.4 43.5 71.8 75.7

MFS 65.6 72.1 42.4 71.6 76.1

but also for humans, who in many cases disagree about what constitutes a different
sense for a polysemous verb, compromising the sense tagging procedure.

As we anticipated in Section 6.1.3, the use of prior knowledge is beneficial for this
kind of data set. As we can see in Table 4, using a semi-supervised setting improves the
results of 5% on S2 and S3 and of 12% on S7. The large improvement obtained on S7 can
be explained by the fact that the results of the unsupervised system are well below the
most frequent sense heuristic, so exploiting the evidence from the sense-labeled data set
is beneficial. For the same reason, the results obtained on S7CG with a semi-supervised
setting are less impressive than those obtained with the unsupervised systems; in fact,
the structure of the data sets is different and the results obtained with the unsupervised
setting are well above the most frequent sense. This series of experiments confirms that
the use of prior knowledge is beneficial in general domain data sets and that when it is
used, the system performs better than the most common-sense heuristic computed on
the same corpus.

Comparison to State-of-the-Art Algorithms. Table 5 shows the results of our system and
the results obtained by state-of-the-art systems on the same data sets. We compared

61



Computational Linguistics Volume 43, Number 1

Table 5
Comparison with state-of-the-art algorithms: unsupervised (unsup.), semisupervised (semi sup.),
and supervised (sup.). MFS refers to the MFS heuristic computed on SemCor on each data set
and Best refers to the best supervised system for each competition. The results are provided as
F1 and the first result with a statistically significant difference from the best of each data set is
marked with * (χ2, p < 0.05).

S7CG S7CG (N) S7 S3 S2

un
su

p. Nav10 − − 43.1 52.9 −
PPRw2w 80.1 83.6 41.7 57.9 59.7
WSDgames 80.4* 85.5 43.3 59.1 61.2

se
m

is
up

.

IRST-DDD-00 − − − 58.3 −
MFS 76.3 77.4 54.7 62.8 65.6*
MRF-LP − − 50.6* 58.6 60.5
Nav05 83.2 84.1 − 60.4 −
PPRw2w 81.4 82.1 48.6 63.0 62.6
WSDgames 82.8 85.4 56.5 64.7* 66.0

su
p. Best 82.5 82.3* 59.1 65.2 68.6

Zhong10 82.6 − 58.3 67.6 68.2

our method with supervised, unsupervised, and semi-supervised systems on four
data sets. The supervised systems are It Makes Sense (Zhong and Ng 2010) (Zhong10);
an open source WSD system based on support vector machines (Steinwart and
Christmann 2008); and the best system that participated in each competition (Best).
The semi-supervised systems are IRST-DDD-00 (Strapparava, Gliozzo, and Giuliano
2004), based on WordNet domains and on manually annotated domain corpora; MFS,
which corresponds to the most frequent sense heuristic implemented using the Word-
Net corpus reader of the natural language toolkit; MRF-LP, based on Markov random
field (Chaplot, Bhattacharyya, and Paranjape 2015); Nav05 (Navigli and Velardi 2005), a
knowledge-based method that exploits manually disambiguated word senses to enrich
the knowledge base relations; and PPRw2w (Agirre, de Lacalle, and Soroa 2014), a ran-
dom walk method that uses contextual information and prior knowledge about senses
distribution to compute the most important sense in a network given a specific word
and its context. The unsupervised systems are: Nav10, a graph based WSD algorithm
that exploits connectivity measures to determine the most important node in the graph
composed by all the senses of the words in a sentence; and a version of the PPRw2w
algorithm that does not use sense tagged resources.

The results show that our unsupervised system performs better than any other
unsupervised algorithm in all data sets. In S7CG and S7, the difference is minimal
compared with PPRw2w and Nav10, respectively; in S3 and S2, the difference is more
substantial compared with both unsupervised systems. Furthermore, the performance
of our system is more stable on the four data sets, showing a constant improvement on
the state of the art.

The comparison with semi-supervised systems shows that our system always per-
forms better than the most frequent sense heuristic when we use information from
sense-labeled corpora. We note strange behavior on S7CG: when we use prior knowl-
edge, the performance of our semi-supervised system is lower than our unsupervised
system and state of the art. This is because on this data set the performance of our
unsupervised system is better than the results that can be achieved by using labeled
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data to initialize the strategy space of the semi-supervised system. On the other three
data sets we note a substantial improvement in the performances of our system, with
stable results higher than state-of-the-art systems.

Finally, we note that the results of our semi-supervised system on the fine-grained
data sets are close to the performance of state-of-the-art supervised systems, with values
that are statistically relevant only on S3. We also note that the performance of our system
on the nouns of the S7CG data set is higher than the results of the supervised systems.

6.2.2 Experiments with BabelNet. BabelNet is particularly useful when the number of
named entities to disambiguate is high. In fact, it is not possible to perform this task
using only WordNet, because its coverage on named entities is limited. For the experi-
ments on this section we used BabelNet to collect the sense inventories of each word to
be disambiguated, the mdice measure to weight the graph W, and NASARI to obtain
the semantic representation of each sense. The similarity among the representation
obtained with this resource is computed using the cosine similarity measure, described
in Section 5.2.2. The only difference with the experiments presented in Section 6.2.1 is
that we used BabelNet as knowledge base and NASARI as resource to collect the sense
representations instead of WordNet.

S13 consists of 13 documents in different domains, available in five languages (we
used only English). All the nouns in these texts are annotated using BabelNet, with
a total of 1,931 words to be disambiguated (English data set). KORE50 consists of 50
short English sentences with a total number of 146 mentions manually annotated using
YAGO2 (Hoffart et al. 2013). We used the mapping between YAGO2 and Wikipedia
to obtain for each mention the corresponding BabelNet concept, since there exists a
mapping between Wikipedia and BabelNet. This data set contains highly ambiguous
mentions that are difficult to capture without the use of a large and well-organized
knowledge base. In fact, the mentions are not explicit and require the use of common
knowledge to identify their intended meaning.

We used the SPARQL endpoint15 provided by BabelNet to collect the sense in-
ventories of the words in the texts of each data set. For this task we filtered the first
100 resources whose label contains the lexicalization of the word to be disambiguated.
This operation can increase the dimensionality of the strategy space, but it is required
because, particularly in KORE50, there are many indirect references—such as Tiger to
refer to Tiger Woods (the famous golf player) or Jones to refer to John Paul Jones (the
Led Zeppelin bassist).

Comparison to State-of-the-Art Algorithms. The results of these experiments are shown in
Table 6, where it is possible to see that the performance of our system is close to the re-
sults obtained with Babelfy on S13 and substantially higher on KORE50. This is because
with our approach it is necessary to respect the textual coherence, which is required
when a sentence contains a high level of ambiguity, such as those proposed by KORE50.
On the contrary, PPRw2w performs poorly on this data set. This is because, as attested
to in Moro, Raganato, and Navigli (2014), it disambiguates the words independently,
without imposing any consistency requirements.

The good performance of our approach is also due to the good semantic represen-
tations provided by NASARI—in fact, it is able to exploit a richer source of information,

15 http://babelnet.org/sparql/.
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Table 6
Comparison with state-of-the-art algorithms on WSD and entity linking. The results are
provided as F1 for S13 and as accuracy for KORE50. The first result with a statistically significant
difference from the best (bold result) is marked with * (χ2, p < 0.05).

S13 KORE50

WSDgames 70.8 75.7
Babelfy 69.2 71.5
SUDOKU 66.3 −
MFS 66.5* −
PPRw2w 60.8 −
KORE − 63.9*
GETALP 58.3 −

Wikipedia, which provides a larger coverage and a wider source of information than
WordNet alone.

The results on KORE50 are presented as accuracy, following the custom of previous
work on this data set. As we anticipated, it contains decontextualized sentences, which
require common knowledge to be disambiguated. This common knowledge is obtained
exploiting the relations in BabelNet that connect related entities, but in many cases
this is not enough because the references to entities are too general and in this case
the system is not able to provide an answer. It is also difficult to exploit distributional
information on this data set because the sentences are short and in many cases cryp-
tic. For these reasons the recall on this data set is well below the precision: 55.5%.
The system does not provide answers for the entities in sentences such as: Jobs and
Baez dated in the late 1970s, and she performed at his Stanford memorial, but it is able to
correctly disambiguate the same entities in sentences where there is more contextual
information.

7. Conclusions

In this article we introduced a new method for WSD based on game theory. We have
provided an extensive introduction to the WSD task and explained the motivations
behind the choice to model the WSD problem as a constraint-satisfaction problem. We
conducted an extensive series of experiments to identify the similarity measures that
perform better in our framework. We have also evaluated our system with two different
implementations and compared our results with state-of-the-art systems, on different
WSD tasks.

Our method can be considered as a continuation of knowledge-based, graph-based,
and similarity-based approaches. We used the methodologies of these three approaches
combined in a game theoretic framework. This model is used to perform a consistent
labeling of senses. In our model we try to maximize the textual coherence, imposing
that the meaning of each word in a text must be related to the meaning of the other
words in the text. To do this we exploited distributional and proximity information
to weight the influence that each word has on the others. We also exploited semantic
similarity information to weight the strengths of compatibility among two senses.
This is of great importance because it imposes constraints on the labeling process,
developing a contextual coherence on the assignment of senses. The application of a
game theoretic framework guarantees that these assumptions are met. Furthermore,
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the use of the replicator dynamics equation allows us to always find the best labeling
assignment.

Our system, in addition to having a solid mathematical and linguistic foundation,
has been demonstrated to perform well compared with state-of-the-art systems and to
be extremely flexible. In fact, it is possible to implement new similarity measures, graph
constructions, and strategy space initializations to test it in different scenarios. It is also
possible to use it as completely unsupervised or to use information from sense-labeled
corpora.

The features that make our system competitive compared with state-of-the-art sys-
tems are that instead of finding the most important sense in a network to be associated
with the meaning of a single word, our system disambiguates all the words at the same
time, taking into account the influence that each word has on the others and imposing
sense compatibility among each sense before assigning a meaning. We have demon-
strated how our system can deal with sense shifts, where a centrality algorithm, which
tries to find the most important sense in a network, can be deceived by the context. In
our case, the weighting of the context ensures respecting the proximity structure of a
sentence and disambiguating each word according to the context in which it appears.
This is because the meaning of a word in a sentence does not depend on all the words in
the sentence but only on those that share a proximity (or syntactical) relation and those
that enjoy a high distributional similarity.
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