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Derivations under different grammar formalisms allow extraction of various dependency struc-
tures. Particularly, bilexical deep dependency structures beyond surface tree representation
can be derived from linguistic analysis grounded by CCG, LFG, and HPSG. Traditionally, these
dependency structures are obtained as a by-product of grammar-guided parsers. In this arti-
cle, we study the alternative data-driven, transition-based approach, which has achieved great
success for tree parsing, to build general dependency graphs. We integrate existing tree pars-
ing techniques and present two new transition systems that can generate arbitrary directed
graphs in an incremental manner. Statistical parsers that are competitive in both accuracy
and efficiency can be built upon these transition systems. Furthermore, the heterogeneous
design of transition systems yields diversity of the corresponding parsing models and thus
greatly benefits parser ensemble. Concerning the disambiguation problem, we introduce two
new techniques, namely, transition combination and tree approximation, to improve parsing
quality. Transition combination makes every action performed by a parser significantly change
configurations. Therefore, more distinct features can be extracted for statistical disambiguation.
With the same goal of extracting informative features, tree approximation induces tree backbones
from dependency graphs and re-uses tree parsing techniques to produce tree-related features. We
conduct experiments on CCG-grounded functor–argument analysis, LFG-grounded grammatical
relation analysis, and HPSG-grounded semantic dependency analysis for English and Chinese.
Experiments demonstrate that data-driven models with appropriate transition systems can
produce high-quality deep dependency analysis, comparable to more complex grammar-driven
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models. Experiments also indicate the effectiveness of the heterogeneous design of transition
systems for parser ensemble, transition combination, as well as tree approximation for statistical
disambiguation.

1. Introduction

The derivations licensed by a grammar under deep grammar formalisms, for example,
combinatory categorial grammar (CCG; Steedman 2000), lexical-functional grammar
(LFG; Bresnan and Kaplan 1982) and head-driven phrase structure grammar (HPSG;
Pollard and Sag 1994), are able to produce rich linguistic information encoded as
bilexical dependencies. Under CCG, this is done by relating the lexical heads of functor
categories and their arguments (Clark, Hockenmaier, and Steedman 2002). Under LFG,
bilexical grammatical relations can be easily derived as the backbone of F-structures
(Sun et al. 2014). Under HPSG, predicate–argument structures (Miyao, Ninomiya, and
ichi Tsujii 2004) or reduction of minimal recursion semantics (Ivanova et al. 2012) can be
extracted from typed feature structures corresponding to whole sentences. Dependency
analysis grounded in deep grammar formalisms is usually beyond tree representations
and well-suited for producing meaning representations. Figure 1 is an example from
CCGBank. The deep dependency graph conveniently represents more semantically
motivated information than the surface tree. For instance, it directly captures the
Agent–Predicate relations between word “people” and conjuncts “fight,” “eat,” as well
as “drink.”

Automatically building deep dependency structures is desirable for many practical
NLP applications, for example, information extraction (Miyao et al. 2008) and question
answering (Reddy, Lapata, and Steedman 2014). Traditionally, deep dependency graphs
are generated as a by-product of grammar-guided parsers. The challenge is that a
deep-grammar-guided parsing model usually cannot produce full coverage and the
time complexity of the corresponding parsing algorithms is very high. Previous work
on data-driven dependency parsing mainly focused on tree-shaped representations.
Nevertheless, recent work has shown that a data-driven approach is also applicable
to generate more general linguistic graphs. Sagae and Tsujii (2008) present an initial
study on applying transition-based methods to generate HPSG-style predicate–argument
structures, and have obtained competitive results. Furthermore, Titov et al. (2009) and
Henderson et al. (2013) have shown that more general graphs rather than planars can
be produced by augmenting existing transition systems.

This work follows early encouraging research and studies transition-based ap-
proaches to construct deep dependency graphs. The computational challenge to in-
cremental graph spanning is the existence of a large number of crossing arcs in deep

Figure 1
An example from CCGBank. The upper curves represent a deep dependency graph and the
bottom curves represent a traditional dependency tree.
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dependency analysis. To tackle this problem, we integrate insightful ideas, especially
the ones illustrated in Nivre (2009) and Gómez-Rodrı́guez and Nivre (2010), developed
in the tree spanning scenario, and design two new transition systems, both of which are
able to produce arbitrary directed graphs. In particular, we explore two techniques to lo-
calize transition actions to maximize the effect of a greedy search procedure. In this way,
the corresponding parsers for generating linguistically motivated bilexical graphs can
process sentences in close to linear time with respect to the number of input words. This
efficiency advantage allows deep linguistic processing for very-large-scale text data.

For syntactic parsing, ensembled methods have been shown to be very helpful
in boosting accuracy (Sagae and Lavie 2006; Zhang et al. 2009; McDonald and Nivre
2011). In particular, Surdeanu and Manning (2010) presented a nice comparative
study on various ensemble models for dependency tree parsing. They found that the
diversity of base parsers is more important than complex ensemble models for learning.
Motivated by this observation, the authors proposed a hybrid transition-based parser
that achieved state-of-the-art performance by combining complementary prediction
powers of different transition systems. One advantage of their architecture is the
linear-time decoding complexity, given that all base models run in linear-time. Another
concern of our work is about the model diversity obtained by the heterogeneous design
of transition systems for general graph spanning. Empirical evaluation indicates that
statistical parsers built upon our new transition systems as well as the existing best
transition system—namely, Titov et al. (2009)’s system (THMM, hereafter)—exhibit
complementary parsing strengths, which benefit system combination. In order to take
advantage of this model diversity, we propose a simple yet effective ensemble model
to build a better hybrid system.

We implement statistical parsers using the structured perceptron algorithm (Collins
2002) for transition classification and use a beam decoder for global inference. Concern-
ing the disambiguation problem, we introduce two new techniques, namely, transition
combination and tree approximation, to improve parsing quality. To increase system
coverage, the ARC transitions designed by the THMM as well as our systems do not
change the nodes in the stack nor buffer in a configuration: Only the nodes linked to
the top of the stack or buffer are modified. Therefore, features derived from the config-
urations before and after an ARC transition are not distinct enough to train a good clas-
sifier. To deal with this problem, we propose the transition combination technique and
three algorithms to derive oracles for modified transition systems. When we apply our
models to semantics-oriented deep dependency structures, for example, CCG-grounded
functor–argument analysis and HPSG-grounded reduced minimal recursion semantics
(MRS; Copestake et al. 2005) analysis, we find that syntactic trees can provide very
helpful features. In case the syntactic information is not available, we introduce a tree
approximation technique to induce tree backbones from deep dependency graphs. Such
tree backbones can be utilized to train a tree parser which provides pseudo tree features.

To evaluate transition-based models for deep dependency parsing, we conduct
experiments on CCG-grounded functor–argument analysis (Hockenmaier and Steedman
2007; Tse and Curran 2010), LFG-grounded grammatical relation analysis (Sun et al.
2014), and HPSG-grounded semantic dependency analysis (Miyao, Ninomiya, and ichi
Tsujii 2004; Ivanova et al. 2012) for English and Chinese. Empirical evaluation indicates
some non-obvious facts:

1. Data-driven models with appropriate transition systems and
disambiguation techniques can produce high-quality deep dependency
analysis, comparable to more complex grammar-driven models.
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2. Parsers built upon heterogeneous transition systems and decoding orders
have complementary prediction strengths, and the parsing quality can be
significantly improved by system combination; compared to the best
individual system, system combination gets an absolute labeled F-score
improvement of 1.21 on average.

3. Transition combination significantly improves parsing accuracy on a wide
range of conditions, resulting in an absolute labeled F-score improvement
of 0.74 on average.

4. Pseudo trees contribute to semantic dependency parsing (SDP) equally
well to syntactic trees, and result in an absolute labeled F-score
improvement of 1.27 on average.

We compare our parser with representative state-of-the-art parsers (Miyao and
Tsujii 2008; Auli and Lopez 2011b; Martins and Almeida 2014; Xu, Clark, and Zhang
2014; Du, Sun, and Wan 2015) with respect to different architectures. To evaluate the
impact of grammatical knowledge, we compare our parser with parsers guided by
treebank-induced HPSG and CCG grammars. Both of our individual and ensembled
parsers achieve equivalent accuracy to HPSG and CCG chart parsers (Miyao and Tsujii
2008; Auli and Lopez 2011b), and outperform a shift-reduce CCG parser (Xu, Clark, and
Zhang 2014). It is worth noting that our parsers exclude all syntactic and grammatical
information. In other words, strictly less information is used. This result demonstrates
the effectiveness of data-driven approaches to the deep linguistic processing prob-
lem. Compared to other types of data-driven parsers, our individual parser achieves
equivalent performance to and our hybrid parser obtains slightly better results than
factorization parsers based on dual decomposition (Martins and Almeida 2014; Du, Sun,
and Wan 2015). This result highlights the effectiveness of the lightweight, transition-
based approach.

Parsers based on the two new transition systems have been utilized as base com-
ponents for parser ensemble (Du et al. 2014) for SemEval 2014 Task 8 (Oepen et al.
2014). Our hybrid system obtained the best overall performance of the closed track of
this shared task. In this article, we re-implement all models, calibrate features more
carefully, and thus obtain improved accuracy. The idea to extract tree-shaped backbone
from a deep dependency graph has also been used to design other types of parsing
models in our early work (Du et al. 2014, 2015; Du, Sun, and Wan 2015). Nevertheless,
the idea to train a pseudo tree parser to serve a transition-based graph parser is new.

The implementation of our parser is available at http://www.icst.pku.edu.cn/
lcwm/grass.

2. Transition Systems for Graph Spanning

2.1 Background Notations

A dependency graph G = (V, A) is a labeled directed graph, such that for sentence x =
w1, . . . , wn the following holds:

1. V = {0, 1, 2, . . . , n},
2. A ⊆ V × R× V.
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The vertex set V consists of n + 1 nodes, each of which is represented by a single integer.
In particular, 0 represents a virtual root node w0, and all others correspond to words in
x. The arc set A represents the labeled dependency relations of the particular analysis
G. Specifically, an arc (i, r, j) ∈ A represents a dependency relation r from head wi to
dependent wj. A dependency graph G is thus a set of labeled dependency relations be-
tween the root and the words of x. To simplify the description in this section, we mainly
consider unlabeled parsing and assume the relation set R is a singleton. Or, taking it
another way, we assume A ⊆ V × V. It is straightforward to adapt the discussions in
this article for labeled parsing. To do so, we can parameterize transitions with possible
dependency relations. For empirical evaluation as discussed in Section 5, we will test
both labeled and unlabeled parsing models.

Following Nivre (2008), we define a transition system for dependency parsing as a
quadruple S = (C, T, cs, Ct), where

1. C is a set of configurations, each of which contains a buffer β of
(remaining) words and a set A of dependency arcs,

2. T is a set of transitions, each of which is a (partial) function t : C �→ C,

3. cs is an initialization function, mapping a sentence x to a configuration
with β = [1, . . . , n],

4. Ct ⊆ C is a set of terminal configurations.

Given a sentence x = w1, . . . , wn and a graph G = (V, A) on it, if there is a sequence
of transitions t1, . . . , tm and a sequence of configurations c0, . . . , cm such that c0 = cs(x),
ti(ci−1) = ci(i = 1, . . . , m), cm ∈ Ct, and Acm = A, we say the sequence of transitions is an
oracle sequence. And we define Āci = A− Aci for the arcs to be built of ci. We could
denote a transition sequence as either t1,m or c0,m.

In a typical transition-based parsing process, the input words are put into a queue
and partially built structures are organized by a stack. A set of SHIFT/REDUCE actions
are performed sequentially to consume words from the queue and update the partial
parsing results organized by the stack. Our new systems designed for deep parsing
differ with respect to their information structures to define a configuration and the
behaviors of transition actions.

2.2 Naive Spanning and Locality

For every two nodes, a simple graph-spanning strategy is to check if they can be directly
connected by an arc. Accordingly, a “naive” spanning algorithm can be implemented
by exploring a left-to-right checking order, as introduced by Covington (2001) and
modified by Nivre (2008).

PARSE(x = (w1, . . . , wn))
1 for j = 1..n
2 for k = j− 1..1
3 Link(j, k)

The operation Link chooses between 1) adding the arc (i, j) or (j, i) and 2) adding no arc
at all. In this way, the algorithm builds a graph by incrementally trying to link every
pair of words.
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LEFT-ARC (σ|i, j|β)⇒ (σ|i, j|β)
RIGHT-ARC (σ|i, j|β)⇒ (σ|i, j|β)
SHIFT (σ, j|β)⇒ (σ|j, β)
POP (σ|i, β)⇒ (σ, β)
SWAP (σ|i|j, β)⇒ (σ|j, i|β)
SWAPT (σ|i|j, β)⇒ (σ|j|i, β)

Figure 2
Transitions of the online re-ordering approach.

The complexity of naive spanning is θ(n2),1 because it does nothing to explore
the topological properties of a linguistic structure. In other words, the naive graph-
spanning idea does not fully take advantages of the greedy search of the transition-
based parsing architecture. On the contrary, a well-designed transition system for
(projective) tree parsing can decode in linear time by exploiting locality among subtrees.
Take the arc-eager system presented in Nivre (2008), for example: Only the nodes at the
top of the stack and the buffer are allowed to be linked. Such limitation is the key to
implement a linear time decoder. In the following, we introduce two ideas to localize a
transition action, that is, to allow a transition to manipulate only the frontier items in
the data structures of a configuration. By this means, we can decrease the number of
possible transitions for each configuration and thus minimize the total decoding time.

2.3 System 1: Online Re-ordering

The online re-ordering approach that we explore is to provide the system with ability
to re-order the nodes during parsing in an online fashion. The key idea, as introduced
in Titov et al. (2009) and Nivre (2009), is to allow a SWAP transition that switches the
position of the two topmost nodes on the stack. By changing the linear order of words,
the system is able to build crossing arcs for graph spanning. We refer to this approach
as online re-ordering. We introduce a stack-based transition system with online re-
ordering for deep dependency parsing. The obtained oracle parser is complete with
respect to the class of all directed graphs without self-loop.

2.3.1 The System. We define a transition system SS = (C, T, cs, Ct), where a configuration
c = (σ, β, A) ∈ C contains a stack σ of nodes, besides β and A. We set the initial configu-
ration for a sentence x = w1, . . . , wn to be cs(x) = ([], [1, . . . , n], {}), and take Ct to be the
set of all configurations of the form ct = (σ, [], A) (for any σ any A). These transitions are
shown in Figure 2 and explained as follows.

� SHIFT (sh) removes the front from the buffer and pushes it onto the stack.
� LEFT/RIGHT-ARC (la/ra) updates a configuration by adding (j, i)/(i, j) to A

where i is the top of the stack, and j is the front of the buffer.
� POP (pop) updates a configuration by popping the top of the stack.
� SWAP (sw) updates a configuration with stack σ|i|j by moving i back to the

buffer.

1 We assume that at most one edge exists between two words. This is a reasonable assumption for a
linguistic representation.
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A variation of transition SWAP is SWAPT, which updates the configuration by
swapping i and j. However, the system of this variation is not complete with respect to
directed graphs because the power of transition SWAPT is limited, and counterexamples
of completeness can be found. For more theoretical discussion about this system (i.e.,
THMM), see Titov et al. (2009). We also denote Titov et al. (2009)’s system as ST.

2.3.2 Theoretical Analysis. The soundness of SS is trivial. To demonstrate the completeness
of the system, we give a constructive proof that can derive oracle transitions for any
arbitrary graph. To simplify the description, the label attached to transitions are not
considered. The idea is inspired by Titov et al. (2009). Given a sentence x = w1, . . . , wn
and a graph G = (V, A) on it, we start with the initial configuration c0 = cs(x) and
compute the oracle transitions step by step. On the i-th step, let p be the top of σci−1 ,
b be the front of βci−1

; let L(j) be the ordered list of nodes connected to j in Āci−1
for any

node j ∈ σci−1 ; let L(σci−1 ) = [L(j0), . . . , L(jl)] if σci−1 = [jl, . . . , j0].
The oracle transition for each configuration is derived as follows. If there is no arc

linked to p in Āci−1 , then we set ti to pop; if there exists a ∈ Āci−1 linking p and b, then
we set ti to la or ra correspondingly. When there are only sh and sw left, we see if there
is any node q under the top of σci−1

such that L(q) precedes L(p) by the lexicographical
order. If so, we set ti to sw; else we set ti to sh. An example for when to do sw is shown
in Figure 3. Let ci = ti(ci−1); we continue to compute ti+1, until βci

is empty.

Lemma 1
If ti is sh, L(σci−1

) = [L(j0), . . . , L(jl)] is complete ordered by lexicographical order.

Proof
It cannot be the case that for some u > 0, L(ju) strictly precedes L(j0), otherwise ti should
be sw. It also cannot be the case that for some u > v > 0, L(ju) strictly precedes L(jv),
because when jv−1 is shifted onto the stack, L(jv) precedes L(ju) and all the transitions
do not change L(jv) and L(ju) afterwards. �

Lemma 2
For i = 0, . . . , m, there is no arc (j, k) ∈ Āci

such that j, k ∈ σi.

Proof
When j ∈ σci

is shifted onto the stack by the w-th transition tw, there must be no arc
( j, k) or (k, j) in Ācw such that k ∈ σcw . Otherwise, by induction every node in σcw−1

can
only link to nodes in βcw−1

, which implies that L(k) has one of the smallest lexicograph-
ical orders, and from Lemma 1 the top of σcw−1 must be linked to j. And not sh, but la or
ra should be applied. �

Figure 3
σ, β, and Ā of two configurations c1 and c2. In the left graphic, L(σc1

) = [[6], [5], [5, 6], [7]].
Because [5, 6] and [5] precedes [6], we apply two SWAPs and then two SHIFTs, obtaining the
right graphic.
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Theorem 1
t1, . . . , tm is an oracle sequence of transitions for G.

Proof
From Lemma 2, we can infer that Ācm = ∅, so it suffices to show the sequence of
transitions is always finite. We define a swap sequence to be a subsequence ti, . . . , tj
such that ti and tj are sw, ti−1 and tj+1 are not sw, and a shift sequence similarly. It
can be seen that a swap sequence is always followed by a shift sequence, the length
of which is no less than the swap sequence, and if the two sequences are of the
same length, the next transition cannot be sw. Let #(t) to be the number of transition
types t in the sequence, then #(la), #(ra), #(pop), and #(sh)− #(sw) are all finite. There-
fore the number of swap sequence is finite, indicating that the transition sequence is
finite. �

2.4 System 2: Two-Stack–Based System

A majority of transition systems organize partial parsing results with a stack. Classical
parsers, including arc-standard and arc-eager ones, add dependency arcs only between
nodes that are adjacent on the stack or the buffer. A natural idea to produce crossing
arcs is to temporarily move nodes that block non-adjacent nodes to an extra memory
module, like the two-stack–based system for two-planar graphs (Gómez-Rodrı́guez
and Nivre 2010) and the list-based system (Nivre 2008). In this article, we design a
new transition system to handle crossing arcs by using two stacks. This system is also
complete with respect to the class of directed graphs without self-loop.

2.4.1 The System. We define the two-stack–based transition system S2S = (C, T, cs, Ct),
where a configuration c = (σ, σ′, β, A) ∈ C contains a primary stack σ and a secondary
stack σ′. We set cs(x) = ([], [], [1, . . . , n], {}) for the sentence x = w1, . . . , wn, and we take
the set Ct to be the set of all configurations with empty buffers. The transition set
T contains six types of transitions, as shown in Figure 4. We only explain MEM and
RECALL:

� MEM (mem) pops the top element from the primary stack and pushes it
onto the secondary stack.

� RECALL (rc) moves the top element of the secondary stack back to the
primary stack.

LEFT-ARC (σ|i, σ′, j|β)⇒ (σ|i, σ′, j|β)
RIGHT-ARC (σ|i, σ′, j|β)⇒ (σ|i, σ′, j|β)
SHIFT (σ, σ′, j|β)⇒ (σ|j, σ′, β)
POP (σ|i, σ′, β)⇒ (σ, σ′, β)
MEM (σ|i, σ′, β)⇒ (σ, σ′|i, β)
RECALL (σ, σ′|i, β)⇒ (σ|i, σ′, β)

Figure 4
Transitions of the two-stack–based system.
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2.4.2 Theoretical Analysis. The soundness of this system is trivial, and the completeness
is also straightforward after we give the construction of an oracle transition sequence
for an arbitrary graph. The oracle is computed as follows on the i-th step: We do la, ra,
and pop transitions just like in Section 2.3.2. After that, let b be the front of βci−1

, we see
if there is j ∈ σci−1

or j ∈ σ′
ci−1

linked to b by an arc in Āci−1
. If j ∈ σci−1

, then we do a
sequence of mem to make j the top of σci−1; if j ∈ σ′

ci−1
, then we do a sequence of rc to

make j the top of σci−1
. When no node in σci−1

or σ′
ci−1

is linked to b, we do sh.

Theorem 2
S2S is complete with respect to directed graphs without self-loop.

Proof
The completeness immediately follows the fact that the computed oracle sequence is
finite, and every time a node is shifted onto σci , no arc in Āci links nodes in σci to the
shifted node. �

2.4.3 Related Systems. Gómez-Rodrı́guez and Nivre (2010, 2013) introduced a two-stack–
based transition system for tree parsing. Their study is motivated by the observation
that the majority of dependency trees in various treebanks are actually planar or two-
planar graphs. Accordingly, their algorithm is specially designed to handle projective
trees and two-planar trees, but not all graphs. Because many more crossing arcs exist
in deep dependency structures and more sentences are assigned with neither planar
nor two-planar graphs, their strategy of utilizing two stacks is not suitable for the deep
dependency parsing problem. Different from their system, our new system maximizes
the utility of two memory modules and is able to handle any directed graphs.

The list-based systems, such as the basic one introduced by Nivre (2008) and the
extended one introduced by Choi and Palmer (2011), also use two memory modules.
The function of the secondary memory module of their systems and ours is very
different. In our design, only nodes involved in a subgraph that contains crossing arcs
may be put into the second stack. In the existing list-based systems, both lists are heavily
used, and nodes may be transferred between them many times. The function of the two
lists is to simulate one memory module that allows accessing any unit in it.

2.5 Extension
2.5.1 Graphs with Loops. It is easy to extend our system to generate arbitrary directed
graphs by adding a new transition:

� SELF-ARC adds an arc from the top element of the primary memory
module (σ) to itself, but does not update any stack nor buffer.

Theorem 3
SS and S2S augmented with SELF-ARC are complete with respect to directed graphs.

2.5.2 Labeled Parsing and Supertagging. It is also straightforward to adapt the two transi-
tion systems for labeled dependency graph generation. To do so, we can parameterize
LEFT-ARC and RIGHT-ARC transitions with dependency relations. For example, a pa-
rameterized transition LEFT-ARCr tells the system not only that there is an arc between
the frontier node of the stack and the frontier node of the buffer but also that this arc
holds a relation r. Some linguistic representations assign labels to nodes as well. When a
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deep grammar is considered to license to representation, node labels are usually called
“supertags.” To assign supertags to words, namely, nodes in a dependency graph, we
can parameterize the SHIFT transition with tag labels.

3. Statistical Disambiguation

3.1 Transition Classification

A transition-based parser must decide which transition is appropriate given its parsing
environment (i.e., configuration). As with many other data-driven dependency parsers,
we use a global linear model for disambiguation. In other words, a discriminative
classifier is utilized to approximate the oracle function for a transition system S that
maps a configuration c to a transition t that is defined on c. More formally, a transition-
based statistical parser tries to find the transition sequence c0,m that maximizes the
following score

SCORE(c0,m) =
m−1∑

i=0

SCORE(ci, ti+1) (1)

Following the state-of-the-art discriminative disambiguation technique for data-driven
parsing, we define the score function as a linear combination of features defined over a
configuration and a transition, as follows:

SCORE(ci, ti+1) = θ�φ(ci, ti+1) (2)

where φ defines a vector for each configuration–transition pair and θ is the weight vector
for linear combination.

Exact calculation of the maximization is extremely hard without any assumption
of φ. Even with a proper φ for real-word parsing, exact decoding is still impractical for
most practical feature designs. In this article, we follow the recent success of using beam
search for approximate decoding. During parsing, the parser keeps track of multiple
yet a fixed number of partial outputs to avoid making decisions too early. Training a
parser in the discriminative setting corresponds to estimating θ associated with rich
features. Previous research on dependency parsing shows that structured perceptron
(Collins 2002; Collins and Roark 2004) is one of the strongest learning algorithms. In all
experiments, we use the averaged perceptron algorithm with early update to estimate
parameters. The whole parser is very similar to the transition-based system introduced
in Zhang and Clark (2008, 2011b).

3.2 Transition Combination

In either THMM, SS, or S2S, the LEFT/RIGHT-ARC transition does not modify either the
stack or the buffer. Only new edges are added to the target graph. When automatic
classifiers are utilized to approximate an oracle, a majority of features for predicting an
ARC transition will be overlapped with the features for the successive transition. Empir-
ically, this property significantly decreases the parsing accuracy. A key observation of a
linguistically motivated bilexical graph is that there is usually at most one edge between
any two words, therefore an ARC transition is not followed by another ARC. As a result,
any ARC with its successive transition modifies a configuration much. To practically
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LEFT-ARC (σ|i, σ′, j|β)⇒ (σ|i, σ′, j|β)
RIGHT-ARC (σ|i, σ′, j|β)⇒ (σ|i, σ′, j|β)
SHIFT (σ, σ′, j|β)⇒ (σ|j, σ′, β)
POP (σ|i, σ′, β)⇒ (σ, σ′, β)
MEM (σ|i, σ′, β)⇒ (σ, σ′|i, β)
RECALL (σ, σ′|i, β)⇒ (σ|i, σ′, β)
LEFT-ARC-SHIFT (σ|i, σ′, j|β)⇒ (σ|i|j, σ′, β)
LEFT-ARC-POP (σ|i, σ′, j|β)⇒ (σ, σ′, j|β)
LEFT-ARC-MEM (σ|i, σ′, j|β)⇒ (σ, σ′|i, j|β)
LEFT-ARC-RECALL (σ|i′, σ′|i, j|β)⇒ (σ|i′|i, σ′, j|β)
RIGHT-ARC-SHIFT (σ|i, σ′, j|β)⇒ (σ|i|j, σ′, β)
RIGHT-ARC-POP (σ|i, σ′, j|β)⇒ (σ, σ′, j|β)
RIGHT-ARC-MEM (σ|i, σ′, j|β)⇒ (σ, σ′|i, j|β)
RIGHT-ARC-RECALL (σ|i′, σ′|i, j|β)⇒ (σ|i′|i, σ′, j|β)

Figure 5
Original and combined transitions for the two-stack combined system. Two-cycle is not
considered here.

improve the performance of a statistical parser, we combine every pair of two successive
transitions starting with ARC and transform the proposed two transition systems into
two modified ones. For example, in our two-stack–based system, after combining, we
obtain the transitions presented in Figure 5.

The number of edges between any two words could be at most two in real data. If
there are two edges between two words wa and wb, it must be wa → wb and wb → wa.
We call these two edges a two-cycle, and call this problem the two-cycle problem. In our
combined transitions, a LEFT/RIGHT-ARC transition should appear before a non-ARC
transition. In order to generate two edges between two words, we have two strategies:

A) Add a new type of transitions to each system, which consist of a LEFT-ARC
transition, a RIGHT-ARC transition, and any other non-ARC transition
(e.g., LEFT-ARC-RIGHT-ARC-RECALL for S2S).

B) Use a non-directional ARC transition instead of LEFT/RIGHT-ARC. Here,
an ARC transition may add one or two edges depends on its label. In detail,
we propose two algorithms, namely, ENCODELABEL and DECODELABEL (see
Algorithms 1 and 2), to deal with labels for ARC transition.

Algorithm 1 encode label
1: procedure ENCODELABEL(type, lLabel, rLabel)
2: if type == LEFT then
3: return ”left” + lLabel
4: else if type == RIGHT then
5: return ”right” + rLabel
6: else
7: return ”both” + lLabel + ”|” + rLabel
8: end if
9: end procedure
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Algorithm 2 decode combined label, return a pair of left label and right label
1: procedure DECODELABEL(label)
2: if label.startswith?(”left”) then
3: return {label[4 :], nil}
4: else if label.startswith?(”right”) then
5: return {nil, label[5 :]}
6: else
7: return {label[4 : label.index(′|′)], label[(label.index(′|′) + 1) :]}
8: end if
9: end procedure

To our best efforts, the strategy B performs better.
First, let us consider accuracy. Generally speaking, it is harder for transition clas-

sification if more target transitions are defined. Using strategy A, we should add ad-
ditional transitions to handle the two-cycle condition. Based on our experiments, the
performance decreases when using more transitions.

Considering efficiency, we can save time by only using labels that appear in training
data in strategy B. If we have a total of K possible labels in training data, they will
generate K2 two-cycle types, but only k possible combinations of two-cycle appear in
training data (k	 K2). In strategy A, we must add K2 transitions to deal with all possible
two-cycle types, but most of them do not make sense. Using fewer two-cycle types helps
us eliminate the invalid calculation and save time effectively.

Using strategy B, we change the original edges’ labels and use the ARC(label)–non-
ARC transition instead of LEFT/RIGHT-ARC(label)–non-ARC. An ARC(label)–non-ARC
transition should execute the ARC(label) transition first, then execute the non-ARC
transition. ARC(label) generates one or two edges depends on its label. Not only do
we encode two-cycle labels, but also LEFT/RIGHT-ARC labels. In practice, we only
use those labels that appear in training data. Because labels that do not appear only
contribute non-negative weights while training, we can eliminate them without any
performance loss.

For each transition system and each dependency graph, we generate an oracle
transition, and train our model according to this oracle. The constructive proofs pre-
sented in Section 2.3 and 2.4 define two kinds of oracles. However, they are not directly
applicable when the transition combination strategy is utilized. The main challenge is
the existence of cycles. In this article, we propose three algorithms to derive oracles
for THMM, SS, and S2S, respectively. Algorithms 3 to 5 illustrate the key steps of the
procedure of our system, which find the next transition t given a configuration c and
gold graph Ggold = (Vx, Agold) for the three systems. When this key procedure, namely,
the EXTRACTONEORACLE method, is well defined, the entire transition system can be
derived as follows:

EXTRACTORACLE(c0, Agold)
1 oracle = ∅
2 while t← EXTRACTONEORACLE(c0, Agold, nil) do

3 oracle.push back = t
4 c0 ← t(c0)
5 end while
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Algorithm 3 Oracle generation for the THMM system
1: procedure EXTRACTONEORACLE(c, Agold, label)

2: if c = (σ|i, j|β, A) ∧ ¬∃k[k � j ∧ ∃l[(i, l, k) ∈ Agold]] then

3: if label = nil then
4: return REDUCE
5: else
6: return ARC(label) ◦ REDUCE
7: end if
8: else if c = (σ|i, j|β, A) ∧ ∃l[(i, l, j) ∈ Agold] then

9: Agold ← Agold − (i, l, j)
10: return EXTRACTONEORACLE(c, Agold, label)

11: else if c = (σ|i1|i0, j|β, A) ∧ ∃k0k1[k0 � j ∧ k1 � j ∧ ∃l0[(i0, l0, k0) ∈
Agold] ∧ ∃l1[(i1, l1, k1) ∈ Agold] ∧ ¬∃k0′[k0′ < k0 ∧ ∃l0′[(i0, l0′, k0′) ∈ Agold]] ∧
∃l1′[(i1, l1′, k1′) ∈ Agold]] ∧ k0 < k1] ∨ ¬∃k1[k1 � j ∧ ∃l1[(i1, l1, k1) ∈ Agold]] then

12: if label = nil then
13: return SWAP
14: else
15: return ARC(label) ◦ SWAP
16: end if
17: end if
18: if c = (σ, j|β, A) then
19: if label = nil then
20: return SHIFT
21: else
22: return ARC(label) ◦ SHIFT
23: end if
24: end if
25: return nil
26: end procedure

We want to emphasize that, although the EXTRACTORACLE methods initialize the
parameter LABEL in EXTRACTONEORACLE as nil, if an arc transition is predicted in the
EXTRACTONEORACLE method, it will call EXTRACTONEORACLE recursively to return
an ARC(label)–non-ARC transition and assign a value for that LABEL.

3.3 Feature Design

Developing features has been shown to be crucial to advancing the state-of-the-art in
dependency parsing (Koo and Collins 2010; Zhang and Nivre 2011). To build accurate
deep dependency parsers, we utilize a large set of features for transition classification.

To conveniently define all features, we use the following notation. In a configuration
with stack σ and buffer β, we denote the top two nodes in σ by σ0 and σ1, and the front
of β by β0. In a configuration of the two-stack–based system with the second stack σ′,
the top element of σ′ is denoted by σ′

0 and the front of β by β0. The left-most dependent
of node n is denoted by n.lc, the right-most one by n.rc. The left-most parent of node n
is denoted by n.lp, the right-most one by n.rp. Then we denote the word and POS-tag
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Algorithm 4 Oracle generation for the online re-ordering system
1: procedure EXTRACTONEORACLE(c, Agold, label)

2: if c = (σ|i, j|β, A) ∧ ¬∃k[k � j ∧ ∃l[(i, l, k) ∈ Agold]] then

3: if label = nil then
4: return REDUCE
5: else
6: return ARC(label) ◦ REDUCE
7: end if
8: else if c = (σ|i, j|β, A) ∧ ∃l[(i, l, j) ∈ Agold] then

9: Agold ← Agold − (i, l, j)
10: return EXTRACTONEORACLE(c, Agold, label)

11: else if c = (σ|i, j|β, A) ∧ ∃i′[i′ < i ∧ i′ ∈ σ ∧ ∃l′[(i′, l′, j) ∈ Agold]] then

12: if label = nil then
13: return SWAP
14: else
15: return ARC(label) ◦ SWAP
16: end if
17: end if
18: if c = (σ, j|β, A) then
19: if label = nil then
20: return SHIFT
21: else
22: return ARC(label) ◦ SHIFT
23: end if
24: end if
25: return nil
26: end procedure

of node n by wn, pn, respectively. Our parser derives the so-called path features from
dependency trees. The path features collect POS tags or the first letter of POS tags along
the tree between two nodes. Given two nodes n1 and n2, we denote the path feature as
path(n1, n2) and the coarse-grained path feature as cpath(n1, n2). The syntactic head of a
node n is denoted as n.h.

We use the same feature templates for the online re-ordering and the two-stack–
based systems, and they are slightly different from THMM. Figure 6 defines basic feature
template functions. All feature templates are described here.

� THMM system: funi(σ0), funi(σ1), guni(β0), fcontext(σ0), fcontext(β0),
fpair−l (σ0, β0), fpair−l(σ1, β0), fpair(σ0, σ1), ftri(σ0, β0, σ1), ftri−l(σ0, β0, σ0.lp),
ftri−l(σ0, β0, σ0.rp), ftri−l(σ0, β0, σ0.lc), ftri−l(σ0, β0, σ0.lc), ftri−l(σ0, β0, β0.lp),
ftri−l(σ0, β0, β0.lc), ftri−l(σ1, β0, σ1.lp), ftri−l(σ1, β0, σ1.rp), ftri−l(σ1, β0, σ1.lc),
ftri−l(σ1, β0, σ1.lc), ftri−l(σ1, β0, β0.lp), ftri−l(σ1, β0, β0.lc),
fquar−l(σ0, β0, σ0.rp, σ0.rc), fquar−l(σ0, β0, σ0.lc, σ0.lc2),
fquar−l(σ0, β0, σ0.rc, σ0.rc2), fquar−l(σ0, β0, β0.lp, β0.lc),
fquar−l(σ0, β0, β0.lc, β0.lc2), fquar−l(σ1, β0, σ1.rp, σ1.rc),
fquar−l(σ1, β0, σ1.lc, σ1.lc2), fquar−l(σ1, β0, σ1.rc, σ1.rc2),
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Algorithm 5 Oracle generation for the two-stack–based system
1: procedure EXTRACTONEORACLE(c, Agold, label)

2: if c = (σ|i, σs, j|β, A) ∧ ¬∃k[k � j ∧ ∃l[(i, l, k) ∈ Agold]] then

3: if label = nil then
4: return REDUCE
5: else
6: return ARC(label) ◦ REDUCE
7: end if
8: else if c = (σ|i, σs, j|β, A) ∧ ∃l[(i, l, j) ∈ Agold] then

9: Agold ← Agold − (i, l, j)
10: return EXTRACTONEORACLE(c, σs, Agold, label)

11: else if c = (σ|i, σs, j|β, A) ∧ ∃i′[i′ < i ∧ i′ ∈ σ ∧ ∃l′[(i′, l′, j) ∈ Agold]] then

12: if label = nil then
13: return MEM
14: else
15: return ARC(label) ◦MEM
16: end if
17: else if c = (σ|i, σs|is, j|β, A) then
18: if label = nil then
19: return RECALL
20: else
21: return ARC(label) ◦ RECALL
22: end if
23: end if
24: if c = (σ, σs, j|β, A) then
25: if label = nil then
26: return SHIFT
27: else
28: return ARC(label) ◦ SHIFT
29: end if
30: end if
31: return nil
32: end procedure

fquar−l(σ1, β0, β0.lp, β0.lc), fquar−l(σ1, β0, β0.lc, β0.lc2), fpath(σ0, β0),
fpath(σ1, β0), fchar(σ0), fchar(β0),

� Online re-ordering/two stack system: funi(σ0), funi(σ1), funi(σ0′), guni(β0),
fcontext(σ0), fcontext(β0), fpair−l (σ0, β0), fpair−l(σ1, β0), fpair−l(σ0′, β0),
fpair(σ0, σ1), fpair(σ0, σ0′), ftri(σ0, β0, σ1), ftri(σ0, β0, σ0′), ftri−l(σ0, β0, σ0.lp),
ftri−l(σ0, β0, σ0.rp), ftri−l(σ0, β0, σ0.lc), ftri−l(σ0, β0, σ0.lc), ftri−l(σ0, β0, β0.lp),
ftri−l(σ0, β0, β0.lc), ftri−l(σ1, β0, σ1.lp), ftri−l(σ1, β0, σ1.rp), ftri−l(σ1, β0, σ1.lc),
ftri−l(σ1, β0, σ1.lc), ftri−l(σ1, β0, β0.lp), ftri−l(σ1, β0, β0.lc), ftri−l(σ0′, β0, σ0′.lp),
ftri−l(σ0′, β0, σ0′.rp), ftri−l(σ0′, β0, σ0′.lc), ftri−l(σ0′, β0, σ0′.lc),
ftri−l(σ0′, β0, β0.lp), ftri−l(σ0′, β0, β0.lc), fquar−l(σ0, β0, σ0.rp, σ0.rc),
fquar−l(σ0, β0, σ0.lc, σ0.lc2), fquar−l(σ0, β0, σ0.rc, σ0.rc2),
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funi(X):
X.w, X.p, X.w ◦ X.lp.l, X.w ◦ X.rp.l, X.w ◦ X.lc.l, X.w ◦ X.rc.l, X.w ◦ X.lp.a, X.w ◦ X.rp.a,
X.w ◦ X.lc.a, X.w ◦ X.rc.a, X.w ◦X.p.a, X.w ◦ X.c.a, X.w ◦ X.lc.set, X.p ◦ X.lc.set, X.w ◦
X.rc.set, X.p ◦ X.rc.set
guni(X):
X.w, X.p, X.w ◦ X.lp.l, X.p ◦ X.lp.l, X.w ◦ X.lc.l, X.p ◦ X.lc.l, X.w ◦ X.lp.a, X.p ◦ X.lp.a, X.w ◦
X.lc.a, X.p ◦ X.lc.a X.w ◦ X.lc.set, X.p ◦ X.lc.set
fcontext(X):
X−2.w, X−1.w, X+1.w, X+2.w, X−2.p, X−1.p, X+1.p, X+2.p, X−2.w ◦ X−1.w, X−1.w ◦
X+1.w, X+1.w ◦ X+2.w, X−2.p ◦ X−1.p, X−1.p ◦ X+1.p, X+1.p ◦ X+2.p
fpair(X, Y):
X.wp ◦ Y.wp, X.wpY.w, X.wp ◦ Y.p, X.w ◦ Y.wp, X.p ◦ Y.wp, X.w ◦ Y.w, X.w ◦ Y.p, X.p ◦ Y.w,
X.p ◦ Y.p
fpair−l(X, Y):
X.wp ◦ Y.wp, X.wpY.w, X.wp ◦ Y.p, X.w ◦ Y.wp, X.p ◦ Y.wp, X.w ◦ Y.w, X.w ◦ Y.p, X.p ◦
Y.w, X.p ◦ Y.p, X.w ◦ Y.w ◦ X.rc.a, X.w ◦ Y.w ◦ Y.lc.a, X.w ◦ Y.w ◦ 〈X, Y〉.d, X.p ◦ Y.p ◦
〈X, Y〉.d, X.w ◦ Y.p ◦ 〈X, Y〉.d, X.p ◦ Y.w ◦ 〈X, Y〉.d, X.p ◦ Y.p ◦X.lc.set, X.p ◦ Y.p ◦ X.rc.set,
X.p ◦ Y.p ◦ Y.lc.set
ftri(X, Y, Z):
X.w ◦ Y.p ◦ Z.p, X.p ◦ Y.w ◦ Z.p, X.p ◦ Y.p ◦ Z.w, X.p ◦ Y.p ◦ Z.p
ftri−l(X, Y, Z):
X.w ◦ Y.p ◦ Z.p ◦ 〈X, Z〉.l, X.p ◦ Y.w ◦ Z.p ◦ 〈X, Z〉.l, X.p ◦ Y.p ◦ Z.w ◦ 〈X, Z〉.l, X.p ◦ Y.p ◦
Z.p ◦ 〈X, Z〉.l
fquar−l(X, Y, Z, W):
X.p ◦ Y.p ◦ Z.p ◦W.p ◦ 〈X, Z〉.l ◦ 〈X, W〉.l
fpath(X, Y):
〈X, Y〉.path, 〈X, Y〉.cpath, X.p ◦ Y.p ◦X.tp.w, X.p ◦ Y.w ◦ X.tp.p, X.w ◦ Y.p ◦ X.tp.p, X.p ◦
Y.p ◦ Y.tp.w, X.p ◦ Y.w ◦ Y.tp.p, X.w ◦ Y.p ◦ Y.tp.p
fchar(X):
X[−1,−1].w, X[−2,−1].w, X[−3,−1].w, X[+1,+1].w, X[+1,+2].w, X[+1,+3].w

Figure 6
Feature template functions.

fquar−l(σ0, β0, β0.lp, β0.lc), fquar−l(σ0, β0, β0.lc, β0.lc2),
fquar−l(σ1, β0, σ1.rp, σ1.rc), fquar−l(σ1, β0, σ1.lc, σ1.lc2),
fquar−l(σ1, β0, σ1.rc, σ1.rc2), fquar−l(σ1, β0, β0.lp, β0.lc),
fquar−l(σ1, β0, β0.lc, β0.lc2), fquar−l(σ0′, β0, σ0′.rp, σ0′.rc),
fquar−l(σ0′, β0, σ0′.lc, σ0′.lc2), fquar−l(σ0′, β0, σ0′.rc, σ0′.rc2),
fquar−l(σ0′, β0, β0.lp, β0.lc), fquar−l(σ0′, β0, β0.lc, β0.lc2), fpath(σ0, β0),
fpath(σ1, β0), fpath(σ0′, β0), fchar(σ0), fchar(β0)

4. Tree Approximation

Tree structures exhibit many computationally good properties, and parsing techniques
for tree-structured representations are quite mature to some extent. When we consider
semantics-oriented graphs, such as the representations for semantic role labeling
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(SRL; Surdeanu et al. 2008; Hajič et al. 2009), CCG-grounded functor–argument (Clark,
Hockenmaier, and Steedman 2002) analysis, HPSG-grounded predicate–argument
analysis (Miyao, Ninomiya, and ichi Tsujii 2004), and reduction of MRS (Ivanova et al.
2012), syntactic trees can provide very useful features for semantic disambiguation
(Punyakanok, Roth, and Yih 2008). Our parser also utilizes a path feature template (as
defined in Section 3.3) to incorporate syntactic information for disambiguation.

In case syntactic tree information is not available, we introduce a tree approximation
technique to induce tree backbones from deep dependency graphs. Such tree backbones
can be utilized to train a tree parser which provides pseudo path features. In particular,
we introduce an algorithm to associate every graph with a projective dependency tree,
which we call weighted conversion. The tree reflects partial information about the
corresponding graph. The key idea underlying this algorithm is to assign heuristic
weights to all ordered pairs of words, and then find the tree with maximum weights.
That means a tree frame of a given graph is automatically derived as an alternative for
syntactic analysis.

We assign weights to all the possible edges (i.e., all pairs of words) and then
determine which edges are to be kept by finding the maximum spanning tree. More
formally, given a set of nodes V, each possible edge (i, j), where i, j ∈ V, is assigned a
heuristic weight ω(i, j). Among all trees (denoted as T ) over V, the maximum spanning
tree Tmax contains the maximum sum of values of edges:

Tmax = arg max
(V,AT )∈T

∑

(i,j)∈AT

t(i, j)ω(i, j) (3)

We separate the ω(i, j) into three parts (ω(i, j) = A(i, j) + B(i, j) + C(i, j)) that are as
defined here.

� A(i, j) = a ·max{y(i, j), y(j, i)}: a is the weight for the existing edge on graph
ignoring direction.

� B(i, j) = b · y(i, j): b is the weight for the forward edge on the graph.
� C(i, j) = n− |i− j|: This term estimates the importance of an edge where n

is the length of the given sentence. For dependency parsing, we consider
edges with short distance to be more important because those edges can be
predicted more accurately in future parsing processes.

� a� b� n or a > bn > n2: The converted tree should contain as many arcs
as possible in original graph, and the direction of the arcs should not be
changed if possible. The relationship of a, b, and c guarantees this.

After all edges are weighted, we can use maximum spanning tree algorithms to
obtain the converted tree. To obtain the projective tree, we choose Eisner’s algorithm.
For any graph, we can call this algorithm and get a corresponding tree. However,
the tree is informative only when the given graph is dense enough. Fortunately, this
condition holds for semantic dependency parsing.
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5. Empirical Evaluation

5.1 Set-up

We present empirical evaluation of different incremental graph spanning algorithms for
CCG-style functor–argument analysis, LFG-style grammatical relation analysis, and HPSG-
style semantic dependency analysis for English and Chinese. Linguistically speaking,
these types of syntacto-semantic dependencies directly encode information such as
coordination, extraction, raising, control, as well as many other long-range dependen-
cies. Experiments for a variety of formalisms and languages profile different aspects of
transition-based deep dependency parsing models.

Figure 7 visualizes cross-format annotations assigned to the English sentence: A
similar technique is almost impossible to apply to other crops, such as cotton, soybeans, and
rice. This running example illustrates a range of linguistic phenomena such as coor-
dination, verbal chains, argument and modifier prepositional phrases, complex noun
phrases, and the so-called tough construction. The first format is from the popular
corpus PropBank, which is widely used by various SRL systems. We can clearly see
that compared with SRL, SDP uses dense graphs to represent much more syntacto–
semantic information. This difference suggests to us that we should explore different
algorithms for producing SRL and SDP graphs. Another thing worth noting is that, for
the same phenomenon, annotation schemes may not agree with each other. Take the
coordination construction, for example. For more details about the difference among
different data sets, please refer to Ivanova et al. (2012).

For CCG analysis, we conduct experiments on English and Chinese CCGBank
(Hockenmaier and Steedman 2007; Tse and Curran 2010). Following previous experi-
mental set-up for English CCG parsing, we use Section 02-21 as training data, Section 00
as the development data, and Section 23 for testing. To conduct Chinese parsing exper-
iments, we use data setting C of Tse and Curran (2012). For grammatical relation analy-
sis, we conduct experiments on Chinese GRBank data (Sun et al. 2014). The selection for
training, development, and test data is also according to Sun et al.’s (2014) experiments.

We also evaluate all parsing models using more HPSG-grounded semantics-oriented
data, namely, DeepBank2 (Flickinger, Zhang, and Kordoni 2012) and EnjuBank (Miyao,
Ninomiya, and ichi Tsujii 2004). Different from Penn Treebank–converted corpus,
DeepBank’s annotations are essentially based on the parsing results given a large-scale
linguistically precise HPSG grammar, namely, LingGO English resource grammar (ERG;
Flickinger 2000), and manually disambiguated. As part of the full HPSG sign, the ERG
also makes available a logical-form representation of propositional semantics, in the
framework of minimal recursion semantics (MRS; Copestake et al. 2005). Such seman-
tic information is reduced into variable-free bilexical dependency graphs (Oepen and
Lønning 2006; Ivanova et al. 2012). In summary, DeepBank gives the reduction of logical-
form meaning representations with respect to MRS. EnjuBank (Miyao, Ninomiya, and
ichi Tsujii 2004) provides another corpus for semantic dependency parsing. This type
of annotation is somehow shallower than DeepBank, given that only basic predicate–
argument structures are concerned. Different from DeepBank but similar to CCGBank
and GRBank, EnjuBank is semi-automatically converted from Penn Treebank–style an-
notations with linguistic heuristics. To conduct HPSG experiments, we use Sections 00
to 19 as training data and Section 20 as development data to tune parameters. For final

2 http://moin.delph-in.net/DeepBank.
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A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice

A1

A2

(a) Format 1: Propositional semantics, from PropBank.

A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.
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(b) Format 2: MRS-derived dependencies, from DeepBank HPSG annotations.
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(c) Format 3: Predicate-argument structures, from Enju HPSG annotation.
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(d) Format 4: Functor-argument structures, from CCGBank.
Figure 7
Dependency representations in (a) PropBank, (b) DeepBank, (c) Enju HPSGBank, and (d)
CCGBank formats.

evaluation, we use Sections 00 to 20 as training data and section 21 as test data. The
DeepBank and EnjuBank data sets are from SemEval 2014 Task 8 (Oepen et al. 2014),
and the data splitting policy follows the shared task. Table 1 gives a summary of the
data sets for experiments.

Experiments for English CCG-grounded analysis were performed using automat-
ically assigned POS-tags that are generated by a symbol-refined generative HMM
tagger3 (SR-HMM; Huang, Harper, and Petrov 2010). Experiments for English HPSG-
grounded analysis used POS-tags provided by the shared task. For the experiments on
Chinese CCGBank and GRBank, we use gold-standard POS tags.

We use the averaged perceptron algorithm with early update to estimate param-
eters, and beam search for decoding. We set the beam size to 16 and the number
of iterations to 20 for all experiments. The measure for comparing two dependency
graphs is precision and recall of tokens that are defined as 〈wh, wd, l〉 tuples, where wh is
the head, wd is the dependent, and l is the relation. Labeled precision/recall (LP/LR)
is the ratio of tuples correctly identified by the automatic generator, and unlabeled
precision/recall (UP/UR) is the ratio regardless of l. F-score is a harmonic mean of
precision and recall. These measures correspond to attachment scores (LAS/UAS) in de-
pendency tree parsing and also used by the SemEval 2014 Task 8. The de facto standard

3 http://www.code.google.com/p/umd-featured-parser/.
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Table 1
Data sets for experiments. Columns “Training” and “Test” present the number of sentences in
training and test sets, respectively.

Language Formalism Data Training Test

English CCG CCGBank 39,604 2,407
HPSG DeepBank 34,003 1,348
HPSG EnjuBank 34,003 1,348

Chinese CCG CCGBank 22,339 2,813
LFG GRBank 22,277 2,557

to evaluate CCG parsers also considers supertags. Because no supertagging is performed
in our experiments, only the unlabeled precision/recall/F-score is comparable to the
results reported in other papers. And the labeled performance reported here only
considers the labels assigned to dependency arcs that indicate the argument types. For
example, an arc label arg1 denotes that the dependent is the first argument of the head.

5.2 Parsing Efficiency

We evaluate the real running time of our final trained parser using realistic data. The test
sentences are collected from English Wikipedia and Chinese Gigaword (LDC2005T14).
First, we show the influence of beam size in Figure 8. In this experiment, the DeepBank
trained models are used for test. We can see that the parsers run in nearly linear time
regardless of the beam width in realistic situations. Second, we report the the averaged
real running time of models trained on different data sets in Figure 9. Again, we can
see that the parser runs in close to linear time for a variety of linguistically motivated
representations. The results also suggest that our proposed transition-based parsers can
automatically learn the complexity of linguistically motivated dependency structures
from an annotated corpus. Note that although within the deep parsing framework, the
study of formal grammars is partially relevant for data-driven dependency parsing,
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Figure 8
Real running time relative to beam size. Tested using DeepBank-trained models.
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Real running time relative to models trained on different data sets.

where our parsers rely on inductive inference from treebank data, and only implicitly
use a grammar.

5.3 Importance of Transition Combination

Figure 10 and Table 2 summarize the labeled parsing results on all of the five data
sets. In this experiment, we distinguish parsing models with and without transition
combination. All models take only the surface word form and POS tag information and
do not derive features from any syntactic analysis. The importance of transition combi-
nation is highlighted by the comparative evaluation on parsers using this mechanism
or not. Significant improvements are observed over a wide range of conditions: Parsers
based on different transition systems for different languages and different formalisms
almost always benefit. This result suggests a necessary strategy for designing transition
systems for producing deep dependency graphs: Configurations should be essentially
modified by every transition.

Because of the importance of transition combination, all the following experiments
utilize the transition combination strategy.

5.4 Model Diversity and Parser Ensemble
5.4.1 Model Diversity. For model ensemble, besides the accuracy of each single model,
it is also essential that the models to be integrated should be very different. We argue
that heterogeneous parsing models can be built by varying the underlying transition
systems. By reversing the sentence from right to left, we can build other model variants
with the same transition system. To evaluate the differences between two models A and
B, we define the following metric:

2 ∗ |DA ∩ DB|
|DA|+ |DB|

where DX denotes the set of dependencies related to held out sentences returned
by model X. Tables 3 and 4 show the model diversity evaluated on English and
Chinese data, respectively. We can see that parsing models built upon different tran-
sition systems do vary. Even for one specific transition system, different processing
directions yield quite different parsing results.

373



Computational Linguistics Volume 42, Number 3

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

DM(en) PAS(en) CCG(en) CCG(cn) GR(cn)

La
be

le
d 

F
-s

co
re

Standard
Transition Combination

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

DM(en) PAS(en) CCG(en) CCG(cn) GR(cn)

La
be

le
d 

F
-s

co
re

Standard
Transition Combination

THMM Online re-ordering

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

DM(en) PAS(en) CCG(en) CCG(cn) GR(cn)

La
be

le
d 

F
-s

co
re

Standard
Transition Combination

Two-stack

Figure 10
Labeled parsing F-scores of different transition system with and without transition combination.
“Standard” denotes the standard systems, which do not combine an ARC transition with its
following transition.

5.4.2 Parser Ensemble. Parser ensemble has been shown very effective to boost the
performance of data-driven tree parsers (Nivre and McDonald 2008; Surdeanu and
Manning 2010; Sun and Wan 2013). Empirically, the two proposed systems together
with the existing THMM system exhibit complementary prediction powers, and their
combination yields superior accuracy. We present a simple yet effective voting strategy
for parser ensemble. For each pair of words in each sentence, we count the number of
models that give positive predictions. If the number is greater than a threshold (we set
it to half the number of models in this work), we put this arc to the final graph, and label
the arc with the most common label of what the models give.

Table 5 presents the parsing accuracy of the combined model where six base models
are utilized for voting. We can see that a system ensemble is quite helpful. Given that
our graph parsers all run in expected linear time, the combined system also runs very
efficiently.

5.5 Impact of Syntactic Parsing
5.5.1 Effectiveness of Syntactic Features. Syntactic parsing, especially the full one, has been
shown very important for boosting the performance of SRL, a well studied shallow
semantic parsing task (Punyakanok, Roth, and Yih 2008). According to the comprehen-
sive evaluation presented in Punyakanok, Roth, and Yih (2008) and Zhuang and Zong
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Table 2
Performance of different transition system with and without transition combination on the test
set of the DeepBank/EnjuBank data, on the development set of the English and Chinese
CCGBank data, and on the development set of the Chinese GRBank data. Sstd

x denotes the
standard system, which does not combine an ARC transition with its following transition.

English
DeepBank EnjuBank CCGBank

LP LR LF LP LR LF LP LR LF

Sstd
T 82.71% 84.32% 83.51 6.89% 87.48% 87.19 85.88% 85.81% 85.85

ST 85.00% 84.40% 84.70 88.66% 88.17% 88.42 87.00% 85.93% 86.46
Sstd

S 82.60% 84.46% 83.52 86.72% 87.38% 87.06 85.60% 86.04% 85.82
SS 84.63% 83.98% 84.30 88.58% 88.20% 88.39 86.63% 86.04% 86.33
Sstd

2S 82.97% 84.65% 83.80 87.25% 87.75% 87.55 86.06% 86.29% 86.17
S2S 85.01% 84.41% 84.71 88.80% 88.48% 88.64 86.77% 86.25% 86.51

Chinese
CCGBank GRBank

LP LR LF LP LR LF

Sstd
T 80.93% 80.75% 80.84 80.10% 77.95% 79.01

ST 82.04% 81.16% 81.60 81.28% 78.40% 79.81
Sstd

S 80.86% 81.60% 81.23 80.32% 78.96% 79.63
SS 81.71% 81.48% 81.60 80.30% 79.46% 79.88
Sstd

2S 80.81% 81.35% 81.08 80.58% 80.23% 80.41
S2S 82.09% 81.81% 81.95 80.88% 80.18% 80.53

(2010) (see Table 6), there is an essential gap between full and shallow parsing-based
SRL systems. If we consider a system that takes only word form and POS tags as input,
the performance gap will be larger.

When we consider semantics-oriented deep dependency structures, including
the representations for CCG-grounded functor–argument (Clark, Hockenmaier, and
Steedman 2002) analysis, HPSG-grounded predicate–argument analysis (Miyao,
Ninomiya, and ichi Tsujii 2004), and reduction of MRS (Ivanova et al. 2012), syntactic
parses can also provide very useful features for disambiguation. To evaluate the impact
of syntactic tree parsing, we include more features, namely, path features, to our parsing
models. The detailed description of syntactic features are presented in Section 3.3. In
this work, we apply syntactic dependency parsers rather than phrase-structure parsers.
Figure 11 summarizes the impact of features derived from syntactic trees. We can clearly
see that syntactic features are effective to enhance semantic dependency parsing. These
informative features lead to on average 1.14% and 1.03% absolute improvements for
English and Chinese CCG parsing. Compared with SRL, the improvement brought by
syntactic parsing is smaller. We think one main reason for this difference is the informa-
tion density of different types of graphs. SRL graphs usually annotate only on verbal
predicates and their nominalization, whereas the semantic graphs grounded by CCG and
HPSG target all words. In other words, SRL provides partial analysis and semantic de-
pendency parsing provides full analysis. Accordingly, SRL needs structural information
generated by a syntactic parser much more than semantic dependency parsing.
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Table 3
Model diversity between different models on the test set of the DeepBank/EnjuBank data and
on the development set of the English CCGBank data. Srev

x means processing a sentence with
system Sx but in the right-to-left word order.

DeepBank
SS S2S Srev

T Srev
S Srev

2S

ST 0.9285 0.9285 0.8788 0.8796 0.8797
SS 0.9385 0.8748 0.8776 0.8773
S2S 0.8772 0.8802 0.8790
Srev

T 0.9390 0.9364
Srev

S 0.9413

EnjuBank
SS S2S Srev

T Srev
S Srev

2S

ST 0.9504 0.9481 0.9045 0.9038 0.9043
SS 0.9503 0.9046 0.9060 0.9055
S2S 0.9066 0.9087 0.9076
Srev

T 0.9562 0.9565
Srev

S 0.9584

CCGBank
SS S2S Srev

T Srev
S Srev

2S

ST 0.9547 0.9532 0.9155 0.9164 0.9182
SS 0.9575 0.9166 0.9179 0.9187
S2S 0.9200 0.9197 0.9205
Srev

T 0.9586 0.9575
Srev

S 0.9617

Table 4
Model diversity between different models on the development set of the Chinese
CCGBank/GRBank data.

CCGBank
SS S2S Srev

T Srev
S Srev

2S

ST 0.9261 0.9262 0.8668 0.8614 0.8658
SS 0.9314 0.8667 0.8593 0.8663
S2S 0.8694 0.8624 0.8683
Srev

T 0.9130 0.9107
Srev

S 0.9230

GRBank
SS S2S Srev

T Srev
S Srev

2S

ST 0.8918 0.8861 0.8398 0.8301 0.8328
SS 0.9058 0.8455 0.8378 0.8414
S2S 0.8460 0.8391 0.8441
Srev

T 0.8969 0.8984
Srev

S 0.9111
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Table 5
Performance of base and combined models on the test set of the DeepBank/EnjuBank data, on
the development set of the English and Chinese CCGBank data and on the development set of
the Chinese GRBank data. Note that the labeled results for CCG parsing do not consider
supertags.

English
DeepBank UP UR UF LP LR LF

ST 87.03% 86.42% 86.72 85.00% 84.40% 84.70
Srev

T 88.16% 88.16% 88.16 86.12% 86.11% 86.12
SS 86.57% 85.91% 86.24 84.63% 83.98% 84.30
Srev

S 88.53% 88.27% 88.40 86.63% 86.38% 86.51
S2S 86.99% 86.38% 86.68 85.01% 84.41% 84.71
Srev

2S 88.12% 88.11% 88.11 86.28% 86.26% 86.27

Combined 88.29% 90.27% 89.27 86.46% 88.40% 87.42
EnjuBank UP UR UF LP LR LF
ST 89.98% 89.47% 89.72 88.66% 88.17% 88.42
Srev

T 91.93% 91.92% 91.92 90.67% 90.66% 90.67
SS 89.86% 89.48% 89.67 88.58% 88.20% 88.39
Srev

S 92.12% 92.04% 92.08 90.86% 90.79% 90.82
S2S 90.07% 89.75% 89.91 88.80% 88.48% 88.64
Srev

2S 92.09% 92.01% 92.05 90.88% 90.80% 90.84

Combined 91.31% 93.62% 92.45 90.15% 92.43% 91.28
CCGBank UP UR UF LP LR LF
ST 91.10% 89.98% 90.54 87.00% 85.93% 86.46
Srev

T 91.23% 91.27% 91.25 87.25% 87.28% 87.27
SS 90.80% 90.18% 90.49 86.63% 86.04% 86.33
Srev

S 91.12% 91.31% 91.22 87.35% 87.53% 87.44
S2S 90.85% 90.30% 90.58 86.77% 86.25% 86.51
Srev

2S 91.57% 91.63% 91.60 87.83% 87.89% 87.86

Combined 91.43% 92.83% 92.13 87.76% 89.10% 88.42

Chinese

CCGBank UP UR UF LP LR LF
ST 86.24% 85.31% 85.77 82.04% 81.16% 81.60
Srev

T 85.20% 85.13% 85.16 80.97% 80.90% 80.94
SS 85.86% 85.62% 85.74 81.71% 81.48% 81.60
Srev

S 84.65% 85.90% 85.27 80.55% 81.74% 81.14
S2S 86.17% 85.87% 86.02 82.09% 81.81% 81.95
Srev

2S 85.14% 86.32% 85.73 81.05% 82.18% 81.61

Combined 86.63% 89.05% 87.82 82.83% 85.14% 83.97
GRBank UP UR UF LP LR LF
ST 83.38% 80.43% 81.88 81.28% 78.40% 79.81
Srev

T 85.03% 84.05% 84.54 82.93% 81.98% 82.45
SS 82.35% 81.49% 81.92 80.30% 79.46% 79.88
Srev

S 83.74% 85.04% 84.39 81.77% 83.05% 82.41
S2S 82.93% 82.20% 82.56 80.88% 80.18% 80.53
Srev

2S 83.84% 85.02% 84.43 81.80% 82.94% 82.37

Combined 86.05% 87.14% 86.59 84.06% 85.12% 84.59
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Table 6
Performance of English and Chinese SRL achieved by representative full and shallow
parsing-based systems. The results are copied from Punyakanok, Roth, and Yih (2008) and
Zhuang and Zong (2010).

Precison Recall F-score

English Full parsing 77.09% 75.51% 76.29
Shallow parsing 75.48% 67.13% 71.06

Chinese Full parsing 79.17% 72.09% 75.47
Shallow parsing 72.57% 67.02% 69.68

5.5.2 Comparison of Different Tree Parsers. There are two dominant data-driven
approaches to syntactic dependency tree parsing: transition-based (Yamada and
Matsumoto 2003; Nivre 2008) and graph-based (McDonald 2006; Torres Martins, Smith,
and Xing 2009). In terms of overall per token prediction, the transition-based and
graph-based tree parsers achieve comparable performance (Suzuki et al. 2009; Weiss
et al. 2015). To evaluate the impact of the two tree parsing approaches on semantic
dependency parsing, we use two tree parsers to serve our graph parser. The first
one is our in-house implementation of the algorithm presented in Zhang and Nivre
(2011), and the second one is a second-order graph-based parser4 (Bohnet 2010). The
tree parsers are trained with the unlabeled tree annotations provided by the English
and Chinese CCGBank data. For both English and Chinese experiments, 5-fold cross
validation is performed to parse the training data to avoid overfitting. The accuracy
of tree parsers is shown in Table 7. Results presented in Figure 12 indicate that the
two parsers are also equivalently effective for producing semantic analysis. This
result is somehow non-obvious given that the combination of a graph-based and
transition-based parser usually gives significantly better parsing performance (Nivre
and McDonald 2008; Torres Martins et al. 2008).

5.6 Effectiveness of Tree Approximation

In case syntactic information is not available, we propose a tree approximation tech-
nique to induce tree backbones from deep dependency graphs. In particular, our
technique guarantees that the automatically derived trees are projective, which is a nec-
essary condition for a number of effective tree parsing algorithms. We can utilize these
pseudo trees as an alternative to syntactic analysis. To evaluate the effectiveness of tree
approximation, we compare the contribution to semantic dependency parsing of syn-
tactic trees and pseudo trees. In this experiment, we use a transition-based tree parser
to generate automatic analysis. Figure 13 presents the results. Generally speaking,
pseudo trees contribute to semantic dependency parsing equally well as syntactic trees.
Sometimes, they perform even better. There is a considerable drop when DeepBank data
are applied. We think the main reason is the density of DeepBank graphs. Because there
are fewer edges in the original graphs, it is harder to extract informative pseudo trees.
As a result, the final graph parsing benefits less.

4 http://www.code.google.com/p/mate-tools/.
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Figure 11
Parsing accuracy with and without syntactic features. The syntactic trees for experiments on
DeepBank and EnjuBank data sets are provided by the SemEval 2014 shared task, and they are
automatically generated by the Stanford Parser. The syntactic trees for experiments on English
and Chinese CCG data sets are generated by our in-house implementation of the model
introduced in Zhang and Nivre (2011).

It is also possible to build a parser ensemble on pseudo tree enhanced models.
However, the effectiveness of system combination is not as effective as integrating non-
tree models. Table 8 summarizes the detailed parsing accuracy. We can see that system
ensemble is still helpful, though the improvement is limited.
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Table 7
Accuracy of preprocessing on the development data for CCG analysis. Tr and Gr, respectively,
denote transition-based and graph-based tree parsers.

UAS(Tr) UAS(Gr)

English 93.48% 93.47%
Chinese 80.97% 80.81%

5.7 Comparison with Other Parsers
5.7.1 Comparison with Grammar-Based Parsers. We compare our parser with several
representative Treebank-guided, grammar-based parsers that achieve state-of-the-art
performance for CCG and HPSG analysis. The grammar-based parsers selected represent
two different architectures.

� The first type of parser implements a shift-reduce parsing architecture and
also uses beam search for practical decoding. In particular, we compare
our parser with the state-of-the-art CCG parser introduced in Xu, Clark, and
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Figure 12
Labeled F-scores with respect to different tree parsing techniques. Results shown here are from
experiments for English and Chinese CCG parsing.
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Figure 13
Parsing accuracy based on syntactic and pseudo tree features. All trees are generated by our
in-house implementation of the model introduced in Zhang and Nivre (2011).

Zhang (2014).5 This parser extends a shift-reduce CFG parser (Zhang and
Clark 2011a) with a dependency model.

� The second type of parser implements the chart parsing architecture with
some refinements. For CCG analysis, we focus on the parser proposed by

5 The unlabeled parsing results are not reported in the original paper. The figures presented in Table 9 are
provided by Wenduan Xu.
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Table 8
Performance of base and combined models on the test set of the DeepBank/EnjuBank data and
on the development set of the English and Chinese CCGBank data. Features extracted from
pseudo trees are utilized for disambiguation.

English
DeepBank UP UR UF LP LR LF

ST 87.99% 87.64% 87.81 85.95% 85.61% 85.78
Srev

T 88.94% 88.98% 88.96 87.07% 87.11% 87.09
SS 87.76% 87.45% 87.60 85.83% 85.52% 85.67
Srev

S 88.72% 88.65% 88.69 86.88% 86.82% 86.85
S2S 87.92% 87.60% 87.76 86.03% 85.72% 85.87
Srev

2S 89.04% 88.85% 88.95 87.15% 86.96% 87.05

Combined 88.54% 90.25% 89.39 86.65% 88.32% 87.48
EnjuBank UP UR UF LP LR LF
ST 91.88% 91.45% 91.66 90.60% 90.17% 90.38
Srev

T 92.82% 92.83% 92.83 91.61% 91.61% 91.61
SS 91.76% 91.39% 91.58 90.50% 90.14% 90.32
Srev

S 92.66% 92.65% 92.65 91.45% 91.44% 91.45
S2S 91.85% 91.54% 91.70 90.63% 90.33% 90.48
Srev

2S 92.92% 92.83% 92.87 91.77% 91.68% 91.73

Combined 92.47% 93.52% 92.99 91.34% 92.38% 91.86
CCGBank UP UR UF LP LR LF
ST 92.15% 91.05% 91.60 88.20% 87.15% 87.67
Srev

T 92.46% 92.27% 92.37 88.78% 88.61% 88.70
SS 91.91% 91.18% 91.54 87.97% 87.28% 87.62
Srev

S 92.34% 92.43% 92.39 88.67% 88.76% 88.72
S2S 91.86% 91.13% 91.49 87.92% 87.22% 87.57
Srev

2S 92.53% 92.41% 92.47 88.85% 88.73% 88.79

Combined 92.38% 93.20% 92.79 88.92% 89.71% 89.31

Chinese
CCGBank UP UR UF LP LR LF
ST 87.44% 86.41% 86.93 83.44% 82.45% 82.94
Srev

T 87.11% 87.04% 87.07 83.24% 83.17% 83.21
SS 86.76% 86.52% 86.64 82.85% 82.63% 82.74
Srev

S 86.46% 87.54% 87.00 82.69% 83.72% 83.20
S2S 87.09% 86.91% 87.00 83.21% 83.03% 83.12
Srev

2S 86.57% 87.69% 87.13 82.75% 83.82% 83.28

Combined 87.27% 89.00% 88.12 83.57% 85.23% 84.39

Auli and Lopez (2011b). The basic system architecture follows the
well-engineered C&C Parser,6 and additionally applies a number of
advanced machine learning and optimization techniques, including belief
propagation, dual decomposition Auli and Lopez (2011a), and parameter
estimation with softmax-margin loss (Auli and Lopez 2011b), to enhance
the results. For HPSG analysis, we compare with the well-studied Enju

6 http://svn.ask.it.usyd.edu.au/trac/candc.
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Table 9
Parsing results on test sets obtained by representative parsers. State-of-the-art results on these
data sets, as reported in Oepen et al. (2014), Martins and Almeida (2014), Xu, Clark, and Zhang
(2014), Auli and Lopez (2011b), Du, Sun, and Wan (2015), Sun et al. (2014), are included.
DeepBank LP LR LF
Our system Srev

2S 86.28% 86.26% 86.27
Combined 86.46% 88.40% 87.42
Srev

2S +Pseudo Tree 87.15% 86.96% 87.05
Combined+Pseudo Tree 86.65% 88.32% 87.48

Factorization (Turbo) (Martins and Almeida 2014) 88.82% 87.35% 88.08
EnjuBank LP LR LF
Our system Srev

2S 90.88% 90.80% 90.84
Combined 90.15% 92.43% 91.28
Srev

2S +Pseudo Tree 91.77% 91.68% 91.73
Combined+Pseudo Tree 91.34% 92.38% 91.86

Chart parsing (Enju) (Oepen et al. 2014) 92.09% 92.02% 92.06

Factorization (Turbo) (Martins and Almeida 2014) 91.95% 89.92% 90.93
English CCGBank UP UR UF
Our system Srev

2S 91.84% 91.75% 91.80
Combined 92.06% 93.14% 92.60
Srev

2S +Pseudo Tree 92.49% 92.30% 92.40
Combined+Pseudo Tree 92.52% 93.13% 92.82

Shift-reduce (Xu, Clark, and Zhang 2014) 93.15% 91.06% 92.09
Chart parsing (Auli and Lopez 2011b) 93.08% 92.44% 92.76

Factorization (Du, Sun, and Wan 2015) 93.03% 92.03% 92.53
Chinese GRBank LP LR LF
Our system Srev

2S 82.28% 83.11% 82.69
Combined 84.92% 85.28% 85.10

Transition-based (Sun et al. 2014) 83.93% 79.82% 81.82
Chinese CCGBank UP UR UF
Our system Srev

2S 85.07% 86.02% 85.54
Combined 86.35% 88.85% 87.58
Srev

2S +Pseudo Tree 86.65% 87.34% 86.99
Combined+Pseudo Tree 87.14% 88.60% 87.86

Parser,7 which develops a number of advanced techniques for
discriminative deep parsing—for example, maximum entropy estimation
with feature forest (Miyao and Tsujii 2008) and efficient decoding with
supertagging and CFG-filtering (Matsuzaki, Miyao, and Tsujii 2007).

Table 9 shows the final results on the test data for each data set. The representa-
tive shift-reduce parser for comparison utilizes a very similar learning and decoding
architectures to our system. Similar to our parser, Xu, Clark, and Zhang’s (2014) parser
incrementally processes a sentence and uses a beam decoder that performs an inexact

7 http://kmcs.nii.ac.jp/enju/?lang=en.
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search. Xu, Clark, and Zhang’s parser sets beam width to 128, while ours is 16. It also
uses the structured prediction algorithm for parameter estimation. The major difference
is that the shift-reduce CCG parser explicitly utilizes a core grammar to guide decoding,
whereas our parser excludes all such information. Actually, our models reported here
also exclude all syntactic information because no syntactic parse is used for feature
extraction. We can see that our individual system based on the two stack transition
system achieves equivalent performance to the CCG-driven parser. Moreover, when this
individual system is augmented with tree approximation, the accuracy is significantly
improved. Note that the individual system with both settings does not rely on any
explicit syntactic information. This result on one hand indicates the effectiveness of
adapting syntactic parsing techniques for full semantic parsing, and on the other hand
suggests the possibility of using semantically structural (not syntactically structural)
information only to achieve high-accuracy semantic parsing.

Statistical parsers based on chart parsing are able to perform a more principled
search and therefore usually achieve better parsing accuracy than a normal shift-reduce
parser. We also compare our parsing models with two state-of-the-art chart parsers,
namely, the Enju Parser (Miyao and Tsujii 2008) and Auli and Lopez’s (2011b) parser.
Different from Xu, Clark, and Zhang’s (2014) shift-reduce parser and our models, Auli
and Lopez’s (2011b) parser does not guarantee to produce analysis for arbitrary sen-
tences. Usually, the numerical performance evaluated on all sentences is lower than the
results obtained on sentences that can be parsed. Note that Auli and Lopez (2011b) only
reported results on sentences that are covered, whereas Oepen et al. (2014) reported
results on all sentences, which is achieved by Enju Parser. From Table 9, we can clearly
see that our graph-spanning models are very competitive. The best individual and com-
bined models outperform the Enju Parser and perform equally well to Auli and Lopez’s
(2011b) parser. It is worth noting that strictly less information is used by our parsers.

5.7.2 Comparison with Other Data-Driven Parsers. We also compare our parser with re-
cently developed data-driven, factorization models (Martins and Almeida 2014; Du,
Sun, and Wan 2015). Different from projective but similar to non-projective tree parsing,
decoding for factorization models where very basic second-order sibling factors are
incorporated is NP-hard. See the proof presented in our early work (Du, Sun, and
Wan 2015) for details. To perform principled decoding, dual decomposition is used and
achieves good empirical results (Martins and Almeida 2014; Du, Sun, and Wan 2015).

From Table 9, we can see that the transition-based approach augmented with tree
approximation is comparable to the factorization approach in general. Compared with
the Turbo Parser, our individual and hybrid models perform significantly worse on
DeepBank but significantly better on EnjuBank. We think one main reason is because
of the annotation styles. Though both corpora are based on HPSG, the annotations in
question are quite different. DeepBank graphs are more sparse than EnjuBank, which
makes tree approximation less effective. It seems that the transition-based parser suffers
more when fewer output edges are targeted. The two approaches achieve equivalent
performance for CCG parsing.

6. Related Work

Deep linguistic processing is concerned with NLP approaches that aim at modeling
the complexity of natural languages in rich linguistic representations. Such approaches
are typically related to a particular computational linguistic theory (e.g., CCG, LFG, and
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HPSG). Parsing in these formalisms provides an elegant way to generate deep syntacto-
semantic dependency structures with high quality (Clark and Curran 2007; Miyao,
Sagae, and Tsujii 2007; Miyao and Tsujii 2008). The incremental shift-reduce parsing
architecture has been implemented for CCG parsing (Zhang and Clark 2011a; Ambati
et al. 2015). Besides using phrase-structure rules only, a shift-reduce parser can be
enhanced by incorporating a dependency model (Xu, Clark, and Zhang 2014). Our
parser and the two above parsers have some essential resemblances, including learning
and decoding algorithms. The main difference is the usage of syntactic and grammatical
information. The comparison in Section 5.7 gives a rough idea of the impact of explicitly
using grammatical constraints. A deep-grammar-guided parsing model usually cannot
produce full coverage and the time complexity of the corresponding parsing algorithms
is very high. Some NLP applications may favor lightweight solutions to build deep
dependency structures.

Different from grammar-guided approaches, data-driven approaches make essen-
tial use of machine learning from linguistic annotations in order to parse new sentences.
Such approaches, for example, transition-based (Yamada and Matsumoto 2003; Nivre
2008) and graph-based (McDonald 2006; Torres Martins, Smith, and Xing 2009) mod-
els, have attracted the most attention of dependency parsing in recent years. Several
successful parsers (e.g., MST, Mate, and Malt parsers) have been built and applied
to many NLP applications. Recently, two advanced techniques have been studied to
enhance a transition-based parser. First, developing features has been shown crucial
to advancing parsing accuracy and a very rich feature set is carefully evaluated by
Zhang and Nivre (2011). Second, beyond deterministic greedy search, beam search and
principled dynamic programming strategies have been used to explore more possible
hypotheses (Zhang and Clark 2008; Huang and Sagae 2010). When we implement our
graph parser, we also leverage rich features and beam search to obtain good parsing
accuracy.

Most research concentrated on surface dependency structures, and the majority
of existing approaches are limited to producing only tree-shaped graphs. We notice
three distinguished exceptions in early work. Sagae and Tsujii (2008) proposed a DAG
parser that is able to handle projective directed dependency graphs, and that uses the
pseudo-projective parsing technique (Nivre and Nilsson 2005) to build crossing arcs.
Titov et al. (2009) and Henderson et al. (2013) introduced non-planar parsing to parse
PropBank (Palmer, Gildea, and Kingsbury 2005) structures. However, neither technique
handles crossing arcs fully well. There have been a number of papers trying to build
non-projective trees, which inspired the design of our transition systems. Especially, we
borrow key ideas from Nivre (2009), Gómez-Rodrı́guez and Nivre (2010), and Gómez-
Rodrı́guez and Nivre (2013). In addition to the investigation on the transition-based
approach, McDonald and Pereira (2006) presented a factorization parser that can gener-
ate dependency graphs in which a word may depend on multiple heads, and evaluated
it on the Danish Treebank. Very recently, the dual decomposition technique has been
adopted to achieve principled decoding for factorization models. High-accuracy models
have been introduced in Martins and Almeida (2014) and Du, Sun, and Wan (2015).

7. Conclusion

We study transition-based approaches that produce general dependency graphs directly
from input sequences of words, in a way nearly as simple as tree parsers. We introduce
two new graph-spanning algorithms to generate arbitrary directed graphs, which suit
deep dependency parsing well. We also introduce transition combination and tree
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approximation for statistical disambiguation. Statistical parsers built upon these new
techniques have been evaluated with dependency structures that are extracted from
linguistically deep CCG, LFG, and HPSG derivations. Our models achieve state-of-the-art
performance on five representative data sets for English and Chinese parsing. Exper-
iments demonstrate the effectiveness of grammar-free, transition-based approaches to
dealing with complex linguistic phenomena beyond surface syntax.

In addition to deep dependency parsing, many other NLP tasks (e.g., quantifier
scope disambiguation [Manshadi, Gildea, and Allen 2013] and event extraction [Li, Ji,
and Huang 2013]), can be formulated as graph spanning problems. We think such tasks
can benefit from algorithms that span general graphs rather than trees, and our new
transition-based parsers can provide practical solutions to these tasks.
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