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Most of the world languages are resource-poor for statistical machine translation; still, many
of them are actually related to some resource-rich language. Thus, we propose three novel,
language-independent approaches to source language adaptation for resource-poor statistical
machine translation. Specifically, we build improved statistical machine translation models from
a resource-poor language POOR into a target language TGT by adapting and using a large
bitext for a related resource-rich language RICH and the same target language TGT. We assume
a small POOR–TGT bitext from which we learn word-level and phrase-level paraphrases and
cross-lingual morphological variants between the resource-rich and the resource-poor language.
Our work is of importance for resource-poor machine translation because it can provide a useful
guideline for people building machine translation systems for resource-poor languages.

Our experiments for Indonesian/Malay–English translation show that using the large
adapted resource-rich bitext yields 7.26 BLEU points of improvement over the unadapted one and
3.09 BLEU points over the original small bitext. Moreover, combining the small POOR–TGT
bitext with the adapted bitext outperforms the corresponding combinations with the unadapted
bitext by 1.93–3.25 BLEU points. We also demonstrate the applicability of our approaches to
other languages and domains.

1. Introduction

Contemporary statistical machine translation (SMT) systems learn how to translate
from large sentence-aligned bilingual corpora of human-generated translations, called
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bitexts. Unfortunately, collecting sufficiently large, high-quality bitexts is difficult, and
thus most of the 6,500+ world languages are resource-poor for SMT. Fortunately, many
of these resource-poor languages are related to some resource-rich language, with
whom they overlap in vocabulary and share cognates, which offers opportunities for
bitext reuse.

Example pairs of such resource rich–poor languages include Spanish–Catalan,
Finnish–Estonian, Swedish–Norwegian, Russian–Ukrainian, Irish–Gaelic Scottish,
Standard German–Swiss German, Modern Standard Arabic–Dialectical Arabic (e.g.,
Gulf, Egyptian), Turkish–Azerbaijani, and so on.

Previous work has already demonstrated the benefits of using a bitext for a related
resource-rich language to X (e.g., X = English) to improve machine translation from
a resource-poor language to X (Nakov and Ng 2009, 2012). Here we take a different,
orthogonal approach: We adapt the resource-rich language to get closer to the resource-
poor one.

We assume two bitexts: (1) a small bitext for a resource-poor source language S1
and some target language T, and (2) a large bitext for a related resource-rich source
language S2 and the same target language T. We use these bitexts to learn word-level
and phrase-level paraphrases and cross-lingual morphological variants between the
resource-poor and resource-rich languages, S1 and S2. We propose three approaches to
adapt (the source side of) the large bitext for S2–T: word-level paraphrasing, phrase-
level paraphrasing, and text rewriting using a specialized decoder. The first two
approaches were proposed in our previous work (Wang, Nakov, and Ng 2012), and
the third approach is novel and outperforms the other two in our experiments.

Training on the adapted large bitext S′2–T yields very significant improvements
in translation quality compared with both training on the unadapted large bitext
S2–T, and training on the small bitext for the resource-poor language S1–T. We further
achieve very sizable improvements when combining the small bitext S1–T with the
large adapted bitext S′2–T, compared with combining the former with the unadapted
bitext S2–T.

Although here we focus on adapting Malay to look like Indonesian, we also
demonstrate the applicability of our approach to another language pair, Bulgarian–
Macedonian, which is also from a different domain.

The remainder of this article is organized as follows. Section 2 presents an overview
of related work. Section 3 introduces our target resource rich–poor language pair:
Malay–Indonesian. Then, Section 4 presents our three approaches for source language
adaptation. Section 5 describes the experimental set-up, after which we present the
experimental results and discussions in Section 6. Section 7 contains deeper analysis
of the obtained results. Finally, Section 8 concludes and points to possible directions
for future work.

2. Related Work

One relevant line of research is on machine translation between closely related
languages, which is arguably simpler than general SMT, and thus can be handled
using word-for-word translation, manual language-specific rules that take care of the
necessary morphological and syntactic transformations, or character-level translation/
transliteration. This has been tried for a number of language pairs including Czech–
Slovak (Hajič, Hric, and Kuboň 2000), Turkish–Crimean Tatar (Altintas and Cicekli
2002), Irish–Scottish Gaelic (Scannell 2006), and Macedonian–Bulgarian (Nakov and
Tiedemann 2012). In contrast, we have a different objective: We do not carry out full
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translation but rather adaptation (since our ultimate goal is to translate into a third
language X).

A special case of this same line of research is the translation between dialects of
the same language, for example, between Cantonese and Mandarin (Zhang 1998), or
between a dialect of a language and a standard version of that language, for exam-
ple, between some Arabic dialect (e.g., Egyptian) and Modern Standard Arabic (Bakr,
Shaalan, and Ziedan 2008; Sawaf 2010; Salloum and Habash 2011; Sajjad, Darwish, and
Belinkov 2013). Here again, manual rules and/or language-specific tools and resources
are typically used. In the case of Arabic dialects, a further complication arises due
to the informal status of the dialects, which are not standardized and not used in
formal contexts but rather only in informal online media such as social networks, chats,
forums, Twitter, and SMS messages, though the Egyptian Wikipedia is one notable
exception. This causes further mismatch in domain and genre. Thus, translating from
Arabic dialects to Modern Standard Arabic requires, among other things, normalizing
informal text to a formal form. Sajjad, Darwish, and Belinkov (2013) first normalized
a dialectal Egyptian Arabic to look like Modern Standard Arabic, and then translated
the transformed text to English.

In fact, this is a more general problem, which arises with informal sources such as
SMS messages and Tweets for just any language (Aw et al. 2006; Han and Baldwin 2011;
Wang and Ng 2013; Bojja, Nedunchezhian, and Wang 2015). Here the main focus is on
coping with spelling errors, abbreviations, and slang, which are typically addressed
using string edit distance, while also taking pronunciation into account. This is different
from our task, where we try to adapt good, formal text from one language to another.

A second relevant line of research is on language adaptation and normalization,
when done specifically for improving SMT into another language. For example, Marujo
et al. (2011) described a rule-based system for adapting Brazilian Portuguese (BP) to
European Portuguese (EP), which they used to adapt BP–English bitexts to EP–English.
They report small improvements in BLEU for EP–English translation when training
on the adapted “EP”–English bitext compared with using the unadapted BP–English
(38.55 vs. 38.29 BLEU points), or when an EP–English bitext is used in addition to the
adapted/unadapted one (41.07 vs. 40.91 BLEU points). Unlike that work, which heavily
relied on language-specific rules, our approach is statistical, and largely language-
independent; moreover, our improvements are much more sizable.

A third relevant line of research is on reusing bitexts between related languages
without or with very little adaptation, which works well for very closely related lan-
guages. For example, our previous work (Nakov and Ng 2009, 2012) experimented
with various techniques for combining a small bitext for a resource-poor language
(Indonesian or Spanish) with a much larger bitext for a related resource-rich language
(Malay or Portuguese), pretending that Spanish is resource-poor; the target language of
all bitexts was English. However, that work did not attempt language adaptation, except
for very simple transliteration for Portuguese–Spanish that ignored context entirely;
because it does not substitute a word with a completely different word, transliteration
did not help much for Malay–Indonesian, which use unified spelling. Still, once we
have language-adapted the large bitext, it makes sense to try to combine it further
with the small bitext; thus, in the following we will directly compare and combine these
two approaches.

One alternative, which we do not explore in this work, is to use cascaded translation
using a pivot language (Cohn and Lapata 2007; Utiyama and Isahara 2007; Wu and
Wang 2009). Unfortunately, using the resource-rich language as a pivot (poor→rich→X)
would require an additional parallel poor–rich bitext, which we do not have. Pivoting
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over the target X (rich→X→poor) for the purpose of language adaptation, on the
other hand, would miss the opportunity to exploit the relationship between the
resource-poor and the resource-rich language; this would also be circular since the first
step would ask an SMT system to translate its own training data (we only have one
rich–X bitext).

Yet another alternative approach for improving resource-poor MT is to mine
translation bitexts from comparable corpora (Munteanu, Fraser, and Marcu 2004;
Snover, Dorr, and Schwartz 2008). This is orthogonal to our efforts here, as our focus is
on adapting resources for a related resource-rich language, rather than directly mining
source–target translation pairs from comparable corpora.

3. Malay and Indonesian

Malay and Indonesian are closely related, mutually intelligible Austronesian languages
with 180 million speakers combined. They have a unified spelling, with occasional
differences, for example, kerana vs. karena (‘because’), Inggeris vs. Inggris (‘English’), and
wang vs. uang (‘money’).

They differ more substantially in vocabulary, mostly because of loan words, where
Malay typically follows the English pronunciation, whereas Indonesian tends to follow
Dutch, for example, televisyen vs. televisi, Julai vs. Juli, and Jordan vs. Yordania.

Although there are many cognates between the two languages, there are also many
false friends, for example, polisi means policy in Malay but police in Indonesian. There
are also many partial cognates, for example, nanti means both will (future tense marker)
and later in Malay but only later in Indonesian.

Thus, fluent Malay and fluent Indonesian can differ substantially. Consider, for
example, Article 1 of the Universal Declaration of Human Rights:1r Semua manusia dilahirkan bebas dan samarata dari segi kemuliaan dan hak-hak.

Mereka mempunyai pemikiran dan perasaan hati dan hendaklah bertindak di
antara satu sama lain dengan semangat persaudaraan. (Malay)r Semua orang dilahirkan merdeka dan mempunyai martabat dan hak-hak yang
sama. Mereka dikaruniai akal dan hati nurani dan hendaknya bergaul
satu sama lain dalam semangat persaudaraan. (Indonesian)r All human beings are born free and equal in dignity and rights. They are endowed
with reason and conscience and should act towards one another in a spirit of
brotherhood. (English)

There is only 50% overlap at the word level, but the actual vocabulary overlap
is much higher—for example, there is only one word in the Malay text that does not
exist in Indonesian: samarata (‘equal’). Other differences are due to the use of different
morphological forms, for example, hendaklah vs. hendaknya (‘conscience’), derivational
variants of hendak (‘want’).

To quantify the similarity between some pairs of languages, we calculated the
cosine similarity between them based on the Universal Declaration of Human Rights.2 The
results are shown in Table 1. We can see that the average similarity between English

1 http://www.un.org/en/documents/udhr/index.shtml

2 http://www.ohchr.org/EN/UDHR/Pages/SearchByLang.aspx
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Table 1
Cosine similarities between some pairs of languages, calculated on the Universal Declaration of
Human Rights using tokens and filtering out punctuation symbols.

Language Pairs Cosine Similarity

Malay–Indonesian 0.802
Portuguese–Spanish 0.475
Bulgarian–Macedonian 0.302

French–English 0.033
Spanish–English 0.031
Indonesian–English 0.002
Malay–English 0.001

and {Indonesian, Malay, French, Spanish} is 0.001–0.033, whereas for closely related
language pairs it ranges from 0.302 to 0.802. Of course, this cosine calculation compares
surface word overlap only and does not take minor morphological variants into consid-
eration. Yet, this gives an idea of the relative proximity between the languages.

Of course, word choice in translation is often a matter of taste. Thus, we asked a
native speaker of Indonesian to adapt the Malay version to Indonesian while preserving
as many words as possible, and we obtained the following result:r Semua manusia dilahirkan bebas dan mempunyai martabat dan hak-hak yang

sama. Mereka mempunyai pemikiran dan perasaan dan hendaklah bergaul
satu sama lain dalam semangat persaudaraan. (Indonesian)

Obtaining this latter version from the original Malay text requires three kinds of
word-level operations:r deletion of dari, segi, and hatir insertion of yang and samar substitution of samarata with mempunyai, kemuliaan with martabat, and

dengan with dalam

Additionally, it requires a phrase-level substitution of bertindak di antara with bergaul.
Unfortunately, we do not have parallel Malay–Indonesian text, which complicates

the process of learning when to apply these operations. Thus, in the following we
focus our attention on the simplest and most common operation of word/phrase
substitution only, leaving the other two operations for future work. There are other
potentially useful operations—for example, a correct translation for the Malay samarata
can be obtained by splitting it into the Indonesian sequence sama rata.

Note that simple word substitution is enough in many cases—for example, it is all
that is needed for the following Malay–Indonesian sentence pair:r KDNK Malaysia dijangka cecah 8 peratus pada tahun 2010. (Malay)r PDB Malaysia akan mencapai 8 persen pada tahun 2010. (Indonesian)r Malaysia’s GDP is expected to reach 8 percent in 2010. (English)
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4. Methods

Assuming a resource-rich bitext (Malay–English) and a resource-poor bitext
(Indonesian–English), we improve statistical machine translation from the resource-
poor language (Indonesian) to English by adapting the bitext for the related resource-
rich language (Malay) and English to the resource-poor language (Indonesian) and
English. We propose three bitext adaptation approaches: word-level paraphrasing,
phrase-level paraphrasing, and text rewriting with a specialized decoder.

Given a Malay sentence in the resource-rich Malay–English bitext, we use one of
these three adaptation approaches to generate a ranked list of n corresponding adapted
“Indonesian” sentences. Then, we pair each such adapted “Indonesian” sentence with
the English counterpart in the Malay–English bitext for the Malay sentence it was
derived from, thus obtaining a synthetic “Indonesian”–English bitext. Finally, we
combine this synthetic bitext with the resource-poor Indonesian–English bitext to train
the final Indonesian–English SMT system, using various bitext combination methods.

In the remainder of this section, we first present the word-level paraphrasing
approach, followed by the phrase-level paraphrasing approach; then, we describe the
text rewriting decoder. Finally, we describe the bitext combination methods we experi-
ment with.

4.1 Word-Level Paraphrasing

Given a Malay sentence, we generate a confusion network containing multiple Indo-
nesian word-level paraphrase options for each Malay word. Each such Indonesian
option is associated with a corresponding weight in the network, which is defined as
the probability of this option being a translation of the original Malay word, calculated
using Equation (1). We decode this confusion network using a large Indonesian lan-
guage model, thus generating a ranked list of n corresponding adapted “Indonesian”
sentences.

In the following we first describe how we generate the word-level Indonesian
options and the corresponding weights for the Malay words. Then, we explain how
we build, decode, and improve the confusion network.

4.1.1 Inducing Word-Level Paraphrases. We use pivoting over English to induce potential
Indonesian word translations for a given Malay word.

First, we build separate directed word alignments for the Malay–English bitext and
for the Indonesian–English bitext using IBM model 4 (Brown et al. 1993), and then
we combine them using the intersect+grow heuristic (Och and Ney 2003). We then
induce Malay–Indonesian word translation pairs assuming that if an Indonesian word
i and a Malay word m are aligned to the same English word e, they could be mutual
translations. Each translation pair is associated with a conditional probability, esti-
mated by pivoting over English:

Pr(i|m) =
∑

e

Pr(i|e)Pr(e|m) (1)

Pr(i|e) and Pr(e|m) are estimated using maximum likelihood from the word align-
ments. Following Callison-Burch, Koehn, and Osborne (2006), we further assume that
i is conditionally independent of m given e.
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Word alignments for the Malay-English bi-text

Word alignments for the Indonesian-English bi-text

... dan adakah gagasan 1malaysia terdapat ...

... and whether the 1malaysia concept was being ... ... tidak jelas apakah rudal ss-21 ...

... it was unclear whether the ss-21s ...

Figure 1
An example of word-level paraphrase induction by pivoting over English. The Malay word
adakah is aligned with the English word whether in the Malay–English bitext (shown with
solid arcs). The Indonesian word apakah is aligned with the same English word whether in the
Indonesian–English bitext. We consider apakah as a potential translation option of adakah
(the dashed arc). The other word alignments are not shown.

For example, Figure 1 shows an example that induces an Indonesian word apakah
as a translation option for the Malay word adakah, since the two words are both aligned
to the same English word whether in the word alignments for the Indonesian–English
bitext and the Malay–English bitext, respectively.

4.1.2 Confusion Network Construction. Given a Malay sentence, we construct an
Indonesian confusion network, where each Malay word is augmented with a set of alter-
natives, represented as network transitions: possible Indonesian word translations. The
weight of such a transition is the conditional Indonesian–Malay translation probability
as calculated by Equation (1); the original Malay word is assigned a weight of 1.

Note that we paraphrase each word in the input Malay sentence as opposed to
only those Malay words that we believe not to exist in Indonesian (e.g., because they
do not appear in our Indonesian monolingual text). This is necessary because of the
large number of false friends and partial cognates between Malay and Indonesian (see
Section 3).

Finally, we decode the confusion network for a Malay sentence using a large
Indonesian language model, and we extract an n-best list. For balance, in case of fewer
than n adaptations for a Malay sentence, we randomly repeat some of the available
ones. Table 2 shows the 10-best adapted “Indonesian” sentences we generated for the
confusion network in Figure 2. According to a native Indonesian speaker, options 1 and
3 in the table are perfect adaptations, options 2 and 5 have a wrong word order, and
the rest are grammatical though not perfect.

4.1.3 Further Refinements. Many of our Malay–Indonesian paraphrases are bad: Some
have very low probabilities, and others involve rare words for which the probability
estimates are unreliable. Moreover, the options we propose for a Malay word are
inherently restricted to the small Indonesian vocabulary of the Indonesian–English
bitext. We now describe how we address these issues.

Score-based filtering. We filter out translation pairs whose probabilities (Equa-
tion (1)) are lower than some threshold (tuned on the development data set), for
example, 0.01.
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Table 2
The 10-best “Indonesian” sentences extracted from the confusion network in Figure 2.

Rank “Indonesian” Sentence

1 pdb malaysia akan mencapai 8 persen pada tahun 2010 .
2 pdb malaysia untuk mencapai 8 persen pada tahun 2010 .
3 pdb malaysia diperkirakan mencapai 8 persen pada tahun 2010 .
4 maka malaysia akan mencapai 8 persen pada tahun 2010 .
5 maka malaysia untuk mencapai 8 persen pada tahun 2010 .
6 pdb malaysia dapat mencapai 8 persen pada tahun 2010 .
7 maka malaysia diperkirakan mencapai 8 persen pada tahun 2010 .
8 sebesar malaysia akan mencapai 8 persen pada tahun 2010 .
9 pdb malaysia diharapkan mencapai 8 persen pada tahun 2010 .
10 pdb malaysia ini mencapai 8 persen pada tahun 2010 .

Improved estimations for Pr(i|e). We concatenate k copies of the small Indonesian–
English bitext and one copy of the large Malay–English bitext, where the value of
k is selected so that we have roughly the same number of Indonesian and Malay
sentences. Then, we generate word-level alignments for the resulting bitext. Finally, we
truncate these alignments keeping them for one copy of the original Indonesian–English
bitext only. Thus, we end up with improved word alignments for the Indonesian–
English bitext, and ultimately with better estimations for Equation (1). Because
Malay and Indonesian share many cognates, this improves word alignments for
Indonesian words that occur rarely in the small Indonesian–English bitext, but are
relatively frequent in the larger Malay–English one; it also helps for some frequent
words.

Cross-lingual morphological variants. We increase the Indonesian options for a
Malay word using morphology. Because the set of Indonesian options for a Malay word

0 1
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0.5762

sebesar
0.0521

maka
0.0260

perkiraan
0.0260
panggar
0.0260

rkp
0.0260

gdp
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2

malaysia
1.0

3
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0.0184
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0.0136
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5

8
1.0

6
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7
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1.0

8
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9
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1.0

10

.
1.0

Figure 2
Indonesian confusion network for the Malay sentence KDNK Malaysia dijangka cecah 8 peratus
pada tahun 2010. Arcs with scores below 0.01 are omitted, and words that exist in Indonesian are
not paraphrased (for better readability).
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in pivoting is restricted to the Indonesian vocabulary of the small Indonesian–English
bitext, this is a severe limitation of pivoting. Thus, assuming a large monolingual
Indonesian text, we first build a lexicon of the words in the text. Then, we lemmatize
these words using two different lemmatizers: the Malay lemmatizer of Baldwin and
Awab (2006), and a similar Indonesian lemmatizer. These two analyzers have different
strengths and weaknesses, therefore we combine their outputs to increase recall.
Next, we group all Indonesian words that share the same lemma, for example, for
minum we obtain {diminum, diminumkan, diminumnya, makan-minum, makananminuman,
meminum, meminumkan, meminumnya, meminum-minuman, minum, minum-minum,
minum-minuman, minuman, minumanku, minumannya, peminum, peminumnya, perminum,
terminum}. Because Malay and Indonesian are subject to the same morphological pro-
cesses and share many lemmata, we use such groups to propose Indonesian translation
options for a Malay word. We first lemmatize the target Malay word, and then we
find all groups of Indonesian words the Malay lemma belongs to. The union of these
groups is the set of morphological variants that we will add to the confusion network
as additional options for the Malay word. Although the different morphological forms
typically have different meanings, for example, minum (‘drink’) vs. peminum (‘drinker’),
in some cases the forms could have the same translation in English, for example, minum
(‘drink’, verb) vs. minuman (‘drink’, noun). This is our motivation for trying morpholog-
ical variants, even though they are almost exclusively derivational, and thus generally
quite risky as translational variants. For example, given seperminuman (‘drinking’) in the
Malay input, we first find its lemma minum, and then we get the above example set of
Indonesian words, which contains some reasonable substitutes such as minuman
(‘drink’).

We give each Malay–Indonesian morphological variant pair a score Score(i, m),
which is one minus the minimum edit distance ratio (Ristad and Yianilos 1998) between
the Malay word m and the Indonesian word i:

Score(i, m) = 1− EditDistance(i, m)
max(len(i), len(m))

(2)

where EditDistance(i, m) is the Levenshtein edit distance between the Indonesian word
i and the Malay word m. len(w) is the length of a word w (i.e., the number of characters
in w). In the confusion network, the weight of the original Malay word is set to 1. The
weight of a morphological option is Score(i, m) multiplied by the highest probability
for all pivoting variants for the Malay word—that is, we trust pivoting options more
than morphological options. As an example, assuming a morphological variant with
Score(i, m) of 0.9 and another pivoting option with a score of 0.8 (Equation (1)), we
would finally give the morphological one a weight of 0.9× 0.8 = 0.72 and the pivoting
option a weight of 0.8.

4.2 Phrase-Level Paraphrasing

Word-level paraphrasing ignores context when generating Indonesian variants, relying
only on the Indonesian language model to make the right contextual choice. This might
not be strong enough. Thus, we also try to model context more directly by generating
adaptation options at the phrase level.
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4.2.1 Inducing Phrase-Level Paraphrases. We use standard phrase-based SMT techniques
(Koehn et al. 2007) to build separate phrase tables for the Indonesian–English and the
Malay–English bitexts. We then pivot over the English phrases to generate Indonesian–
Malay phrase pairs. As in the case of word-level pivoting, we derive the paraphrase
probabilities from the corresponding probabilities in the two phrase tables, again using
Equation (1).

We then use the Moses phrase-based SMT decoder (Koehn et al. 2007) to “translate”
the Malay side of the Malay–English bitext to get closer to Indonesian. We use mono-
tone translation, that is, we allow no phrase reordering. We tune the parameters of
the log-linear model on a development set using minimum error rate training (MERT)
(Och 2003).

4.2.2 Cross-Lingual Morphological Variants. Although phrase-level paraphrasing models
context better, it remains limited in the size of its Indonesian vocabulary by the small
Indonesian–English bitext, just like word-level paraphrasing. We address this by trans-
forming the Indonesian sentences in the development and the test Indonesian–English
bitexts into confusion networks (Dyer 2007; Du, Jiang, and Way 2010), where we add
Malay morphological variants for the Indonesian words, weighting them based on
Equation (2). Note that we do not alter the training bitext; we just transform the source
side of the development and the test data sets into confusion networks.

4.3 Text Rewriting with a Specialized Decoder

In this section, we introduce a third approach to source language adaptation, which uses
a text rewriting decoder to iteratively find the best adaptation for an input sentence.

We first discuss the differences between traditional left-to-right decoders and the
text rewriting decoder we propose. We then introduce the decoding algorithm, the
different hypothesis producers, and the feature functions we use for source language
adaptation.

4.3.1 Differences from Typical Beam-Search Decoders. Beam-search decoders are widely
used in natural language processing applications such as SMT, for example, in the
phrase-based Moses decoder (Koehn et al. 2007), and automatic speech recognition
(ASR), for example, in the HTK hidden Markov model toolkit (Young et al. 2002). Given
an input sentence in the source language, various hypotheses about the output sentence
in the target language are generated in a left-to-right fashion.

Figure 3 shows an example search tree for the input sentence s1s2s3, given the
following translation options: {(s1, t2), (s1s2, t2t5), (s2s3, t6), (s3, t4)}, where si and tj
are source and target words, respectively. Starting from the initial hypothesis, each
hypothesis is expanded by adding one more target phrase to the output sentence. This
requires keeping a map of which words were translated so far, as the figure shows.
Hypotheses with the same maps and the same target output are recombined, and those
with the same number of translated words are kept in the same beam. For efficiency
reasons, beams are limited in size, and thus only the highest scoring hypotheses make
it in each beam. Note that all hypotheses before the last level in the search tree are
incomplete, which means that sentence-level feature functions could not be computed
exactly for them, for example, type/token ratio (Hardmeier et al. 2013) feature function
that models readability.
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S:---
T:

S:*--
T:t2

S:**-
T:t2  t5

S:-**
T:t6

S:--*
T:t4

S:***
T:t2  t6

S:*-*
T:t2  t4

S:***
T:t2  t5  t4

S:***
T:t6  t2

S:*-*
T:t4  t2

S:***
T:t4  t2  t5

Figure 3
An example search tree of a phrase-based SMT decoder. A source word (in S) that has already
been translated is marked with an asterisk (*). The target sentence is shown in T.

Because the decoders used in SMT and ASR typically work at the phrase- or the
word-level, they cannot make use of sentence-level features. In contrast, our text re-
writing decoder works at the sentence-level, that is, all hypotheses are complete sen-
tences. This means that we can use truly sentence-level features. We will show an
example in Section 7.5.

Figure 4 shows the search tree of our decoder for the same input sentence and the
same translation options as in the beam decoder example from Figure 3. The search
starts from the initial hypothesis, which is then expanded by replacing a source phrase
with a target phrase using one phrase pair from the translation options; then, the process
continues recursively with each of the new hypotheses.

s1s2s3

t2s2s3

t2 t5s3

s1 t6

s1s2 t4

t2 t6

t2s2 t4

t2 t5 t4

Figure 4
An example search tree of our text rewriting decoder. Each hypothesis is a complete sentence.
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4.3.2 Beam-Search Algorithm for Text Rewriting. Given an input sentence, our decoder
searches for the best rewriting. It repeats two steps for a number of iterations:r producing new sentence-level hypotheses from the hypotheses in the

current beams, which is carried out by hypothesis producersr scoring these new hypotheses to retain in the beams only the best ones,
which is done using feature functions

Algorithm 1 describes the search process, which uses lazy pruning, only retain-
ing in the beams the n-best hypotheses (as also implemented in the Moses decoder).
Hypotheses with the same number of modifications are grouped in the same beam.
The maximum number of iterations is equal to the number of tokens in the input
sentence, that is, we suppose each token needs at most one modification on average.
Upon completion, we select the best hypothesis across all beams.

Algorithm 1 Beam-Search Text Rewriting
INPUT: an INPUT sentence of length N
RETURN: the best rewritten form for INPUT

1: initialize hypothesisBeams[0...N] and hypothesisProducers;
2: add the initial hypothesis INPUT to beam hypothesisBeams[0];
3: for i← 0 to N-1 do
4: for each hypo in hypothesisBeams[i] do
5: for each producer in hypothesisProducers do
6: for each newHypo produced by producer from hypo do
7: add newHypo to hypothesisBeams[i+1];
8: prune hypothesisBeams[i+1];
9: return the best hypothesis in hypothesisBeams[0...N];

4.3.3 Hypothesis Producers. Hypothesis producers generate new hypotheses by modify-
ing existing ones. We use three types of hypothesis producers:r Word-level mapping: This hypothesis producer uses the word-level pivoted

Malay–Indonesian dictionary described in Section 4.1.1. For example,
given the hypothesis KDNK Malaysia dijangka cecah 8.1 peratus pada tahun
2010., if the dictionary has the translation pair (peratus, persen), the
following hypothesis will be produced: KDNK Malaysia dijangka cecah 8.1
persen pada tahun 2010.r Phrase-level mapping: This hypothesis producer uses the pivoted phrase
table described in Section 4.2.1. For example, if the pivoted phrase table
contains the phrase pair (dijangka cecah, akan mencapai), given the
hypothesis KDNK Malaysia dijangka cecah 8.1 peratus pada tahun 2010., the
new hypothesis KDNK Malaysia akan mencapai 8.1 peratus pada tahun 2010.
will be generated.r Cross-lingual morphological mapping: This hypothesis producer uses the
cross-lingual morphological variants dictionary from a Malay word
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to its Indonesian morphological variants described in Section 4.1.3. For
example, given the hypothesis dan untuk meringkaskan pengalamannya?, if
the dictionary contains the morphological variant pair (meringkaskan,
meringkas), the following hypothesis will be produced: dan untuk meringkas
pengalamannya?

The hypothesis producers presented here are all based on statistical methods.
In principle, we can also use some rule-based hypothesis producers to adapt Malay
to Indonesian. For example, the number format of Malay is different from that of
Indonesian: Malay numbers are written in accordance with the British convention,
that is, “.” is the decimal point and “,” denotes digit grouping, whereas in Indonesian,
the roles of “.” and “,” are switched. Thus, we can build a rule-based hypothesis
producer to convert Malay numbers to Indonesian ones, for example, which would
convert the hypothesis KDNK Malaysia dijangka cecah 8.1 peratus pada tahun 2010. to
KDNK Malaysia dijangka cecah 8,1 peratus pada tahun 2010. However, such a rule-based
hypothesis producer would be language-specific. In the present work, we have chosen
to stick to statistical hypothesis producers only in order to keep our decoder as
language-independent as possible. This makes it potentially applicable to many closely
related language pairs, which we will demonstrate in Section 7.4.

4.3.4 Feature Functions. The text rewriting decoder assesses the quality of a hypothesis
based on a log-linear model and a number of feature functions, which can be grouped
into two general types.

The first type includes the count feature functions, which count the total number of
modifications that a given hypothesis producer has made. They allow the decoder to
distinguish good hypothesis producers from bad ones. More precisely, if the decoder
finds a specific hypothesis producer more useful than others, it can give it a higher
weight in order to let it perform more modifications.

The second type includes general feature functions such as:

r Indonesian language model score of the adapted “Indonesian” sentencer Word penalty, that is, the number of tokens in the hypothesisr Malay word penalty, that is, the number of Malay words in the hypothesis,
which are identified using bigram counts from the Indonesian language
model: A word w in a hypothesis . . .w−1ww1 . . . is considered a Malay
word if both bigrams w−1w and ww1 do not occur in the Indonesian
language model; note that it would be difficult to implement this feature
function in a phrase-based SMT decoder such as Moses (Koehn et al. 2007)
since hypotheses in Moses only contain incomplete sentences before the
last stack, and this feature function asks to see a future word w1 that has
not been generated yet for the last word w; of course, it could also be
implemented for words up to w−1, that is, ignoring the last word in the
hypothesis, but this would make the implementation different from what
is done for LM, and it would also require special treatment of the case of a
full hypothesis compared with how partial hypotheses are handled; and
the implementation would become even trickier if we want to use higher
order n-grams instead of bigrams.
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r Word-level mappings: the summation of the logarithms of all conditional
probabilities (see Equation (1)) used so farr Phrase-level mappings: We have four feature functions, each of which is
the summation of the logarithms of one of the four probabilities in the
pivoted phrase table, that is, forward/reverse phrase translation
probability and forward/reverse lexical weighting probabilityr Cross-lingual morphological mapping, that is, the summation of the
logarithms of all morphological variant mapping scores (see Equation (2))
used so far

4.3.5 Model. We use a log-linear model, which combines all features to obtain the score
for a hypothesis h as follows:

score(h) =
∑

i

λi fi(h) (3)

where fi is the ith feature function with weight λi.
The text rewriting decoder prunes bad hypotheses based on score(h); it also selects

the best hypothesis as the one with the highest score(h) across all beams.
We tune the weights of the feature functions on a development set using pairwise

ranking optimization or PRO (Hopkins and May 2011). We optimize BLEU+1 (Liang
et al. 2006), a sentence-level approximation of BLEU, as is standard with PRO.

4.4 Combining Bitexts

We have presented our source language adaptation approaches in Sections 4.1, 4.2, and
4.3. Now we explain how we combine the Indonesian–English bitext with the synthetic
“Indonesian”–English bitext we have generated. We consider the following three bitext
combination approaches:

Simple concatenation. Assuming the two bitexts are of comparable quality, we
simply train an SMT system on their concatenation.

Balanced concatenation with repetitions. The two bitexts are not directly com-
parable. For one thing, “Indonesian”–English is obtained from n-best lists, that is, it
has exactly n very similar variants for each Malay sentence. Moreover, the original
Malay–English bitext is much larger than the Indonesian–English one and now it has
further expanded n times to become “Indonesian”–English, which means it will heavily
dominate the concatenation. To counter balance this, we repeat the smaller Indonesian–
English bitext enough times to make its number of sentences roughly the same as
for “Indonesian”–English; then we concatenate them and train an SMT system on the
resulting bitext.

Sophisticated phrase table combination. Finally, we experiment with a method
for combining phrase tables proposed in Nakov and Ng (2009, 2012). The first phrase
table is extracted from word alignments for the balanced concatenation with repetitions,
which are then truncated so that they are kept for only one copy of the Indonesian–
English bitext. The second table is built from the simple concatenation. The two tables
are then merged as follows: All phrase pairs from the first one are retained, and to them
are added those phrase pairs from the second one that are not present in the first one.
Each phrase pair retains its original scores, which are further augmented with 1–3 extra
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feature scores indicating its origin: The first/second/third feature is 1 if the pair came
from the first/second/both table(s), and 0 otherwise. We experiment using all three,
the first two, or the first feature only; we also try setting the features to 0.5 instead of
0. This makes six combinations (0, 00, 000, .5, .5.5, .5.5.5); on testing, we use the one
that achieves the highest BLEU score on the development set.

Other possibilities for combining the phrase tables include using alternative de-
coding paths (Birch, Osborne, and Koehn 2007), simple linear interpolation, and direct
merging with extra features (Callison-Burch, Koehn, and Osborne 2006); they were
previously found inferior to the last two approaches above (Nakov and Ng 2009,
2012).

5. Experiments

With a small Indonesian–English bitext and a larger Malay–English bitext, we use three
approaches for source language adaptation to adapt the Malay side of the Malay–
English bitext to look like Indonesian, thus obtaining a synthetic “Indonesian”–English
bitext. With the synthetic bitext, we run two kinds of experiments:

r isolated, where we train an SMT system on the synthetic
“Indonesian”–English bitext onlyr combined, where we combine the synthetic bitext with the original
Indonesian–English bitext

In all experiments, we use the same Indonesian–English development set for tuning,
and the same Indonesian–English test set for evaluation; see below.

5.1 Data Sets

In our experiments, we use the following data sets, which are required for Indonesian–
English SMT:

r Indonesian–English training bitext (IN2EN): 28,383 sentence pairs;
915,192 English tokens; 796,787 Indonesian tokensr Indonesian–English dev bitext (IN2EN-dev): 2,000 sentence pairs; 37,101
English tokens; 35,509 Indonesian tokensr Indonesian–English test bitext (IN2EN-test): 2,018 sentence pairs; 36,584
English tokens; 35,708 Indonesian tokensr Monolingual English text (EN-LM): 174,443 sentences; 5,071,988 English
tokens

Note that the monolingual sentences of EN-LM were all collected in the same manner
and from the same domains as the other three bilingual texts, in order to reduce the
impact of domain mismatch.

We also use a Malay–English set, to be adapted to “Indonesian”–English, and
monolingual Indonesian text for building an Indonesian language model:
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r Malay–English training bitext (ML2EN): 290,000 sentence pairs; 8,638,780
English tokens; 8,061,729 Malay tokensr Monolingual Indonesian text (IN-LM): 1,132,082 sentences; 20,452,064
Indonesian tokens

We use two bitexts (IN2EN and ML2EN) to induce word-level and phrase-
level paraphrases as described in Sections 4.1.1 and 4.2.1, respectively. Moreover, in
Section 4.1.3, we use a large monolingual Indonesian corpus, IN-LM, in order to induce
Indonesian morphological variants for a Malay word. We built all these monolingual
and bilingual data sets from texts we crawled from the Internet.

We further needed a Malay–Indonesian development bitext in order to tune the
phrase-based SMT decoder in the phrase-level paraphrasing approach of Section 4.2.1,
and our source language adaptation decoder of Section 4.3. We created this bitext
synthetically: We translated the English side of the IN2EN-dev into Malay using
Google Translate,3 and we paired this translated Malay with the Indonesian side of
IN2EN-dev:

r Synthetic Malay–Indonesian dev bitext (ML2IN-dev): 2,000 sentence
pairs; 34,261 Malay tokens; 35,509 Indonesian tokens

5.2 Baseline Systems

We built five baseline systems – two using a single bitext, ML2EN or IN2EN, and three
combining ML2EN and IN2EN, using simple concatenation, balanced concatenation,
and sophisticated phrase table combination. The last combination is a very strong
baseline and the most relevant one that we need to improve upon.

We built each SMT system as follows. Given a training bitext, we built directed word
alignments using IBM model 4 (Brown et al. 1993) for both directions, and we combined
them using the intersect+grow heuristic (Och and Ney 2003). Based on these alignments,
we extracted phrase translation pairs of length up to seven, and we scored them to
build a phrase table, where each phrase pair has five features (Koehn 2013): forward
and reverse translation probabilities, forward and reverse lexicalized phrase transla-
tion probabilities, and a phrase penalty. We further used a 5-gram language model
trained using the SRILM toolkit (Stolcke 2002) with modified Kneser-Ney smoothing
(Kneser and Ney 1995). We combined all features in a log-linear model, namely: (1) the
five features in the phrase table, (2) a language model score, (3) a word penalty, that
is, the number of words in the output translation, and (4) distance-based reordering
cost.

We tuned the weights of these features by optimizing BLEU (Papineni et al. 2002)
on the development set IN2EN-dev using MERT (Och 2003), and we used them for
translation with the phrase-based SMT decoder of Moses.

We evaluated all systems on the same test set, IN2EN-test.

3 http://translate.google.com/.
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5.3 Isolated Experiments

In the isolated experiments, we train the SMT system on the adapted “Indonesian”–
English bitext only, which allows for a direct comparison to using ML2EN or IN2EN
only.

5.3.1 Using Word-Level Paraphrases. In our word-level paraphrasing experiments, we
adapted Malay to Indonesian using three kinds of confusion networks (CN) (see
Section 4.1.3 for details):r CN:word – using word-level pivoting onlyr CN:word′ – using word-level pivoting, with probabilities from word

alignments for IN2EN that were improved using ML2ENr CN:word′+morph – CN:word′ further augmented with cross-lingual
morphological variants

There are two parameters to tune on IN2EN-dev for the above confusion networks:
(1) the minimum pivoting probability threshold for the Malay–Indonesian word-level
paraphrases, and (2) the number of n-best Indonesian-adapted sentences that are to
be generated for each input Malay sentence. We try {0.001, 0.005, 0.01, 0.05} for the
threshold and {1, 5, 10} for n.

5.3.2 Using Phrase-Level Paraphrases. In our phrase-level paraphrasing experiments, we
used pivoted phrase tables (PPT) with the following features for each phrase table entry
(in addition to the phrase penalty; see Section 4.2 for more details):r PPT:phrase1 – only using the forward conditional translation probabilityr PPT:phrase4 – using all four conditional probabilitiesr PPT:phrase4::CN:morph – PPT:phrase4 with a cross-lingual morphological

confusion network for the dev/test Indonesian sentences

Here we tune one parameter only: the number of n-best Indonesian-adapted sen-
tences to be generated for each input Malay sentence; we try {1, 5, 10}. We tune the
phrase-level paraphrasing systems on ML2IN-dev.

5.3.3 Using a Text Rewriting Decoder. For our text rewriting decoder (DD), we con-
ducted four experiments with different hypothesis producers (see Section 4.3.3 for
more details):r DD:word′ – using only one hypothesis producer, word-level mapping,

whose dictionary contains word-level pivoting with probabilities from
word alignments for IN2EN that were improved using ML2ENr DD:word′+morph – adding one more hypothesis producer, a cross-lingual
morphological mapping hypothesis producer, which uses a dictionary of
cross-lingual morphological variantsr DD:phrase4 – only using one phrase-level mapping hypothesis producer,
which uses the same pivoted phrase table as PPT:phrase4
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r DD:phrase4+morph – this is DD:phrase4 with a cross-lingual morphological
mapping hypothesis producer as for DD:word′+morph

For the first two (word-based) experiments, we tuned the two parameters in
Section 5.3.1 on IN2EN-dev. For the last two (phrase-based) experiments, we only
needed to tune the second parameter of the two. We tried the same values for
the two parameters. We tuned the log-linear model of the text rewriting decoder on
ML2IN-dev.

We also tried to use the word-level and phrase-level hypothesis producers, but
this performed about the same as the phrase-level mapping hypothesis producer alone.
This may be because the two mappings are extracted from the word alignments of
the same Malay–English and Indonesian–English bitexts by pivoting. Thus, we can
expect that the phrase-level mapping already contains most, if not all, of the word-level
mapping.

5.4 Combined Experiments

These experiments assess the impact of our source language adapted bitext when
combined with the original Indonesian–English bitext IN2EN, as opposed to combining
ML2EN with IN2EN as was in the last three baselines above. We experimented with
the same three combinations: (1) simple concatenation, (2) balanced concatenation, and
(3) sophisticated phrase table combination. We tuned the parameters as before; for the
last combination, we further had to include in the tuning the extra phrase table features
(see Section 4.4 for details).

6. Results and Discussion

In this section, we present the results of our experiments. In all tables, statistically
significant improvements (p< 0.01), according to Collins, Koehn, and Kučerová’s (2005)
sign test, over the baseline are in bold; in case of two baselines, we use underline for the
second baseline.

6.1 Baseline Experiments

The results for the baseline systems are shown in Table 3. We can see that training
on ML2EN instead of IN2EN yields over 4 points absolute drop in BLEU (Papineni

Table 3
The five baselines. The subscript indicates the parameters found on IN2EN-dev and used
for IN2EN-test. The scores that are statistically significantly better than ML2EN and IN2EN
(p < 0.01, Collins’ sign test) are shown in bold and are underlined, respectively.

System BLEU

ML2EN 14.50
IN2EN 18.67

Simple concatenation 18.49
Balanced concatenation 19.79
Sophisticated phrase table combination 20.10(.5.5)
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et al. 2002) score, even though ML2EN is about 10 times larger than IN2EN and both
bitexts are from the same domain. This confirms the existence of important differences
between Malay and Indonesian. Simple concatenation does not help, but balanced
concatenation with repetitions improves by 1.12 BLEU points over IN2EN, which shows
the importance of giving IN2EN a proper weight in the combined bitext. This is further
reconfirmed by the sophisticated phrase table combination, which yields an additional
absolute gain of 0.31 BLEU points.

6.2 Isolated Experiments

Table 4 shows the results for the isolated experiments. We can see that word-level
paraphrasing (CN:*) improves by up to 5.56 and 1.39 BLEU points over the two
baselines (both results are statistically significant). Compared with ML2EN, CN:word
yields an absolute improvement of 4.41 BLEU points, CN:word′ adds another 0.59, and
CN:word′+morph adds 0.56 more. The scores for TER (v. 0.7.25) (Snover et al. 2006) and
METEOR (v. 1.3) (Banerjee and Lavie 2005) are on par with those for BLEU (NIST v. 13).

Table 4 further shows that the optimal parameters for the word-level systems
involve a very low probability cut-off, and a high number of n-best sentences. This
indicates that they are robust to noise, probably because bad source-side phrases are

Table 4
Isolated experiments. The subscript shows the parameters found on IN2EN-dev and used for
IN2EN-test. The superscript shows the absolute test improvement over the ML2EN and the
IN2EN baselines. Scores that are statistically significantly better than ML2EN and IN2EN
(p < 0.01, Collins’ sign test) are shown in bold and are underlined, respectively. The last line
shows system combination results using MEMT.

System n-gram precision
1-gr. 2-gr. 3-gr. 4-gr. BLEU TER METEOR

ML2EN (baseline) 48.34 19.22 9.54 4.98 14.50 67.14 43.28
IN2EN (baseline) 55.04 23.90 12.87 7.18 18.67 61.99 54.34

CN:word 54.50 24.41 13.09 7.35 18.91(+4.41,+0.24)
(0.005,10best) 61.94 51.07

CN:word′ 55.05 25.09 13.60 7.69 19.50(+5.00,+0.83)
(0.001,10best) 61.25 51.97

(i) CN:word′+morph 55.97 25.73 14.06 7.99 20.06(+5.56,+1.39)
(0.005,10best) 60.31 55.65

PPT:phrase1 55.11 25.04 13.66 7.80 19.58(+5.08,+0.91)
(10best) 60.92 51.93

PPT:phrase4 56.64 26.20 14.53 8.40 20.63(+6.13,+1.96)
(10best) 59.33 54.23

(ii) PPT:phrase4::CN:morph 56.91 26.53 14.76 8.55 20.89(+6.39,+2.22)
(10best) 59.30 57.19

DD:word′ 56.57 26.15 14.39 8.18 20.39(+5.89,+1.72)
(0.01,10best) 59.33 56.66

DD:word′+morph 56.74 26.22 14.41 8.18 20.46(+5.96,+1.79)
(0.005,10best) 59.50 56.89

DD:phrase4 57.14 26.49 14.72 8.49 20.85(+6.35,+2.18)
(10best) 58.79 57.33

(iii) DD:phrase4+morph 57.35 26.71 14.92 8.63 21.07(+6.57,+2.40)
(10best) 58.55 57.53

System combination: 58.46 27.64 15.46 9.07 21.76(+7.26,+3.09) 57.26 58.04
(i)+(ii)+(iii)
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unlikely to match the test-time input. Note also the effect of repetitions: Good word
choices are shared by many n-best sentences, and thus have higher probability.

The gap between ML2EN and IN2EN for unigram precision could be explained
by vocabulary differences between Malay and Indonesian. Compared with IN2EN,
all CN:* models have higher 2/3/4-gram precision. However, CN:word has lower uni-
gram precision, which could be due to bad word alignments, as the results for CN:word′

show.
When morphological variants are further added, the unigram precision improves

by almost 1 BLEU point over CN:word′. This shows the importance of morphology for
overcoming the limitations of the small Indonesian vocabulary of the IN2EN bitext.

The second part of Table 4 shows that phrase-level paraphrasing approach (PPT:*)
performs a bit better. This confirms the importance of modeling context for closely
related languages like Malay and Indonesian, which are rich in false friends and partial
cognates.

We further see that using more scores in the pivoted phrase table is better. Extending
the Indonesian vocabulary with cross-lingual morphological variants is still helpful,
though not as much as at the word-level.

The third part of Table 4 shows that text rewriting decoder (DD:*) performs even
better: It further increases the improvements up to 6.57 and 2.40 BLEU points absolutely
over the two baselines (statistically significant).

Finally, the combination of the output of the best PPT, CN, and DD systems using
MEMT (Heafield and Lavie 2010) yields even further gains, which shows that the
three approaches are somewhat complementary. The best BLEU score for our isolated
experiments is 21.76, which is already better than all five baselines in Table 3, including
the three bitext combination baselines, which only achieve up to 20.10.

6.3 Combined Experiments

Table 5 shows the performance of the three bitext combination strategies (see Section 4.4
for details) when applied to combine IN2EN with the original ML2EN (i), and with
various adapted versions of ML2EN (ii–iv).

We can see that for the word-level paraphrasing experiments (CN:*), all combina-
tions except CN:word perform significantly better than their corresponding baselines,
but the improvements are most sizeable for simple concatenation. Note that whereas
there is a difference of 0.31 BLEU points between the balanced concatenation and the
sophisticated combination for the original ML2EN, they differ little for the adapted
versions. This is probably due to the sophisticated combination assuming that the
second bitext is worse than the first one, which is not really the case for the adapted
versions: As Table 4 shows, they all outperform IN2EN.

Overall, phrase-level paraphrasing (PPT:*) performs a bit better than word-level
paraphrasing, and they are both outperformed by the text rewriting decoder (DD:*).
Finally, system combination with MEMT yields even further gains. These results are
consistent with those for the isolated experiments.

7. Further Analysis

In this section, we perform a more in-depth analysis of the obtained results.
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Table 5
Combined experiments: BLEU. The subscript indicates the parameters found on IN2EN-dev and
used for IN2EN-test. The absolute test improvement over the corresponding baseline (on top
of each column) is in superscript. The scores that are statistically significantly better than ML2EN
(p < 0.01, Collins’ sign test) are shown in bold. The last line shows system combination results
using MEMT.

Combination with Combining IN2EN with an adapted version of ML2EN

Simple Balanced Sophisticated
Concatenation Concatenation Combination

(i) + ML2EN (unadapted; baseline) 18.49 19.79 20.10(.5.5)

+ CN:word 19.99(+1.50)
(0.001,1best) 20.16(+0.37)

(0.001,10best) 20.32(+0.22)
(0.01,10best,.5.5)

+ CN:word′ 20.03(+1.54)
(0.05,1best) 20.80(+1.01)

(0.05,10best) 20.55(+0.45)
(0.05,10best,.5.5)

(ii) + CN:word′+morph 20.60(+2.11)
(0.01,10best) 21.15(+1.36)

(0.01,10best) 21.05(+0.95)
(0.01,5best,00)

+ PPT:phrase1 20.61(+2.12)
(1best) 20.71(+0.92)

(10best) 20.32(+0.22)
(1best,000)

+ PPT:phrase4 20.75(+2.26)
(1best) 21.08(+1.29)

(5best) 20.76(+0.66)
(10best,.5.5.5)

(iii) + PPT:phrase4::CN:morph 21.01(+2.52)
(1best) 21.31(+1.52)

(5best) 20.98(+0.88)
(10best,.5)

+ DD:word′ 20.67(+2.18)
(0.01,5best) 20.75(+0.96)

(0.001,10best) 21.16(+1.06)
(0.01,10best,.5.5.5)

+ DD:word′+morph 20.78(+2.29)
(0.01,1best) 21.25(+1.46)

(0.01,5best) 21.41(+1.31)
(0.005,10best,.5.5)

+ DD:phrase4 20.91(+2.42)
(5best) 21.20(+1.41)

(5best) 20.99(+0.89)
(10best,000)

(iv) + DD:phrase4+morph 21.33(+2.84)
(5best) 21.42(+1.63)

(5best) 21.08(+0.98)
(10best,000)

System combination: 21.74(+3.25) 21.81(+2.02) 22.03(+1.93)

(i)+(ii)+(iii)+(iv)

7.1 Paraphrasing Non-Indonesian Words Only

In the CN:* experiments, we paraphrased each word in the Malay input. This was
motivated by the existence of false friends such as polisi and of partial cognates such as
nanti. However, doing so also risks proposing worse alternatives, for example, changing
beliau (‘he’, respectful) to ia (‘he’, casual), which the weights on the confusion network
edges and the language model would not always handle properly. Thus, we tried
paraphrasing non-Indonesian words only, that is, those not in IN-LM. Because IN-LM
occasionally contains some Malay-specific words, we also tried paraphrasing words
that occur at most t times in IN-LM. Table 6 shows that this can yield a loss of up to
1 BLEU point for t = 0; 10, and a bit less for t = 20; 40.

7.2 Manual Evaluation

We asked a native Indonesian speaker who does not speak Malay to judge whether
our “Indonesian” adaptations are more understandable to him than the original Malay
input for 100 random sentences. We used two extremes: the conservative CN:word,t=0
vs. CN:word′+morph. Because the latter is noisy, the top three choices were judged
for it. Table 7 shows that CN:word,t=0 is better/equal to the original 53%/31% of the
time. Thus, it is a very good step in the direction of turning Malay into Indonesian.
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Table 6
Paraphrasing non-Indonesian words only: those appearing at most t times in IN-LM.
The subscript indicates the parameters found on IN2EN-dev and used for IN2EN-test.

System BLEU

CN:word, t = 0 17.88(0.01,5best)
CN:word, t = 10 17.88(0.05,10best)
CN:word, t = 20 18.14(0.01,5best)
CN:word, t = 40 18.34(0.01,5best)
CN:word (i.e., paraphrase all) 18.91(0.005,10best)

In contrast, CN:word′+morph is typically worse than the original; moreover, those at
rank 2 are a bit better than those at rank 1; even compared to the best in top 3, the
better:worse ratio is 45%:43%. Still, this latter model works better, which means that
phrase-based SMT systems are robust to noise and prefer more variety rather than better
translations in the training bitext. That is, humans usually like high precision, whereas
what the downstream SMT system really needs should be high recall. Note also that
the judgments were at the sentence level, although phrases are sub-sentential, that is,
there can be many good phrases to be extracted from a “bad” sentence. For example,
CN:word′+morph adapted perisian navigasi kereta 3D di pasaran Malaysia menjelang akhir
tahun (‘3D car navigation software hits Malaysia by year-end’) to the following three
versions (changes are underlined):

r pertama kali mobil 3D di pasar Malaysia pada akhir tahunr lunak navigasi mobil 3D di pasar Malaysia pada akhir tahunr perangkat navigasi mobil 3D di pasar Malaysia pada akhir tahun

All three converted manjelang (‘by’) to pada (‘at’), which is not needed, as manjelang is
also an Indonesian word. Our human translator did not like the first two versions, but
liked the last one better, compared to the original Malay sentence. The first two versions
did not adapt perisian (‘software’) correctly, but all three successfully adapted kereta to
mobil (‘car’), and also pasaran to pasar (‘market’), which would encourage good phrase
pairs in the phrase table extracted from the adapted bitext.

Table 7
Human judgments: Malay versus adapted “Indonesian.” A subscript shows the ranking of the
sentences, and the parameter values are those from Tables 4 and 6.

System Better Equal Worse

CN:word, t = 0(Rank1) 53% 31% 16%
CN:word′+morph(Rank1) 38% 8% 54%
CN:word′+morph(Rank2) 41% 9% 50%
CN:word′+morph(Rank3) 32% 11% 57%
CN:word′+morph(Ranks:1−3) 45% 12% 43%
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7.3 Reversed Adaptation

In all these experiments, we were adapting the Malay sentences to look like Indonesian.
Here we try to reverse the direction of adaptation, that is, to adapt Indonesian to Malay:
We thus built an Indonesian-to-Malay confusion network for each dev/test Indonesian
sentence using word-level paraphrases extracted with the method of Section 4.1.1. We
then use the confusion network as an input to a Malay–English SMT system trained on
the ML2EN data set. We tried two variations of this idea:r lattice: Use Indonesian-to-Malay confusion networks directly as input to

the ML2EN SMT system; that is, tune a log-linear model using confusion
networks for the source side of the IN2EN-dev data set, and then evaluate
the tuned system using confusion networks for the source side of the
IN2EN-test dataset.r 1-best: Decode the Indonesian-to-Malay confusion networks for the
source side of IN2EN-dev and IN2EN-test with a Malay language model
(trained on 41,842,640 Malay tokens in the same domain as the ML2EN
data set) to get the 1-best outputs. Then pair each 1-best output with the
corresponding English sentence. Finally, get an adapted “Malay”–English
development set and an adapted “Malay”–English test set, and use them
to tune and evaluate the ML2EN SMT system.

Table 8 shows that both variations perform worse than CN:word. We believe this is
because lattice encodes many options, but does not use a Malay language model, and
1-best uses a Malay language model, but has to commit to 1-best. In contrast, CN:word
uses both n-best outputs and an Indonesian language model. Designing a similar
set-up for reversed adaptation is a research direction that we would like to pursue
in future work, since the two reversed adaptation approaches have some advantages
over the three adaptation approaches proposed in Section 4; for example, the reversed
approaches could be more efficient.

7.4 Adapting Bulgarian to Macedonian to Help Macedonian–English Translation

In order to show the applicability of our framework to other closely related languages
and other domains, we experimented with Macedonian (MK) and Bulgarian (BG),
using data from a different, non-newswire domain: the OPUS corpus of movie subtitles
(Tiedemann 2009). We used data sets of sizes that are comparable to those in the
previous Malay–Indonesian experiments: 160K MK2EN and 1.5M BG2EN sentence
pairs (1.2M and 11.5M English words). Because the sentences of movie subtitles were

Table 8
Reversed adaptation: Indonesian to Malay. The subscript indicates the parameters found on
IN2EN-dev and used for IN2EN-test.

System BLEU

CN:word (Malay→Indonesian) 18.91(0.005,10best)

CN:word (Indonesian→Malay) – lattice 17.22(0.05)
CN:word (Indonesian→Malay) – 1-best 17.77(0.001)
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Table 9
Improving Macedonian–English SMT by adapting Bulgarian to Macedonian. The BLEU scores
that are significantly better (p < 0.01) than BG2EN and MK2EN are in bold and underlined,
respectively. The last line shows system combination results using MEMT.

System BLEU TER METEOR

BG2EN (baseline) 24.57 57.64 41.60
MK2EN (baseline) 26.46 54.55 46.15

Balanced concatenation of MK2EN with an adapted BG2EN

+ BG2EN (unadapted) 27.33 54.61 48.16
+ CN:word′+morph 27.97 54.08 49.65
+ PPT:phrase4::CN:morph 28.38 53.35 48.21
+ DD:phrase4+morph 28.44 53.51 50.95

Combining last four 29.35 51.83 51.63

short, we used 10K MK2EN sentence pairs for tuning and testing (77K and 72K English
words), respectively. For language modeling, we used 9.2M Macedonian and 433M
English words.

Table 9 shows that all three approaches (CN:*, PPT:*, and DD:*) outperform the
balanced concatenation with unadapted BG2EN. Moreover, system combination with
MEMT improves even further. This indicates that our approach can work for other
pairs of closely related languages and even for other domains.

We should note that the improvements here are less sizeable than those for Malay–
Indonesian adaptation. This may be because our monolingual Macedonian data set is
much smaller than the monolingual Indonesian data set (10M Macedonian vs. 20M
Indonesian words). Also, our monolingual Macedonian data set is too noisy, because
it contains many optical character recognition errors, typos, concatenated words, and
even some Bulgarian text. Moreover, Macedonian and Bulgarian are arguably some-
what more dissimilar than Malay and Indonesian, as can be seen in Table 1.

7.5 Improving the Readability of the Adapted Bitext

Motivated by Hardmeier et al. (2013), we also experimented with two sentence-level fea-
tures that aim to improve the readability of the source side of the adapted “Indonesian”–
English bitext. The two features are type/token ratio (TTR) and word variation index
(OVIX) (Stymne et al. 2013). The latter is a reformulation of TTR that is less sensitive
to sentence length. The definitions of TTR and OVIX are shown in Equations (4) and
(5), respectively, where Count(tokens) is the number of tokens, and Count(types) is the
number of word types.

TTR =
Count(tokens)
Count(types) (4)

OVIX =
log(Count(tokens))

log(2− log(Count(types))
log(Count(tokens)) )

(5)
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Table 10
Isolated experiments with readability features, TTR and OVIX. The subscript indicates the
parameters found on IN2EN-dev and used for IN2EN-test. The scores that are statistically
significantly better than ML2EN and IN2EN (p < 0.01, Collins’ sign test) are shown in bold and
are underlined, respectively.

System n-gram precision BLEU
1-gr. 2-gr. 3-gr. 4-gr.

ML2EN (baseline) 48.34 19.22 9.54 4.98 14.50
IN2EN (baseline) 55.04 23.90 12.87 7.18 18.67

DD:phrase4 57.14 26.49 14.72 8.49 20.85(10best)
DD:phrase4+morph 57.35 26.71 14.92 8.63 21.07(10best)

DD:phrase4+ttr 56.75 26.18 14.53 8.38 20.63(10best)
DD:phrase4+morph+ttr 57.20 26.52 14.75 8.47 20.86(10best)
DD:phrase4+ovix 57.05 26.30 14.59 8.39 20.70(10best)
DD:phrase4+morph+ovix 57.12 26.44 14.64 8.39 20.75(5best)

We added the two features to the best isolated systems (DD:phrase4 and
DD:phrase4+morph) in Table 4. The results are shown in Table 10, where we can see that
the two features yield slightly lower BLEU scores, which is similar to what Hardmeier
et al. (2013) observed. Hardmeier et al. (2013) also found that improving readability
may result in a lower BLEU score, as simple texts would likely not match complicated
reference translations, especially if the reference translations were not produced with
high readability in mind in the first place.

7.6 Our Text Rewriting Decoder vs. Phrase-Level Paraphrasing

The results of our experiments show that phrase-level paraphrasing outperformed
word-level paraphrasing, and they were both outperformed by the text rewriting
decoder. Here, we discuss the differences between our text rewriting decoder and using
phrase-level paraphrasing with a standard SMT phrase-based decoder like Moses:r The standard phrase-based SMT decoder works at the phrase level,

whereas our text rewriting decoder works at the sentence level, which
allows it to make use of sentence-level features (e.g., the readability
features in Section 7.5).r Because of the general framework of our text rewriting decoder presented
in Section 4.3, it can use a broader type of feature functions (e.g., a Malay
word penalty, which would be hard to integrate in an SMT decoder, as
discussed in Section 4.3.4).r Adding the cross-lingual morphological variants to the text rewriting
decoder is more straightforward, that is, as a hypothesis producer. In
contrast, in the phrase-level paraphrasing approach, we had to transform
the sentences in the development and the test sets into confusion networks,
which contain the additional morphological variants. Alternatively, we
could have also hacked the phrase tables to include the morphological
variants.
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r The text rewriting decoder can easily use rule-based hypothesis producers,
for example, the number adaptation discussed in Section 4.3.3 can be
added to the decoder as a hypothesis producer. It could also be
implemented using XML markup in the Moses SMT decoder (Koehn 2013).

Ultimately, the greatest strength of our decoder is its flexibility. It provides access to
a wide space of feature functions and hypothesis producers, and allows us to easily test
many different ideas. Furthermore, because the original input sentence could be itself a
valid hypothesis, the structure of evaluating rewrites is a natural fit to our problem.

8. Conclusion and Future Work

We have presented work on improving machine translation for a resource-poor lan-
guage by making use of resources for a related resource-rich language. This is an
important line of research because most world languages remain resource-poor for
machine translation, while many, if not most, of them are actually related to some
resource-rich language(s). We have proposed three approaches, which all adapt a bitext
for a related resource-rich language to get closer to the resource-poor one: (1) word-level
paraphrasing using confusion networks, (2) phrase-level paraphrasing using pivoted
phrase tables, and (3) adaptation using a specialized text rewriting decoder.

More precisely, assuming a large RICH–TGT bitext for a resource-rich language and
a small POOR–TGT bitext for a related resource-poor language, we use one of the three
proposed approaches to adapt the RICH side of the RICH–TGT bitext to get closer to
POOR, thus obtaining a synthetic “POOR”–TGT bitext, which we then combine with
the original POOR–TGT bitext to improve the translation from POOR to TGT.

Using a large bitext for the resource-rich Malay–English language pair and a small
bitext for the resource-poor Indonesian–English language pair, and adapting the former
to look like the latter, we have achieved very significant improvements over several
baselines: (1) +7.26 BLEU points over an unadapted version of the Malay–English bitext,
(2) +3.09 BLEU points over the Indonesian–English bitext, and (3) 1.93–3.25 BLEU
points over three bitext combinations of the Malay–English and Indonesian–English
bitexts. We thus have shown the potential of the idea that source-language adaptation
of a resource-rich bitext can improve machine translation for a related resource-poor
language. Moreover, we have demonstrated the applicability of the general approach to
other languages and domains.

The work presented here is of importance for resource-poor machine translation
because it can provide a useful guideline for people building statistical machine trans-
lation systems for resource-poor languages. They can adapt bitexts for related resource-
rich languages to the resource-poor language, and thus subsequently improve the
resource-poor language translation using the adapted bitexts.

This work leaves several interesting directions for future research:

r One direction is to add more word editing operations, for example, word
deletion, insertion, splitting, and concatenation (because we mainly
focused on word substitution in this study).r Another promising direction is to add more sentence-level feature
functions to the text rewriting decoder to further improve language
adaptation.
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r Future work could also experiment with other phrase table combination
methods, for example, Foster and Kuhn (2007) proposed a mixture model
whose weights are learned with an EM algorithm (Foster, Chen, and Kuhn
2013).r Another direction is to add word reordering. In the current work, we
assume no word reordering is necessary (apart from what can be achieved
within a phrase), but there actually can exist word-order differences
between closely related languages.r A further direction is to utilize the relationships between the source and
the target sides of the input resource-rich bitext to perform language
adaptation, since only the source side was used in our current work. For
example, Malay–Indonesian adaptation may benefit from adapting a
Malay word, considering the English words that this Malay word is
aligned to in the Malay–English bitext.r Another direction is to experiment with other closely related language
pairs, for example, the language pairs mentioned in Section 1.r Finally, further work may apply the language adaptation idea to other
linguistic problems, for example, adapt the Malay training data for
part-of-speech tagging to “Indonesian” in order to help Indonesian
part-of-speech tagging.
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