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In this article, we investigate aspects of sentential meaning that are not expressed in local
predicate–argument structures. In particular, we examine instances of semantic arguments that
are only inferable from discourse context. The goal of this work is to automatically acquire and
process such instances, which we also refer to as implicit arguments, to improve computational
models of language. As contributions towards this goal, we establish an effective framework
for the difficult task of inducing implicit arguments and their antecedents in discourse and
empirically demonstrate the importance of modeling this phenomenon in discourse-level tasks.

Our framework builds upon a novel projection approach that allows for the accurate de-
tection of implicit arguments by aligning and comparing predicate–argument structures across
pairs of comparable texts. As part of this framework, we develop a graph-based model for predicate
alignment that significantly outperforms previous approaches. Based on such alignments, we
show that implicit argument instances can be automatically induced and applied to improve a
current model of linking implicit arguments in discourse. We further validate that decisions on
argument realization, although being a subtle phenomenon most of the time, can considerably
affect the perceived coherence of a text. Our experiments reveal that previous models of coherence
are not able to predict this impact. Consequently, we develop a novel coherence model, which
learns to accurately predict argument realization based on automatically aligned pairs of implicit
and explicit arguments.

1. Introduction

The goal of semantic parsing is to automatically process natural language text and map
the underlying meaning of text to appropriate representations. Semantic role labeling
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induces shallow semantic representations, so-called predicate–argument structures, by
processing sentences and mapping them to predicates and associated arguments. Argu-
ments of these structures can, however, be non-local in natural language text, as shown
in Example 1.

Example 1
(a) El Salvador is the only Latin American country which has troops in Iraq.

(b) Nicaragua withdrew its troops last month.1

Applying a semantic role labeling system on sentence (1b) produces a representation
that consists of the predicate withdraw, a temporal modifier (last month) and two asso-
ciated arguments: the entity withdrawing (Nicaragua) and the thing being withdrawn
(its troops). From the previous sentence (1a), we can additionally infer a third argument:
namely, the source from which Nicaragua withdrew its troops (Iraq). By leaving this
piece of information implicit, the text fragment in sentence (1b) illustrates a typical case
of non-local, or implicit, role realization (Gerber and Chai 2012). In this article, we view
implicit arguments as a discourse-level phenomenon and treat corresponding instances
as implicit references to discourse entities.

Taking this perspective, we build upon previous work on discourse analysis. Fol-
lowing Sidner (1979) and Joshi and Kuhn (1979), utterances in discourse typically focus
on a set of salient entities, which are also called the foci or centers. Using the notion of
centers, Grosz, Joshi, and Weinstein (1995) defined the Centering framework, which
relates the salience of an entity in discourse to linguistic factors such as choice of
referring expression and syntactic form.2 Both extremes of salience, that is, contexts of
referential continuity and irrelevance, can also be reflected by the non-realization of an
entity (Brown 1983). Specific instances of this phenomenon, so-called zero anaphora,
have been well-studied in pro-drop languages such as Japanese (Kameyama 1985),
Turkish (Turan 1995), and Italian (Di Eugenio 1990). For English, only a few studies
exist that explicitly investigated the effect of non-realizations on coherence. Existing
work suggests, however, that indirect references and non-realizations are important
for modeling and measuring coherence (Poesio et al. 2004; Karamanis et al. 2009),
respectively, and that such phenomena need to be taken into consideration to explain
local coherence where adjacent sentences are neither connected by discourse relations
nor in terms of coreference (Louis and Nenkova 2010).

In this work, we propose a new model to predict whether realizing an argument
contributes to local coherence in a given position in discourse. Example 1 illustrated
a text fragment, in which argument realization is necessary in the first sentence but
redundant in the second. That is, mentioning Iraq in the second sentence is not neces-
sary (for a human being) to understand the meaning of the text. In contrast, making
both references explicit, as shown in Example 2, would be redundant and could lead
to the perception that the text is merely a concatenation of two independent sen-
tences — rather than a set of adjacent sentences that form a meaningful, or coherent,
discourse.

1 In the remainder of this article, we use the following notation for predicate–argument structures:
underlined words refer to predicates and [possibly empty] constituents in [square brackets] refer to
arguments.

2 We note that the relation between coherence and choice of referring expressions has also been studied
outside of the Centering framework. A comprehensive overview of research in linguistics on this subject
can be found in Arnold (1998).
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Example 2
(a) El Salvador is now the only Latin American country which has troops in Iraq.

(b) [Nicaragua] withdrew [its troops] [from Iraq] last month.

The phenomenon of implicit arguments has neither been extensively studied in the
context of semantic role labeling nor in coherence modeling. One of the main reasons
for this lies in the fact that models for these tasks are typically developed on the
basis of annotated corpora. In contrast, implicit arguments are not overt in text and
are difficult to uncover, hence there exist only few and small data sets that contain
respective annotations explicitly. In this article, we present a novel framework for
computationally inducing a corpus with automatic annotations of implicit arguments and
their respective antecedents in discourse. To achieve this goal, our framework exploits pairs
of comparable texts, which convey information about the same events, states, and entities
but potentially differ in terms of depth and perspective. These differences can also affect
argument realization, making it possible to identify instances of co-referring but only
partially overlapping argument structures. Given automatically induced instances of
implicit arguments and their document contexts, we show how these can be utilized
to enhance current models of local coherence and implicit argument linking. The re-
sulting models and research insights will be of importance for many applications that
involve the understanding or generation of natural language text beyond the sentence
level.

2. Overview

The goal of this work is to provide data and methods to better capture the phenomenon
of implicit arguments in semantic role labeling and coherence modeling. To accomplish
this goal, we propose inducing suitable training data automatically. For semantic role
labeling, this kind of training data will contain explicit links between implicit arguments
and their respective discourse antecedents; for modeling coherent argument realization,
the data will also provide discourse contexts of explicit and implicit references to the
same entity. We propose inducing such information by exploiting pairs of comparable
texts. Our motivation for this lies in the fact that comparable texts convey by and large
the same information but differ in depth and presentation. This means that while we
expect two comparable texts to contain references to the same events and participants,
an entity might be understood implicitly at a specific point in one text (because it can be
inferred from context), whereas an explicit mention might be necessary in a comparable
text (given the different context). Based on this assumption, our method aims to find
complementary (explicit) information in pairs of texts, which can be aligned and
subsequently be projected to identify missing (implicit) pieces in one another. Hence,
we separate our task into two parts. In the first part, described in Section 4, we ask the
question:

Q1: How can we detect predicate–argument structures that are shared across
two discourses?

Based on a corpus of comparable texts, we propose a new task of aligning predicate–
argument structures (PASs) across complete discourses. We define this task on the
basis of semantic annotations, which we compute automatically using a state-of-the-art
semantic role labeler. For the alignment task itself, we develop a graph-based clustering
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model. We show that by taking into account features on the levels of predicate, argu-
ments, and discourse context, this model is able to predict accurate alignments across
comparable texts, without relying on preprocessing methods that identify parallel text
fragments. Based on automatically aligned structures, the second part of our approach
aims to identify and resolve implicit arguments by projecting explicit information from
one text to another. The question for this part of our approach (cf. Section 5) is:

Q2: How can we find implicit arguments and their antecedents in discourse?

Our approach to answering this question relies solely on information that can be
computed automatically: We first identify potential instances of implicit arguments by
comparing two aligned predicate–argument structures; for each entity that is mentioned
in one PAS (explicit argument) but not in an aligned structure (implicit argument), we
then apply a cross-document coreference resolution technique to also find co-referring
entity mentions in the document in which an implicit reference was found.

Finally, we demonstrate the utility of automatically induced instances of implicit
arguments in two task-based settings: linking arguments in discourse and modeling
local coherence. The question here is:

Q3: How can induced argument instances and their respective discourse
contexts be utilized to enhance NLP models?

We address both tasks by applying our automatically induced data set as training
material to improve the performance of supervised models. For the first task, described
in Section 6, we apply our data to enhance training of an existing system that identifies
and links implicit arguments in discourse. To evaluate the impact of our induced
data set, we test the modified model on a standard evaluation data set, on which we
compare our results with those of previous work. For the second task, we develop a
new coherence model that predicts whether an argument realization or non-realization
in context improves the perceived coherence of the affected segment in discourse. We
evaluate this coherence model in an intrinsic evaluation scenario, in which we compare
model predictions to human judgments on argument use (cf. Section 7).

3. Background

This article draws on insights from computational linguistic research on implicit ar-
guments and coherence modeling as well as from previous work on inducing se-
mantic resources. It is further related to recent work in paraphrasing and event
coreference.

3.1 Implicit Arguments and Coherence Modeling

The goal of this work is to induce instances of implicit arguments, together with their
discourse antecedents, and to utilize them in semantic processing and coherence mod-
eling. This section summarizes previous work on implicit arguments and coherence
modeling, and provides an outlook on how instances of implicit arguments can be of
use in a novel entity-based model of local coherence.

Implicit Arguments. The role of implicit arguments was studied early on in the context
of semantic processing (Fillmore 1986; Palmer et al. 1986), although most semantic
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role labeling systems nowadays operate solely within local syntactic structures and
do not perform any additional inference regarding missing information. First data sets
that focus on implicit arguments have only recently become available: Ruppenhofer
et al. (2010) organized a SemEval shared task on “linking events and participants in
discourse,” Gerber and Chai (2012) made available implicit argument annotations for
NomBank (Meyers, Reeves, and Macleod 2008), and Moor, Roth, and Frank (2013)
provided annotations for parts of the OntoNotes corpus (Weischedel et al. 2011). All
three resources are, however, severely limited: Annotations in the latter two studies are
restricted to 10 and 5 predicate types, respectively; the training set of the SemEval task,
in contrast, consists of full-text annotations for all occurring predicates but contains
only 245 instances of resolved implicit arguments in total. All groups working on
the shared task identified data sparsity as one of the main issues (Chen et al. 2010;
Ruppenhofer et al. 2012; Laparra and Rigau 2013). Silberer and Frank (2012) point out
that additional training data can be heuristically created by treating anaphoric pronoun
mentions as implicit arguments. Their experimental results confirmed that artificial
training data can indeed improve results, but only when obtained from corpora with
manual semantic role annotations (on the sentence level) and gold coreference chains.
As observed in related work on classifying discourse relations, information learned
from artificial training data might not always generalize well to naturally occurring
examples (Sporleder and Lascarides 2008). To automatically create data that is linguisti-
cally more similar to manually labeled implicit arguments, we introduce an alternative
method that induces instances of implicit arguments from a raw corpus of comparable
texts.

Coherence Modeling. In the context of coherence modeling, much previous work has fo-
cused on entity-based approaches, with the most prominent model being the entity grid
by Barzilay and Lapata (2005). This model has originally been proposed for automatic
sentence ordering but has since also been applied in coherence evaluation and readabil-
ity assessment (Barzilay and Lapata 2008; Pitler and Nenkova 2008), story generation
(McIntyre and Lapata 2010), and authorship attribution (Feng and Hirst 2014). Based
on the original model, several extensions have been proposed: For example, Filippova
and Strube (2007) and Elsner and Charniak (2011b) suggested additional features to
characterize semantic relatedness between entities and features specific to single en-
tities, respectively. Other entity-based approaches to coherence modeling include the
pronoun model by Charniak and Elsner (2009) and the discourse-new model by Elsner
and Charniak (2008). All of these approaches are, however, solely based on explicit
entity mentions, resulting in insufficient representations when dealing with inferable
references. Example 3 illustrates this shortcoming.

Example 3 implicit roles
(a) 27 tons of cigarettes were picked up in Le Havre. agent

(b) The containers had arrived yesterday. content, destination

The two sentences in the given example do not share any explicit references to the same
entity. Hence, none of the aforementioned models is able to correctly predict that both
sentences cohere in the presented order—but not in the reversed order.

As discussed in more detail by Poesio et al. (2004), such cases can still be re-
solved when taking into account indirect realizations, that is, associative references to a
discourse entity. Accordingly, recent work by Hou, Markert, and Strube (2013) proposed
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considering bridging resolution to fill specific gaps in the entity grid model. Follow-
ing this argument, the containers in sentence (3b) could be understood as a bridging
anaphor that refers back to the 27 tons of cigarettes in sentence (3a). As mentioned in
the NomBank annotation guidelines (Meyers 2007), some cases of nominal predicates
and their arguments do coincide with bridging relations and we treat them as implicit
arguments in this article. For example, when interpreting container as a nominaliza-
tion of the verbal predicate CONTAIN, the cigarettes from the previous sentence can
be understood as one of its arguments: namely, its content. Not all cases of implicit
arguments involve bridging anaphora and vice versa, however. The main difference lies
in the fact that bridging typically describes a relation between entities. Hence, bridging
instances only coincide with those of implicit arguments if the bridging anaphor is
linguistically realized as a (nominal) predicate (container in Example 3b). In contrast,
implicit arguments frequently form parts of predicate–argument structures that refer to
events, states, and entities that are not bridging anaphora. For example, the destination
of the predicate ARRIVE in sentence (3b) can also be interpreted as an implicit argument,
namely, Le Havre from the preceding context.

Taking implicit arguments into consideration, we can see that the second sentence
refers back to two previously introduced entities, Le Havre and cigarettes, reflecting the
fact that the sentences cohere in the presented order. In Section 7, we present a novel
model of local coherence that aims to capture the effect of argument realizations on
perceived coherence. As an overall goal, this model should be able to predict whether an
entity reference should be realized explicitly to establish (local) coherence—or whether
the entity can already be understood from context. Based on such predictions, the model
can be applied in text generation to ensure that necessary references are explicit and that
redundant repetitions are avoided.

3.2 Semantic Resource Induction

The methods applied in this article are based on ideas from previous work on induc-
ing semantic resources from parallel and comparable texts. Most work in this direction
has been done in the context of cross-lingual settings, including the learning of transla-
tions of words and phrases using statistical word alignments (Kay and Röscheisen
1993; DeNero, Bouchard-Côté, and Klein 2008, inter alia) and approaches to pro-
jecting annotations from one language to another (Yarowsky and Ngai 2001;
Kozhevnikov and Titov 2013, inter alia). In the following, we discuss previous ap-
proaches to annotation projection as well as related work in paraphrasing and event
coreference.

Annotation Projection. A widespread method for the induction of semantic resources is
the so-called annotation projection approach. The rationale of this approach is to induce
annotated data in one language, given already-annotated instances in another language.
As an example, semantic role annotations of a text in English can be transferred to a
parallel text in order to induce annotated instances for a lexicon in another language
(Padó and Lapata 2009). In previous work, this method has been applied on various
levels of linguistic analysis: from syntactic information in the form of part-of-speech
tags and dependencies (Yarowsky and Ngai 2001; Hwa et al. 2005), through anno-
tation of temporal expressions and semantic roles (Spreyer and Frank 2008; van der
Plas, Merlo, and Henderson 2011), to discourse-level phenomena such as coreference
(Postolache, Cristea, and Orasan 2006). All of the aforementioned instances of the
projection approach make use of the same underlying technique: Firstly, words are
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aligned in a parallel corpus using statistical word alignment; secondly, annotations on a
single word or between multiple words in one text are transferred to the corresponding
aligned word(s) in the parallel text. This procedure typically assumes that two parallel
sentences express the same meaning. A notable exception is the work by Fürstenau
and Lapata (2012), which utilizes alignments between syntactic structures to “project”
semantic role information from a role-annotated corpus to unseen sentences that are
selected from a corpus in the same language.

In our work, we apply annotation projection to monolingual comparable texts. In
comparison to parallel texts, we have to account for potential differences in perspective
and detail that make our task—in particular, the alignment sub-task—considerably
more difficult. In contrast to Fürstenau and Lapata’s setting, which involves incompa-
rable texts, we assume that text pairs in our setting still convey information on the same
events and participants. This means that in addition to aligning predicate–structures
across texts, we can also merge complementary details realized in each structure. We
achieve this by making use of the same principle that underlies the projection approach:
Given annotation that is available in one text (explicit argument), we project this in-
formation to a text in which the corresponding annotation is not available (implicit
argument). Because our task is based in a monolingual setting, we can make use of
the same preprocessing tools across texts.

Paraphrasing and Event Coreference. We overcome the difficulty of inducing word align-
ments across comparable texts by computing alignments on the basis of predicate–
argument structures. Using predicate–argument structures as targets makes our setting
related to previous work on paraphrase detection and coreference resolution of event
mentions. Each of these tasks focuses, however, on a different level of linguistic analysis
from ours: Following the definitions embraced by Recasens and Vila (2010), “para-
phrasing” is a relation between two lexical units that have the same meaning, whereas
“coreference” indicates that two referential expressions point to the same referent in
discourse.3 In contrast to work on paraphrasing, we are specifically interested in pairs
of text fragments that involve implicit arguments, which can only be resolved in context.

In line with our goal of inducing implicit arguments, we define the units or ex-
pressions to be aligned in our task as the predicate–argument structures that can (au-
tomatically) be identified in text. This task definition further makes our task distinct
from event coreference, where coreference is established based on a pre-specified set of
events, reference types, or definitions of event identity (Walker et al. 2006; Pradhan et
al. 2007; Lee et al. 2012, inter alia). Although corresponding annotations can certainly
overlap with those in our task, we emphasize that the focus of our work is not to find
all occurrences of co-referring events. Instead, our goal is to align predicate–argument
structures that have a common meaning in context across different discourses. Hence,
we neither consider intra-document coreference nor pronominal event references here.
As alignable units in our work are not restricted to a pre-specified definition of event or
event identity, the task addressed here involves any kind of event, state, or entity that
is linguistically realized as a predicate–argument structure. Examples that go beyond
traditional event coreference include in particular noun phrases such as “a [rival] of the
company” and “the [finance] director [of IBM]”(cf. Meyers, Reeves, and Macleod 2008).

3 Note that in the remainder of this article, we use the term “coreference” in a wider sense to also encompass
referents to events and entities in the real world, rather than just referents grounded in discourse.
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4. Induction Framework Step 1: Aligning Predicate–Argument Structures

In the first step of our induction framework, we align predicate–argument structures
(PASs) across pairs of comparable text. To execute this task properly, we define anno-
tation guidelines and construct a gold standard for the development and evaluation
of alignment models. All annotations are performed on pairs of documents from a
corpus of comparable texts. We introduce this corpus and describe our annotations
in Section 4.1. We describe a graph-based model that we developed for the automatic
alignment in Section 4.2. Finally, we present an experimental evaluation of our model,
together with another recently proposed model and several baselines, in Section 4.3.

4.1 Corpus and Annotation

As a basis for aligning predicate–argument structures across texts, we make use of a
data set of comparable texts extracted from the English Gigaword corpus (Parker et al.
2011). The Gigaword corpus is one of the largest English corpora available in the news
domain and contains over 9.8 million articles from seven newswire agencies that report
on (the same) real-world incidents. The data set of comparable texts used in this work
contains 167,728 pairs of articles that were extracted by matching the headlines of texts
published within the same time frame (Roth and Frank 2012a). A set of such document
headlines is given in Example 4:

Example 4
India fires tested anti-ship cruise missile
(Xinhua News Agency, 29 October 2003)

India tests supersonic cruise anti-ship missile
(Agence France Presse, 29 October 2003)

URGENT: India tests anti-ship cruise missile
(Associated Press Worldstream, 29 October 2003)

We preprocess each article in the set of 167,728 pairs using the MATE tools (Björkelund
et al. 2010; Bohnet 2010), including a state-of-the-art semantic role labeler that iden-
tifies PropBank/NomBank-style predicate–argument structures (Palmer, Gildea, and
Kingsbury 2005; Meyers, Reeves, and Macleod 2008). Based on the acquired PAS, we
perform manual alignments. In Section 4.1.1, we summarize the annotation guidelines
for this step. An overview of the resulting development and evaluation data set is
provided in Section 4.1.2.

4.1.1 Manual Annotation. We selected 70 pairs of comparable texts and asked two anno-
tators to manually align predicate–argument structures obtained from preprocessing.
Both annotators were students in computational linguistics, one undergraduate and
one postgraduate. The texts were selected with the constraint that each text consists
of 100 to 300 words. We chose this constraint as longer text pairs seemed to contain a
higher number of unrelated predicates, making the alignment tasks difficult to manage
for the annotators. Both annotators received detailed guidelines that describe alignment
requirements and the overall procedure.4 We summarize essentials in the following.

4 cf. http://projects.cl.uni-heidelberg.de/india/files/guidelines.pdf.
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Sure and Possible Links. Following standard practice in word alignment (cf. Cohn,
Callison-Burch and Lapata 2008, inter alia) the annotators were instructed to
distinguish between sure (S) and possible (P) alignments, depending on how cer-
tainly, in their opinion, two predicates (including their arguments) describe the
same event, state, or entity. Examples 5 and 6 show a sure and possible predicate
pairing, respectively.

Example 5
The regulator ruled on September 27 that Nasdaq was qualified to bid.
The authority had already approved a similar application by Nasdaq.

Example 6
Myanmar’s government said it has released some 220 political prisoners.
The government has been regularly releasing members of Suu Kyi’s
party.

Replaceability. As a rule of thumb for deciding whether to align two structures, annota-
tors were told to check how well the affected predicate–argument structures could
be replaced by one another in their given context.

Missing Context. In case one text does not provide enough context to decide whether two
predicates in the paired documents refer to the same event, an alignment should
not be marked as sure.

Similar Predicates. Annotators were told explicitly that sure links can be used even if
two predicates are semantically different but have the same meaning in context.
Example 7 illustrates such a case.

Example 7
The volcano roared back to life two weeks ago.
It began erupting last month.

1-to-1 vs. n-to-m. We asked the annotators to find as many 1-to-1 correspondences as
possible and to prefer 1-to-1 matches over n-to-m alignments. In case of multiple
mentions of the same event, we further asked the annotators to provide only
one sure link per predicate and mark remaining cases as possible links. As an
additional guideline, annotators were asked to only label the PAS pair with the
highest information overlap as a sure link. If there is no difference in information
overlap, the predicate pair that occurs first in both texts should be marked as a sure
alignment. The intuition behind this guideline is that the first mention introduces
the actual event whereas later mentions just (co-)refer or add further information.

4.1.2 Resulting Data Set. In total, the annotators (A/B) aligned 487/451 sure and 221/180
possible alignments. Following Brockett (2007), we computed agreement on labeled
annotations, including unaligned predicate pairs as an additional null category. We
computed κ following Fleiss, Levin, and Paik (1981) and observed an overall score
of 0.62, with κ values per category of 0.74 and 0.19 for sure and possible alignments,
respectively. The numbers show that both annotators substantially agree on which pairs
of predicate–argument structures “surely” express the same proposition. Identifying
further references to the same event or state, in contrast, can only be achieved with
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Table 1
Statistics on predicates and alignments in the annotated data sets.

Development Evaluation

number of text pairs 10 60

number of preprocessed predicates
all predicates (average) 395 (39.5) 3,453 (57.5)
nouns only (average) 168 (16.8) 1,531 (25.5)
verbs only (average) 227 (22.7) 1,922 (32.0)

number of alignments
all alignments (average) 78 (7.8) 807 (13.4)
sure only (average) 35 (3.5) 446 (7.4)
possible only (average) 43 (4.3) 361 (6.0)

properties of aligned PASs
same POS (nouns/verbs) 88.5% (24/42) 82.4% (242/423)
same lemma (total) 53.8% (42) 47.5% (383)
unequal number of arguments (total) 30.8% (24) 39.7% (320)

fairly low agreement. For the construction of a gold standard, we take the intersection
of all sure alignments by both annotators and the union of all possible alignments.5 We
further resolved cases that involved a sure alignment on which the annotators disagreed
in a group discussion and added them to our gold standard accordingly. We split
the final corpus into a development set of 10 document pairs and an evaluation set
of 60 document pairs.

Table 1 summarizes information about the resulting annotations in the development
and evaluation set. As can be seen, the documents in the development set contain a
smaller number of predicates (39.5 vs. 57.6) and alignments (8.7 vs. 13.4) on average. The
fraction of aligned predicates is, however, about the same (22.0% vs. 23.3%). Across both
data sets, the average numbers of observed predicates is approximately 55, of which 31
are verbs and 24 are nouns. In the development and evaluation sets, the average number
of sure alignments are 3.5 and 7.4. From all aligned predicate pairs in both data sets,
82.6% are the same part of speech (30.0% both nouns, 52.6% both verbs). In total, 48.0%
of all alignments are between predicates of identical lemmata. As a rough indicator for
diverging argument structures captured in the annotated alignments, we analyzed the
number of aligned predicates that involve a different number of realized arguments. In
both data sets together, this criterion applied in 344 cases (38.9% of all alignments).

4.2 Alignment Model

For the automatic alignment of predicate–argument structure alignments across texts,
we opt for an unsupervised graph-based method. That is, we represent pairs of doc-
uments as bipartite graphs and subsequently aim to separate a graph into subgraphs
that represent corresponding predicate–argument structures across texts. We define our
general graph representation for this task in Section 4.2.1. In Section 4.2.2, we introduce

5 In our evaluation, only sure alignments need to be predicted by a system, whereas possible alignments are
optional and not counted towards the attested recall (cf. Section 4.3).
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a range of similarity measures that are used to weight edges in the graph representation.
In Section 4.2.3, we introduce our algorithm to separate graphs, representing pairs
of documents, into subgraphs of corresponding predicates. The overall model is an
extended variant of the clustering approach described in Roth and Frank (2012b) and
uses an enhanced set of similarity measures.

4.2.1 Graph Representation. We build a bipartite graph representation for each pair of
texts, using as vertices the predicate–argument structures assigned during preprocess-
ing (cf. Section 4.1). We represent each predicate as a node and integrate information
about arguments implicitly. Given the sets of predicates P1 and P2 of two comparable
texts T1 and T2, respectively, we formally define an undirected graph GP1,P2 following
Equation 7.

GP1,P2 = 〈V, E〉 where
V = P1 ∪ P2
E = P1 × P2

(7)

Edge Weights. We specify the edge weight between two nodes representing predicates
p1 ∈ P1 and p2 ∈ P2 as a weighted linear combination of the similarity measures S
described in the next section.

wp1p2 =

|S|∑
i

λi ∗ simi(p1, p2) (8)

Initially we set all weighting parameters λi to have uniform weights by default. We
describe a tuning routine to find an optimized weighting scheme for the individual
measures in the experimental evaluation of our approach (Section 4.3).

4.2.2 Similarity Measures. We use a number of similarity measures that make use of
complementary information on the predicates, arguments, and discourse context of two
predicate–argument structures. Given two lemmatized predicates p1, p2 and their sets
of arguments A1 = args(p1), A2 = args(p2), we define seven measures in total. Three
of them are specific to the predicates themselves, two take into account information
on associated arguments, and two measures capture discourse-level properties. The
predicate-specific measures as well as one argument-specific measure correspond to
measures previously described in Roth and Frank (2012b). This article extends previous
work by considering discourse-level information and an additional argument-specific
measure that takes into account argument labels. We demonstrate the benefits of these
measures in practice in Section 4.3.

Similarity in WordNet. Given all synsets that contain the two predicates p1, p2, we
compute their similarity in WordNet (Fellbaum 1998) as the maximal pairwise score
calculated using the information content based measure proposed by Lin (1998). We rely
on the WordNet hierarchy to find the least common subsumer (lcs) of two synsets and
use the pre-computed Information Content (IC) files from Pedersen (2010) to compute
this measure as defined in Equation (9).

simWN(p1, p2) = max
〈s1,s2〉:si∈synsets(pi )

IC(lcs(s1, s2))
IC(s1) ∗ IC(s2) (9)
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Similarity in VerbNet. We additionally make use of VerbNet (Kipper et al. 2008) to
compute similarities between verb pairs that cannot be captured by WordNet relations.
Verbs in VerbNet are categorized into classes according to their meaning as well as
syntactic behavior. A verb class C can recursively embed sub-classes Cs ∈ sub(C) that
represent finer semantic and syntactic distinctions. In Equation (10), we define a simple
similarity function that assigns fixed scores to pairs of predicates p1, p2 depending on
their relatedness within VerbNet.6

simVN(p1, p2) =


1.0 if ∃C : p1, p2 ∈ C
0.8 if ∃C, Cs : Cs ∈ sub(C)

∧ ((p1 ∈ C, p2 ∈ Cs) ∨ (p1 ∈ Cs, p2 ∈ C))
default else

(10)

We empirically set the default value to the average VerbNet similarity (with unrelated
pairs counted as 0.0) computed over one million random pairs of predicates in our
corpus.

Similarity in a Semantic Space. As predicates can be absent from WordNet and VerbNet, or
distributed over separate hierarchies due to different parts-of-speech (verbal vs. nomi-
nal predicates), we additionally calculate similarity based on distributional meaning in
a semantic space (Landauer and Dumais 1997). This measure is based on the similarity
of contexts of two given predicates over all their instances in a corpus. To compute this
measure, we first calculate the Pointwise Mutual Information (PMI) for each predicate
p ∈ {p1, p2} and the n most frequent context words c ∈ C following Equation (11).

pmi(p, c) =
freq(p, c)

freq(p) ∗ freq(c) (11)

As we are dealing with predicates of different parts-of-speech, we calculate joint fre-
quencies in terms of context windows instead of relying on syntactic dependencies as
proposed in more recent approaches to distributional semantics (Padó and Lapata 2007;
Erk and Padó 2008; Baroni and Lenci 2010). More precisely, we extract context windows
of five words to the left and to the right from the Gigaword corpus (Parker et al. 2011),
and compute the PMI for the 2,000 most frequent context words c1 . . . c2,000 ∈ C. The
same setting has been successfully applied in related tasks, including word sense disam-
biguation (Guo and Diab 2011) and measuring phrase similarity (Mitchell and Lapata
2010). Vector representations are computed following Equation (12), and similarities
are calculated as the cosine function of the angle between two vectors, as defined in
Equation (13).

~p = (pmi(p, c1), pmi(p, c2), . . . , pmi(p, c2,000)) (12)

simDist(p1, p2) =
~p1 · ~p2

||~p1|| ∗ ||~p2||
(13)

6 Note that the weight of 0.8 was set in an ad hoc manner (instead of being optimized) in order to avoid
overfitting on our small development corpus.
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Bag-of-Words Similarity. As a simple argument-specific measure, we compute the overlap
of word tokens over all (concatenated) arguments of each predicate–argument structure
(PAS). Formally, this similarity measure considers all arguments a1 ∈ A1 and a2 ∈ A2
associated with the predicates p1 and p2, respectively, and calculates overlap as defined
in Equation (14). In order to control the impact of frequently occurring words, we
weight each word by its Inverse Document Frequency (IDF), which we calculate over
all documents d in our corpus D:

simABoW(p1, p2) =

∑
w∈A1∩A2

idf(w)∑
w∈A1

idf(w) +
∑

w∈A2
idf(w)

(14)

idf(w) = log
|D|

|{d ∈ D|w ∈ words(d)}| (15)

Head of Arguments Similarity. We further define an argument-specific measure that only
compares the semantic heads of arguments that have the same argument label. For
example, given two PASs that consist of predicates p1, p2 and arguments labeled A0
and A1, we compute the similarity of the two arguments labeled A0 (also denoted as
label(a) = ‘A0’) and the similarity of the two arguments labeled A1 (label(a) = ‘A1’).
Each similarity between argument heads is computed using the WordNet-based mea-
sure described earlier. We extract the semantic head of each argument by consid-
ering the dependency tree, as predicted by MATE tools, in which we look for the
noun or verb on the highest level within the argument span. Finally, we collapse
all pairwise argument similarities into one measure by taking the average following
Equation (16).

simAheads(p1, p2) =

∑
{a1,a2|label(a1 )==label(a2 )} simWN(head(a1), head(a2))

|{a1, a2|label(a1) == label(a2)}| (16)

Relative Discourse Position. On the discourse level, we measure the distance of two
predicate–argument structures with respect to their relative positions in the text. Given
two predicates, we compute this measure based on the absolute difference between their
relative positions. The relative position in discourse is computed as the sentence index in
which the predicate p1 or p2 occurs, divided by the total number of sentences in the
affected document (d1 or d2, respectively). The measure, as defined in Equation (17),
ranges from 1.0 (relative positions are exactly the same) to 0.0 (one predicate at the
beginning, the other at the end of a text).

simDPos(p1, p2) = 1−
(∣∣∣sentence index(p1)

length(d1)
− sentence index(p2)

length(d2)

∣∣∣) (17)

Context Similarity. We further consider occurrences of (shared) predicates in the imme-
diate discourse context of two predicates. Our measure for this type of similarity is
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computed as the relative number of overlapping predicate types within the preceding
and succeeding n neighboring predicate instances as defined in Equation (18).

simDCon(p1, p2) = context(p1 )∩context(p2 )
context(p1 )∪context(p2 ) , with

context(p) = {p′|index(p′) ∈ [index(p)− n : index(p) + n]}
(18)

We compute the index of a predicate as the number of preceding predicates within
the same text, that is, starting with zero. Based on preliminary experiments on our
development set, we empirically set n to 5.

4.2.3 Alignment via Clustering. The goal of this step of our induction framework is to
identify pairs of PASs that describe the same event, state, or entity. As a means to
achieve this goal, we represent pairs of comparable texts as graphs and aim to find
those edges in a graph that represent connections between predicates that need to be
aligned. Although our aim is to find edges between nodes, we note that the majority
of predicates (nodes) in our data set are not aligned and hence a crucial prerequisite
to generate precise alignments is to filter out those nodes that are unlikely to be good
alignment candidates. To achieve the filtering and alignment goals at the same time,
we rely on graph clustering techniques that have successfully been applied in the NLP
literature (Su and Markert 2009; Cai and Strube 2010; Chen and Ji 2010, inter alia) and
that can be used to partition a graph into singleton nodes and smaller subgraphs.

The clustering method applied in our model relies on so-called minimum cuts
(henceforth also called mincuts) in order to partition a bipartite graph, representing
pairs of texts, into clusters of alignable predicate–argument structures. A mincut opera-
tion divides a given graph into two disjoint subgraphs. Each cut is performed between
some source node s and some target node t, such that (1) each of the two nodes will
be in a different subgraph and (2) the sum of weights of all removed edges will be as
small as possible. We implement basic graph operations using the freely available Java
library JGraphT7 and determine each mincut using the method described in Goldberg
and Tarhan (1986).

Given a constructed input graph G, our algorithm recursively applies mincuts in
three steps as follows:

1. Identify edge e with the lowest weight in the current (sub)graph G.

2. Perform a mincut such that the nodes connected by e will be in two
different subgraphs G′ and G′′.

3. Recursively apply Steps 1 and 2 to subgraphs G′ and G′′.

As our goal is to induce clusters that correspond to pairs of corresponding struc-
tures, we apply Step 3 of the clustering approach outlined above only to subgraphs
that contain more than two nodes. Algorithm 1 provides a pseudocode implementation
of this procedure. An example of an input graph and the applied minimum cuts is
illustrated in Figure 1. As shown in the illustration, we only use edges in our initial
graph representation that represent alignment candidates with a similarity above a

7 http://jgrapht.org/.
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Algorithm 1. Pseudo code of our clustering algorithm.
function CLUSTER(G)

clusters← ∅
E← GETEDGES(G) . Step 1
e← GETEDGEWITHLOWESTWEIGHT(E)
s← GETSOURCENODE(e)
t← GETTARGETNODE(e)
G′ ← MINCUT(G, s, t) . Step 2
C ← GETCONNECTEDCOMPONENTS(G′)
for all Gs ∈ C do . Step 3

if SIZE(Gs) <= 2 then
clusters← clusters ∪ Gs

else
clusters← clusters ∪ CLUSTER(Gs)

end if
end for
return clusters;

end function

threshold determined on the development part of our manually aligned data. Based on
the initial representation, the first cut (Cut 1) is performed between the nodes connected
by the edge with the lowest weight in the overall graph (13.0). This cut separates the
nodes representing the “earnings NNS” predicates from the rest of the graph. Similarly,
Cut 2 separates another cluster of two nodes. Finally, Cuts 3 and 4 remove a single node
from the only remaining cluster that had more than two nodes.

The main benefit of our method compared with off-the-shelf clustering techniques
is that we can define the termination criterion in line with the goal of our task, namely,

Figure 1
The predicates of two sentences (white: “The company has said it plans to restate its earnings for
2000 through 2002.”; grey: “The company had announced in January that it would have to
restate earnings (. . . )”) from the Microsoft Research Paragraph Corpus are aligned by computing
clusters with minimum cuts.
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to align pairs of structures across comparable texts, instead of having to optimize
additional parameters that require careful fine-tuning (such as the number of clusters
or a clustering threshold). In the next section, we provide empirical evidence for the
advantage of this approach.

4.3 Experiments

This section describes the evaluation of our graph-based clustering model on the task of
aligning predicate–argument structures across comparable texts. We define two variants
of our graph-based model: Full makes use of all similarity measures described in Sec-
tion 4.2.2, and EMNLP’12, the model introduced in Roth and Frank (2012b), only uses
the predicate-specific measures and the bag-of-words measure for argument similarity.
Both models, Full and EMNLP’12, make use of the clustering algorithm introduced in
Section 4.2.3.

For evaluation, we compare our model against two baselines and a model from the
literature that has recently been proposed for this task (Wolfe et al. 2013). Similar to our
approach, Wolfe et al. use various resources to calculate the similarity of two predicate–
argument structures. Differences to our model lie in the kind of utilized resources, the
use of additional data to learn feature weights, and the fact that each alignment decision
is made using a binary classifier. We evaluate the predictions of each model on the
manually annotated test set described in Section 4.1.2.8

As evaluation measures, we use precision, recall, and F1-score. Following previous
work aligning monolingual texts (Cohn, Callison-Burch, and Lapata 2008), we measure
precision as the number of predicted alignments also annotated in the gold standard
divided by the total number of predictions, and recall as the number of correctly
predicted sure alignments divided by the total number of sure alignments in the gold
standard. F1-score is computed as as the harmonic mean between precision and recall.

4.3.1 Baselines. A simple baseline for predicate alignment is to simply cluster all predi-
cates that have identical lemmata (henceforth called LemmaId). To assess the benefits of
the clustering step, we propose a second baseline that uses the same similarity measures
as our Full model but does not use the mincut clustering described in Section 4.2.3. In-
stead, it greedily merges as many 1-to-1 alignments as possible, starting with the highest
similarity (Greedy). As a more sophisticated baseline, we make use of alignment tools
commonly used in statistical machine translation. We train our own word alignment
model using the state-of-the-art word alignment tool Berkeley Aligner (Liang, Taskar,
and Klein 2006). As word alignment tools require pairs of sentences as input, we first
extract paraphrases using a re-implementation of a previously proposed paraphrase
detection system based on lemma and n-gram overlap (Wan et al. 2006). In the following
section, we abbreviate the alignment based model as WordAlign.

4.3.2 Results. The results for the alignment task are presented in Table 2. From all
approaches, Greedy and WordAlign yield the lowest performance. For WordAlign,
we observe two main reasons. On the one hand, sentence paraphrase detection does
not perform perfectly. Hence, the extracted sentence pairs do not always contain gold

8 We also performed an evaluation on sentence-level predicate alignment, but skipped the discussion here
as this task is not relevant for our induction framework. As the additional discourse-level measures of the
Full model are not needed for alignment within sentences, we refer the interested reader to the
EMNLP’12 model and its evaluation in Roth and Frank (2012b).
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Table 2
Results for discourse-level alignment in terms of precision (P), recall (R), and F1-score (all
numbers in %); left: comparison of the Full model to baselines and previous work; right: impact
of removing individual measures and using a tuned weighting scheme; results that significantly
differ from Full are marked with asterisks (* p < 0.05; ** p < 0.01).

alignments. On the other hand, even sentence pairs that contain gold alignments can
differ considerably in content and length, making them hard to align for statistical
word alignment tools. The difficulty of this task can also be seen in the results for the
Greedy model, which only achieves an F1-score of 17.2%. In contrast, we observe that
the majority of all sure alignments can be retrieved by applying the LemmaId model
(60.3% recall).

The Full model achieves a recall of 48.9% but significantly outperforms all baselines
(p < 0.01) in terms of precision (71.8%). This is an important factor for us as we plan
to use the alignments in subsequent steps of our framework. With 58.2%, Full also
achieves the best overall F1-score. By comparing the results with those of the EMNLP’12
model, we can see that the discourse-level similarity measures provide a significant
improvement in terms of precision without a considerable loss in recall. This advantage
in precision can also be seen in comparison to Wolfe et al. In contrast, their system
outperforms our model with respect to recall. There are two main reasons for this: On
the one hand, their model makes use of much larger resources to compute alignments,
including a paraphrasing database that contains over 7 million rewriting rules; on the
other hand, their model is supervised and makes use of additional data to learn weights
for each of their features. In contrast, Full and EMNLP’12 only make use of a small
development data set to determine a threshold for graph construction. Though the
difference is not significant, it is worth noting that our model outperforms that by Wolfe
et al. by 0.6 percentage points in F1-score, despite not making use of any additional
training data.

Ablating Similarity Measures. All aforementioned results were conducted in experiments
with a uniform weighting scheme of similarity measures as introduced in Section 4.2.2.
Table 2 additionally shows the performance impact of individual similarity measures by
removing them completely (i.e., setting their weight to 0.0). The numbers indicate that
almost all measures contribute positively to the overall performance when using equal
weights. Except for the argument head similarity, all ablation tests revealed significant
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drops in performance, either with respect to precision or recall. This result highlights
the importance of incorporating predicate-specific, argument-specific, and discourse-
specific information regarding individual predications in this task.

Tuning Weights for High Precision. Subsequently, we tested various combinations of
weights on our development set in order to estimate a better weighting scheme. This
tuning procedure is implemented as a grid search technique, in which random weights
between 0.0 and 1.0 are assigned to each measure. For graph construction, all weights
are normalized again to sum to 1.0. We additionally try different thresholds for adding
edges in the graph representation. To achieve high precision, we weight precision three
times higher than recall while evaluating different parameters. In total, we tested 2,000
different parameter assignments on our development set. Following this process, we
found the best result to be achieved with a threshold of 0.85 and the following weights:r 0.11, 0.14, and 0.21 for simWN, simVN, and simDist, respectively,

(i.e., 46% of the total weight for predicate-specific measures)r 0.21 and 0.05 for simABoW and simAheads, respectively,
(i.e., 26% of the total weight for argument-specific measures)r 0.21 and 0.07 for simDPos and simDCon, respectively
(i.e., 28% of the total weight for discourse-specific measures)

The weighting scheme shows that information from all categories is considered. When
applying the tuned model on our evaluation data set, we note that results in recall drop
to 29.1% (−19.8 percentage points). Precision, on the other hand, increases to 86.2%
(+14.4 percentage points).

4.4 Summary

In this section, we introduced the task of aligning predicate–argument structures across
monolingual comparable texts. We designed annotation guidelines and created a data
set of gold-standard alignments. Based on this data set, we developed and evaluated a
novel clustering-based alignment model that uses a combination of various similarity
measures and a graph-based clustering algorithm that we specifically designed for this
task. In an intrinsic evaluation, we showed that our novel model outperforms a range
of baselines as well as previous approaches to this particular task. As an additional
contribution, we defined a tuning routine that can be utilized to train a high precision
model for the discourse-level alignment task. Our results show that, by using this tuning
step, corresponding structures in our evaluation set can be identified with a precision
of 86.2%. This intermediate result is essential for the success of our overall framework.
In the next section, we present Step 2 of our implicit argument induction technique, in
which we examine pairs of automatically aligned predicate–argument structures as a
means to identify and link implicit arguments.

5. Induction Framework Step 2: Extracting Implicit Arguments

In the second step of our induction framework, we rely on alignments between PAS
to detect implicit arguments. That is, we aim to identify argument instances that are
present, or explicit, in one PAS but absent, or implicit, from the aligned PAS. Based
on the identified instances, our model tries to find antecedents of implicit arguments
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within their respective discourse contexts. To perform this task automatically, we rely on
several preprocessing tools, which we apply on the full corpus of over 160,000 document
pairs introduced in Roth and Frank (2012a).

We describe the applied preparatory steps and the used preprocessing tools in
Section 5.1. Using automatically computed annotations as input, we describe a heuristic
method to detect implicit arguments and their discourse antecedents in Section 5.2.

5.1 Data Preparation

As a basis for the actual induction, we rely on several preparatory steps that identify
information two documents have in common (cf. Figure 2). In particular, we compute
and align PAS using the graph-based model described in Section 4, and determine
co-referring entities across pairs of texts using coreference resolution techniques on
concatenated document pairs (Lee et al. 2012). In theory, arguments implicit in one
structure can straightforwardly be induced based on this information by looking for
co-referring mentions of the argument explicit in the aligned structure. In practice, we
make use of additional checks and filters to ensure that only reliable information is being
used. We describe the preprocessing steps in the following paragraphs and provide
additional details on our implementation of the induction procedure in Section 5.2.

Single Document Preprocessing. We apply several preprocessing steps to each document
in our data set. First, we use the Stanford CoreNLP package (Manning et al. 2014)
for tokenization and sentence splitting. We then apply the MATE tools (Björkelund
et al. 2010; Bohnet 2010), including the integrated PropBank/NomBank-based semantic
parser, to determine local PAS. Finally, we resolve pronouns that occur in a PAS using
the coreference resolution system by Martschat et al. (2012), which placed second for
English in the CoNLL-2012 Shared Task (Pradhan et al. 2012).

High Precision Alignments. Once all single documents are preprocessed, we align PAS
across pairs of comparable texts. We want to induce reliable instances of implicit
arguments based on aligned PASs pairs and hence apply our graph-based cluster-
ing technique using the high-precision tuning step described in Section 4.3. We run

Figure 2
Illustration of the induction approach: Texts consist of PAS (represented by overlapping rounded
rectangles); we exploit alignments between corresponding predicates across texts (solid lines)
and co-referring entity mentions (dashed lines) to infer implicit arguments (marked by ‘i’) and
link antecedents (dotted line).
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Table 3
Properties of the high precision alignment data set.

high-precision alignments

number of alignments 283,588

same POS 278,970 (98.4%)
noun–noun 89,696 (31.6%)
verb–verb 189,274 (66.8%)

mixed POS 4,618 (1.6%)

same lemma 273,924 (96.6%)
different lemma 9,664 (3.4%)

same number of arguments 239,563 (84.5%)
unequal number of arguments 44,025 (15.5%)

the high-precision model on all pairs of texts in the corpus. As a result, we extract a
total number of 283,588 aligned pairs of PASs. An overview of properties of this data set
is given in Table 3. We observe that most alignments involve the same part-of-speech
(98.4%) and the same predicate lemma (96.6%). This fact simplifies the task of inducing
implicit arguments as it implies that in most cases the PropBank argument labels in a
pair of aligned structures correspond to each other and do not have to be mapped via a
higher-level set of roles.

Cross-Document Coreference. For each argument that is explicit in one PAS but implicit
in an aligned PAS, we want to determine a suitable antecedent within the discourse
context of the implicit instance. We solve this task by viewing the aligned explicit
argument as an entity reference and identify co-referring mentions in both texts by
applying coreference resolution techniques across pairs of documents. In practice, we
follow the methodology of Lee et al. (2012), who propose applying standard coreference
methods on pairs of texts by simply concatenating two documents and providing
them as a single input document. As merging two different discourses can lead to
problems for a coreference system that is based on features and feature weights trained
on single documents, we follow Lee et al. and apply a rule-based system. Like them,
we use the Stanford Coreference system (Lee et al. 2013), which applies a sequence
of coreference “sieves” to the input, ordered according to their precision. To obtain
a highly accurate and reliable output, we consider only the most precise resolution
sieves:r “String Match”r “Relaxed String Match”r “Precise Constructs”r “Strict Head Match A,” “Strict Head Match B,” “Strict Head Match C”r “Proper Head Noun Match”

Note that none of these sieves involve pronoun resolution. Instead, we decided to
use the resolved pronouns from the single-document coreference step. This decision
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is based on the fact that the system by Martschat et al. (2012) outperforms the Stanford
system with all sieves on the CoNLL’11 test set by an average F1-score of 3.0 absolute
points. The high-precision sieves are, however, better suited for the cross-document
task as we plan to rely on the resulting coreference chains for identifying potential
antecedents of implicit arguments. That is, we prefer fewer but more reliable chains
in order to minimize the impact of possible preprocessing errors.

5.2 Automatic Identification and Linking

Given a pair of aligned predicates from two comparable texts, we examine the output of
the semantic parser (cf. Section 5.1) to identify arguments in each PAS. We compare the
set of labels assigned to the arguments in each structure to determine whether one PAS
contains an argument (explicit) that has not been realized in the other PAS (implicit).
For each implicit argument, we identify appropriate antecedents by considering the
cross-document coreference chain of its explicit counterpart. As our goal is to link
implicit arguments within discourse, we require candidate antecedents to be mentions
that occur in the same document. We impose a number of restrictions on the resulting
pairs of implicit arguments and antecedents to reduce the impact of different types of
preprocessing errors:

Mislabeled Arguments. In some cases, the parser annotated the same argument in
two texts using different labels. To ensure that mislabeled arguments are not recog-
nized as implicit, we require that pairs of aligned PAS contain a different number of
arguments.

Missed Arguments. Depending on sentence structure, the semantic parser is sometimes
unable to determine all local arguments. This often leads to the identification of er-
roneous implicit arguments. To intercept some of these cases, we require that all an-
tecedents from the cross-document coreference chain must be outside of the sentence
that contains the affected PAS.

5.3 Resulting Data Set

We apply the outlined identification and linking approach to all text pairs in our
corpus of comparable texts. As a result, we induce a total of 698 implicit argument and
antecedent pairs. A summary of properties of the obtained pairs can be found in Table 4.
The full data set involves predicates of 294 different lemmata. Each pair was found in
a separate document. Note that 698 implicit arguments from 283,588 pairs of PAS seem
to represent a fairly low recall. The reason for this is that most PAS pairs in the high-
precision data set consist of identically labeled argument sets (84.5%) and in most of the
remaining cases an antecedent in discourse cannot be found using the high-precision
coreference sieves. This does not mean that implicit arguments are rare in general. As
discussed in Section 4.1, 38.9% of all manually aligned PAS pairs involve a different
number of arguments.

We manually evaluated a subset of 90 induced implicit arguments and found 80
discourse antecedents to be correct (89%). Examples are displayed in Table 5. A closer
analysis revealed that some incorrectly linked instances still result from preprocessing
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Table 4
Properties of automatically induced implicit arguments and antecedents.

implicit arguments and discourse antecedents

number of induced instances 698

predicate counts
nominal predicates 285 (40.8%)
verbal predicates 413 (59.2%)
word/lemma types 535/294

antecedent distance to predicate
previous sentence 240 (34%)
within the previous 5 sentences 415 (59%)
within the previous 10 sentences 442 (63%)
follow-up context 260 (37%)

label of induced argument
proto-agent (A0) 423 (60.6%)
proto-patient (A1) 107 (15.3%)
other (A2–A5) 168 (24.1%)

errors. In particular, combinations of errors can lead to incorrectly identified instances
as showcased in Example 19:

Example 19
“The Guatemalan Congress on Thursday ratified 126-12 [a Central America-US]A0 [free
trade]A1 agreement, lawmakers said.”
Induced missing argument and discourse antecedent: [goods]A2/co-agent

Instead of recognizing Central America and US as two separate arguments (agent and
co-agent) of the predicate AGREE, the semantic parser labels both entities as one argu-
ment (A0, agent); our system hence tries to determine a discourse antecedent for an
argument that is predicted to be missing despite being actually realized (A2, co-agent).
In the aligned PAS, the co-agent is realized as a prepositional phrase: “[with the United
States]A2”. The cross-document coreference tool incorrectly predicts the United States in
this phrase to be coreferent with the phrase U.S. goods and services; our system hence
detects goods as the antecedent for the erroneously predicted implicit argument.

Further error sources are incorrectly extracted document pairs and alignments
between PAS that do not correspond to each other. Example 20 shows two PAS from
a pair of texts that describe different sets of changes in economic activity.

Example 20
“[Production]A1 rose [3.9 percent from October in the capital good sector]A2”
“[Industrial production excluding energy, food and construction . . . ]A1 rose [2.6
percent]A2 [in November]TMP from the previous month”

Example 21 shows a pair of aligned structures in a pair of comparable texts that both re-
port on two planned trips by President Obama. Here, the alignment model erroneously
aligned a reference to one trip with a reference to both trips.
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Table 5
Three positive examples of automatically induced implicit arguments (∅) and the
cross-document coreference chains that include discourse antecedents (i); the right-hand side
shows the aligned PAS that were used to identify a suitable antecedent for the implicit argument
in the text on the left-hand side.

[T-Onlinei], the leading Internet services
provider in Europe and a unit of Deutsche
Telekom, said Thursday its net loss more
than doubled last year owing to its foreign
activities and goodwill writedowns. (. . . ) [T-Online’si]A0 [operating]A3 loss — earnings

before financial items such as interest, taxes,
depreciation, and amortization — also widened,
to 189 million euros (dlrs 167 million) in 2001
from 122 million (dlrs 108 million).

The [∅i]A0 [operating]A3 loss, as measured
by earnings before interest, tax,
depreciation, and amortization, widened
to 189 million euros last year from
121.6 million euros a year earlier.

[Mozambiquei] police have arrested four
foreigners in connection with an alleged
plot to sabotage the African country’s
largest hydroelectric dam, officials said
Wednesday. (. . . )

Its power lines and other infrastructure
sustained severe damage during the 16-year
civil war that followed [Mozambique’si]A1
independence [in 1975]TMP.It was handed over to Mozambican control

last year, 33 years after [∅i]A1
independence [in 1975]TMP.

The accident occurred just after midnight
on Sunday in Shanxi province but [local
officials]A0 failed to immediately report
[the accident]A1 [∅i]A2, the State
Administration for Work Safety said on its
website.

The explosion happened in a mine in the
suburbs of Jincheng City on Sunday in Shanxi
province, but [the coal mine owner]A0 did
[not]NEG [immediatelyTMP] report [it]A1 [to the
governmenti]A2, Xinhua News Agency said.[The governmenti] says 4,750 people died

in coal mine accidents last year, an average
of 13 a day. It is common for mine owners
to delay reporting accidents or to not
report them at all.

Example 21
“The postponement ... marks the second time [the president’s]A0 trip [to Indonesia]A1

has been postponed”
“Obama was to depart on a [weeklong]TMP trip [to both countries . . . ]A1 on June 13”

5.4 Summary

In this section, we introduced a computational implementation of Step 2 of our rule-
based induction method for identifying implicit arguments and their discourse an-
tecedents. Our approach depends on automatic annotations from semantic role labeling,
PAS alignment, and coreference resolution. We implement two particular types of mea-
sures to minimize the impact of preprocessing errors: (1) we avoid imprecise input by
applying high-precision tools instead of methods that are tuned for balanced precision
and recall; and (2) we circumvent some common preprocessing errors by formulating
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constraints on resulting instances of implicit arguments and discourse antecedents. An
intrinsic analysis reveals that we cannot eliminate all error sources this way, although
we found the induced data set to be of high precision.

The next sections present extrinsic evaluations in which we demonstrate the utility
of the induced instances empirically. As discussed in Section 1, we assume that a proper
treatment of implicit arguments can improve the coverage of semantic role labeling
systems and entity-based models of coherence. We show how our data set can be
utilized in both of these areas: In Section 6, we use our data set of implicit arguments
to enhance the training process for models of implicit argument linking; in Sections 7,
we demonstrate that implicit arguments can affect the perceived coherence of a text and
that instances of aligned (explicit and implicit) arguments in our data set can be used to
successfully predict this impact adequately.

6. Task Setting 1: Linking Implicit Arguments in Discourse

Our first extrinsic evaluation assesses the utility of automatically induced pairs of
implicit arguments and antecedents for the task of implicit argument linking. For this
scenario, we use the data sets from the SemEval 2010 task on “Linking Events and their
Participants in Discourse” (Ruppenhofer et al. 2010, henceforth just SemEval task). For
direct comparison with previous results and heuristic acquisition techniques, we apply
the implicit argument identification and linking model by Silberer and Frank (2012,
henceforth S&F) for training and testing. We briefly describe the SemEval task data and
the model by S & F in the next sections.

6.1 Task Summary

Both the training and test sets of the SemEval task are text corpora extracted from
Sherlock Holmes novels, with manual frame semantic annotations including implicit
arguments. In the actual linking task (“NI-only”), gold labels are provided for local
arguments and participating systems have to perform the following three sub-tasks:
firstly, non-instantiated roles have to be identified; secondly, they have to be classified
as being “accessible to the speaker and hearer” (definite null instantiation, DNI) or as
being “only existentially bound within discourse” (indefinite null instantiations, INI);
and finally, all resolvable null instantiations have to be linked to discourse antecedents.

The task organizers provide two versions of their data set: one based on FrameNet
annotations and one based on PropBank/NomBank annotations. We found, however,
that the latter only contains a subset of the implicit argument annotations from the
FrameNet-based version. As all previous results in this task have been reported on
the FrameNet data set, we adopt the same setting. Note that our automatically in-
duced data set, which we want to apply as additional training data, is labeled with a
PropBank/NomBank-style parser. Consequently, we need to map our annotations to
FrameNet in order to make use of them in this task. The organizers of the SemEval
task provide a manual mapping dictionary for predicates in the annotated data set. We
use this manual mapping and additionally use SemLink (Palmer 2009) for mapping
predicates and arguments not covered by the dictionary.

6.2 Model Details

We make use of the system by S&F to train a new model for the NI-only task. As men-
tioned in the previous subsection, this task consists of three steps: In Step (1), implicit
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arguments are identified as unfilled and non-redundant FrameNet core roles; in Step (2),
an SVM classifier is used to predict whether implicit arguments are definite based on
a small number of features—semantic type of the affected Frame Element, the relative
frequency of its realization type in the SemEval training corpus, and a Boolean feature
that indicates whether the affected sentence is in passive voice and does not contain
a (deep) subject. In Step (3), we apply the same features and classifier as S&F to find
appropriate antecedents for (predicted) definite arguments. S&F report that their best
results were obtained considering the following target antecedents: all entity mentions
that are syntactic constituents from the present and the past two sentences and all entity
mentions that occurred at least five times in the previous discourse (“Chains+Win”
setting). In their evaluation, the latter of these two restrictions crucially depended on
gold coreference chains. As the automatic coreference chains in our data are rather
sparse (and noisy), we only consider syntactic constituents from the present and the
past two sentences as antecedents (“SentWin” setting).

Before training and testing a new model with our own data, we perform feature
selection using 10-fold cross validation. To find the best set of features, we run the
feature selection on a combination of the SemEval training data and our full additional
data set.9 The only features that were selected in this process concern the “prominence”
of the candidate antecedent, its semantic agreement with the selectional preferences of
the predicate, the part-of-speech-tags used in each reference to the candidate entity, and
the semantic types of all roles that the entity fills according to local role annotations.
These features are a subset of the best features described in Silberer and Frank (2012).

6.3 Results

Evaluation measures. For direct comparison in the full task, both with S&F’s model and
other models, we adopt the precision, recall, and F1 measures as defined in Ruppenhofer
et al. (2010).

Baselines. We compare our results with those previously reported on the SemEval task
(see Table 6 for a summary): The best performing system in the actual task in 2010
was developed by Chen et al. (2010) and is an adaptation of the semantic role labeling
system SEMAFOR (Das et al. 2010). In 2011, Tonelli and Delmonte (2011) presented a re-
vised version of their SemEval system (Tonelli and Delmonte 2010), which outperforms
SEMAFOR in terms of recall (6%) and F1-score (8%). The best results in terms of recall
and F1-score to date have been reported by Laparra and Rigau (2012), with 25% and
19%, respectively. Our model outperforms their state-of-the-art system in terms of pre-
cision (21%) but achieves a lower recall (8%). Two influencing factors for their high recall
are probably (1) their improved method for identifying (resolvable) implicit arguments,
and (2) their addition of lexicalized and ontological features.

Our Results. Comparison of our results with those reported by S&F, whose system we
use, shows that our additional data improves precision (from 6% to 21%) and F1-score
(from 7% to 12%). The loss of one percentage point in recall is marginal given the
size of the test set (only 259 implicit arguments have an annotated antecedent). Our

9 Note that this feature selection procedure is the same as applied by Silberer and Frank. Hence, the
evaluated models are directly comparable and all differences in results can directly be traced back to the
use of additional data.
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Table 6
Results for identifying and linking implicit arguments in the SemEval test set.

Precision Recall F1-score

Chen et al. (2010)10 0.25 0.01 0.02

Tonelli and Delmonte (2011) 0.13 0.06 0.08
Laparra and Rigau (2012) 0.15 0.25 0.19
Laparra and Rigau (2013) 0.14 0.18 0.16
Gorinski, Ruppenhofer, and Sporleder (2013)11 0.14 0.12 0.13

S&F (no additional data) 0.06 0.09 0.07
S&F (best additional data) 0.09 0.11 0.10
This article 0.21 0.08 0.12

result in precision is the second highest score reported on this task. Interestingly, the
improvements are higher than those achieved in the original study by Silberer and
Frank (2012), even though their best additional training set is three times bigger than
ours and contains manual semantic annotations.

We conjecture that their low gain in precision could be a side effect triggered by
two different factors. Firstly, the heuristically created training instances, induced by
treating anaphoric pronouns as implicit argument instances, might not reflect the same
properties as actual implicit arguments. For example, pronouns can occur in syntactic
constructions in which an actual argument cannot be omitted in practice, leading an
incorrect overgeneralization. An additional negative factor might be that their model
relies on coreference chains, which are automatically generated for the test set and
hence rather noisy. In contrast, our automatically induced data does not contain manual
annotations of semantic roles and coreference chains, hence we do not rely on gold
information during training and testing. The results show that, despite this limitation,
our new model outperforms previous models trained using the same system, indicating
the utility and high reliability of our automatically induced data.

Impact of training data size. To assess the impact of training data size, we perform an ad-
ditional experiment with subsets of automatically induced implicit arguments. Specif-
ically, we train different classifiers using the full SemEval training data and varying
amounts of our automatically induced training data (random samples of 1%, 10%, and
25%). The model uses the best feature set determined on the combination of SemEval
and our full additional data set in all settings. For each setting, we report average results
obtained over four runs. The outcomes of this experiment are summarized in Table 7.
The numbers reveal that using only 1% of the additional data for training already leads
to a classification performance of 0.13 in F1-score. The large improvement over the S&F
model without additional data, which achieves an F1-score of 0.07, can be explained by
the fact that the features selected by our model generalize better than those selected on
the SemEval training data only. The improvements are highest when using between 10%
and 25% of the additional data, indicating that the use of additional induced instances
indeed increases performance but that utilizing more out-of-domain than in-domain
data for training seems to be harmful.

10 Results as reported by Tonelli and Delmonte (2011).
11 Results computed as an average over the scores given for both test files; rounded towards the number

given for the test file that contained more instances.
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Table 7
Results for identifying and linking implicit arguments using features selected on our full data set
and different combinations of task-specific and automatically induced data for training.

Training data Precision Recall F1-score

SemEval + induced instances (1%) 0.22 0.09 0.13
SemEval + induced instances (10%) 0.24 0.10 0.14
SemEval + induced instances (25%) 0.24 0.10 0.14
SemEval + induced instances (100%) 0.21 0.08 0.12

6.4 Summary

In this section, we presented a NLP application of the automatically induced data set
of implicit arguments that we introduced in Section 5. We found that automatically
induced implicit arguments can successfully be used as training data to improve a
system for linking implicit arguments in discourse. Although the presented model can-
not compete with state-of-the-art systems, the addition of our data led to an enhanced
performance compared with the same system with different and without additional
training data. Compared with the model without additional training data, our induced
data set increased results in terms of precision and F1-score by 15 and 5 percentage
points, respectively.

7. Task Setting 2: Modeling Local Coherence

In our second experiment, we examine whether argument realization decisions affect
the perceived coherence of a text and investigate how and which factors related to
their impact can be used to model realization decisions computationally. We approach
this question in the following way: We exploit PAS alignments across comparable
documents to identify contexts with implicit and explicit arguments; we then make use
of these automatically induced contexts in order to train a discourse coherence model
that is able to predict whether—in a given context—an argument should be realized or
remain implicit.

Induction of such a model and its evaluation will be approached as follows: First,
we assemble a data set of document pairs that differ only with respect to a single realiza-
tion decision; given each pair in this data set, we ask human annotators to indicate their
preference for the implicit or explicit argument instance in the prespecified context (Sec-
tion 7.1); secondly, we attempt to emulate the decision process computationally using
a discriminative model based on discourse and entity-specific features (Section 7.2). To
assess the performance of the new model, we train it on automatically induced training
data and evaluate it, in comparison with previous models of local coherence, against
human annotations (Section 7.3).

7.1 Data Compilation

We use the data set of automatically induced implicit arguments (henceforth source
data), described in Section 5, as a starting point for composing a set of document pairs
that involve implicit and explicit arguments. To make sure that each document pair in
this data set only differs with respect to a single realization decision, we first create
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two copies of each document from the source data: One copy remains in its original
form, and the other copy will be modified with respect to a single argument realization.
Example (22) illustrates an original and modified sentence.

Example 22
(a) [The Dalai Lama’s]A0 visit [to France]A1 ends on Tuesday.

(a‘) [The Dalai Lama’s]A0 visit ends on Tuesday.

Note that adding or removing arguments at random can lead to structures that are
semantically implausible. Hence, we consider two restrictions. First, we ensure that
the remaining context is still understandable after an argument is removed by only
considering texts in which follow-up references can still be resolved based on earlier an-
tecedents. Second, we only modify arguments of PAS that actually occur and are aligned
across two texts. Given a pair of PAS that differ with respect to an argument realization,
we create modifications by replacing the specific implicit or explicit argument in one
text with the corresponding argument in the paired text. Examples (22) and (23) show
two such comparable sentences. The original PAS in Example (22a) contains an explicit
argument that is implicit in the aligned PAS and hence removed in the modified version.
Similarly, the original text in (23a) involves an implicit argument that is made explicit
in the modified version (23a‘).

Example 23
(a) [The Dalai Lama’s]A0 visit coincides with the Beijing Olympics.

(a‘) [The Dalai Lama’s]A0 visit [to France]A1 coincides with the Beijing Olympics.

We ensure that the modified structure fits into the given context grammatically by
only considering pairs of PASs with identical predicate form and constituent order. We
found that this restriction constrains affected arguments to be modifiers, prepositional
phrases, and direct objects. We argue that this is actually a desirable property because
more complicated alternations could affect coherence by themselves. In other words,
resulting interplays would make it difficult to distinguish between the isolated effect of
argument realization itself and other effects, triggered for example by sentence order
(Gordon, Grosz, and Gilliom 1993).

Annotation. We set up a Web experiment using the evaluation toolkit by Belz and Kow
(2011) to collect ratings of local coherence for implicit and explicit arguments. For this
experiment, we compiled a data set of 150 document pairs. Each text in such a pair
consists of the same content, with the only difference being one argument realization.

We presented all 150 pairs to two annotators12 and asked them to indicate their pref-
erence for one alternative over the other using a continuous slider scale. The annotators
got to see the full texts, with the alternatives presented next to each other. To make
texts easier to read and differences easier to spot, we collapsed all identical sentences
into one column and highlighted the aligned predicate (in both texts) and the affected
argument (in the explicit case). An example is shown in Figure 3. To avoid any bias in
the annotation process, we shuffled the sequence of text pairs and randomly assigned
the side of display (left/right) of each realization type (explicit/implicit). Instead of

12 Both annotators are native speakers of English and undergraduate students in literature and linguistics.
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Figure 3
Texts as displayed to the annotators.

providing a definition of local coherence ourselves, we asked annotators to rate how
“natural” a realization reads given the discourse context. This procedure is in line
with previous work by Pitler and Nenkova (2008), who “view text readability and text
coherence as equivalent properties,” given that the annotators are “competent language
users.”

We found that annotators made use of the full rating scale, with the extremes
indicating either a strong preference for the text on the left-hand side or the right-
hand side, respectively. However, most ratings were concentrated more towards the
center of the scale (i.e., around zero). This seems to imply that the use of implicit
or explicit arguments did not make a considerable difference most of the time. The
annotators affirmed that some cases do not read naturally when a specific argument is
omitted or redundantly realized at a given position in discourse. For example, the text
fragment in Example (24) shows two sentences in which an argument has been realized
twice, leading to a perceived redundancy in the second sentence (A4, destination);
conversely, Example (25) showcases an excerpt in which a non-redundant argument
(A2, co-signer) has been omitted.

Example 24
The remaining contraband was picked up at Le Havre.
The containers had arrived [in Le Havre] from China.

Example 25
Lt.-Gen. Mohamed Lamari (. . . ) denied his country wanted South African weapons to
fight Muslim rebels fighting the government. “We are not going to fight a flea with a
hammer,” Lamari told reporters after signing the agreement of intent [∅].

We computed correlation between ratings of both annotators using Spearman’s ρ
(Spearman 1904) and found a low but significant correlation (ρ = 0.22, p < 0.01). To
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Table 8
Statistics on the collected data and final test set.

Total number of instances 150 Test instances 70

Preference Argument label
Explicit 47 (31%) A0 24 (34%)
Implicit 23 (15%) A1 9 (13%)
No preference 42 (28%) A2 29 (41%)
Disagreement 38 (25%) A3 3 (4%)

A4 3 (4%)

construct a test set with gold annotations, we mapped continuous ratings to discrete
labels (implicit, explicit, neutral) and selected a subset of 70 instances for which clear13

preferences were observed. Table 8 provides some statistics on the collected data. Even
though correlation with respect to continuous ratings is relatively low, we find that both
annotators have the same general preference in most cases, with a raw agreement of
75% overall. Our test set contains 47 (31%) cases of explicit arguments and 23 (15%)
cases of implicit arguments. Those cases in which annotators disagreed (25%) or had no
preference (28%) were discarded.

7.2 Coherence Model

We model the decision process that underlies the (non-)realization of arguments using
an SVM-based model and a range of discourse features. The features are based on
the following three factors: the affected predicate–argument structure (Parg), the (auto-
matic) coreference chain of the affected entity (Coref), and the discourse context (Disc).

Parg. The first group of features is concerned with the characteristics of the affected PAS:
This includes the absolute and relative number of explicitly realized arguments in the
structure, the number of modifiers in it, and the total length of the structure as well as
of the complete sentence (in words).

Coref. The coreference-specific features include transition patterns as inspired by the en-
tity grid model (cf. Section 3), the absolute number of previous and follow-up mentions
of the (non-)realized argument, their POS tags, and the distance between the current
PAS to the closest previous and follow-up mention (in number of words and sentences).
In contrast to previous work on the entity grid model, we do not type transition features
with respect to the grammatical function of explicit realizations. The reason for skipping
this information lies in the insignificant amount of relevant samples in our training data
(see the following).

Disc. On the discourse level, we define a small set of additional features that include
the total number of coreference chains in the text, the occurrence of pronouns in the
current sentence, lexical repetitions in the previous and follow-up sentence, the current
position in discourse (begin, middle, end), and a feature indicating whether the affected
argument occurred in the first sentence.

13 Absolute continuous rating of >1 standard deviation from zero.
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Most of these features overlap with those successfully applied in previous work on
modeling coherence. For example, the transition patterns are inspired by the entity grid
model. In addition to entity-grid like features, Pitler and Nenkova (2008) also use text
length, word overlap, and pronoun occurrences as features for predicting readability.
Our own contribution lies in the definition of PAS-specific features and the adaptation
of all features to the task of predicting (non-)realization of arguments in a PAS. In
the evaluation (cf. Section 7.3), we report results for two models: A simplified model
that only makes use of entity-grid like features and a full model that uses all features
described here. To learn feature weights, we make use of the training data described in
the following section.

7.3 Experiments

The goal of our model is to correctly predict the realization type (implicit or explicit)
of an argument that maximizes the perceived coherence of the document. As a proxy
for coherence, we use the naturalness ratings given by our annotators. We evaluate
classification performance on the 70 data points in our annotated test set for which
clear preferences have been established. We report results in terms of precision, recall,
and F1-score per class as well as micro- and macro-averaged F1-score across classes.
We compute precision as the fraction of correct classifier decisions divided by the total
number of classifications made for a specific class label; recall as the fraction of correct
classifier decisions divided by the total number of test items with the specific label; and
F1 as the harmonic mean between precision and recall.

7.3.1 Baselines. For comparison, we apply a couple of coherence models proposed in
previous work: the original entity grid model by Barzilay and Lapata (2005), a modified
version that uses topic models (Elsner and Charniak 2011a), and an extended version
that includes entity-specific features (Elsner and Charniak 2011b); we further apply the
discourse-new model by Elsner and Charniak (2008), and the pronoun-based model
by Charniak and Elsner (2009). For all of the aforementioned models, we use their
respective implementation provided with the Brown Coherence Toolkit.14 Note that the
toolkit only returns one coherence score for each document. To use the model scores
for predicting argument realization, we use two documents per data point—one that
contains the affected argument explicitly and one that does not (implicit argument)—
and treat the higher scoring variant as classification output. If both documents achieve
the same score, we count the test item neither as correctly nor as incorrectly classified.

7.3.2 Our Models. Like the applied baseline models, our models do not make use of
any manually labeled data for training. Instead, we utilize the automatically identified
instances of explicit and implicit arguments from pairs of comparable texts, which we
described in Section 5. To train our own model, we prepare this data set as follows:
Firstly, we remove all data points that were selected for the test set; secondly, we split all
pairs of texts into two groups—texts that contain a PAS in which an implicit argument
has been identified (IA), and their comparable counterparts, which contain the aligned
PAS with an explicit argument (EA). All texts are labeled according to their group. For
all texts in group EA, we remove the explicit argument from the aligned PAS. This
way, the feature extractor always gets to see the text and automatic annotations as if

14 http://www.ling.ohio-state.edu/%7Emelsner/.
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Table 9
Results for correctly predicting argument realization. Significant differences from our (full)
model in terms of micro-averaged F1-score are marked with asterisks (* p < 0.01).

implicit argument explicit argument averaged F1-scores
Model P R F1 P R F1 macro micro

Entity grid models – – – – – – – –
Baseline entity grid 0.30 0.78 0.43 0.44 0.09 0.14 0.29 0.31*
Extended entity grid 0.30 0.78 0.43 0.50 0.11 0.18 0.30 0.33*
Topical entity grid 0.31 0.87 0.45 0.40 0.04 0.08 0.27 0.31*

Other models – – – – – – – –
Pronouns 0.30 0.48 0.37 0.58 0.23 0.33 0.35 0.35*
Discourse-newness 0.35 0.96 0.52 0.88 0.15 0.25 0.39 0.41*

This article – – – – – – – –
Simplified model 0.70 0.30 0.42 0.73 0.94 0.82 0.66 0.73
Our (full) model 0.67 0.43 0.53 0.76 0.89 0.82 0.69 0.74

the realization decision had not been performed and can thus extract unbiased feature
values for the affected entity and argument position. Given each feature representation,
we train a classifier using the default parameters of the LIBSVM package (Chang and
Lin 2011).15

We apply our own model on each data point in the small annotated test set, where
we always treat the affected argument, regardless of its actual annotation, as implicit
to extract unbiased feature values for classification. Based on the features described in
Section 7.2 and trained on the automatically constructed PAS alignments, our model
predicts the realization type of each argument in the given context. We note that our
model has an advantage here because it is specifically designed for this task and trained
on corresponding data. All models compute local coherence ratings based on entity
occurrences, however, and should thus be able to predict which realization type coheres
best with the given discourse context. That is, because the input document pairs are
identical except for the affected argument position, the coherence scores assigned by
each model to pairs of text only differ with respect to the affected entity realization.

7.3.3 Results. The results are summarized in Table 9. We begin our analysis with a
discussion on results in terms of micro-averaged F1-scores. As observable from the last
column in Table 9, each of the baseline models achieves an F1-score between 31% and
41%, whereas our (full) model achieves 74%. As our data set is imbalanced and biased
towards explicit realizations, we also provide macro-averaged F1-scores that show av-
erage performance over both classes without taking into account their respective sizes.
Here, we find that baseline results lie between 27% and 39%, whereas our (full) model
achieves 69%. Before discussing the results of our model in more detail, we investigate
baselines performances.

We observe that the original entity grid model exhibits a preference for the im-
plicit realization type: It predicts this class in 61 (87%) cases, resulting in only 9%
of all explicit arguments being correctly classified. Overall, the entity grid achieves a

15 The default settings in our LIBSVM version are: equal costs of both classes and use of a sigmoid kernel.
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(micro-averaged) F1-score of 31%. Taking a closer look at the features of the model
reveals that this is an expected outcome: In its original setting, the entity grid learns
realization patterns in the form of sentence-to-sentence transitions. As discussed in the
paper that introduced the entity grid model (Barzilay and Lapata 2008), most entities
are, however, only mentioned a few times in a text. Consequently, non-realizations
constitute the “most frequent” class, independently of whether they are relevant in
a given context or not. The models by Charniak and Elsner (2009) and Elsner and
Charniak (2011a), which are not based on an entity grid, suffer less from such an effect
and achieve better results, with F1-scores up to 35% and 41%, respectively. The extended
entity grid model also alleviates the bias towards non-realizations, resulting in a slightly
improved F1-score of 33%. To abstract away from this issue, we train a simplified version
of our own model that only uses features that involve entity transition patterns. The
main difference between this simplified model and the original entity grid model lies in
the different use of training data: whereas entity grid models treat all non-realized items
equally, our model gets to “see” actual examples of entities that are implicit. In other
words, our simplified model takes into account implicit mentions of entities, not only
explicit ones. The results confirm that this extra information has a significant impact
(p < 0.01, using a randomization test; Yeh 2000) on test set performance, and raises
the ratio of correctly classified explicit arguments to 73%. Yet, the simplified model
only provides a correct label for 30% of instances in the test data that are marked as
implicit arguments, with a class-specific F1-score of only 42%. As demonstrated by the
performance of our full model, a combination of all features is needed to achieve the
best overall results of 69% and 74% in macro and micro-averaged F1-scores, respec-
tively. Applied to the two classes separately, our model achieves an F1-score of 53% on
arguments that are annotated as implicit and 82% on explicit arguments. Both of these
scores are the best across all tested models.

To determine the impact of the three different feature groups, we derive the weight
of each feature from the model learned by LIBSVM. Table 10 gives an overview over
the ten highest weights for implicit and explicit realization classification. We use the
following terminology in the feature description: “the entity” refers to the entity that
is referred to by the to-be-classified argument, “next/previous mention” denotes a
co-referring mention to the same entity, “the PAS” refers to the predicate–argument
structure that contains the affected argument (implicitly), and “the sentence” refers to
the sentence in which this PAS is realized. All “distances” refer to the number of tokens
that appear between the predicate that heads the PAS and the previous or next mention
of the entity. As can be seen at the top and bottom ends of Table 10, the strongest
feature for classifying an argument as implicit is whether the entity is also realized in the
preceding or following two sentences. The strongest feature for classifying an argument
as explicit is whether the next mention is a pronoun. The trained weights indicate that
the model is learning some interesting patterns that reflect rules such as “avoid close
repetitions,” “keep sentences short,” and “pronouns and proper names can more often
be dropped than definite noun phrases.”

7.4 Summary

In this chapter, we presented a computational linguistic application of the automatically
induced data set of implicit arguments that we introduced in Section 5. This data set
has been induced from pairs of comparable text and is a unique resource in that it
contains automatic annotations of implicit arguments, aligned explicit arguments, and
discourse antecedents. In our experiments on perceived coherence, we found that the
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Table 10
Weights assigned to each feature in our model; list includes the top 10 features for implicit
(positive weight) and explicit arguments (negative).

Weight Group Feature description

+55.38 Coref The entity is mentioned within two sentences
+25.37 Coref The entity has previously been mentioned as a proper noun
+19.14 Coref The entity has previously been mentioned as a pronoun
+14.75 Parg The PAS consists of at least 2 words
+12.82 Parg The sentence contains at least 20 words
+12.65 Parg The sentence contains at least 40 words
+12.12 Parg The PAS consists of at least 3 words
+11.32 Coref The entity is mentioned in the next but not in the previous sentence
+11.23 Coref The entity is mentioned within the previous or next 10 tokens
+10.79 Coref The entity is mentioned within the previous two sentences

−4.72 Parg The absolute number of arguments and modifiers in the PAS
−5.80 Coref The entity is mentioned two sentences ago but not in the previous
−6.38 Parg The previous entity mention was a definite noun phrase
−6.94 Disc The PAS occurs in the first sentence of the discourse
−7.11 Parg The absolute number of arguments in the affected PAS
−7.22 Coref The entity is mentioned in the next sentence but not in the previous
−8.79 Coref The entity is mentioned within the previous or next three sentences
−9.42 Coref The entity is mentioned within the previous three sentences
−10.38 Coref The entity is mentioned in the previous sentence
−32.70 Coref The next mention is a pronoun

use of implicit vs. explicit arguments, although often being a subtle difference, can
have a clear impact on readability ratings by human annotators. We showed that our
novel coherence model, which is solely trained on automatically induced data, is able
to predict this difference in newswire articles with an F1-score of up to 74%.

8. Discussion and Conclusions

In this article, we introduced a framework for inducing instances of implicit arguments
and their discourse antecedents from pairs of comparable texts, and showcased appli-
cations of these instances in natural language processing. As described in Section 2,
our framework consists of two steps: aligning predicate–argument structures across
comparable texts and identifying implicit arguments and antecedents. In the following
paragraphs, we summarize our framework and highlight specific contributions.

Predicate–Argument Structure Alignments. With the goal of inducing instances of implicit
arguments, we proposed a novel task that aims to align pairs of PASs across pairs of
comparable texts. In Section 4, we introduced a manually annotated data set for the
development and evaluation of models for this particular task. We found that pairs
of PASs can be aligned across documents with good inter-annotator agreement given
appropriate annotation guidelines. Based on the development part of our corpus, we
designed and fine-tuned a novel graph-based clustering model. To apply this model,
we represent PAS in pairs of documents as bipartite graphs and recursively divide
this graph into subgraphs. All clustering decisions by the model are based on pairwise
similarities between PASs, combining information on predicates, associated arguments,
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and their respective discourse contexts. We empirically evaluated our model against
various baselines and a competitive model that has recently been proposed in the
literature. The results of our evaluation show that our model outperforms all other
current models on the PAS alignment task by a margin of at least 0.6 percentage points in
F1-score, despite only a single threshold parameter being adjusted on our development
set. As an additional contribution, we defined a tuning procedure, in which we adjust
our method for high precision. Following this tuning routine, our model is capable of
aligning PAS pairs with a precision of 86.2%.

Heuristic Induction Method. Based on aligned pairs of PASs, the second step in our induc-
tion framework is to identify instances of implicit arguments. In Section 5, we described
a computational implementation of this step in which aligned argument structures are
automatically compared and discourse antecedents for implicit arguments are found
by means of entity coreference chains across documents. To reduce the effect of prepro-
cessing errors, our implementation makes use of precise preprocessing methods and a
small set of restrictions that exclude instances whose automatic annotations are likely
to be erroneous. We found that by combining information from different preprocessing
modules, we can induce instances of implicit arguments and discourse antecedents with
high precision.

Coherence Modeling and Implicit Argument Linking. To examine the utility and reliability
of our data set, we additionally performed extrinsic evaluations in task-based settings.
We described two particular applications of our data: linking implicit arguments to
discourse antecedents and predicting coherent argument realizations. In the first ap-
plication, described in Section 6, we used our data set as additional training data to
enhance a pre-existing system for identifying and linking implicit arguments in dis-
course. Experimental results showed that the addition of our training data can improve
performance in terms of precision (+15 percentage points) and F1-score (+5 percentage
points).

For the second application, we developed a novel model of local coherence, de-
scribed in Section 7, which predicts whether a specific argument should be explicitly
realized at a given point in discourse or whether it can already be inferred from context.
Our experiments revealed that this model, when trained on automatically induced data,
can predict human judgments on argument realization in newswire text with F1-scores
between 53% and 82%. In comparison, we found that entity-based coherence models
from previous work only achieve results below 50%, reflecting the fact that they do not
capture this phenomenon appropriately.

In conclusion, a considerable amount of work still needs to be done to enhance
models for handling implicit arguments in discourse. In the long run, however, this
research direction will be beneficial for many applications that involve the understand-
ing or generation of text beyond the sentence level. In this article, we provided several
research contributions that form a reliable basis for future work. In particular, we
developed a framework for automatically inducing instances of implicit arguments, and
we designed a novel coherence model that predicts the effect of argument realizations
on perceived textual coherence. From a theoretical perspective, we validated that both
explicit and implicit arguments can affect coherence and that automatically induced
training data can be utilized to model this phenomenon appropriately. We further
showed that our induced data set, which contains instances of implicit arguments and
discourse antecedents, can be applied to enhance current models for implicit argument
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linking. Future work will be able to build on these insights, further enhance existing
models, and apply them to improve current state-of-the-art NLP systems.

The resources described in this article are available for download at http://

projects.cl.uni-heidelberg.de/india/.

Acknowledgments
We thank our annotators in Heidelberg
and Edinburgh. We are grateful to the
anonymous reviewers for helpful feedback
and suggestions. The research leading to
these results has received funding by the
Landes-graduiertenförderung Baden-
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