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Among the more recent applications for natural language processing algorithms has been the
analysis of spoken language data for diagnostic and remedial purposes, fueled by the demand for
simple, objective, and unobtrusive screening tools for neurological disorders such as dementia.
The automated analysis of narrative retellings in particular shows potential as a component
of such a screening tool since the ability to produce accurate and meaningful narratives is
noticeably impaired in individuals with dementia and its frequent precursor, mild cognitive im-
pairment, as well as other neurodegenerative and neurodevelopmental disorders. In this article,
we present a method for extracting narrative recall scores automatically and highly accurately
from a word-level alignment between a retelling and the source narrative. We propose improve-
ments to existing machine translation-based systems for word alignment, including a novel
method of word alignment relying on random walks on a graph that achieves alignment accuracy
superior to that of standard expectation maximization-based techniques for word alignment in
a fraction of the time required for expectation maximization. In addition, the narrative recall
score features extracted from these high-quality word alignments yield diagnostic classification
accuracy comparable to that achieved using manually assigned scores and significantly higher
than that achieved with summary-level text similarity metrics used in other areas of NLP. These
methods can be trivially adapted to spontaneous language samples elicited with non-linguistic
stimuli, thereby demonstrating the flexibility and generalizability of these methods.

1. Introduction

Interest in applying natural language processing (NLP) technology to medical informa-
tion has increased in recent years. Much of this work has been focused on information
retrieval and extraction from clinical notes, electronic medical records, and biomedical
academic literature, but there has been some work in directly analyzing the spoken
language of individuals elicited during the administration of diagnostic instruments
in clinical settings. Analyzing spoken language data can reveal information not only
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about impairments in language but also about a patient’s neurological status with
respect to other cognitive processes such as memory and executive function, which are
often impaired in individuals with neurodevelopmental disorders, such as autism and
language impairment, and neurodegenerative conditions, particularly dementia.

Many widely used instruments for diagnosing certain neurological disorders in-
clude a task in which the person must produce an uninterrupted stream of spontaneous
spoken language in response to a stimulus. A person might be asked, for instance, to
retell a brief narrative or to describe the events depicted in a drawing. Much of the
previous work in applying NLP techniques to such clinically elicited spoken language
data has relied on parsing and language modeling to enable the automatic extraction of
linguistic features, such as syntactic complexity and measures of vocabulary use and
diversity, which can then be used as markers for various neurological impairments
(Solorio and Liu 2008; Gabani et al. 2009; Roark et al. 2011; de la Rosa et al. 2013; Fraser
et al. 2014). In this article, we instead use NLP techniques to analyze the content, rather
than the linguistic characteristics, of weakly structured spoken language data elicited
using neuropsychological assessment instruments. We will show that the content of
such spoken responses contains information that can be used for accurate screening
for neurodegenerative disorders.

The features we explore are grounded in the idea that individuals recalling the same
narrative are likely to use the same sorts of words and semantic concepts. In other
words, a retelling of a narrative will be faithful to the source narrative and similar to
other retellings. This similarity can be measured with techniques such as latent semantic
analysis (LSA) cosine distance or the summary-level statistics that are widely used in
evaluation of machine translation or automatic summarization, such as BLEU, Meteor,
or ROUGE. Perhaps not surprisingly, however, previous work in using this type of spo-
ken language data suggests that people with neurological impairments tend to include
irrelevant or off-topic information and to exclude important pieces of information, or
story elements, in their retellings that are usually included by neurotypical individuals
(Hier, Hagenlocker, and Shindler 1985; Ulatowska et al. 1988; Chenery and Murdoch
1994; Chapman et al. 1995; Ehrlich, Obler, and Clark 1997; Vuorinen, Laine, and Rinne
2000; Creamer and Schmitter-Edgecombe 2010). Thus, it is often not the quantity of
correctly recalled information but the quality of that information that reveals the most
about a person’s diagnostic status. Summary statistics like LSA cosine distance and
BLEU, which are measures of the overall degree of similarity between two texts, fail
to capture these sorts of patterns. The work discussed here is an attempt to reveal
these patterns and to leverage them for diagnostic classification of individuals with
neurodegenerative conditions, including mild cognitive impairment and dementia of
the Alzheimer’s type.

Our method for extracting the elements used in a retelling of a narrative relies
on establishing a word alignment between a retelling and a source narrative. Given
the correspondences between the words used in a retelling and the words used in
the source narrative, we can determine with relative ease the identities of the story
elements of the source narrative that were used in the retelling. These word alignments
are much like those used to build machine translation models. The amount of data
required to generate accurate word alignment models for machine translation, however,
far exceeds the amount of monolingual source-to-retelling parallel data available to
train word alignment models for our task. We therefore combine several approaches
for producing reliable word alignments that exploit the peculiarities of our training
data, including an entirely novel alignment approach relying on random walks on
graphs.
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Table 1

Abbreviations used in this article.

AER alignment error rate

AUC area under the (receiver operating characteristic) curve

BDAE  Boston Diagnostic Aphasia Exam

CDR Clinical Dementia Rating

MCI mild cognitive impairment

MMSE  Mini-Mental State Exam

WLM  Wechsler Logical Memory narrative recall subtest

In this article, we demonstrate that this approach to word alignment is as accurate
as and more efficient than standard hidden Markov model (HMM)-based alignment
(derived using the Berkeley aligner [Liang, Taskar, and Klein 2006]) for this particular
data. In addition, we show that the presence or absence of specific story elements in a
narrative retelling, extracted automatically from these task-specific word alignments,
predicts diagnostic group membership more reliably than not only other dementia
screening tools but also the lexical and semantic overlap measures widely used in NLP
to evaluate pairwise language sample similarity. Finally, we apply our techniques to
a picture description task that lacks an existing scoring mechanism, highlighting the
generalizability and adaptability of these techniques.

The importance of accurate screening tools for neurodegenerative disorders cannot
be overstated given the increased prevalence of these disorders currently being ob-
served worldwide. In the industrialized world, for the first time in recorded history,
the population over 60 years of age outnumbers the population under 15 years of
age, and it is expected to be double that of children by 2050 (United Nations 2002).
As the elderly population grows and as researchers find new ways to slow or halt the
progression of dementia, the demand for objective, simple, and noninvasive screening
tools for dementia and related disorders will grow. Although we will not discuss the
application of our methods to the narratives of children, the need for simple screening
protocols for neurodevelopmental disorders such as autism and language impairment
is equally urgent. The results presented here indicate that the path toward these goals
might include automated spoken language analysis.

2. Background
2.1 Mild Cognitive Impairment

Because of the variety of intact cognitive functions required to generate a narrative,
the inability to coherently produce or recall a narrative is associated with many
different disorders, including not only neurodegenerative conditions related to de-
mentia, but also autism (Tager-Flusberg 1995; Diehl, Bennetto, and Young 2006), lan-
guage impairment (Norbury and Bishop 2003; Bishop and Donlan 2005), attention
deficit disorder (Tannock, Purvis, and Schachar 1993), and schizophrenia (Lysaker
et al. 2003). The bulk of the research presented here, however, focuses on the util-
ity of a particular narrative recall task, the Wechsler Logical Memory subtest of the
Wechsler Memory Scale (Wechsler 1997), for diagnosing mild cognitive impairment
(MCI). (This and other abbreviations are listed in Table 1.)
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MClT is the stage of cognitive decline between the sort of decline expected in typical
aging and the decline associated with dementia or Alzheimer’s disease (Petersen et al.
1999; Ritchie and Touchon 2000; Petersen 2011). MCI is characterized by subtle deficits
in functions of memory and cognition that are clinically significant but do not prevent
carrying out the activities of daily life. This intermediary phase of decline has been
identified and named numerous times: mild cognitive decline, mild neurocognitive
decline, very mild dementia, isolated memory impairment, questionable dementia, and
incipient dementia. Although there continues to be disagreement about the diagnostic
validity of the designation (Ritchie and Touchon 2000; Ritchie, Artero, and Touchon
2001), a number of recent studies have found evidence that seniors with some subtypes
of MCI are significantly more likely to develop dementia than the population as a
whole (Busse et al. 2006; Manly et al. 2008; Plassman et al. 2008). Early detection can
benefit both patients and researchers investigating treatments for halting or slowing
the progression of dementia, but identifying MCI can be problematic, as most de-
mentia screening instruments, such as the Mini-Mental State Exam (MMSE) (Folstein,
Folstein, and McHugh 1975), lack sufficient sensitivity to the very subtle cognitive
deficits that characterize the disorder (Morris et al. 2001; Ravaglia et al. 2005; Hoops
et al. 2009). Diagnosis of MCI currently requires both a lengthy neuropsychological
evaluation of the patient and an interview with a family member or close associate,
both of which should be repeated at regular intervals in order to have a baseline for
future comparison. One goal of the work presented here is to determine whether an
analysis of spoken language responses to a narrative recall task, the Wechsler Logical
Memory subtest, can be used as a more efficient and less intrusive screening tool for
MCL

2.2 Wechsler Logical Memory Subtest

In the Wechsler Logical Memory (WLM) narrative recall subtest of the Wechsler Mem-
ory Scale, the individual listens to a brief narrative and must verbally retell the narrative
to the examiner once immediately upon hearing the story and again after a delay of 20 to
30 minutes. The examiner scores each retelling according to how many story elements
the patient uses in the retelling. The standard scoring procedure, described in more
detail in Section 3.2, results in a single summary score for each retelling, immediate
and delayed, corresponding to the total number of story elements recalled in that
retelling.

The Anna Thompson narrative, shown in Figure 1 (later in this article), has been
used as the primary WLM narrative for over 70 years and has been found to be sensitive
to dementia and related conditions, particularly in combination with tests of verbal
fluency and memory. Multiple studies have demonstrated a significant difference in
performance on the WLM between individuals with MCI and typically aging controls
under the standard scoring procedure (Storandt and Hill 1989; Petersen et al. 1999;
Wang and Zhou 2002; Nordlund et al. 2005). Further studies have shown that perfor-
mance on the WLM can help predict whether MCI will progress into Alzheimer’s dis-
ease (Morris et al. 2001; Artero et al. 2003; Tierney et al. 2005). The WLM can also serve
as a cognitive indicator of physiological characteristics associated with Alzheimer’s
disease. WLM scores in the impaired range are associated with the presence of changes
in Pittsburgh compound B and cerebrospinal fluid amyloid beta protein, two biomark-
ers of Alzheimer’s disease (Galvin et al. 2010). Poor performance on the WLM and
other narrative memory tests has also been strongly correlated with increased density
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of Alzheimer related lesions detected in postmortem neuropathological studies, even
in the absence of previously reported or detected dementia (Schmitt et al. 2000; Bennett
et al. 2006; Price et al. 2009).

We note that clinicians do not use the WLM as a diagnostic test by itself for MCI
or any other type of dementia. The WLM summary score is just one of a large number
of instrumentally derived scores of memory and cognitive function that, in combina-
tion with one another and with a clinician’s expert observations and examination, can
indicate the presence of a dementia, aphasia, or other neurological disorder.

2.3 Previous Work

Much of the previous work in applying automated analysis of unannotated transcripts
of narratives for diagnostic purposes has focused not on evaluating properties specific
to narratives but rather on using narratives as a data source from which to extract
speech and language features. Solorio and Liu (2008) were able to distinguish the
narratives of a small set of children with specific language impairment (SLI) from
those of typically developing children using perplexity scores derived from part-of-
speech language models. In a follow-up study on a larger group of children, Gabani
et al. (2009) again used part-of-speech language models in an attempt to characterize
the agrammaticality that is associated with language impairment. Two part-of-speech
language models were trained for that experiment: one on the language of children
with SLI and one on the language of typically developing children. The perplexity of
each child’s utterances was calculated according to each of the models. In addition, the
authors extracted a number of other structural linguistic features including mean length
of utterance, total words used in the narrative, and measures of accurate subject-verb
agreement. These scores collectively performed well in distinguishing children with
language impairment, achieving an F1 measure of just over 70% when used within
a support vector machine (SVM) for classification. In a continuation of this work,
de la Rosa et al. (2013) explored complex language-model-based lexical and syntactic
features to more accurately characterize the language used in narratives by children
with language impairment.

Roark et al. (2011) extracted a subset of the features used by Gabani et al. (2009),
along with a much larger set of language complexity features derived from syntactic
parse trees for utterances from narratives produced by elderly individuals for the
diagnosis of MCI. These features included simple measures, such as words per clause,
and more complex measures of tree depth, embedding, and branching, such as Frazier
and Yngve scores. Selecting a subset of these features for classification with an SVM
yielded a classification accuracy of 0.73, as measured by the area under the receiver
operating characteristic curve (AUC). A similar approach was followed by Fraser et
al. (2014) to distinguish different types of primary progressive aphasia, a group of
subtypes of dementia distinct from Alzheimer’s disease and MCI, in a small group
of elderly individuals. The authors considered almost 60 linguistic features, including
some of those explored by Roark et al. (2011) as well as numerous others relating to
part-of-speech frequencies and ratios. Using a variety of classifiers and feature combina-
tions for three different two-way classification tasks, the authors achieved classification
accuracies ranging between 0.71 and 1.0.

An alternative to analyzing narratives in terms of syntactic and lexical features is
to evaluate the content of the narrative retellings themselves in terms of their fidelity
to the source narrative. Hakkani-Tur, Vergyri, and Tur (2010) developed a method of
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automatically evaluating an audio recording of a picture description task, in which
the patient looks at a picture and narrates the events occurring in the picture, similar
to the task we will be analyzing in Section 8. After using automatic speech recog-
nition (ASR) to transcribe the recording, the authors measured unigram overlap be-
tween the ASR output transcript and a predefined list of key semantic concepts. This
unigram overlap measure correlated highly with manually assigned counts of these
semantic concepts. The authors did not investigate whether the scores, derived either
manually or automatically, were associated with any particular diagnostic group or
disorder.

Dunn et al. (2002) were among the first to apply automated methods specifically
to scoring the WLM subtest and determining the relationship between these scores
and measures of cognitive function. The authors used Latent Semantic Analysis (LSA)
to measure the semantic distance from a retelling to the source narrative. The LSA
scores correlated very highly with the scores assigned by examiners under the standard
scoring guidelines and with independent measures of cognitive functioning. In subse-
quent work comparing individuals with and without an English-speaking background
(Lautenschlager et al. 2006), the authors proposed that LSA-based scoring of the WLM
as a cognitive measure is less biased against people with different linguistic and cultural
backgrounds than other widely used cognitive measures. This work demonstrates not
only that accurate automated scoring of narrative recall tasks is possible but also that
the objectivity offered by automated measures has specific benefits for tests like the
WLM, which are often administered by practitioners working in a community setting
and serving a diverse population. We will compare the utility of this approach with our
alignment-based approach subsequently in the article.

More recently, Lehr et al. (2013) used a supervised method for scoring the responses
to the WLM, transcribed both manually and via ASR, using conditional random fields.
This technique resulted in slightly higher scoring and classification accuracy than the
unsupervised method described here. An unsupervised variant of their algorithm,
which relied on the methods described in this article to provide training data to the
conditional random field, yielded about half of the scoring gains and nearly all of the
classification gains of what we report here. A hybrid method that used the methods
in this article to derive features was the best performing system in that paper. Hence
the methods described here are important components to that approach. We also note,
however, that the supervised classifier-based approach to scoring retellings requires a
significant amount of hand-labeled training data, thus rendering the technique imprac-
tical for application to a new narrative or to any picture description task. The importance
of this distinction will become clear in Section 8, in which the approach outlined here is
applied to a new data set lacking an existing scoring mechanism or a linguistic reference
against which the responses can be scored.

In this article, we will be discussing the application of our methods to manually
generated transcripts of retellings and picture descriptions produced by adults with and
without neurodegenerative disorders. We note, however, that the same techniques have
been applied to narratives transcribed using ASR output (Lehr et al. 2012, 2013) with
little degradation in accuracy, given sufficient adaptation of the acoustic and language
models to the WLM retelling domain. In addition, we have applied alignment-based
scoring to the narratives of children with neurodevelopmental disorders, including
autism and language impairment (Prud’hommeaux and Rouhizadeh 2012), with sim-
ilarly strong diagnostic classification accuracy, further demonstrating the applicability
of these methods to a variety of input formats, elicitation techniques, and diagnostic
goals.
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3. Data
3.1 Experimental Participants

The participants for this study were drawn from an ongoing study of brain aging
at the Layton Aging and Alzheimer’s Disease Center at the Oregon Health and
Science University. Seventy-two of these participants had received a diagnosis of MCI,
and 163 individuals served as typically aging controls. Demographic information about
the experimental participants is shown in Table 2. There were no significant differences
in age and years of education between the two groups. The Layton Center data included
retellings for individuals who were not eligible for the present study because of their
age or diagnosis. Transcriptions of 48 retellings produced by these ineligible participants
were used to train and tune the word alignment model but were not used to evaluate
the word alignment, scoring, or classification accuracy.

We diagnose MCI using the Clinical Dementia Rating (CDR) scale (Morris 1993),
following earlier work on MCI (Petersen et al. 1999; Morris et al. 2001), as well as the
work of Shankle et al. (2005) and Roark et al. (2011), who have previously attempted
diagnostic classification using neuropsychological instrument subtest responses. The
CDR is a numerical dementia staging scale that indicates the presence of dementia and
its level of severity. The CDR score is derived from measures of cognitive function in six
domains: Memory; Orientation; Judgment and Problem Solving; Community Affairs;
Home and Hobbies; and Personal Care. These measures are determined during an
extensive semi-structured interview with the patient and a close family member or
caregiver. A CDR of 0 indicates the absence of dementia, and a CDR of 0.5 corresponds
to a diagnosis of MCI (Ritchie and Touchon 2000). This measure has high expert inter-
rater reliability (Morris 1993) and is assigned without any information derived from the
WLM subtest.

3.2 Wechsler Logical Memory

The WLM test, discussed in detail in Section 2.2, is a subtest of the Wechsler Memory
Scale (Wechsler 1997), a neuropsychological instrument used to evaluate memory func-
tion in adults. Under standard administration of the WLM, the examiner reads a brief
narrative to the participant, excerpts of which are shown in Figure 1. The participant
then retells the narrative to the examiner twice: once immediately upon hearing the
narrative and a second time after 20 to 30 minutes. Two retellings from one of the par-
ticipants in our study are shown in Figures 2 and 3. (There are currently two narrative

Table 2
Layton Center participant demographic data. Neither age nor years of education were
significantly different between groups.

Age (years) Education (years)
Diagnosis n  Mean Std Mean Std

MCI 72 887 6.0 14.9 2.6
Non-MCI 163  87.3 4.6 15.1 25
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Anna / Thompson / of South / Boston / employed / as a cook / in a school / cafeteria / reported /
at the police / station / that she had been [...] robbed of / fifty-six dollars. / She had four / small
children / the rent was due / and they hadn’t eaten / for two days. / The police / touched by the
woman'’s story / took up a collection / for her.

Figure 1
Excerpts of WLM narrative with slashes indicating the boundaries between story elements.
Twenty-two of the 25 story elements are shown here.

Ann Taylor worked in Boston as a cook. And she was robbed of sixty-seven dollars. Is that
right? And she had four children and reported at the some kind of station. The fellow

was sympathetic and made a collection for her so that she can feed the children.

Figure 2
WLM retelling by a participant before MCI diagnosis (score = 12).

She was robbed. And she had a couple children to feed. She had no food for them. And people
made a collection for her and to pay for her, for the food for the children.

Figure 3
WLM retelling by same participant as in Figure 2 after MCI diagnosis (score = 5).

retelling subtests that can be administered as part of the Wechsler Memory Scale, but the
Anna Thompson narrative used in the present study is the more widely used and has
appeared in every version of the Wechsler Memory Scale with only minor modifications
since the instrument was first released 70 years ago.)

Following the published scoring guidelines, the examiner scores the participant’s
response by counting how many of the 25 story elements are recalled in the retelling
without regard to their ordering or relative importance in the story. We refer to this as
the summary score. The boundaries between story elements are indicated with slashes
in Figure 1. The retelling in Figure 2, produced by a participant without MCI, received
a summary score of 12 for the 12 story elements recalled: Anna, Boston, employed, as
a cook, and robbed of, she had four, small children, reported, station, touched by the woman'’s
story, took up a collection, and for her. The retelling in Figure 3, produced by the same
participant after receiving a diagnosis of MCI two years later, earns a summary score
of 5 for the 5 elements recalled: robbed, children, had not eaten, touched by the woman’s
story, and took up a collection. Note that some of the story elements in these retellings
were not recalled verbatim. The scoresheet provided with the exam indicates the lexical
substitutions and degree of paraphrasing that are permitted, such as Ann or Annie for
Anna, or any indication that the story evoked sympathy for touched by the woman’s story.
Although the scoring guidelines have an air of arbitrariness in that paraphrasing is only
sometimes permitted, they do allow the test to be scored with high inter-rater reliability
(Mitchell 1987).

Recall that each participant produces two retellings for the WLM: an immediate
retelling and a delayed retelling. Each participant’s two retellings were transcribed at
the utterance level. The transcripts were downcased, and all pause-fillers, incomplete
words, and punctuation were removed. The transcribed retellings were scored manu-
ally according to the published scoring guidelines, as described earlier in this section.
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4. Diagnostic Classification Framework
4.1 Classifier

The goal of the work presented here is to demonstrate the utility of a variety of features
derived from the WLM retellings for diagnostic classification of individuals with MCL
To perform this classification, we use LibSVM (Chang and Lin 2011), as implemented
within the Waikato Environment for Knowledge Analysis (Weka) API (Hall et al. 2009),
to train SVM classifiers, using a radial basis function kernel and default parameter
settings.

We evaluate classification via receiver operating characteristic (ROC) curves, which
have long been widely used to evaluate diagnostic tests (Zweig and Campbell 1993;
Faraggi and Reiser 2002; Fan, Upadhye, and Worster 2006) and are also increasingly
used in machine learning to evaluate classifiers in ranking scenarios (Cortes, Mobhri,
and Rastogi 2007; Ridgway et al. 2014). Analysis of ROC curves allows for classifier
evaluation without selecting a specific, potentially arbitrary, operating point. To use
standard clinical terminology, ROC curves track the tradeoff between sensitivity and
specificity. Sensitivity (true positive rate) is what is commonly called recall in compu-
tational linguistics and related fields—that is, the percentage of items in the positive
class that were correctly classified as positives. Specificity (true negative rate) is the
percentage of items in the negative class that were correctly classified as negatives,
which is equal to one minus the false positive rate. If the threshold is set so that nothing
scores above threshold, the sensitivity (true positive rate, recall) is 0.0 and specificity
(true negative rate) is 1.0. If the threshold is set so that everything scores above thresh-
old, sensitivity is 1.0 and specificity is 0.0. As we sweep across intervening threshold
settings, the ROC curve plots sensitivity versus one minus specificity, true positive
rate versus false positive rate, providing insight into the precision/recall tradeoff at all
possible operating points. Each point (tp, fp) in the curve has the true positive rate as
the first dimension and false positive rate as the second dimension. Hence each curve
starts at the origin (0, 0), the point corresponding to a threshold where nothing scores
above threshold, and ends at (1, 1), the point where everything scores above threshold.

ROC curves can be characterized by the area underneath them (“area under curve”
or AUQC). A perfect classifier, with all positive items ranked above all negative items, has
an ROC curve that starts at point (0, 0), goes straight up to (1, 0)—the point where true
positive is 1.0 and false positive is 0.0 (since it is a perfect classifier)—before continuing
straight over to the final point (1, 1). The area under this curve is 1.0, hence a perfect
classifier has an AUC of 1.0. A random classifier, whose ROC curve is a straight diagonal
line from the origin to (1, 1), has an AUC of 0.5. The AUC is equivalent to the probability
that a randomly chosen positive example is ranked higher than a randomly chosen
negative example, and is, in fact, equivalent to the Wilcoxon-Mann-Whitney statis-
tic (Hanley and McNeil 1982). This statistic allows for classifier comparison without the
need of pre-specifying arbitrary thresholds. For tasks like clinical screening, different
tradeoffs between sensitivity and specificity may apply, depending on the scenario. See
Fan, Upadhye, and Worster (2006) for a useful discussion of clinical use of ROC curves
and the AUC score. In that paper, the authors note that there are multiple scales for
interpreting the value of AUC, but that a rule-of-thumb is that AUC < 0.75 is generally
not clinically useful. For the present article, however, AUC mainly provides us the
means for evaluating the relative quality of different classifiers.

One key issue for this sort of analysis is the estimation of the AUC for a particular
classifier. Leave-pair-out cross-validation—proposed by Cortes, Mohri, and Rastogi
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(2007) and extensively validated in Pahikkala et al. (2008) and Airolaa et al. (2011)—
is a method for providing an unbiased estimate of the AUC, and the one we use in
this article. In the leave-pair-out technique, every pairing between a negative example
(i.e., a participant without MCI) and a positive example (i.e., a participant with MCI)
is tested using a classifier trained on all of the remaining examples. The results of each
positive /negative pair can be used to calculate the Wilcoxon-Mann-Whitney statistic as
follows. Let s(e) be the score of some example ¢; let P be the set of positive examples and
N the set of negative examples; and let [s(p) > s(n)] be 1 if true and 0 if false. Then:

AUC(s, P,n) = m SN Is(p) > s (1)

peEP neEN

Although this method is compute-intensive, it does provide an unbiased estimate of the
AUC, whereas other cross-validation setups lead to biased estimates. Another benefit of
using the AUC is that standard deviation can be calculated. The standard deviation for
the AUC is calculated as follows, where AUC is abbreviated as A to improve readability:

2 AQ= A+ (Pl = D45 — A% + (N = V(5 — A7) 2
‘ [PIIN|

4.2 Baseline Features

Previous work has shown that the WLM summary scores assigned during standard
administration of the WLM, particularly in combination with other tests of verbal
fluency and memory, are sensitive to the presence of MCI and other dementias (Storandt
and Hill 1989; Petersen et al. 1999; Schmitt et al. 2000; Wang and Zhou 2002; Nordlund
et al. 2005; Bennett et al. 2006; Price et al. 2009). We note, however, that the WLM test
alone is not typically used as a diagnostic test. One of the goals of this work is to explore
the utility of the standard WLM summary scores for diagnostic classification. A more
ambitious goal is to demonstrate that using smaller units of information derived from
story elements, rather than gross summary-level scores, can greatly improve diagnostic
accuracy. Finally, we will show that using element-level scores automatically extracted
from word alignments can achieve diagnostic classification accuracy comparable to that
achieved using manually assigned scores. We therefore will compare the accuracy, mea-
sured in terms of AUC, of SVM classifiers trained on both summary-level and element-
level WLM scores extracted from word alignments to the accuracy of classifiers built
using a variety of alternative feature sets, both manually and automatically derived,
shown in Table 3.

First, we consider the accuracy of classifiers using the expert-assigned WLM scores
as features. For each of the 235 experimental participants, we generate two summary
scores: one for the immediate retelling and one for the delayed retelling. The summary
score ranges from 0, indicating that no elements were recalled, to 25, indicating that
all elements were recalled. Previous work using manually assigned scores as features
indicate that certain elements are more powerful in their ability to predict the pres-
ence of MCI (Prud’hommeaux 2012). In addition to the summary score, we therefore
also provide the SVM with a vector of 50 story element-level scores: For each of
the 25 elements in each of the two retellings per patient, there is a vector element
with the value of 0 if the element was not recalled, or 1 if the element was recalled.
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Table 3

Baseline classification accuracy results and standard deviation (s.d.).
Model AUC (s.d.)
Manual WLM summary scores 73.3 (3.8)
Manual WLM element scores 81.3 (3.3)
LSA 74.8 (3.7)
Unigram overlap precision 73.3 (3.8)
BLEU 73.6 (3.8)
ROUGE-SU4 76.6 (3.6)
Exact match open-class summary score ~ 74.3 (3.7)
Exact match open-class unigrams 76.4 (3.6)
MMSE 72.3 (3.8)

Classification accuracy with participants with MCI using these two manually derived
feature sets is shown in Table 3.

We then present in Table 3 the classification accuracy of several summary-level
features derived automatically from the WLM retellings, using standard NLP tech-
niques for evaluating the similarity of two texts. We note that none of these features
makes reference to the published WLM scoring guidelines or to the predefined element
boundaries. Each of these feature sets contains two scores ranging between 0 and 1
for each participant, one for each of the two retellings: (1) cosine similarity between a
retelling and the source narrative measured using LSA, proposed by Dunn et al. (2002)
and calculated using the University of Colorado’s online LSA interface (available at
http://1sa.colorado.edu/) with the 300-factor ninth-grade reading level topic space;
(2) unigram overlap precision of a retelling relative to the source, proposed by Hakkani-
Tur, Vergyri, and Tur (2010); (3) BLEU, the n-gram overlap metric commonly used to
evaluate the quality of machine translation output (Papineni et al. 2002); and (4) the
F-measure for ROUGE-SU4, the n-gram overlap metric commonly used to evaluate
automatic summarization output (Lin 2004). The remaining two automatically derived
features are a set of binary scores corresponding to the exact match via grep of each of
the open-class unigrams in the source narrative and a summary score thereof.

Finally, in order to compare the WLM with another standard psychometric test,
we also show the accuracy of a classifier trained only on the expert-assigned manual
scores for the MMSE (Folstein, Folstein, and McHugh 1975), a clinician-administered 30-
point questionnaire that measures a patient’s degree of cognitive impairment. Although
it is widely used to screen for dementias such as Alzheimer’s disease, the MMSE is
reported not to be particularly sensitive to MCI (Morris et al. 2001; Ravaglia et al. 2005;
Hoops et al. 2009). The MMSE is entirely independent of the WLM and, though brief
(5-10 minutes), requires more time to administer than the WLM.

In Table 3, we see that the WLM-based features yield higher accuracy than the
MMSE, which is notable given the role that the MMSE plays in dementia screening.
In addition, although all of the automatically derived feature sets yield higher classifi-
cation than the MMSE, the manually derived WLM element-level scores are by far the
most accurate feature set for diagnostic classification. Summary-level statistics, whether
derived manually using established scoring mechanisms or automatically using a vari-
ety of text-similarity metrics used in the NLP community, seem not to provide sufficient
power to distinguish the two diagnostic groups. In the next several sections, we describe
a method for accurately automatically extracting the identities of the recalled story
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elements from WLM retellings via word alignment in order to try to achieve classifi-
cation accuracy comparable to that of the manually assigned WLM story elements and
higher than that of the other automatic scoring methods.

5. WLM Scoring Via Alignment

The approach presented here for automatic scoring of the WLM subtest relies on
word alignments of the type used in machine translation for building phrased-based
translation models. The motivation for using word alignment is the inherent similarity
between narrative retelling and translation. In translation, a sentence in one language is
converted into another language; the translation will have different words presented in
a different order, but the meaning of the original sentence will be preserved. In narrative
retelling, the source narrative is “translated” into the idiolect of the individual retelling
the story. Again, the retelling will have different words, possibly presented in a different
order, but at least some of the meaning will be preserved. We will show that although
the algorithm for extracting scores from the alignments is simple, the process of getting
high quality word alignments from the corpora of narrative retellings is challenging.

Although researchers in other NLP tasks that rely on alignments, such as textual
entailment and summarization, sometimes eschew the sort of word-level alignments
that are used in machine translation, we have no a priori reason to believe that this
sort of alignment will be inadequate for the purposes of scoring narrative retellings. In
addition, unlike many of the alignment algorithms proposed for tasks such as textual
entailment, the methods for unsupervised word alignment used in machine translation
require no external resources or hand-labeled data, making it simple to adapt our
automated scoring techniques to new scenarios. We will show that the word alignment
algorithms used in machine translation, when modified in particular ways, provide
sufficient information for highly accurate scoring of narrative retellings and subsequent
diagnostic classification of the individuals generating those retellings.

5.1 Example Alignment

Figure 4 shows a visual grid representation of a manually generated word alignment
between the source narrative shown in Figure 1 on the vertical axis and the example
WLM retelling in Figure 2 on the horizontal axis. Table 4 shows the word-index-to-
word-index alignment, in which the first index of each sentence is 0 and in which null
alignments are not shown.

When creating these manual alignments, the labelers assigned the “possible” deno-
tation under one of these two conditions: (1) when the alignment was ambiguous, as
outlined in Och and Ney (2003); and (2) when a particular word in the retelling was a
logical alignment to a word in the source narrative, but it would not have been counted
as a permissible substitution under the published scoring guidelines. For this reason,
we see that Taylor and sixty-seven are considered to be possible alignments because
although they are logical alignments, they are not permissible substitutions according to
the published scoring guidelines. Note that the word dollars is considered to be only a
possible alignment, as well, since the element fifty-six dollars is not correctly recalled
in this retelling under the standard scoring guidelines. In Figure 4, sure alignments
are marked in black and possible alignments are marked in gray. In Figure 5, sure
alignments are marked with S and possible alignments are marked with P.

Manually generated alignments like this one are the gold standard against which
any automatically generated alignments can be compared to determine the accuracy
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Figure 4
Visual representation of word alignment of source narrative and sample narrative.

of the alignment. From an accurate word-to-word alignment, the identities of the story
elements used in a retellings can be accurately extracted, and from that set of story
elements, the score that is assigned under the standard scoring procedure can be
calculated.
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Table 4

Sure (S) and Possible (P) index-to-index word alignment of the narrative in Figure 2.
Source Retelling S/P

anna(0) ann(0)

thompson(l)  taylor(1l)
employed(5)  worked(2)

of(2) in(3)
boston(4) boston(4)
as(6) as(5)

a(7) a(6)
cook(8) cook(7)
robbed(31) robbed(11)
of(32) of(12)

fifty-six(33) sixty-seven(13)
dollars(34) dollars(14)

she(35) she(19)
had(36) had(20)
four(37) four(21)

children(39) children(22)
reported(13)  reported(24)

LWLV nTTLOnnnunngnagn

at(14) at(25)

the(15) the(26)
station(17) station(30)
the(52) the(31)
police(53) fellow(32)
touched(54) sympathetic(34)
took(59) made(36)
up(60) made(36)
a(61) a(37)
collection(62)  collection(38)
for(63) for(39)
her(64) her(40)

5.2 Story Element Extraction and Scoring

As described earlier, the published scoring guidelines for the WLM specify the source
words that compose each story element. Figure 5 displays the source narrative with the
element IDs (A — Y) and word IDs (1 — 65) explicitly labeled. Element Q, for instance,
consists of the words 39 and 40, small children.

Using this information, we can determine which story elements were used in a
retelling from the alignments as follows: for each word in the source narrative, if that
word is aligned to a word in the retelling, the story element that it is associated with
is considered to be recalled. For instance, if there is an alignment between the retelling
word sympathetic and the source word fouched, the story element touched by the woman’s
story would be counted as correctly recalled. Note that in the WLM, every word in the
source narrative is part of one of the story elements. Thus, when we convert alignments
to scores in the way just described, any alignment can generate a story element. This is
true even for an alignment between function words such as the and of, which would be
unlikely individually to indicate that a story element had been recalled. To avoid such
scoring errors, we disregard any word alignment pair containing a function word from
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[A annag] [B thompson, ] [C of, south;] [D boston,] [E employeds] [F asg a7 cooks] [G ing
ajg schoolyq] [H cafeteria;,] [I reported;;] [ aty4 the;s polices¢] [K stationy;] [L that;g

shejg had,y beeny; held,, upys] [M onyy state,s streetys] [N they; night,g beforey] [O ands
robbeds; ofz,] [P fifty-sixs; dollarsss] [Q shess hadsg fours;] [R smallsg childrensg] [S they
renty; wasy duegs] [T andyy theyys hadys n'ty; eatenyg] [U foryy twosy dayss;] [V thes,
policess] [W toucheds, byss thess woman’ssy storysg] [X tookse upeg ae collectiong, ] [Y
f0r63 her64]

Figure 5
Text of WLM narrative with story element bracketing and word IDs.

the source narrative. The two exceptions to this rule are the final two words, for her,
which are not content words but together make a single story element.

Recall that in the manually derived word alignments, certain alignment pairs were
marked as possible if the word in the retelling was logically equivalent to the word
in the source but was not a permissible substitute according to the published scoring
guidelines. When extracting scores from a manual alignment, only sure alignments are
considered. This enables us to extract scores from a manual word alignment with 100%
accuracy. The possible manual alignments are used only for calculating alignment error
rate (AER) of an automatic word alignment model.

From the list of story elements extracted in this way, the summary score reported
under standard scoring guidelines can be determined simply by counting the number
of story elements extracted. Table 5 shows the story elements extracted from the manual
word alignment in Table 4.

5.3 Word Alignment Data

The WLM immediate and delayed retellings for all of the 235 experimental participants
and the 48 retellings from participants in the larger study who were not eligible for
the present study were transcribed at the word level. Partial words, punctuation, and
pause-fillers were excluded from all transcriptions used for this study. The retellings
were manually scored according to published guidelines. In addition, we manually

Table 5
Alignment from Table 4, excluding function words, with associated story element IDs.

Element ID

Source word :

Retelling word

KRXXSARTAIOOTOHE»>

anna(0) :
employed(5) :
boston(4) :
cook(8) :
robbed(31) :
four(37) :
children(39) :
reported(13) :
station(17) :
touched(54) :
took(59) :
collection(62) :
for(63) :
her(64) :

ann(0)
worked(2)
boston(4)
cook(7)
robbed(11)
four(21)
children(22)
reported(24)
station(30)
sympathetic(34)
made(36)
collection(38)
for(39)
her(40)
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produced word-level alignments between each retelling and the source narrative pre-
sented. These manual alignments were used to evaluate the word alignment quality and
never to train the word alignment model.

Word alignment for phrase-based machine translation typically takes as input a
sentence-aligned parallel corpus or bi-text, in which a sentence on one side of the corpus
is a translation of the sentence in that same position on the other side of the corpus.
Because we are interested in learning how to align words in the source narrative to
words in the retellings, our primary parallel corpus must consist of source narrative
text on one side and retelling text on the other. Because the retellings contain omissions,
reorderings, and embellishments, we are obliged to consider the full text of the source
narrative and of each retelling to be a “sentence” in the parallel corpus.

We compiled three parallel corpora to be used for the word alignment experiments:

®  Corpus 1: A 518-line source-to-retelling corpus consisting of the source
narrative paired with each of the two retellings from the 235 experimental
participants as well as the 48 retellings from ineligible individuals.

e  Corpus 2: A 268,324-line pairwise retelling-to-retelling corpus, consisting
of every possible pairwise combination of the 518 available retellings.

¢  Corpus 3: A 976-line word identity corpus, consisting of every word that
appears in any retelling and the source narrative paired with itself.

The explicit parallel alignments of word identities that compose Corpus 3 are included
in order to encourage the alignment of a word in a retelling to that same word in the
source, if it exists.

The word alignment techniques that we use are unsupervised. Other than the tran-
scriptions themselves, no manually generated data is used to build the word alignment
models. Therefore, as in the case with most experiments involving word alignment, we
build a model for the data we wish to evaluate using that same data. We do, however,
use the 48 retellings from the individuals who were not experimental participants as
a development set for tuning the various parameters of our word alignment system,
which are described in the following.

5.4 Baseline Alignment

We begin by building two word alignment models using the Berkeley aligner (Liang,
Taskar, and Klein 2006), a state-of-the-art word alignment package that relies on IBM
Models 1 and 2 (Brown et al. 1993) and an HMM. We chose to use the Berkeley aligner,
rather than the more widely used Giza++ alignment package, for this task because its
joint training and posterior decoding algorithms yield lower alignment error rates on
most data sets (including the data set used here [Prud’hommeaux and Roark 2011]) and
because it offers functionality for testing an existing model on new data and, more cru-
cially, for outputting posterior probabilities. The smaller of our two Berkeley-generated
models is trained on Corpus 1 (the source-to-retelling parallel corpus described earlier)
and ten copies of Corpus 3 (the word identity corpus). The larger model is trained on
Corpus 1, Corpus 2 (the pairwise retelling corpus), and 100 copies of Corpus 3. Both
models are then tested on the 470 retellings from our 235 experimental participants. In
addition, we use both models to align every retelling to every other retelling so that we
will have all pairwise alignments available for use in the graph-based model presented
in the next section.
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We note that the Berkeley aligner occasionally fails to return an alignment for
a sentence pair, either because one of the sentences is too long or because the time
required to perform the necessary calculations exceeds some maximum allotted time.
In these cases, in order to generate alignments for all retellings and to build a complete
graph that includes all retellings, we back off to the alignments and posteriors generated
by IBM Model 1.

The first two rows of Table 6 show the precision, recall, and alignment error rate
(AER) (Och and Ney 2003) for these two Berkeley aligner models. We note that al-
though the AER for the larger model is lower, the time required to train the model is
significantly longer. The alignments generated by the Berkeley aligner serve not only as
a baseline for comparison of word alignment quality but also as a springboard for the
novel graph-based method of alignment we will now discuss.

5.5 Graph-Based Refinement

Graph-based methods, in which paths or random walks are traced through an inter-
connected graph of nodes in order to learn more about the nodes themselves, have been
used for NLP tasks in information extraction and retrieval, including Web-page ranking
(PageRank; Page et al. 1999) and extractive summarization (LexRank; Erkan and Radev
2004; Otterbacher, Erkan, and Radev 2009). In the PageRank algorithm, the nodes of the
graph are Web pages and the edges connecting the nodes are the hyperlinks leading
from those pages to other pages. The nodes in the LexRank algorithm are sentences in a
document and the edges are the similarity scores between those sentences. The number
of times that a particular node is visited in a random walk reveals information about the
importance of that node and its relationship to the other nodes. In many applications
of random walks, the goal is to determine which node is the most central or has the
highest prestige. In word alignment, however, the goal is to learn new relationships and
strengthen existing relationships between words in a retelling and words in the source
narrative.

In the case of our graph-based method for word alignment, each node represents a
word in one of the retellings or in the source narrative. The edges are the normalized
posterior-weighted alignments that the Berkeley aligner proposes between each word
and (1) words in the source narrative, and (2) words in the other retellings. We generate
these edges by using an existing baseline alignment model to align every retelling to
every other retelling and to the source narrative. The posterior probabilities produced
by the baseline alignment model serve as the weights on the edges. At each step in
the walk, the choice of the next destination node can be determined according to

Table 6

Word alignment performance.

Model P R AER
Berkeley-Small 723 785 248
Berkeley-Large 790 794 209

Graph-based-Small 779 812 20.6
Graph-based-Large 854 769 189
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UPDATESRCDIST(R,S, P, Q,A,N)
Inputs: retelling words R; source words S; transition multinomial model P: R — R;
transition multinomial model Q: R — S; parameters A, N
Output:  updated transition multinomial model matrix Q: R — S

1 O <« zeros(|R|, |S|) > Initialize |R| x |S| matrix with zeros.
2 for rinR do

3 for i=1toNdo

4 e

5 while RAND[0, 1] < A do > until random probability > A

6 7' < SAMPLE(P(7,:)) > sample destination retelling word from r’
7 s <+ SAMPLE(Q(7’,:)) > sample destination source word from 7’
8 sl + Qlrsl+ % > accumulate evidence in new matrix

9 return Q'

Figure 6
Pseudocode for updating the multinomial model for transitioning from retelling words to source
words.

the strength of the outgoing edges, as measured by the posterior probability of that
alignment.

Starting at a word in one of the retellings, represented by a node in the graph, the
algorithm can walk from that node either to another retelling word in the graph to
which it is aligned or to a word in the source narrative to which it is aligned. At each
step in the walk, there is an empirically derived probability, A, that sets the likelihood
of transitioning to another retelling word versus a word in the source narrative. This
probability functions similarly to the damping factor used in PageRank and LexRank,
although its purpose is quite different. Once the decision whether to walk to a retelling
word or source word has been made, the destination word itself is chosen according to
the weights, which are the posterior probabilities assigned by the baseline alignment
model. When the walk arrives at a source narrative word, that particular random walk
ends, and the count for that source word as a possible alignment for the input retelling
word is incremented by one.

For each word in each retelling, we perform 1,000 of these random walks, thereby
generating a distribution for each retelling word over all of the words in the source nar-
rative. The new alignment for the word is the source word with the highest frequency
in that distribution. Pseudocode for this algorithm is provided in Figure 6.

Consider the following excerpts of five of the retellings. In each excerpt, the word
that should align to the source word touched is rendered in bold:

the police were so moved by the story that they took up a collection for her

the fellow was sympathetic and made a collection for her so that she can feed the
children

the police were touched by their story so they took up a collection
the police were so impressed with her story they took up a collection

the police felt sorry for her and took up a collection
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Figure 7 presents a small idealized subgraph of the pairwise alignments of these
five retellings. The arrows represent the alignments proposed by the Berkeley aligner
between the relevant words in the retellings and their alignment (or lack of alignment)
to the word touched in the source narrative. Thin arrows indicate alignment edges in
the graph between retelling words, and bold arrows indicate alignment edges between
retelling words and words in the source narrative. Words in the retellings are rendered
as nodes with a single outline, and words in the source are rendered as nodes with a
double outline.

We see that a number of these words were not aligned to the correct source
word, touched. They are all, however, aligned to other retelling words that are in turn
eventually aligned to the source word. Starting at any of the nodes in the graph, it
is possible to walk from node to node and eventually reach the correct source word.
Although sympathetic was not aligned to touched by the Berkeley aligner, its correct
alignment can be recovered from the graph by following the path through other retelling
words. After hundreds or thousands of random walks on the graph, evidence for the
correct alignment will accumulate.

The approach as described might seem most beneficial to a system in need of im-
provements to recall rather than precision. Our baseline systems, however, are already
favoring recall over precision. For this reason we include the NULL word in the list
of words in the source narrative. We note that most implementations of both IBM
Model 1 and HMM-based alignment also model the probability of aligning to a hidden
word, NULL. In word alignment for machine translation, alignment to NULL usually
indicates that a word in one language has no equivalent in the other language because
the two languages express the same idea or construction in a slightly different way.
Romance languages, for instance, often use prepositions before infinitival complements
(e.g., Italian cerco di ridere) when English does not (e.g., I try to laugh). In the alignment
of narrative retellings, however, alignment to NULL often indicates that the word in
question is part of an aside or a piece of information that was not expressed in the
source narrative.

Any retelling word that is not aligned to a source word by the baseline alignment
system will implicitly be aligned to the hidden source word NULL, guaranteeing that
every retelling word has at least one outgoing alignment edge and allowing us to

somy &
6286-LM-1I “

impressed
11124-LM-11

Figure 7

Subgraph of the full pairwise and source-to-retelling alignment. Thin arrows represent
alignments from retelling words to other retelling words. Bold arrows indicate alignments to
words from the source narrative, which are rendered as nodes with a double outline.
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somy &
6286-LM-I1 “
touched
360-LM-1

apple
11003-LM-I1

food
261-LM-II

Figure 8

Subgraph of the full pairwise and source-to-retelling alignment including the NULL word. Thin
arrows represent alignments from retelling words to other retelling words. Bold arrows indicate
alignments to words from the source narrative, which are rendered as nodes with a double
outline.

model the likelihood of being unaligned. A word that was unaligned by the original
system can remain unaligned. A word that should have been left unaligned but was
mistakenly aligned to a source word by the original system can recover its correct (lack
of) alignment by following an edge to another retelling word that was correctly left
unaligned (i.e., aligned to NULL). Figure 8 shows the graph in Figure 7 with the addition
of the NULL node and the corresponding alignment edges to that node. This figure also
includes two new retelling words, food and apple, and their respective alignment edges.
Here we see that although the retelling word food was incorrectly aligned to the source
word touched by the baseline system, its correct alignment to NULL can be recovered by
traversing the edge to retelling word apple and from there, the edge to the source word
NULL.

The optimal values for the following two parameters for the random walk must be
determined: (1) the value of A, the probability of walking to a retelling word node rather
than a source word, and (2) the posterior probability threshold for including a particular
edge in the graph. We optimize these parameters by testing the output of the graph-
based approach on the development set of 48 retellings from the individuals who were
not eligible for the study, discussed in Section 5.3. Recall that these additional retellings
were included in the training data for the alignment model but were not included in
the test set used to evaluate its performance. Tuning on this set of retellings therefore
introduces no additional words, out-of-vocabulary words, or other information to the
graph, while preventing overfitting.

The posterior threshold is set to 0.5 in the Berkeley aligner’s default configuration,
and we found that this value did indeed yield the lowest AER for the Berkeley aligner
on our data. When building the graph using Berkeley alignments and posteriors, how-
ever, we can adjust the value of this threshold to optimize the AER of the alignments
produced via random walks. Using the development set of 48 retellings, we determined
that the AER is minimized when the value of A is 0.8 and the alignment inclusion
posterior threshold is 0.5.
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5.6 Word Alignment Evaluation

Recall the two baseline alignment models generated by the Berkeley aligner, described
in Section 5.4: (1) the small Berkeley model, trained on Corpus 1 (the source-to-retelling
corpus) and 10 instances of Corpus 3 (the word identity corpus), and (2) the large
Berkeley model (trained on Corpus 1, Corpus 2, the full pairwise retelling-to-retelling
corpus, and 100 instances of Corpus 3). Using these models, we generate full retelling-
to-retelling alignments, on which we can then build two graph-based alignment models:
the small graph-based model and the large graph-based model.

The manual gold alignments for the 235 experimental participants were evaluated
against the alignments produced by each of the four models. Table 6 presents the
precision, recall, and AER for the alignments of the experimental participants. Not
surprisingly, the larger models yield lower error rates than the smaller models. More
interestingly, each graph-based model outperforms the Berkeley model of the corre-
sponding size by a large margin. The performance of the small graph-based model
is particularly remarkable because it yields an AER superior to the large Berkeley
model while requiring significantly fewer computing resources. Each of the graph-
based models generated the full set of alignments in only a few minutes, whereas the
large Berkeley model required 14 hours of training.

6. Scoring Evaluation

The element-level scores induced, as described in Section 5.2, from the four word
alignments for all 235 experimental participants were evaluated against the manual
per-element scores. We report the precision, recall, and F-measure for all four alignment
models in Table 7. In addition, we report Cohen’s kappa as a measure of reliability
between our automated scores and the manually assigned scores. We see that as AER
improves, scoring accuracy also improves, with the large graph-based model outper-
forming all other models in terms of precision, F-measure, and inter-rater reliability.
The scoring accuracy levels reported here are comparable to the levels of inter-rater
agreement typically reported for the WLM, and reliability between our automated
scores and the manual scores, as measured by Cohen’s kappa, is well within the ranges
reported in the literature (Johnson, Storandt, and Balota 2003). As will be shown in
the following section, scoring accuracy is important for achieving high classification
accuracy of MCL

Table 7
Scoring accuracy results.

Model P R F K

Berkeley-Small 872 889 880 76.1
Berkeley-Large 86.8 90.7 887 77.1
Graph-Small 847 93.6 889 769
Graph-Big 888 893 891 783
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7. Diagnostic Classification

As discussed in Section 2, poor performance on the WLM test is associated with MCIL
We now use the scores we have extracted from the word alignments as features with an
SVM to perform diagnostic classification for distinguishing participants with MCI from
those without, as described in Section 4.1.

Table 8 shows the classification results for the scores derived from the four align-
ment models along with the classification results using the examiner-assigned manual
scores, the MMSE, and the four alternative automated scoring approaches described
in Section 4.2. It appears that, in all cases, the per-element scores are more effective
than the summary scores in classifying the two diagnostic groups. In addition, we see
that our automated scores have classificatory power comparable to that of the manual
gold scores, and that as scoring accuracy increases from the small Berkeley model to the
graph-based models and bigger models, classification accuracy improves. This suggests
both that accurate scores are crucial for accurate classification and that pursuing even
further improvements in word alignment is likely to result in improved diagnostic
differentiation. We note that although the large Berkeley model achieved the highest
classification accuracy of the automated methods, this very slight margin of difference
may not justify its significantly greater computational requirements.

In addition to using summary scores and element-level scores as features for the
story-element based models, we also perform feature selection over both sets of features
using the chi-square statistic. Feature selection is performed separately on each training
set for each fold in the cross-validation to avoid introducing bias from the testing
example. We train and test the SVM using the top n story element features, from n =1
to n = 50. We report here the accuracy for the top seven story elements (n = 7), which
yielded the highest AUC measure. We note that over all of the folds, only 8 of the 50
features ever appeared among the seven most informative.

In all cases, the per-element scores are more effective than the summary scores
in classifying the two diagnostic groups, and performing feature selection results in
improved classification accuracy. All of the element-level feature sets automatically
extracted from alignments outperform the MMSE and all of the alternative automatic

Table 8

Classification accuracy results measured by AUC (standard deviation).

Model Summary scores Element scores Element subset
Berkeley-Small 73.7 (3.74) 77.9 (3.52) 80.3 (3.4)
Berkeley-Big 75.1 (3.67) 79.2 (3.45) 81.2(3.3)
Graph-Small 74.2 (3.71) 78.9 (3.47) 80.0 (3.4)
Graph-Big 74.8 (3.69) 78.6 (3.49) 81.6 (3.3)
Manual Scores 73.3 (3.76) 81.3 (3.32) 82.1 (3.3)
MMSE 72.3 (3.8) n/a n/a
LSA 74.8 (3.7) n/a n/a
BLEU 73.6 (3.8) n/a n/a
ROUGE-SU4 76.6 (3.6) n/a n/a
Unigram overlap precision 73.3 (3.8) n/a n/a
Exact match open-class 74.3 (3.7) 76.4 (3.6) n/a
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scoring procedures, which suggests that the extra complexity required to extract
element-level features is well worth the time and effort.

We note that the final classification results for all four alignment models are not
drastically different from one another, despite the large reductions in word alignment
error rate and improvements in scoring accuracy observed in the larger models and
graph-based models. This seeming disconnect between word alignment accuracy and
downstream application performance has also been observed in the machine translation
literature, where reductions in AER do not necessarily lead to meaningful increases
in BLEU, the widely accepted measure of machine translation quality (Ayan and Dorr
2006; Lopez and Resnik 2006; Fraser and Marcu 2007). Our results, however, show that a
feature set consisting of manually assigned WLM scores yields the highest classification
accuracy of any of the feature sets evaluated here. As discussed in Section 5.2, our WLM
score extraction method is designed such that element-level scores can be extracted with
perfect accuracy from a perfect word alignment. Thus, the goal of seeking perfect or
near-perfect word alignment accuracy is worthwhile because it will necessarily result
in perfect or near-perfect scoring accuracy, which in turn is likely to yield classification
accuracy approaching that of manually assigned scores.

8. Application to Task with Non-linguistic Reference

As we discussed earlier, one of the advantages of using an unsupervised method of
scoring is the resulting generalizability to new data sets, particularly those generated
from a non-linguistic stimulus. The Boston Diagnostic Aphasia Examination (BDAE)
(Goodglass and Kaplan 1972), an instrument widely used to diagnose aphasia in adults,
includes one such task, popularly known as the cookie theft picture description task. In
this test, the person views a drawing of a lively scene in a family’s kitchen and must tell
the examiner about all of the actions they see in the picture. The picture is reproduced
below in Figure 9.

Describing visually presented material is quite different from a task such as the
WLM, in which language comprehension and memory play a crucial role. Nevertheless,
the processing and language production demands of a picture description task may lead
to differences in performance in groups with certain cognitive and language problems.
In fact, it is widely reported that the picture descriptions of seniors with dementia of
the Alzheimer’s type differ from those of typically aging seniors in terms of information
content (Hier, Hagenlocker, and Shindler 1985; Gilesa, Patterson, and Hodge 1996). In-
terestingly, this reduction in information is not necessarily accompanied by a reduction
in the amount of language produced. Rather, it seems that seniors with Alzheimer’s
dementia tend to include redundant information, repetitions, intrusions, and revisions
that result in language samples of length comparable to that of typically aging seniors.

TalkBank (MacWhinney 2007), the online database of audio and transcribed speech,
has made available the DementiaBank corpus of descriptions of the cookie theft picture
by hundreds of individuals, some of whom have one of a number of types of de-
mentia, including MCI, vascular dementia, possible Alzheimer’s disease, and probable
Alzheimer’s disease. From this corpus were selected a subset of individuals without
dementia and a subset with probable Alzheimer’s disease. We limit the set of descrip-
tions to those with more than 25 but fewer than 100 words, yielding 130 descriptions for
each diagnostic group. There was no significant difference in description word count
between the two diagnostic groups.

The first task was to generate a source description to which all other narratives
should be aligned. Working under the assumption that the control participants would
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Figure 9
BDAE cookie theft picture.

produce good descriptions, we calculated the BLEU score of every pair of descriptions
from the control group. The description with the highest average pairwise BLEU score
was selected as the source description. After confirming that this description did in
fact contain all of the action portrayed in the picture, we removed all extraneous
conversational asides from the description in order to ensure that it contained all and
only information about the picture. The selected source description is as follows:

The boy is getting cookies out of the cookie jar. And the stool is just about to fall over.
The little girl is reaching up for a cookie. And the mother is drying dishes. The water is
running into the sink and the sink is running over onto the floor. And that little girl is
laughing.

We then built an alignment model on the full pairwise description parallel corpus
(2607 = 67,600 sentences) and a word identity corpus consisting of each word in each
description reproduced 100 times. Using this trained model, which corresponds to the
large Berkeley model that achieved the highest classification accuracy for the WLM
data, we then aligned every description to the artificial source description. We also built
a graph-based alignment model using these alignments and the parameter settings that
maximized word alignment accuracy in the WLM data. Because the artificial source
description is not a true linguistic reference for this task, we did not produce manual
word alignments against which the alignment quality could be evaluated and against
which the parameters could be tuned. Instead, we evaluated only the downstream
application of diagnostic classification.

The method for scoring the WLM relies directly on the predetermined list of story
elements, whereas the cookie theft picture description administration instructions do
not include an explicit set of items that must be described. Recall that the automated
scoring method we propose uses only the open-class or content words in the source
narrative. In order to generate scores for the descriptions, we propose a scoring tech-
nique that considers each content word in the source description to be its own story
element. Any word in a retelling that aligns to one of the content words in the source
narrative is considered to be a match for that content word element. This results in a
large number of elements, but it allows the scoring method to be easily adapted to other
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Table 9
Classification accuracy for probable Alzheimer’s disease using BDAE picture description
features, and standard deviation (s.d.).

Feature Set AUC (s.d.)
Unigram precision 63.0 (3.4)
BLEU 70.1 (3.2)
Content word summary score (graph-based) 70.4 (3.2)
Content word word-level scores (graph-based)  82.3 (2.6)
Content word summary score (Berkeley) 67.6 (3.3)
Content word word-level scores (Berkeley) 83.2 (2.5)

narrative production scenarios that similarly do not have explicit scoring guidelines.
Using these scores as features, we again used an SVM to classify the two diagnostic
groups, typically aging and probable Alzheimer’s disease, and evaluated the classifier
using leave-pair-out validation.

Table 9 shows the classification results using the content word scoring features
produced using the Berkeley aligner alignments and the graph-based alignments. These
can be compared to classification results using the summary similarity metrics BLEU
and unigram precision. We see that using word-level features, regardless of which
alignment model they are extracted from, results in significantly higher classification ac-
curacy than both the simple similarity metrics and the summary scores. The alignment-
based scoring approach yields features with remarkably high classification accuracy
given the somewhat ad hoc selection of the source narrative from the set of control
retellings.

These results demonstrate the flexibility and utility of the alignment-based ap-
proach to scoring narratives. Not only can it be adapted to other narrative retelling
instruments, but it can relatively trivially be adapted to instruments that use non-
linguistic stimuli for elicitation. All that is needed to build an alignment model is a
sufficiently large collection of retellings of the same narrative or descriptions of the
same picture. Procuring such a collection of descriptions or retellings can be done easily
outside a clinical setting using a platform such as Amazon’s Mechanical Turk. No hand-
labeled data, outside lexical resources, prior knowledge of the content of the story, or
existing scoring guidelines are required.

9. Conclusions and Future Work

The work presented here demonstrates the utility of adapting NLP algorithms to clin-
ically elicited data for diagnostic purposes. In particular, the approach we describe for
automatically analyzing clinically elicited language data shows promise as part of a
pipeline for a screening tool for mild cognitive impairment. The methods offer the
additional benefit of being general and flexible enough to be adapted to new data sets,
even those without existing evaluation guidelines. In addition, the novel graph-based
approach to word alignment results in large reductions in alignment error rate. These
reductions in error rate in turn lead to human-level scoring accuracy and improved
diagnostic classification.

The demand for simple, objective, and unobtrusive screening tools for MCI and
other neurodegenerative and neurodevelopmental disorders will continue to grow

573



Computational Linguistics Volume 41, Number 4

as the prevalence of these disorders increases. Although high-level measures of text
similarity used in other NLP applications, such as machine translation, do achieve
reasonable classification accuracy when applied to the WLM narrative data, the work
presented here indicates that automated methods that approximate manual element-
level scoring procedures yield superior results.

Although the results are quite robust, several enhancements and improvements
can be made. First, although we were able to achieve decent word alignment accuracy,
especially with our graph-based approach, many alignment errors remain. Exploration
of the graph used here reveals that many correct alignments remain undiscovered, with
an oracle AER of 11%. One clear weakness is the selection of only a single alignment
from the distribution of source words at the end of 1,000 walks, since this does not
allow for one-to-many mappings. We would also like to experiment with including non-
directional edges and outgoing edges on source words.

In our future work, we also plan to examine longitudinal data for individual partici-
pants to see whether our techniques can detect subtle differences in recall and coherence
between a recent retelling and a series of earlier baseline retellings. Because the CDR,
the dementia staging system often used to identify MCI, relies on observed changes in
cognitive function over time, longitudinal analysis of performance on narrative retelling
and picture description tasks might be the most promising application for this approach
to analyzing clinically elicited language data.
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