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In this article, we present a novel machine translation model, the Operation Sequence Model
(OSM), which combines the benefits of phrase-based and N-gram-based statistical machine
translation (SMT) and remedies their drawbacks. The model represents the translation process
as a linear sequence of operations. The sequence includes not only translation operations but also
reordering operations. As in N-gram-based SMT, the model is: (i) based on minimal translation
units, (ii) takes both source and target information into account, (iii) does not make a phrasal
independence assumption, and (iv) avoids the spurious phrasal segmentation problem. As in
phrase-based SMT, the model (i) has the ability to memorize lexical reordering triggers, (ii) builds
the search graph dynamically, and (iii) decodes with large translation units during search. The
unique properties of the model are (i) its strong coupling of reordering and translation where
translation and reordering decisions are conditioned on n previous translation and reordering
decisions, and (ii) the ability to model local and long-range reorderings consistently. Using
BLEU as a metric of translation accuracy, we found that our system performs significantly
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better than state-of-the-art phrase-based systems (Moses and Phrasal) and N-gram-based sys-
tems (Ncode) on standard translation tasks. We compare the reordering component of the OSM
to the Moses lexical reordering model by integrating it into Moses. Our results show that OSM
outperforms lexicalized reordering on all translation tasks. The translation quality is shown to
be improved further by learning generalized representations with a POS-based OSM.

1. Introduction

Statistical Machine Translation (SMT) advanced near the beginning of the century
from word-based models (Brown et al. 1993) towards more advanced models that take
contextual information into account. Phrase-based (Koehn, Och, and Marcu 2003; Och
and Ney 2004) and N-gram-based (Casacuberta and Vidal 2004; Marifio et al. 2006)
models are two instances of such frameworks. Although the two models have some
common properties, they are substantially different. The present work is a step towards
combining the benefits and remedying the flaws of these two frameworks.

Phrase-based systems have a simple but effective mechanism that learns larger
chunks of translation called bilingual phrases.! Memorizing larger units enables the
phrase-based model to learn local dependencies such as short-distance reorderings,
idiomatic collocations, and insertions and deletions that are internal to the phrase
pair. The model, however, has the following drawbacks: (i) it makes independence
assumptions over phrases, ignoring the contextual information outside of phrases,
(ii) the reordering model has difficulties in dealing with long-range reorderings, (iii)
problems in both search and modeling require the use of a hard reordering limit, and
(iv) it has the spurious phrasal segmentation problem, which allows multiple deriva-
tions of a bilingual sentence pair that have the same word alignment but different
model scores.

N-gram-based models are Markov models over sequences of tuples that are gen-
erated monotonically. Tuples are minimal translation units (MTUs) composed of source
and target cepts.” The N-gram-based model has the following drawbacks: (i) only pre-
calculated orderings are hypothesized during decoding, (ii) it cannot memorize and
use lexical reordering triggers, (iii) it cannot perform long distance reorderings, and
(iv) using tuples presents a more difficult search problem than in phrase-based SMT.

The Operation Sequence Model. In this article we present a novel model that
tightly integrates translation and reordering into a single generative process. Our model
explains the translation process as a linear sequence of operations that generates a
source and target sentence in parallel, in a target left-to-right order. Possible operations
are (i) generation of a sequence of source and target words, (ii) insertion of gaps as
explicit target positions for reordering operations, and (iii) forward and backward jump
operations that do the actual reordering. The probability of a sequence of operations is
defined according to an N-gram model, that is, the probability of an operation depends
on the n — 1 preceding operations. Because the translation (lexical generation) and
reordering operations are coupled in a single generative story, the reordering decisions
may depend on preceding translation decisions and translation decisions may depend

1 A Phrase pair in phrase-based SMT is a pair of sequences of words. The sequences are not necessarily
linguistic constituents. Phrase pairs are built by combining minimal translation units and ordering
information. As is customary we use the term phrase to refer to phrase pairs if there is no ambiguity.

2 A ceptis a group of source (or target) words connected to a group of target (or source) words in a
particular alignment (Brown et al. 1993).
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on preceding reordering decisions. This provides a natural reordering mechanism that
is able to deal with local and long-distance reorderings in a consistent way.

Like the N-gram-based SMT model, the operation sequence model (OSM) is
based on minimal translation units and takes both source and target information into
account. This mechanism has several useful properties. Firstly, no phrasal independence
assumption is made. The model has access to both source and target context outside of
phrases. Secondly the model learns a unique derivation of a bilingual sentence given
its alignments, thus avoiding the spurious phrasal segmentation problem. The OSM,
however, uses operation N-grams (rather than tuple N-grams), which encapsulate both
translation and reordering information. This allows the OSM to use lexical triggers for
reordering like phrase-based SMT. Our reordering approach is entirely different from
the tuple N-gram model. We consider all possible orderings instead of a small set of
POS-based pre-calculated orderings, as is used in N-gram-based SMT, which makes
their approach dependent on the availability of a source and target POS-tagger. We
show that despite using POS tags the reordering patterns learned by N-gram-based
SMT are not as general as those learned by our model.

Combining MTU-model with Phrase-Based Decoding. Using minimal translation
units makes the search much more difficult because of the poor translation coverage,
inaccurate future cost estimates, and pruning of correct hypotheses because of insuffi-
cient context. The ability to memorize and produce larger translation units gives an edge
to the phrase-based systems during decoding, in terms of better search performance
and superior selection of translation units. In this article, we combine N-gram-based
modeling with phrase-based decoding to benefit from both approaches. Our model
is based on minimal translation units, but we use phrases during decoding. Through
an extensive evaluation we found that this combination not only improves the search
accuracy but also the BLEU scores. Our in-house phrase-based decoder outperformed
state-of-the-art phrase-based (Moses and Phrasal) and N-gram-based (NCode) systems
on three translation tasks.

Comparative Experiments. Motivated by these results, we integrated the OSM into
the state-of-the-art phrase-based system Moses (Koehn et al. 2007). Our aim was to
directly compare the performance of the lexicalized reordering model to the OSM and
to see whether we can improve the performance further by using both models together.
Our integration of the OSM into Moses gave a statistically significant improvement over
a competitive baseline system in most cases.

In order to assess the contribution of improved reordering versus the contribution
of better modeling with MTUs in the OSM-augmented Moses system, we removed the
reordering operations from the stream of operations. This is equivalent to integrating
the conventional N-gram tuple sequence model (Marifio et al. 2006) into a phrase-
based decoder, as also tried by Niehues et al. (2011). Small gains were observed in most
cases, showing that much of the improvement obtained by the OSM is due to better
reordering.

Generalized Operation Sequence Model. The primary strength of the OSM over
the lexicalized reordering model is its ability to take advantage of the wider contextual
information. In an error analysis we found that the lexically driven OSM often falls back
to very small context sizes because of data sparsity. We show that this problem can be
addressed by learning operation sequences over generalized representations such as
POS tags.

The article is organized into seven sections. Section 2 is devoted to a literature
review. We discuss the pros and cons of the phrase-based and N-gram-based SMT
frameworks in terms of both model and search. Section 3 presents our model. We
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show how our model combines the benefits of both of the frameworks and removes
their drawbacks. Section 4 provides an empirical evaluation of our preliminary system,
which uses an MTU-based decoder, against state-of-the-art phrase-based (Moses and
Phrasal) and N-gram-based (Ncode) systems on three standard tasks of translating
German-to-English, Spanish-to-English, and French-to-English. Our results show im-
provements over the baseline systems, but we noticed that using minimal translation
units during decoding makes the search problem difficult, which suggests using larger
units in search. Section 5 presents an extension to our system to combine phrase-
based decoding with the operation sequence model to address the problems in search.
Section 5.1 empirically shows that information available in phrases can be used to
improve the search performance and translation quality. Finally, we probe whether
integrating our model into the phrase-based SMT framework addresses the mentioned
drawbacks and improves translation quality. Section 6 provides an empirical evaluation
of our integration on six standard tasks of translating German-English, French-English,
and Spanish-English pairs. Our integration gives statistically significant improvements
over submission quality baseline systems. Section 7 concludes.

2. Previous Work
2.1 Phrase-Based SMT

The phrase-based model (Koehn et al. 2003; Och and Ney 2004) segments a bilingual
sentence pair into phrases that are continuous sequences of words. These phrases
are then reordered through a lexicalized reordering model that takes into account the
orientation of a phrase with respect to its previous phrase (Tillmann and Zhang 2005)
or block of phrases (Galley and Manning 2008). Phrase-based models memorize local
dependencies such as short reorderings, translations of idioms, and the insertion and
deletion of words sensitive to local context. Phrase-based systems, however, have the
following drawbacks.

Handling of Non-local Dependencies. Phrase-based SMT models dependencies be-
tween words and their translations inside of a phrase well. However, dependencies
across phrase boundaries are ignored because of the strong phrasal independence
assumption. Consider the bilingual sentence pair shown in Figure 1(a).

Reordering of the German word stimmen is internal to the phrase-pair gegen ihre
Kampagne stimmen -'vote against your campaign’ and therefore represented by the trans-
lation model. However, the model fails to correctly translate the test sentence shown
in Figure 1(b), which is translated as ‘they would for the legalization of abortion in
Canada vote’, failing to displace the verb. The language model does not provide enough

sie wiirden || gegenihre Kampagne stimmen

(a) |

they would vote against your campaign

sie wiirden fiir die Legalisierung der Abtreibung in Kanada stimmen
®) |

they would vote for the legalization of abortion in Canada

Figure 1
(a) Training example with learned phrases. (b) Test sentence.
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evidence to counter the dispreference of the translation model against jumping over the
source words fiir die Legalisieurung der Abtreibung in Kanada and translating stimmen -
‘vote” at its correct position.

Weak Reordering Model. The lexicalized reordering model is primarily designed to
deal with short-distance movement of phrases such as swapping two adjacent phrases
and cannot properly handle long-range jumps. The model only learns an orientation
of how a phrase was reordered with respect to its previous and next phrase; it makes
independence assumptions over previously translated phrases and does not take into
account how previous words were translated and reordered. Although such an inde-
pendence assumption is useful to reduce sparsity, it is overly generalizing and does not
help to disambiguate good reorderings from the bad ones.

Moreover, a vast majority of extracted phrases are singletons and the corresponding
probability of orientation given phrase-pair estimates are based on a single observation.
Due to sparsity, the model falls back to use one-word phrases instead, the orientation
of which is ambiguous and can only be judged based on context that is ignored. This
drawback has been addressed by Cherry (2013) by using sparse features for reordering
models.

Hard Distortion Limit. The lexicalized reordering model fails to filter out bad large-
scale reorderings effectively (Koehn 2010). A hard distortion limit is therefore required
during decoding in order to produce good translations. A distortion limit beyond eight
words lets the translation accuracy drop because of search errors (Koehn et al. 2005). The
use of a hard limit is undesirable for German-English and similar language pairs with
significantly different syntactic structures. Several researchers have tried to address this
problem. Moore and Quirk (2007) proposed improved future cost estimation to enable
higher distortion limits in phrasal MT. Green, Galley, and Manning (2010) addition-
ally proposed discriminative distortion models to achieve better translation accuracy
than the baseline phrase-based system for a distortion limit of 15 words. Bisazza and
Federico (2013) recently proposed a novel method to dynamically select which long-
range reorderings to consider during the hypothesis extension process in a phrase-
based decoder and showed an improvement in a German-English task by increasing
the distortion limit to 18.

Spurious Phrasal Segmentation. A problem with the phrase-based model is that there
is no unique correct phrasal segmentation of a sentence. Therefore, all possible ways
of segmenting a bilingual sentence consistent with the word alignment are learned and
used. This leads to two problems: (i) phrase frequencies are obtained by counting all
possible occurrences in the training corpus, and (ii) different segmentations producing
the same translation are generated during decoding. The former leads to questionable
parameter estimates and the latter may lead to search errors because the probability of
a translation is fragmented across different segmentations. Furthermore, the diversity
in N-best translation lists is reduced.

2.2 N-Gram-Based SMT
N-gram-based SMT (Marifio et al. 2006) uses an N-gram model that jointly generates
the source and target strings as a sequence of bilingual translation units called tuples.

Tuples are essentially minimal phrases, atomic units that cannot be decomposed any
further. The tuples are generated left to right in target word order. Reordering is not
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] 5-gram Model

sie Wijen gegen ihrg Kampagne stimmen sie | | [wiirden | | “stimmen || gegen || ihre |} Kampagne
they would vote against| | your campaign

they would vote against your campaign

tl t2 t3 4 15 Iﬁ
Rule: gegen ihre Kampagne stimmen - stimmen gegen ihre Kampagne
POS Rule: IN PRP NN VB > VB IN PRP NN

Figure 2
POS-based reordering in N-gram-based SMT: Learned rules.

part of the statistical model. The parameters of the N-gram model are learned from
bilingual data where the tuples have been arranged in target word order (see Figure 2).

Decoders for N-gram-based SMT reorder the source words in a preprocessing step
so that the translation can be done monotonically. The reordering is performed with
POS-based rewrite rules (see Figure 2 for an example) that have been learned from the
training data (Crego and Marifio 2006). Word lattices are used to compactly represent a
number of alternative reorderings. Using parts of speech instead of words in the rewrite
rules makes them more general and helps to avoid data sparsity problems.

The mechanism has several useful properties. Because it is based on minimal units,
there is only one derivation for each aligned bilingual sentence pair. The model therefore
avoids spurious ambiguity. The model makes no phrasal independence assumption
and generates a tuple monotonically by looking at a context of n previous tuples, thus
capturing context across phrasal boundaries. On the other hand, N-gram-based systems
have the following drawbacks.

Weak Reordering Model. The main drawback of N-gram-based SMT is its poor re-
ordering mechanism. Firstly, by linearizing the source, N-gram-based SMT throws
away useful information about how a particular word is reordered with respect to the
previous word. This information is instead stored in the form of rewrite rules, which
have no influence on the translation score. The model does not learn lexical reordering
triggers and reorders through the learned rules only. Secondly, search is performed only
on the precalculated word permutations created based on the source-side words. Often,
evidence of the correct reordering is available in the translation model and the target-
side language model. All potential reorderings that are not supported by the rewrite
rules are pruned in the pre-processing step. To demonstrate this, consider the bilingual
sentence pair in Figure 2 again. N-gram-based MT will linearize the word sequence
gegen ihre Kampagne stimmen to stimmen gegen ihre Kampagne, so that it is in the same
order as the English words. At the same time, it learns a POS rule: IN PRP NN VB — VB
IN PRP NN. The POS-based rewrite rules serve to precompute the orderings that will be
hypothesized during decoding. However, notice that this rule cannot generalize to the
test sentence in Figure 1(b), even though the tuple translation model learned the trigram
< sie — ‘they” wiirden — ‘would’ stimmen — ‘vote’ > and it is likely that the monolingual
language model has seen the trigram they would vote.

Hard Reordering Limit. Due to sparsity, only rules with seven or fewer tags are ex-
tracted. This subsequently constrains the reordering window to seven or fewer words,
preventing the N-gram model from hypothesizing long-range reorderings that require
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larger jumps. The need to perform long-distance reordering motivated the idea of using
syntax trees (Crego and Marifio 2007) to form rewrite rules. However, the rules are still
extracted ignoring the target-side, and search is performed only on the precalculated
orderings.

Difficult Search Problem. Using MTUs makes the search problem much more difficult
because of poor translation option selection. To illustrate this consider the phrase pair
schoss ein Tor — ‘scored a goal’, consisting of units schoss — ‘scored’, ein — ‘a’, and Tor —
‘goal’. It is likely that the N-gram system does not have the tuple schoss — ‘scored” in
its N-best translation options because it is an uncommon translation. Even if schoss —
‘scored’ is hypothesized, it will be ranked quite low in the stack and may be pruned,
before ein and Tor are generated in the next steps. A similar problem is also reported in
Costa-jussa et al. (2007): When trying to reproduce the sentences in the N-best transla-
tion output of the phrase-based system, the N-gram-based system was able to produce
only 37.5% of sentences in the Spanish-to-English and English-to-Spanish translation
task, despite having been trained on the same word alignment. A phrase-based system,
on the other hand, is likely to have access to the phrasal unit schoss ein Tor — ‘scored a
goal” and can generate it in a single step.

3. Operation Sequence Model

Now we present a novel generative model that explains the translation process as a
linear sequence of operations that generate a source and target sentence in parallel.
Possible operations are (i) generation of a sequence of source and/or target words,
(ii) insertion of gaps as explicit target positions for reordering operations, and (iii)
forward and backward jump operations that do the actual reordering. The probability
of a sequence of operations is defined according to an N-gram model, that is, the
probability of an operation depends on the n — 1 preceding operations. Because the
translation (generation) and reordering operations are coupled in a single generative
story, the reordering decisions may depend on preceding translation decisions, and
translation decisions may depend on preceding reordering decisions. This provides a
natural reordering mechanism able to deal with local and long-distance reorderings
consistently.

3.1 Generative Story

The generative story of the model is motivated by the complex reordering in the
German-to-English translation task. The English words are generated in linear order,?
and the German words are generated in parallel with their English translations. Mostly,
the generation is done monotonically. Occasionally the translator inserts a gap on the
German side to skip some words to be generated later. Each inserted gap acts as a
designated landing site for the translator to jump back to. When the translator needs
to cover the skipped words, it jumps back to one of the open gaps. After this is done,
the translator jumps forward again and continues the translation. We will now, step by
step, present the characteristics of the new model by means of examples.

3 Generating the English words in order is also what the decoder does when translating from German to
English.
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3.1.1 Basic Operations. The generation of the German—-English sentence pair Peter liest —
‘Peter reads’ is straightforward because it is a simple 1-to-1 word-based translation
without reordering:

Generate (Peter , Peter) Generate (liest , reads)

3.1.2 Insertions and Deletions. The translation Es ist ja nicht so schlimm — ‘it is not that bad’,
requires the insertion of an additional German word ja, which is used as a discourse
particle in this construction.

Generate (Es , it) Generate (ist , is) Generate Source Only (ja) Generate (nicht , not)
Generate (so , that) Generate (schlimm , bad)

Conversely, the translation Lies mit — ‘Read with me’ requires the deletion of an untrans-
lated English word me.

Generate (Lies , Read) Generate (mit , with) Generate Target Only (me)

3.1.3 Reordering. Let us now turn to an example that requires reordering, and revisit
the example in Figure 1(a). The generation of this sentence in our model starts with
generating sie — ‘they’, followed by the generation of wiirden — ‘would’. Then a gap is
inserted on the German side, followed by the generation of stimmen — ‘vote’. At this
point, the (partial) German and English sentences look as follows:

Operation Sequence Generation

Generate(sie, they) Generate (wiirden, would) | sie wiirden |:| stimmen |
Insert Gap Generate(stimmen, vote)

‘they would vote’

The arrow sign | denotes the position after the previously covered German word. The
translation proceeds as follows. We jump back to the open gap on the German side and
fill it by generating gegen — ‘against’, Ihre — ‘your’ and Kampagne — ‘campaign’. Let us
discuss some useful properties of this mechanism:

1.  We have learned a reordering pattern sie wiirden |:| stimmen — ‘they
would vote’, which can be used to generalize the test sentence in Figure
1(b). In this case the translator jumps back and generates the tuples fiir —
‘for’, die — ‘the’, Legalisierung — ‘legalization’, der — “of’, Abtreibung —
‘abortion’, in — ‘in’, Kanada — ‘Canada’.

2. The model handles both local (Figure 1 (a)) and long-range reorderings
(Figure 1 (b)) in a unified manner, regardless of how many words separate
wiirden and stimmen.

3. Learning the operation sequence Generate(sie, they) Generate(wiirden,
would) Insert Gap Generate(stimmen, vote) is like learning a phrase pair sie
wiirden X stimmen — ‘they would vote’. The open gap represented by |:|
acts as a placeholder for the skipped phrases and serves a similar purpose
as the non-terminal category X in a discontinuous phrase-based system.

4. The model couples lexical generation and reordering information.
Translation decisions are triggered by reordering decisions and vice
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versa. Notice how the reordering decision is triggered by the translation
decision in the example. The probability of a gap insertion operation after
the generation of the auxiliaries wiirden — ‘would” will be high because
reordering is necessary in order to move the second part of the German
verb complex (stimmen) to its correct position at the end of the clause.

Complex reorderings can be achieved by inserting multiple gaps and/or recursively
inserting a gap within a gap. Consider the generation of the example in Figure 3
(borrowed from Chiang [2007]). The generation of this bilingual sentence pair proceeds
as follows:

Generate(Aozhou, Australia) Generate(shi, is) Insert Gap Generate(zhiyi, one of)

At this point, the (partial) Chinese and English sentences look like this:
Aozhou shi |:| zhiyi |
Australia is one of

The translator now jumps back and recursively inserts a gap inside of the gap before
continuing translation:

Jump Back (1) Insert Gap Generate(shaoshu, the few) Generate(guojia, countries)

Aozhou shi |:| shaoshu guojia | zhiyi
Australia is one of the few countries

The rest of the sentence pair is generated as follows:

Jump Back (1) Insert Gap Generate(de, that) Jump Back (1) Insert Gap Generate(you,
have)  Generate(bangjiao, diplomatic relationships) Jump Back (1)  Generate(yu, with)
Generate(Beihan, North Korea)

Note that the translator jumps back and opens new gaps recursively to exhibit a
property similar to the hierarchical model. However, our model uses a deterministic
algorithm (see Algorithm 1 later in this article) to convert each bilingual sentence pair
given the alignment to a unique derivation, thus avoiding spurious ambiguity unlike
hierarchical and phrase-based models.

Aozhou Australia
shi is

yu one of
Beihan the few
you countries
bangjiao that

shaoshu diplomatic relations|
with
orth Korea

Figure 3
Recursive reordering.
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.. iiber konkrete Zahlen nicht v

... dd not want to negotiafe on specific figures

rhandeln wollen

Figure 4
Subordinate German-English clause pair.

Multiple gaps can simultaneously exist at any time during generation. The translator
decides based on the next English word to be covered which open gap to jump to.
Figure 4 shows a German-English subordinate clause pair. The generation of this

example is carried out as follows:

Insert Gap Generate(nicht, do not) Insert Gap Generate(wollen, want to)

At this point, the (partial) German and English sentences look as follows:

|:| nicht |:| wollen |

do not want to

The inserted gaps act as placeholders for the skipped prepositional phrase iiber konkrete
Zahlen — ‘on specific figures” and the verb phrase verhandeln — ‘negotiate’. When the
translator decides to generate any of the skipped words, it jumps back to one of the
open gaps. The Jump Back operation closes the gap that it jumps to. The translator
proceeds monotonically from that point until it needs to jump again. The generation

proceeds as follows:

Jump Back (1) Generate(verhandeln, negotiate)

|:| nicht verhandeln | wollen

do not want to negotiate

The translation ends by jumping back to the open gap and generating the prepositional

phrase as follows:

Jump Back (1) Generate(iiber, on) Generate(konkrete, specific) Generate(Zahlen, figures)

5. Notice that although our model is based on minimal units, we can
nevertheless memorize phrases (along with reordering information)
through operation subsequences that are memorized by learning an
N-gram model over these operation sequences. Some interesting phrases

that our model learns are:

Phrases

Operation Sub-sequence

nicht X wollen — ‘do not want to’

verhandeln wollen — “‘want to negotiate’

Generate (nicht , do not) Insert Gap
Generate (wollen , want to)

Insert Gap Generate (wollen , want to)
Jump Back(1) Generate (verhandeln , negotiate)

X represents |:| , the Insert Gap operation on the German side in our notation.
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er hat ein Buch gelesen

hercadabook
Figure 5
Discontinuous German-side cept.

3.1.4 Generation of Discontinuous Source Units. Now we discuss how discontinuous
source cepts can be represented in our generative model. The Insert Gap operation
discussed in the previous section can also be used to generate discontinuous source
cepts. The generation of any such cept is done in several steps. See the example in
Figure 5. The gappy cept hat...gelesen — ‘read’ can be generated as shown.

Operation Sequence Generation

Generate(er, he) Generate (hat gelesen, read) | er hat |:| gelesen |
Insert Gap Continue Source Cept

he read

After the generation of er — ‘he’, the first part of the German complex verb hat is
generated as an incomplete translation of ‘read’. The second part gelesen is added to
a queue to be generated later. A gap is then inserted for the skipped words ein and
Buch. Lastly, the second word (gelesen) of the unfinished German cept hat...gelesen is
added to complete the translation of ‘read’ through a Continue Source Cept operation.
Discontinuous cepts on the English side cannot be generated analogously because of
the fundamental assumption of the model that English (target-side) will be generated
from left to right. This is a shortcoming of our approach, which we will discuss later in
Section 4.1.

3.2 Definition of Operations

Our model uses five translation and three reordering operations, which are repeatedly
applied in a sequence. The following is a definition of each of these operations.

3.3 Translation Operations

Generate (X,Y): X and Y are German and English cepts, respectively, each with one
or more words. Words in X (German) may be consecutive or discontinuous, but the
words in Y (English) must be consecutive. This operation causes the words in Y and the
first word in X to be added to the English and German strings, respectively, that were
generated so far. Subsequent words in X are added to a queue to be generated later.
All the English words in Y are generated immediately because English (target-side) is
generated in linear order as per the assumption of the model.* The generation of the
second (and subsequent) German words in a multiword cept can be delayed by gaps,
jumps, and other operations defined in the following.

4 Note that when we are translating in the opposite direction (i.e., English-to-German), then German
becomes target-side and is generated monotonically and gaps and jumps are performed on English
(now source-side).
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Continue Source Cept: The German words added to the queue by the Generate (X,Y)
operation are generated by the Continue Source Cept operation. Each Continue Source
Cept operation removes one German word from the queue and copies it to the German
string. If X contains more than one German word, say n many, then it requires n
translation operations, an initial Generate (X;...X,,, Y) operation, and n — 1 Continue
Source Cept operations. For example kehrten...zuriick — ‘returned’ is generated by the
operation Generate (kehrten zuriick, returned), which adds kehrten and ‘returned’
to the German and English strings and zuriick to a queue. A Continue Source Cept
operation later removes zuriick from the queue and adds it to the German string.

Generate Source Only (X): The words in X are added at the current position in the
German string. This operation is used to generate a German word with no cor-
esponding English word. It is performed immediately after its preceding German word
is covered. This is because there is no evidence on the English side that indicates when
to generate X.> Generate Source Only (X) helps us learn a source word deletion model.
It is used during decoding, where a German word X is either translated to some English
word(s) by a Generate (X,Y) operation or deleted with a Generate Source Only (X)
operation.

Generate Target Only (Y): The words in Y are added at the current position in the
English string. This operation is used to generate an English word with no cor-
responding German word. We do not utilize this operation in MTU-based decoding
where it is hard to predict when to add unaligned target words during decoding. We
therefore modified the alignments to remove this, by aligning unaligned target words
(see Section 4.1 for details). In phrase-based decoding, however, this is not necessary, as
we can easily predict unaligned target words where they are present in a phrase pair.

Generate Identical: The same word is added at the current position in both the German
and English strings. The Generate Identical operation is used during decoding for
the translation of unknown words. The probability of this operation is estimated from
singleton German words that are translated to an identical string. For example, for a
tuple QCRI — “QCRI’, where German QCRI was observed exactly once during training,
we use a Generate Identical operation rather than Generate (QCRI, QCRI).

3.4 Reordering Operations

We now discuss the set of reordering operations used by the generative story.
Reordering has to be performed whenever the German word to be generated next does
not immediately follow the previously generated German word. During the generation
process, the translator maintains an index that specifies the position after the previously
covered German word (j), an index (Z) that specifies the index after the right-most
German word covered so far, and an index of the next German word to be covered
(/). The set of reordering operations used in generation depends upon these indexes.
Please refer to Algorithm 1 for details.

5 We want to preserve a 1-to-1 relationship between operation sequences and aligned sentence pairs. If we
allowed an unaligned source word to be generated at any time, we would obtain several operation
sequences that produce the same aligned sentence pair.
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Algorithm 1 Corpus Conversion Algorithm

Input Output
E,...E, English Cepts
Fi...F, German Cepts <O>=0;...0, Vector of Operations

ai...an Alignment between E and F'

¢ Position of current English cept

j  Position of current German word
j’ Position of next German word

N  Total number of English cepts

f;  German word at position j

E; English cept at position ¢

F,,  Sequence of German words linked to F;

|Fa,| #of German words linked with F;

k # of already generated German words for F;

ik Position of k" German translation of F;

Z Position after right-most generated German word
S(W) Position of the first word of a target gap W

1:=0;7:=0,k:=0

while f; is an unaligned word do
O.push(Generate Source Only (f;))
ji=J3+1
while E; is an unaligned cept do
O.push(Generate Target Only (F;))
i:=1+1
Z =3
while i < N do
J = au
if j < j' then
if f; was not generated yet then
O.push(Insert Gap)
if j = Z then
j=7
else
O.push(Jump Forward)
ji=2Z
if j/ < j then

if j < Z and f; was not generated yet then

O.push(Insert Gap)

W := relative position of target gap (5)

O.push(Jump Back (W))
J=3W)

if j < j' then
O.push(Insert Gap)
j=7

if £ =0 then

O.push(Generate (F,,, E;)) {or Generate Identical}

else
O.push(Continue Source Cept)
ji=j+Lk:=k+1
while f; is an unaligned word do
O.push(Generate Source Only (f;))

j=it1
if Z < j then
Z =3

if k = |F,,| then
=i+ 1;k:=0
while E; is an unaligned word do
O.push(Generate Target Only (£;))
=1+ 1
return O

Remarks: 1) We use cept positions for English (not word positions) because English cepts are
composed of consecutive words. German positions are word-based. 2) The relative position of
the target gap is 1 if it is closest to Z, 2 if it is the second closest gap, etc. 3) The operation Generate
Identical is chosen if F; = F; and count(F;) is 1.
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Insert Gap: This operation inserts a gap, which acts as a placeholder for the skipped
words. There can be more than one open gap at a time.

Jump Back (W): This operation lets the translator jump back to an open gap. It takes a
parameter W specifying which gap to jump to. The Jump Back (1) operation jumps to
the closest gap to Z, Jump Back (2) jumps to the second closest gap to Z, and so forth.
After the backward jump, the target gap is closed.

Jump Forward: This operation makes the translator jump to Z. It is performed when
the next German word to be generated is to the right of the last German word generated
and does not follow it immediately. It will be followed by an Insert Gap or Jump Back
(W) operation if the next source word is not at position Z.

3.5 Conversion Algorithm

We use Algorithm 1 to convert an aligned bilingual sentence pair to a sequence of
operations. Table 1 shows step by step by means of an example (Figure 6) how the
conversion is done. The values of the index variables are displayed at each point.

Table 1
Step-wise generation of Example in Figure 6. The arrow indicates position j.
Operations Generation States
' 1=0; j=0; j"=0
k=0: Z=0
dann i=l; =1 =2
Generate (dann . then) ‘ v )
then =0; Z=1
dann er i=2: i=3: i'=
Insert Gap — Generate (er , he) [:l/ v e e I
then he k=0; Z=3; §=1
dan.nha\t}gr 3. =5: =5
Jump Back(1) — Generate (hat gelesen , read) X o
then he read k=1:7-3
dann hat er gelesen i=3;176:j'=
Jump Forward — Insert Gap — Continue Source Cept ‘_\-f’ I;I,/ ' 1703
then hé read k=0: 7=6: =3
dann hat er ein 4 gelesen T
Jump Back(1) — Generate (ein , a) \)\ =40 1=45)'=4
then he 'read a k=0: Z=6
dann hat er einBuchy gelesen i=5; j=5;
Generate (Buch , book) X
then hé read a book k=0: Z=6

daTm hWelcsen

then he read a book

Figure 6
Discontinuous cept translation.
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3.6 Model

Our model is estimated from a sequence of operations obtained through the transfor-
mation of a word-aligned bilingual corpus. An operation can be to generate source
and target words or to perform reordering by inserting gaps and jumping forward
and backward. Let O = 0y, ...,0; be a sequence of operations as hypothesized by the
translator to generate a word-aligned bilingual sentence pair < F, E, A >. The translation
model is then defined as:

J
pT(F/ E/A) = p(ol/ eer O]) = HP(Oj‘Oj—)1+1"'Oj—1)
j=1

where 1 indicates the amount of context used and A defines the word-alignment func-
tion between E and F. Our translation model is implemented as an N-gram model of
operations using the SRILM toolkit (Stolcke 2002) with Kneser-Ney smoothing (Kneser
and Ney 1995). The translate operations in our model (the operations with a name start-
ing with Generate) encapsulate tuples. Tuples are minimal translation units extracted
from the word-aligned corpus. The idea is similar to N-gram-based SMT except that
the tuples in the N-gram model are generated monotonically. We do not impose the
restriction of monotonicity in our model but integrate reordering operations inside the
generative model.

As in the tuple N-gram model, there is a 1-to-1 correspondence between aligned
sentence pairs and operation sequences, that is, we get exactly one operation sequence
per bilingual sentence given its alignments. The corpus conversion algorithm (Algo-
rithm 1) maps each bilingual sentence pair given its alignment into a unique sequence
of operations deterministically, thus maintaining a 1-to-1 correspondence. This property
of the model is useful because it addresses the spurious phrasal segmentation problem
in phrase-based models. A phrase-based model assigns different scores to a derivation
based on which phrasal segmentation is chosen. Unlike this, the OSM assigns only one
score because the model does not suffer from spurious ambiguity.

3.6.1 Discriminative Model. We use a log-linear approach (Och 2003) to make use of
standard features along with several novel features that we introduce to improve end-
to-end accuracy. We search for a target string E that maximizes a linear combination of
feature functions:

J
£ = arg max Z; Aihi(F, E)
]:

where A, is the weight associated with the feature h;(F, E). Apart from the OSM and stan-
dard features such as target-side language model, length bonus, distortion limit, and
IBM lexical features (Koehn, Och, and Marcu 2003), we used the following new features:

Deletion Penalty. Deleting a source word (Generate Source Only (X)) is a common
operation in the generative story. Because there is no corresponding target-side word,
the monolingual language model score tends to favor this operation. The deletion
penalty counts the number of deleted source words.
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Gap and Open Gap Count. These features are introduced to guide the reordering
decisions. We observe a large amount of reordering in the automatically word aligned
training text. However, given only the source sentence (and little world knowledge), it
is not realistic to try to model the reasons for all of this reordering. Therefore we can use
a more robust model that reorders less than humans do. The gap count feature sums to
the total number of gaps inserted while producing a target sentence.

The open gap count feature is a penalty paid once for each translation opera-
tion (Generate(X,Y), Generate Identical, Generate Source Only (X)) performed whose
value is the number of currently open gaps. This penalty controls how quickly gaps are
closed.

Distance-Based Features. We have two distance-based features to control the reorder-
ing decisions. One of the features is the Gap Distance, which calculates the distance
between the first word of a source cept X and the start of the leftmost gap. This cost
is paid once for each translation operation (Generate, Generate Identical, Generate
Source Only (X)). For a source cept covering the positions Xi, ..., X;,, we get the feature
value g; = X1 — S, where § is the index of the left-most source word where a gap starts.
Another distance-based penalty used in our model is the Source Gap Width. This
feature only applies in the case of a discontinuous translation unit and computes the
distance between the words of a gappy cept. Let f = f; ...,fi,...,f, be a gappy source
cept where x; is the index of the i source word in the cept f. The value of the gap-width
penalty is calculated as:

n
w]: E x,-—xl-_l—l
i=2

4. MTU-Based Search

We explored two decoding strategies in this work. Our first decoder complements the
model and only uses minimal translation units in left-to-right stack-based decoding,
similar to that used in Pharaoh (Koehn 2004a). The overall process can be roughly
divided into the following steps: (i) extraction of translation units, (ii) future cost estima-
tion, (iii) hypothesis extension, and (iv) recombination and pruning. The last two steps
are repeated iteratively until all the words in the source sentence have been translated.

Our hypotheses maintain the index of the last source word covered (j), the position
of the right-most source word covered so far (Z), the number of open gaps, the number
of gaps so far inserted, the previously generated operations, the generated target string,
and the accumulated values of all the features discussed in Section 3.6.1. The sequence
of operations may include translation operations (generate, continue source cept, etc.)
and reordering operations (gap insertions, jumps). Recombination® is performed on
hypotheses having the same coverage vector, monolingual language model context, and
OSM context. We do histogram-based pruning, maintaining the 500 best hypotheses for
each stack. A large beam size is required to cope with the search errors that result from
using minimal translation units during decoding. We address this problem in Section 5.

6 Note that although we are using minimal translation units, recombination is still useful as different
derivations can arise through different alignments between source and target fragments. Also,
recombination can still take place if hypotheses differ slightly in the output (Koehn 2010).
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4.1 Handling Unaligned and Discontinuous Target Words

Aligned bilingual training corpora often contain unaligned target words and discon-
tinuous target cepts, both of which pose problems. Unlike discontinuous source cepts,
discontinuous target cepts such as hinunterschiittete— “‘poured . .. down’ in constructions
like den Drink hinunterschiittete — ‘poured the drink down’ cannot be handled by the
operation sequence model because it generates the English words in strict left-to-right
order. Therefore they have to be eliminated.

Unaligned target words are only problematic for the MTU-based decoder, which
has difficulties predicting where to insert them. Thus, we eliminate unaligned target
words in MTU-based decoding.

We use a three-step process (Durrani, Schmid, and Fraser 2011) that modifies the
alignments and removes unaligned and discontinuous targets. If a source word is
aligned with multiple target words that are not consecutive, first the link to the least
frequent target word is identified, and the group (consecutive adjacent words) of links
containing this word is retained while the others are deleted. The intuition here is to
keep the alignments containing content words (which are less frequent than functional
words). For example, the alignment link hinunterschiittete — ‘"down’ is deleted and only
the link hinunterschiittete — “poured’ is retained because ‘down’ occurs more frequently
than ‘poured’. Crego and Yvon (2009) used split tokens to deal with this phenomenon.

For MTU-based decoding we also need to deal with unaligned target words. For
each unaligned target word, we determine the (left or right) neighbor that it appears
more frequently with and align it with the same source word as this neighbor. Crego,
de Gispert, and Marifio (2005) and Marifio et al. (2006) instead used lexical probabilities
p(f|e) obtained from IBM Model 1 (Brown et al. 1993) to decide whether to attach left or
right. A more sophisticated strategy based on part-of-speech entropy was proposed by
Gispert and Marifio (2006).

4.2 Initial Evaluation

We evaluated our systems on German-to-English, French-to-English, and Spanish-to-
English news translation for the purpose of development and evaluation. We used data
from the eighth version of the Europarl Corpus and the News Commentary made available
for the translation task of the Eighth Workshop on Statistical Machine Translation.” The
bilingual corpora contained roughly 2M bilingual sentence pairs, which we obtained by
concatenating news commentary (= 184K sentences) and Europarl for the estimation
of the translation model. Word alignments were generated with GIZA++ (Och and
Ney 2003), using the grow-diag-final-and heuristic® (Koehn et al. 2005). All data are
lowercased, and we use the Moses tokenizer. We took news-test-2008 as the dev set for
optimization and news-test 2009-2012 for testing. The feature weights are tuned with
Z-MERT (Zaidan 2009).

4.2.1 Baseline Systems. We compared our system with (i) Moses’ (Koehn et al. 2007), (ii)
Phrasal!® (Cer et al. 2010), and (iii) Ncode!! (Crego, Yvon, and Marifio 2011). We used

7 http://www.statmt.org/wmt13/translation-task.html
8 We also tested other symmetrization heuristics such as “Union” and “Intersection” but found the GDFA
heuristic gave best results for all language pairs.
9 http://www.statmt.org/moses/
10 http://nlp.stanford.edu/phrasal/
11 http://www.limsi.fr/Individu/jmcrego/bincoder/
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all these toolkits with their default settings. Phrasal provides two main extensions to
Moses: a hierarchical reordering model (Galley and Manning 2008) and discontinuous
source and target phrases (Galley and Manning 2010). We used the default stack sizes of
100 for Moses,'? 200 for Phrasal, and 25 for Ncode (with 2" stacks). A 5-gram English lan-
guage model is used. Both phrase-based systems use the 20 best translation options per
source phrase; Ncode uses the 25 best tuple translations and a 4-gram tuple sequence
model. A hard distortion limit of 6 is used in the default configuration of both phrase-
based systems. Among the other defaults, we retained the hard source gap penalty of
15 and a target gap penalty of 7 in Phrasal. We provide Moses and Ncode with the
same post-edited alignments!® from which we had removed target-side discontinuities.
We feed the original alignments to Phrasal because of its ability to learn discontinuous
source and target phrases. All the systems use MERT for the optimization of the weight
vector.

4.2.2 Training. Training steps include: (i) post-editing of the alignments (Section 4.1), (ii)
generation of the operation sequence (Algorithm 1), and (iii) estimation of the N-gram
translation (OSM) and language models using the SRILM toolkit (Stolcke 2002) with
Kneser-Ney smoothing. We used 5-gram models.

4.2.3 Summary of Developmental Experiments. During the developent of the MTU-based
decoder, we performed a number of experiments to obtain optimal settings for the
system. We list here a summary of the results from those experiments:

*  We found that discontinuous source-side cepts do not improve translation
quality in most cases but increase the decoding time by multiple folds.
We will therefore only use continuous cepts.

*  We performed experiments by varying the distortion limit from the
conventional window of 6 words to infinity (= no hard limit). We found
that the performance of our system is robust when removing the hard
reordering constraint and even saw a slight improvement in results in the
case of German-to-English systems. Using no distortion limit, however,
significantly increases the decoding time. We will therefore use a window
of 16 words, which we found to be optimal on the development set.

¢  The performance of the MTU-based decoder is sensitive to the stack size.
A high limit of 500 is required for decent search accuracy. We will discuss
this further in the next section.

*  We found using 10 best translation options for each extracted cept during
decoding to be optimal.

4.2.4 Comparison with the Baseline Systems. In this section we compare our system
(OSMyy,) with the three baseline systems. We used Kevin Gimpel’s tester,'* which
uses bootstrap resampling (Koehn 2004b) to test which of our results are significantly
better than the baseline results. We mark a baseline result with “*” in order to indicate

12 Using stack sizes from 200-1,000 did not improve results.

13 Using post-processed alignments gave better results than using the original alignments for these baseline
systems.

14 http://www.ark.cs.cmu.edu/MT/
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Table 2
Comparison on five test sets - OSM,,,, = OSM MTU-based decoder.

Moses Phrasaly Ncode OSM,.

German-to-English
WMT, *20.47 *20.78 *20.52 21.17
WMT,, *21.37 *21.91 *21.53 22.29
WMT;;  *20.40 20.96 *20.21 21.05
WMT,;, *20.85 21.06 *20.76 21.37

French-to-English
WMT,y *25.78 *25.87 26.15 26.22
WMT,, 26.65 *25.87 26.89 26.59
WMT,; *27.37 27.62 27.46 27.75
WMT,, *27.15 27.76 27.55 27.66

Spanish-to-English
WMT, 25.90 26.13 2591 25.90
WMT,, 28.91 28.89 29.02 28.82
WMT,, 28.84 28.98 28.93 28.95
WMT,, 31.28 31.47 31.42 30.86

that our model shows a significant improvement over this baseline with a confidence
of p < 0.05. We use 1,000 samples during bootstrap resampling.

Our German-to-English results (see Table 2) are significantly better than the base-
line systems in most cases. Our French-to-English results show a significant im-
provement over Moses in three out of four cases, and over Phrasal in half of the
cases. The N-gram-based system NCode was better or similar to our system on the
French task. Our Spanish-to-English system also showed roughly the same trans-
lation quality as the baseline systems, but was significantly worse on the WMTj,
task.

5. Phrase-Based Search

The MTU-based decoder is the most straightforward implementation of a decoder
for the operation sequence model, but it faces search problems that cause a drop in
translation accuracy. Although the OSM captures both source and target contexts and
provides a better reordering mechanism, the ability to memorize and produce larger
translation units gives an edge to the phrase-based model during decoding in terms
of better search performance and superior selection of translation units. In this section,
we combine N-gram-based modeling with phrase-based decoding. This combination
not only improves search accuracy but also increases translation quality in terms of
BLEU.

The operation sequence model, although based on minimal translation units, can
learn larger translation chunks by memorizing a sequence of operations. However, it
often has difficulties to produce the same translations as the phrase-based system be-
cause of the following drawbacks of MTU-based decoding: (i) the MTU-based decoder
does not have access to all the translation units that a phrase-based decoder uses as part
of a larger phrase, (ii) it requires a larger beam size to prevent early pruning of correct
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hypotheses, and (iii) it uses less-powerful future-cost estimates than the phrase-based
decoder. To demonstrate these problems, consider the phrase pair

Wie heilen Sie

N\

What is your name

which the model memorizes through the sequence:

Generate(Wie, What is) Insert Gap Generate (Sie, your) Jump Back (1) Generate (heissen,
name)

The MTU-based decoder needs three separate tuple translations to generate the same
phrasal translation: Wie — “What is’, Sie — “your” and heiffen — ‘name’. Here we are faced
with three challenges.

Translation Coverage: The first problem is that the N-gram model does not have the
same coverage of translation options. The English cepts ‘What is’, ‘your’, and ‘name’
are not good candidate translations for the German cepts Wie, Sie, and heifien, which are
usually translated to ‘How’, ‘you’, and ‘call’, respectively, in isolation. When extracting
tuple translations for these cepts from the Europarl data for our system, the tuple
Wie —‘What is’ is ranked 124th, heiflen — ‘name’ is ranked 56th, and Sie — “your’ is ranked
9th in the list of n-best translation candidates. Typically, only the 20 best translation
options are used, for the sake of efficiency, and such phrasal units with less frequent
translations are never hypothesized in the N-gram-based systems. The phrase-based
system, on the other hand, can extract the phrase Wie heiffen Sie — ‘what is your name’
even if it is observed only once during training.

Larger Beam Size: Even when we allow a huge number of translation options and
therefore hypothesize such units, we are faced with another challenge. A larger beam
size is required in MTU-based decoding to prevent uncommon translations from
getting pruned. The phrase-based system can generate the phrase pair Wie heiflen Sie —
‘what is your name’ in a single step, placing it directly into the stack three words to
the right. The MTU-based decoder generates this phrase in three stacks with the tuple
translations Wie — “What is’, Sie — “your’, and heiffen — ‘name’. A very large stack size is
required during decoding to prevent the pruning of Wie — ‘What is’, which is ranked
quite low in the stack until the tuple Sie — ‘your’ is hypothesized in the next stack.
Although the translation quality achieved by phrase-based SMT remains the same
when varying the beam size, the performance of our system varies drastically with
different beam sizes (especially for the German-English experiments where the search
is more difficult due to a higher number of reorderings). Costa-jussa et al. (2007) also
report a significant drop in the performance of N-gram-based SMT when a beam size
of 10 is used instead of 50 in their experiments.

Future Cost Estimation: A third problem is caused by inaccurate future cost estimation.
Using phrases helps phrase-based SMT to better estimate the future language model
cost because of the larger context available, and allows the decoder to capture local
(phrase-internal) reorderings in the future cost. In comparison, the future cost for tuples
is based on unigram probabilities. The future cost estimate for the phrase pair Wie
heiflen Sie — ‘What is your name’ is estimated by calculating the cost of each feature.
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A bigram language model cost, for example, is estimated in the phrase-based system as
follows:

Pim = P(What) x p(is|What) x p(your|What is) x p(name|What is your)
The translation model cost is estimated as:

Ptm = p(What is your name|Wie heiflen Sie)

Phrase-based SMT is aware during the preprocessing step that the words Wie heifien
Sie may be translated as a phrase. This is helpful for estimating a more accurate future
cost because the context is already available. The same is not true for the MTU-based
decoder, to which only minimal units are available. The MTU-based decoder does not
have the information that Wie heiffen Sie may be translated as a phrase during decoding.
The future cost estimate available to the operation sequence model for the span covering
Wie heiflen Sie will have unigram probabilities for both the translation and language
models.

Pim = P(What) x p(is|What) x p(your) x p(name)

The translation model cost is estimated as:

Ptm = P(Generate(Wie, What is)) x p(Generate(heifien,name)) x p(Generate(Sie, your))

A more accurate future cost estimate for the translation model cost would be:

Ptm = P(Generate(Wie,What is)) x p(Insert Gap|C;) x p(Generate(Sie,your)|Cs)
x p(Jump Back(1)|Cy) x p(Generate(heiffen,name)|Cs)

where C; is the context for the generation of the ith operation—that is, up to m previous
operations. For example Cy = Generate(Wie, What is), C, = Generate(Wie,What is) Insert
Gap, and so on. The future cost estimates computed in this manner are much more
accurate because not only do they consider context, but they also take the reordering
operations into account (Durrani, Fraser, and Schmid 2013).

5.1 Evaluating the Phrase-Based Decoder

We extended our in-house OSM decoder to use phrases instead of MTUs during decod-
ing. In order to check whether phrase-based decoding solves the mentioned problems
and improves the search accuracy, we evaluated the baseline MTU decoder and the
phrase-based decoder with the same model parameters and tuned weights. This allows
us to directly compare the model scores. We tuned the feature weights by running MERT
with the MTU decoder on the dev set. Table 3 shows results from running both, the
MTU-based (OSMpy,) and the phrase-based (OSMyy,) decoder, on the WMT)y test set.
Improved search accuracy is the percentage of times each decoder was able to produce
a better model score than the other. Our phrase-based decoder uses a stack size of
200. Table 3 shows the percentage of times the MTU-based and phrase-based decoder
produce better model scores than their counterpart. It shows that the phrase-based
decoder produces better model scores for almost 48% of the hypotheses (on average)
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Table 3
Comparing search accuracies of MTU-based (OSM,,,,) and phrase-based (OSM_y,) decoders.

System German French Spanish Average

Improved Search Accuracy

OSM,., 898%  888%  673%  82%
OSM,,,  56.20% 37.37%  49.36%  47.64%

across the three language pairs, whereas the MTU-based decoder (using a much higher
stack size [500]) produces better hypotheses 8.2% of the time on average.

This improvement in search is also reflected in translation quality. Our phrase-based
decoder outperforms the MTU-based decoder in all the cases and gives a significant
improvement in 8 out of 12 cases (Table 4).

5.2 Handling of Unaligned and Discontinuous Target Words

In Section 4.1 we discussed the problem of handling unaligned and discontinuous target
words in MTU-based decoding. An advantage of phrase-based decoding is that we can
use such units during decoding if they appear within the extracted phrases. We use a
Generate Target Only (Y) operation whenever the unaligned target word Y occurs in

Table 4
Comparison on four test sets — OSMp, = MTU-based decoder with stack size 500, OSM_y, =
phrase-based decoder with stack size 200.

Moses Phrasaly Ncode OSMp, OSMpy,

German-to-English
WMT, *2047  *20.78  *20.52  *21.17 21.47
WMT,, *21.37 *2191 *21.53  *22.29 22.73
WMTy;  *2040 %2096  *20.21  *21.05 21.43
WMT,, *20.85  *21.06  *20.76  *21.37 21.98

French-to-English
WMT, *25.78  *25.87  *26.15 26.22 26.51
WMT,, 2665  *25.87 26.89 26.59 26.88
WMTy; %2737 *27.62  *27.46 27.75 27.91
WMT,, *27.15 27.76  *27.55  *27.66 27.98

Spanish-to-English
WMT, *25.90 26.13  *25.91 25.90 26.18
WMT;, *2891  *28.89  *29.02  *28.82 29.37
WMT;; *28.84  *2898  *28.93  *28.95 29.66
WMT,;, 31.28 31.47 3142  *30.86 31.52
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(@ (ii) (iii)
source:  8; b; ¢; d; a; b a; b, a
target: b, d, a, ¢, a/b, a,b, b, a, b,
Figure 7

(i) Inside-out, (ii) CDTU (cross-serial discontinuous translation units), (iii) bonbon.

a phrase. Similarly, we use the operation Generate (hinunterschiittete, poured down)
when the discontinuous tuple hinunterschiittete — “‘poured ... down” occurs in a phrase.
While training the model, we simply ignore the discontinuity and pretend that the word
‘down’ immediately follows ‘poured’. This can be done by linearizing the subsequent
parts of discontinuous target cepts to appear after the first word of the cept. During
decoding we use phrase-internal alignments to hypothesize such a linearization. This
is done only for the estimation of the OSM, and the target for all other purposes is
generated in its original order. This heuristic allows us to deal with target discontinuities
without extending the operation sequence model in complicated ways. It results in
better BLEU accuracy in comparison with the post-editing of the alignments method
described in Section 4.1. For details and empirical results refer to Durrani et al. (2013a)
(see Table 2 therein, compare Rows 4 and 5).

Note that the OSM, like the discontinuous phrase-based model (Galley and
Manning 2010), allows all possible geometries as shown in Figure 7. However, because
our decoder only uses continuous phrases, we cannot hypothesize (ii) and (iii) unless
they appear inside of a phrase. But our model could be integrated into a discontinuous
phrase-based system to overcome this limitation.

6. Further Comparative Experiments

Our model, like the reordering models (Tillmann and Zhang 2005; Galley and Manning
2008) used in phrase-based decoders, is lexicalized. However, our model has richer
conditioning as it considers both translation and reordering context across phrasal
boundaries. The lexicalized reordering model used in phrase-based SMT only accounts
for how a phrase pair was reordered with respect to its previous phrase (or block of
phrases). Although such an independence assumption is useful to reduce sparsity, it is
overgeneralizing, with only three possible orientations. Moreover, because most of the
extracted phrases are observed only once, the corresponding probability of orientation
given phrase-pair estimates is very sparse. The model often has to fall back to short one-
word phrases. However, most short phrases are observed frequently with all possible
orientations during training. This makes it difficult for the decoder to decide which
orientation should be picked during decoding. The model therefore overly relies on the
language model to break such ties. The OSM may also suffer from data sparsity and
the back-off smoothing may fall back to very short contexts. But it might still be able to
disambiguate better than the lexicalized reordering models. Also these drawbacks can
be addressed by learning an OSM over generalized word representation such as POS
tags, as we show in this section.

In an effort to make a comparison of the operation sequence model with the lexical-
ized reordering model, we incorporate the OSM into the phrase-based Moses decoder.
This allows us to exactly compare the two models in identical settings. We integrate
the OSM into the hypothesis extension process of the phrase-based decoder. We convert
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each phrase pair into a sequence of operations by extracting the MTUs within the phrase
pair and using phrase internal alignments. The OSM is used as a feature in the log-linear
framework. We also use four supportive features: the Gap, Open Gap, Gap-distance,
and Deletion counts, as described earlier (see Section 3.6.1).

6.1 Baseline

Our Moses (Koehn et al. 2007) baseline systems are based on the setup described in
Durrani et al. (2013b). We trained our systems with the following settings: maximum
sentence length 80, grow-diag-final and symmetrization of GIZA++ alignments, an in-
terpolated Kneser-Ney smoothed 5-gram language model with KenL.M (Heafield 2011)
used at runtime, distortion limit of 6, minimum Bayes-risk decoding (Kumar and Byrne
2004), cube pruning (Huang and Chiang 2007), and the no-reordering-over-punctuation
heuristic. We used factored models (Koehn and Hoang 2007), for German—-English and
English-German. We trained the lexicalized reordering model (Koehn et al. 2005) with
msd-bidirectional-fe settings.

6.2 Results

Table 5 shows that the OSM results in higher gains than the lexicalized reordering model
on top of a plain phrase-based baseline (Pb). The average improvement obtained using
the lexicalized reordering model (Pby.,) over the baseline (Pb) is 0.50. In comparison,
the average improvement obtained by using the OSM (Pbsy,) over the baseline (Pb)
is 0.74. The average improvement obtained by the combination (Pbjeyosm) is 0.97. The
average improvement obtained by adding the OSM over the baseline (Pby,,) is 0.47. We
tested for significance and found that in seven out of eight cases adding the OSM on
top of Pby., gives a statistically significant improvement with a confidence of p < 0.05.
Significant differences are marked with an asterisk.

6.3 Comparison with Tuple Sequence Model

In an additional experiment, we studied how much the translation quality decreases
when all reordering operations are removed from the operation sequence model during

Table 5
Comparison against the lexicalized reordering model — Pb = baseline without lexical reordering.
An asterisk indicates statistical significance over baseline (Pb,., = Pb + lexicalized reordering).

Pb Pblex Pb osm Pblex+osm

MT,, MT;; MT,; MT;; MT;,, MTy;3 MT;,;, MTys

FR-EN 30.19 30.73 30.74 30.89 30.77 *31.34 3097 *31.48
EN-FR 2845 29.62 2898 30.06 29.16 3046 *29.38 *30.54
ES-EN 33.64 29.86 34.07 30.25 3424 *30.72 *3443 *31.04
EN-ES 3357 29.26 3430 30.03 3451 30.07 *34.71 *30.53

Avg 30.67 31.17 +0.50 31.41 +0.74 31.64 +0.97
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Table 6
Comparing the operation sequence model versus the tuple sequence model.

Pblex Pblex+osm Pblex+tsm

MT;;,; MT;3 MT,,;, MT;3 MT, MTgs

DE-EN 2295 2526 *23.54 *26.01 23.18 25.51
EN-DE 1795 20.16 18.10 2043 1790 20.20
FR-EN 30.74 30.89 30.97 *31.48 30.80 31.04
EN-FR 2898 30.06 %2938 *30.54 29.12 30.24
ES-EN  34.07 3025 *34.43 *31.04 3419 3044
EN-ES 3430 30.03 *34.71 *30.53 34.38 30.20

Avg 27.97 28.43 +0.46 28.10 +0.13

training and decoding. The resulting model is similar to the tuple sequence model
(TSM) of Marifio et al. (2006), except that we use phrase-internal reordering rather
than POS-based rewrite rules to do the source linearization. Table 6 shows an average
improvement of just 0.13 on top of the baseline phrase-based system with lexicalized
reordering, which is much lower than the 0.46 points obtained with the full operation
sequence model.

Bilingual translation models (without reordering) have been integrated into
phrase-based systems before, either inside the decoder (Niehues et al. 2011) or to rerank
the N-best candidate translations in the output of a phrase-based system (Zhang et al.
2013). Both groups reported improvements of similar magnitude when using a target-
order left-to-right TSM model for German-English and French-English translation with
shared task data, but higher gains on other data sets and language pairs. Zhang et al.
(2013) showed further gains by combining models with target and source left-to-right
and right-to-left orders. The assumption of generating the target in monotonic order is a
weakness of our work that can be addressed following Zhang et al. (2013). By generating
MTUs in source order and allowing gaps and jumps on the target side, the model will
be able to learn other reordering patterns that are ignored by the standard OSM.

6.4 OSM over Generalized Representations

Because of data sparsity, it is impossible to observe all possible reordering patterns
with all possible lexical choices in translation operations. The lexically driven OSM
therefore often backs off to very small context sizes. Consider the example shown in
Figure 1. The learned pattern sie wiirden | | stimmen — ‘they would vote’ cannot be
generalized to er wiirde D withlen — "he would vote’. We found that the OSM uses only
two preceding operations as context on average. This problem can be addressed by
replacing words with POS tags (or any other generalized representation such as Morph
tags, word clusters) to allow the model to consider a wider syntactic context where this
is appropriate, thus improving lexical decisions and the reordering capability of the
model. Crego and Yvon (2010) and Niehues et al. (2011) have shown improvements in
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Table 7
Using generalized OSMs. s = surface; p = pos.

Pblex Pblex—i—osm(s) Pblex+osm(s)+osm(p)

MT,, MT;3 MT;,, MTy;3 MTy, MT;

DE-EN 2295 2526 2354 2601 23.78 26.30
EN-DE 1795 20.16 18.10 2043 18.33 20.70

Avg 21.58 22.02 +0.44 22.28 +0.70

translation quality when using a TSM model over POS units. We estimate OSMs over
generalized tags and add these as separate features to the loglinear framework.!>

Experiments. We enabled factored sequence models (Koehn and Hoang 2007) in
German-English language pairs as these have been shown to be useful previously.
We used LoPar (Schmid 2000) to obtain morphological analysis and POS annotation
of German and MXPOST (Ratnaparkhi 1998), a maximum entropy model for English
POS tags. We simply estimate OSMs over POS tags'® by replacing the words by the
corresponding tags during training.

Table 7 shows that a system with an additional POS-based OSM (Pbiex tosm(s)-+osm(p))
gives an average improvement of +0.26 over the baseline (Pbjextosm(s)) System that uses
an OSM over surface forms only. The overall gain by using OSMs over the baseline
system is +0.70. OSM over surface tags considers 3-gram on average, and OSM over POS
tags considers 4.5-grams on average, thus considering wider contextual information
when making translation and reordering decisions.

6.5 Time Complexities and Memory Usage

Table 8 shows the wall-clock decoding time (in minutes) from running the Moses
decoder (on news-test2013) with and without the OSMs. Each decoder is run with
24 threads on a machine with 140GB RAM and 24 processors. Timings vary between
experiments because of the fact that machines were somewhat busy in some cases. But
generally, the OSM increases decoding time by more than half an hour.!”

Table 9 shows the overall sizes of phrase-based translation and reordering models
along with the OSMs. It also shows the model sizes when filtered on news-test2013.
A similar amount of reduction could be achieved by applying filtering to the OSMs
following the language model filtering described by Heafield and Lavie (2010).

15 We also tried to amalgamate lexically driven OSM and generalized OSMs into a single model rather than
using these as separate features. However, this attempt was unsuccessful (See Durrani et al. [2014] for
details).

16 We also found using morphological tags and automatic word clusters to be useful in our recent IWSLT
evaluation campaign (Birch, Durrani, and Koehn 2013; Durrani et al. 2014).

17 The code for the OSM in Moses can be greatly optimized but requires major modifications to source and
target phrase classes in Moses.
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Table 8
Wall-clock decoding times (in minutes) on WMT-13.

Into English From English

I‘,blex Pblex-l—osm I‘,blex Pblex+osm

DE 61 88A27 143 158 A 15
FR 108 163 A55 113 154 A 41
ES 111 142 A 31 74 109 A 35

Avg 93 131 A38 110 140A30

Table 9

Data sizes (in number of sentences) and memory usage (in giga-bytes). Columns: Phrase
translation and lexicalized reordering tables give overall model sizes/sizes when filtered on
WMT-2013.

Into English From English

Data Sizes Phrase-Table Lex.Reo OSM  Phrase-Table Lex.Reo OSM

DE 5.5M 5.8/0.59 1.5/0.14 2.0 49/0.14 1.6/0.24 2.1
FR 39M 28/0.35 9.4/0.99 14 28/0.33 9.7/1.2 14
ES 15.2M 9.2/0.68 3.2/0.25 44 9.0/0.76 3.2/0.28 44

7. Conclusion

In this article we presented a new model for statistical MT that combines the benefits of
two state-of-the-art SMT frameworks, namely, N-gram-based and phrase-based SMT.
Like the N-gram-based model, it addresses two drawbacks of phrasal MT by better
handling dependencies across phrase boundaries, and solving the phrasal segmentation
problem. In contrast to N-gram-based MT, our model has a generative story that tightly
couples translation and reordering. Furthermore, it is able to consider all possible
reorderings, unlike N-gram systems that perform search only on a limited number
of pre-calculated orderings. Our model is able to correctly reorder words across large
distances, and it memorizes frequent phrasal translations including their reordering as
probable operation sequences.

We tested a version of our system that decodes based on minimal translation units
(MTUs) against the state-of-the-art phrase-based systems Moses and Phrasal and the
N-gram-based system Ncode for German-to-English, French-to-English, and Spanish-
to-English on three standard test sets. Our system shows statistically significant im-
provements in 9 out of 12 cases in the German-to-English translation task, and 10 out
of 12 cases in the French-to-English translation task. Our Spanish-to-English results are
similar to the baseline systems in most of the cases but consistently worse than Ncode.

MTU-based decoding suffers from poor translation coverage, inaccurate future
cost estimates, and pruning of correct hypotheses. Phrase-based SMT, on the other
hand, avoids these drawbacks by using larger translation chunks during search. We
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therefore extended our decoder to use phrases instead of cepts while keeping the
statistical model unchanged. We found that combining a model based on minimal units
with phrase-based decoding improves both search accuracy and translation quality. Our
system extended with phrase-based decoding showed improvements over all the base-
line systems, including our MTU-based decoder. In most of the cases, the difference was
significant.

Our results show that OSM consistently outperforms the Moses lexicalized re-
ordering model and gives statistically significant gains over a very competitive Moses
baseline system. We showed that considering both translation and reordering context
is important and ignoring reordering context results in a significant reduction in the
performance. We also showed that an OSM based on surface forms suffers from data
sparsity and that an OSM based on a generalized representation with part-of-speech
tags improves the translation quality by considering a larger context. In the future we
would like to study whether the insight of using minimal units for modeling and search
based on composed rules would hold for hierarchical SMT. Vaswani et al. (2011) recently
showed that a Markov model over the derivation history of minimal rules can obtain
the same translation quality as using grammars formed with composed rules, which we
believe is quite promising.
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