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This article explores lexicographic semirings and their application to problems in speech
and language processing. Specifically, we present two instantiations of binary lexicographic
semirings, one involving a pair of tropical weights, and the other a tropical weight paired with
a novel string semiring we term the categorial semiring. The first of these is used to yield
an exact encoding of backoff models with epsilon transitions. This lexicographic language
model semiring allows for off-line optimization of exact models represented as large weighted
finite-state transducers in contrast to implicit (on-line) failure transition representations. We
present empirical results demonstrating that, even in simple intersection scenarios amenable to
the use of failure transitions, the use of the more powerful lexicographic semiring is competitive
in terms of time of intersection. The second of these lexicographic semirings is applied to the
problem of extracting, from a lattice of word sequences tagged for part of speech, only the single
best-scoring part of speech tagging for each word sequence. We do this by incorporating the tags
as a categorial weight in the second component of a 〈Tropical, Categorial〉 lexicographic semiring,
determinizing the resulting word lattice acceptor in that semiring, and then mapping the tags
back as output labels of the word lattice transducer. We compare our approach to a competing
method due to Povey et al. (2012).

1. Introduction

Applications of finite-state methods to problems in speech and language processing
have grown significantly over the last decade and a half. From their beginnings in the
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1950s and 1960s to implement small hand-built grammars (e.g., Joshi and Hopely 1996)
through their applications in computational morphology in the 1980s (Koskenniemi
1983), finite-state models are now routinely applied in areas ranging from parsing
(Abney 1996), to machine translation (Bangalore and Riccardi 2001; de Gispert et al.
2010), text normalization (Sproat 1996), and various areas of speech recognition includ-
ing pronunciation modeling and language modeling (Mohri, Pereira, and Riley 2002).

The development of weighted finite state approaches (Mohri, Pereira, and Riley
2002; Mohri 2009) has made it possible to implement models that can rank alternative
analyses. A number of weight classes—semirings—can be defined (Kuich and Salomaa
1986; Golan 1999), though for all practical purposes nearly all actual applications use the
tropical semiring, whose most obvious instantiation is as a way to combine negative log
probabilities of words in a hypothesis in speech recognition systems. With few exceptions
(e.g., Eisner 2001), there has been relatively little work on exploring applications of
different semirings, in particular structured semirings consisting of tuples of weights.

In this article we explore the use of what we term lexicographic semirings, which
are tuples of weights where the comparison between a pair of tuples starts by comparing
the first element of the tuple, then the second, and so forth until unequal values are
found—just as lexicographic order is determined between words. We investigate two
such lexicographic semirings, one based on pairs of tropical weights, and the other
that uses a tropical weight paired with a novel string weight that we call the categorial
semiring. The latter is based loosely on the operations of categorial grammar.

We use the first semiring to provide an exact encoding of language models as
weighted finite-state transducers using epsilon arcs in place of failure arcs. The sec-
ond we apply to the problem of selecting only the single-best tagging for each word
sequence in a tagged lattice. In each case we formally justify the application and demon-
strate the correctness and efficiency on real domains.

1.1 Definitions

Adopting the notations often used in the speech and language literature (Mohri 2009),
a semiring is a 4-tuple (K,⊕,⊗, 0̄, 1̄) with a nonempty set K on which two binary
operations are defined, namely, the semiring plus ⊕ and semiring times ⊗, such that:

1. (K,⊕) is a commutative monoid with identity 0̄;

2. (K,⊗) is a monoid with identity 1̄;

3. ⊗ distributes over ⊕; and

4. 0̄⊗ k = k⊗ 0̄ = 0̄ ∀k ∈ K.

Typically, 1̄ 6= 0̄ is assumed, to avoid trivial semirings. The tropical semiring is an example
of a well-known semiring and is defined as (< ∪ {∞}, min, +,∞, 0).

A weighted finite-state transducer T over a semiring (K,⊕,⊗, 0̄, 1̄) is an 8-tuple
(Σ, ∆, Q, I, F, E, λ,ρ) where Σ and ∆ are the finite input and output alphabets, respec-
tively; Q is a finite set of states of which I and F are initial and final subsets of states,
respectively; E is a finite set of transitions between pairs of states with an input and an
output alphabet as well as a semiring weight E ⊆ Q× (Σ ∪ ε)× (∆ ∪ ε)× K×Q; ε is
an empty element in the alphabet; and λ and ρ are semiring weights associated with
initial and final states, respectively. A weighted finite-state acceptor can be regarded as
a special case where either the input or the output alphabet is an empty set.
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A weighted finite-state automaton or transducer is deterministic or subsequential
if no two transitions leaving the same state have the same input label. A generic deter-
minization algorithm can transform a weighted finite-state acceptor or transducer into
its deterministic form if such a form exists. For details on the algorithm and conditions
for determinization, see Section 6.2 in Mohri (2009). The condition most relevant for
our purpose is that the algorithm works with any weakly divisible semiring. Briefly, a
semiring (K,⊕,⊗, 0̄, 1̄) is said to be divisible if all non-0̄ elements admit an inverse, that
is, (K− 0̄) is a group. A semiring is weakly divisible if for any x and y in K such that
x⊕ y 6= 0̄ there exists at least one z such that (x⊕ y)⊗ z = x. The ⊗ is cancellative if z is
unique and can be written as z = (x⊕ y)−1x. The non-unique case is not relevant here.

1.2 Lexicographic Semirings

The notion of weight can be extended to complex tuples of weights, and semirings over
those tuples. Of interest to us here is a tuple-based semiring, the lexicographic semiring.

A 〈W1, W2 . . .Wn〉-lexicographic weight is a tuple of weights where each of the
weight classes W1, W2 . . .Wn, must observe the path property (Mohri 2002). The path
property of a semiring K is defined in terms of the natural order on K such that: a <K b iff
a⊕ b = a. The tropical semiring mentioned above is a common example of a semiring
that observes the path property, since

w1 ⊕ w2 = min{w1, w2}

and therefore if w1 <K w2, then w1 ⊕ w2 = w1, and vice versa.
A particular instance of a lexicographic semiring, one that we will be making use

of in this article, involves a pair of tropical weights, which we will notate the 〈T , T 〉-
lexicographic semiring. For this semiring the operations⊕ and⊗ are defined as follows
(Golan 1999, pages 223–224):

〈w1, w2〉 ⊕ 〈w3, w4〉 =

{
〈w1, w2〉 if w1 < w3 or (w1 = w3 & w2 < w4)
〈w3, w4〉 otherwise

〈w1, w2〉 ⊗ 〈w3, w4〉 = 〈w1 + w3, w2 + w4〉 (1)

The term lexicographic is an apt term for this semiring because the comparison for ⊕
is like the lexicographic comparison of strings, comparing the first elements, then the
second, and so forth. Lexicographic semirings can be defined with other underlying
semirings or tuple lengths.

1.3 An Example Application of Lexicographic Semiring: Implementing Ranking
in Optimality Theory

As an example of a lexicographic semiring that has a tuple length (usually) greater
than 2, consider one way in which one might implement constraint ranking in
Optimality Theory.

Optimality Theory (Prince and Smolensky 2004) is a popular approach in phonol-
ogy and other areas of linguistics. The basic tenet of the approach is that linguistic
patterns are explained by a rank-ordered set of violable constraints. Actual forms are
generated via a function GEN, and selected by considering which of the forms violates
the lowest-ranked constraints. Each constraint may have multiple violations, but a
single violation of a higher-ranked constraint trumps any number of violations of a
lower-ranked constraint.
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Consider the following recent example from http://en.wikipedia.org/wiki/
Optimality_theory#Example: It accounts for the form of the regular noun plural suffix
in English, which is voiceless /s/ after a voiceless stop (cats), /@z/ after a sibilant
(dishes), and /z/ otherwise. Quoting directly from the Wikipedia example, the following
constraints in the order given account for the phenomena:

1. *SS - Sibilant-Sibilant clusters are ungrammatical: one violation for every
pair of adjacent sibilants in the output.

2. Agree(Voi) - Agree in specification of [voi]: one violation for every pair of
adjacent obstruents in the output which disagree in voicing.

3. Max - Maximize all input segments in the output: one violation for each
segment in the input that does not appear in the output. (This constraint
prevents deletion.)

4. Dep - Output segments are dependent on having an input correspondent:
one violation for each segment in the output that does not appear in the
input. (This constraint prevents insertion.)

5. Ident(Voi) - Maintain the identity of the [voi] specification: one violation
for each segment that differs in voicing between the input and output.

Consider the example of dishes. From a presumed underlying form of dish+z, GEN
generates a range of possible forms, including those in the lefthand column in the
following table:

dish+z *SS Agree Max Dep Ident

R dishiz *

dishis * *!

dishz *! *

dish *!

dishs *! *

Asterisks indicate violations, and exclamation marks indicate the critical violation that
rules out the particular form. Both dishs and dishz have violations of *SS, and because
none of the other forms violate *SS, and *SS is highest ranked, those two violations are
critical. Concomitantly, any other violations (e.g., dishs violation of Ident) are irrelevant
for determining the fate of those forms. Moving down the constraint hierarchy, dish
violates Max, because the suffix does not appear in this form; again this violation is
critical, because the remaining two forms do not violate the constraint. Both dishis and
and dishiz violate Dep because there is an inserted segment and they are thus equally
bad according to that constraint. So to decide between the two forms, we go to the next
lower constraint, Ident(Voi), which dishis violates because the underlying z is changed
to an s. This violation is therefore critical, and the winning form is dishiz, indicated by
the right-pointing hand.

There have been many finite-state models of Optimality Theory (Ellison 1994; Albro
1998; Eisner 1998; Frank and Satta 1998; Karttunen 1998; Eisner 2000), and our point
here is not to provide a fully worked out implementation of the model. Rather, we wish
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to show that an appropriately defined lexicographic semiring can readily model the
constraint ranking.

We start by defining the violation semiring V as (Z ∪ {∞}, min, +,∞, 0); V is clearly
just a special case of the tropical semiring where the values of the weights are restricted
to be non-negative integers. We then define the optimality semiring O as 〈V ,V , . . . 〉,
namely, a lexicographic tuple over V . The number of elements of the tuple is the same
as the number of constraints needed in the system being described. If there are five
rank-ordered constraints, as above, then 〈V ,V , . . . 〉 is a 5-tuple over V .

Assuming that the GEN function generates a lattice S of possible surface forms
for a word, and a set of n constraints, we need a set of constraint acceptors C1 . . .Cn,
each of which matches individual violations of the constraints, and where each
violation of Ci is weighted as 〈0, 0, . . . , 0, 1, 0, . . . , 0〉, with 1 in the ith position in the
weight. So in the given example, *SS would be a finite-state acceptor that allows
sibilant-sibilant sequences, but only at a cost 〈1, 0, 0, 0, 0〉 per sequence. Assuming that
when GEN deletes an element (as in the form dish), it marks the deletion (e.g., dish*),
then we can implement Max as an acceptor that accepts the deletion symbol with cost
〈0, 0, 1, 0, 0〉 per instance. In a similar vein, assuming that any inserted elements are
marked (e.g., dish>iz), then Dep will allow the insertion marker with cost 〈0, 0, 0, 1, 0〉
per instance. Finally, Ident(Voi) assumes that a change in voicing is marked somehow
(e.g., dishis<), and this marker will be accepted with cost 〈0, 0, 0, 0, 1〉 per instance.

Given the lattice of forms S, the optimal form will be obtained by intersecting S with
each of the constraints, and then computing the shortest path to select the form with the
best overall cost. Formally:

ShortestPath[S ∩
n⋂

i=0

Ci] (2)

In the case at hand, the cost of each of the paths will be as follows, ranked from worst
to best, from which it immediately can be seen that the optimal form is dishiz:

dishz 〈1, 1, 0, 0, 0〉
dishs 〈1, 0, 0, 0, 1〉
dish 〈0, 0, 1, 0, 0〉

dishis 〈0, 0, 0, 1, 1〉
dishiz 〈0, 0, 0, 1, 0〉

Hence a lexicographic semiring designed for Optimality Theory would have as many
dimensions as constraints in the grammar.1 In what follows, we discuss two specific
binary lexicographic semirings of utility for encoding and performing inference with
sequence models encoded as weighted finite-state transducers.

2. Paired Tropical Lexicographic Semiring and Applications

We start in this section with a simple application of a paired tropical-tropical lexico-
graphic semiring to the problem of representing failure (φ) transitions in an n-gram
language model. Although φ-transitions can be represented exactly, as we shall argue

1 For partial orderings, where multiple constraints are at the same level in the absolute dominance
hierarchy, just one dimension would be required for all constraints at the same level.
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in the following, there are limitations on their use, limitations that can be overcome by
representing them instead as ε arcs and lexicographic weights.

2.1 Lexicographic Language Model Semiring

Representing smoothed n-gram language models as weighted finite-state transducers
(WFST) is most naturally done with a failure transition, which reflects the semantics
of the “otherwise” formulation of smoothing (Allauzen, Mohri, and Roark 2003). For
example, the typical backoff formulation of the probability of a word w given a history
h is as follows:

P(w | h) =

{
P(w | h) if c(hw) > 0
αhP(w | h′) otherwise

(3)

where P is an empirical estimate of the probability that reserves small finite probability
for unseen n-grams; αh is a backoff weight that ensures normalization; and h′ is a
backoff history typically achieved by excising the earliest word in the history h. The
principal benefit of encoding the WFST in this way is that it only requires storing
n-gram transitions explicitly for observed n-grams—that is, counts greater than zero,
as opposed to all possible n-grams of the given order, which would be infeasible in, for
example, large vocabulary speech recognition. This is a massive space saving, and such
an approach is also used for non-probabilistic stochastic language models, such as those
trained with the perceptron algorithm (Roark, Saraclar, and Collins 2007), as the means
to access all and exactly those features that should fire for a particular sequence in a
deterministic automaton. Similar issues hold for other finite-state sequence processing
problems, for example, tagging, bracketing, or segmenting, as with the POS tagger that
we use for experimental results in Section 3.4.

Failure transitions are an implicit method for representing a much larger explicit
automaton—in the case of n-gram models, all possible n-grams for that order. Dur-
ing composition with the model, the failure transition must be interpreted on the fly,
keeping track of those symbols that have already been found leaving the original state,
and only allowing failure transition traversal for symbols that have not been found
(the semantics of “otherwise”). This compact implicit representation cannot generally
be preserved when composing with other models, for example, when combining a
language model with a pronunciation lexicon as in widely used FST approaches to
speech recognition (Mohri, Pereira, and Riley 2002). Moving from implicit to explicit
representation when performing such a composition leads to an explosion in the size of
the resulting transducer, frequently making the approach intractable. In practice, an off-
line approximation to the model is made, typically by treating the failure transitions
as epsilon transitions (Mohri, Pereira, and Riley 2002; Allauzen, Mohri, and Roark
2003), allowing large transducers to be composed and optimized off-line. These complex
approximate transducers are then used during first-pass decoding, and the resulting
pruned search graphs (e.g., word lattices) can be rescored with exact language models
encoded with failure transitions. Failure transitions can be used to exactly encode a wide
range of language models, including class-based language models (Allauzen, Mohri,
and Roark 2003) or discriminatively trained n-gram language models (Roark, Saraclar,
and Collins 2007)—allowing for full lattice rescoring rather than n-best list extraction.

Similar problems arise when building, say, POS taggers as WFSTs: Not every POS
tag sequence will have been observed during training, hence failure transitions will
achieve great savings in the size of models. Yet discriminative models may include
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complex features that combine both input stream (word) and output stream (tag)
sequences in a single feature, yielding complicated transducer topologies for which effec-
tive use of failure transitions may not be possible. An exact encoding using other mech-
anisms is required in such cases to allow for off-line representation and optimization.

2.1.1 Standard Encoding. For language model encoding, we will differentiate between
two classes of transitions: backoff arcs (labeled with a φ for failure, or with ε using our
new semiring); and n-gram arcs (everything else, labeled with the word whose probabil-
ity is assigned). Each state in the automaton represents an n-gram history string h and
each n-gram arc is weighted with the (negative log) conditional probability of the word
w labeling the arc given the history h. We assume that, for every n-gram hw explicitly
represented in the language model, every proper prefix and every proper suffix of that
n-gram is also represented in the model. Hence, if h is a state in the model, then h′ (the
suffix of h of length |h|−1) will also be a state in the model. For a given history h and
n-gram arc labeled with a word w, the destination of the arc is the state associated with
the longest suffix of the string hw that is a history in the model. This will depend on the
Markov order of the n-gram model. For example, consider the trigram model schematic
shown in Figure 1, in which only history sequences of length 2 are kept in the model.
Thus, from history hi = wi−2wi−1, the word wi transitions to hi+1 = wi−1wi, which is the
longest suffix of hiwi in the model.

As detailed in the “otherwise” semantics of Equation (3), backoff arcs transition
from state h to a state h′, typically the suffix of h of length |h| − 1, with weight (− logαh).
We call the destination state a backoff state. This recursive backoff topology terminates
at the unigram state (i.e., h = ε, no history).

Backoff states of order k may be traversed either via φ-arcs from the higher order
n-gram of order k + 1 or via an n-gram arc from a lower order n-gram of order k− 1.
This means that no n-gram arc can enter the zeroeth order state (final backoff), and full-
order states (history strings of length n− 1 for a model of order n) may have n-gram arcs
entering from other full-order states as well as from backoff states of history size n− 2.

2.1.2 Exact Encoding of a Backoff Model with Lexicographic Language Model Semiring. For
an LM machine M on the tropical semiring with failure transitions, we can simulate
φ-arcs in a standard LM topology by a topologically equivalent machine M′ on the
lexicographic 〈T , T 〉 semiring, where φ has been replaced with epsilon, as follows. Let
si and s′i be equivalent states in M and M′, respectively. For every n-gram arc with label
w and weight c, source state si and destination state sj, construct an n-gram arc with

h i =
wi-2wi-1

hi+1 =
wi-1wi

wi /-logP(wi | h i)

wi-1

φ/-log αhi

wi

φ/-log αh i+1

wi /-logP(wi|wi-1)

φ/-log αw i-1

wi /-logP(wi)

Figure 1
Deterministic finite-state representation of n-gram models with negative log probabilities
(tropical semiring). The symbol φ labels backoff transitions. Modified from Roark and
Sproat (2007), Figure 6.1.
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ADDARC(L, s1, Arc(s2, li, lo, w))

1 add arc to Arcs(s1, L)
2 next-state(arc)← s2
3 in-label(arc)← li
4 out-label(arc)← lo
5 weight(arc)← w

CONVERT2LEXLM(L)

1 n← max
s in States(L)

length(history(s))

2 L′ ← new FST
3 for s in States(L) do
4 add state s′ to L′

5 if s is Start(L) then � If (unique) start state
6 Start(L′)← s′

7 if Final(s, L) =∞ then � If state not final
8 Final(s′, L′)← 〈∞,∞〉
9 else Final(s′, L′)← 〈0, Final(s, L)〉
10 for arc in Arcs(s, L) do
11 if in-label(arc) = φ then � If backoff arc
12 k← length(history(next-state(arc)))
13 ADDARC(L′, s′, Arc(next-state(arc)′, ε, ε, 〈Φ⊗(n−k), weight(arc)〉))
14 else ADDARC(L′, s′, Arc(next-state(arc)′, in-label(arc), out-label(arc), 〈0, weight(arc)〉))
15 return L′

Figure 2
Pseudocode for converting an n-gram failure language model into an equivalent lexicographic
language model acceptor. The states have an associated history whose length depends on the
degree of backoff.

label w, weight 〈0, c〉, source state s′i , and destination state s′j . The exit cost of each state
is constructed as follows. If the state is non-final, the cost is 〈∞,∞〉. Otherwise if it is
final with exit cost c, it will be 〈0, c〉.

The pseudocode for converting a failure encoded language model into lexico-
graphic language model semiring is enumerated in Figure 2 and illustrated in Figure 3.

Let n be the length of the longest history string in the model. For every φ-arc with
(backoff) weight c, source state si, and destination state sj representing a history of length
k, construct an ε-arc with source state s′i , destination state s′j , and weight 〈Φ⊗(n−k), c〉,
where Φ > 0 and Φ⊗(n−k) takes Φ to the (n− k)th power with the ⊗ operation. In the
tropical semiring, ⊗ is +, so Φ⊗(n−k) = (n− k)Φ. For example, in a trigram model, if we
are backing off from a bigram state h (history length = 1) to a unigram state, n− k = 2−
0 = 2, so we set the backoff weight to 〈2Φ,− logαh) for some Φ > 0. In the special case
where the φ-arc has weight∞, which can happen in some language model topologies,
the corresponding 〈T , T 〉 weight will be 〈∞,∞〉.

wx xy
y/<0,-logP(y|wx)>

x

ε/<1,-log(α_wx)>
y

ε/<1,-log(α_xy)>
y/<0,-logP(y|x)>

ε/<2,-log(α_x)>
y/<0,-logP(y)>

Figure 3
An example to illustrate the encoding of lexicographic language model semiring, where we
set Φ to 1. This is an instance of the general trigram LM depicted in Figure 1 with the sequence
wi−2wi−1wi = wxy. The scalar negative log probabilities are transformed from tropical semiring
into tuples as explained in the text. The solid full, open, and unfilled full arrowheads correspond
to the three cases—no backoff, bigram backoff, and unigram backoff, respectively.
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In order to combine the model with another automaton or transducer, we would
need to also convert those models to the 〈T , T 〉 semiring. For these automata, we simply
use a default transformation such that every transition with weight c is assigned weight
〈0, c〉. For example, given a word lattice L, we convert the lattice to L′ in the lexicographic
semiring using this default transformation, and then perform the intersection L′ ∩M′.
By removing epsilon transitions and determinizing the result, the low cost path for any
given string will be retained in the result, which will correspond to the path achieved
with φ-arcs. Finally we project the second dimension of the 〈T , T 〉 weights to produce
a lattice in the tropical semiring, which is equivalent to the result of L ∩M, namely,

C2(det(eps-rem(L′ ∩M′))) = L ∩M (4)

where C2 denotes projecting the second-dimension of the 〈T , T 〉weights, det(·) denotes
determinization, and eps-rem(·) denotes ε-removal.

2.2 Proof of Equivalence

We wish to prove that for any machine N, ShortestPath(M′ ∩N′) passes through the
equivalent states in M′ to those passed through in M for ShortestPath(M ∩N). Therefore
determinization of the resulting intersection after ε-removal yields the same topology
as intersection with the equivalent φ machine. Intuitively, because the first dimension
of the 〈T , T 〉weights is 0 for n-gram arcs and > 0 for backoff arcs, the shortest path will
traverse the fewest possible backoff arcs; further, because higher-order backoff arcs cost
less in the first dimension of the 〈T , T 〉 weights in M′, the shortest path will include
n-gram arcs at their earliest possible point.

We prove this by induction on the state-sequence of the path p/p′ up to a given
state si/s′i in the respective machines M/M′.

Base case: If p/p′ is of length 0, and therefore the states si/s′i are the initial states of the
respective machines, the proposition clearly holds.
Inductive step: Now suppose that p/p′ visits s0 . . . si/s′0 . . . s

′
i and we have therefore

reached si/s′i in the respective machines. Suppose the cumulated weights of p/p′ are
W and 〈Ψ, W〉, respectively. We wish to show that whichever sj is next visited on p (i.e.,
the path becomes s0 . . . sisj), the equivalent state s′ is visited on p′ (i.e., the path becomes
s′0 . . . s

′
is
′
j).

Let w be the next symbol to be matched leaving states si and s′i . There are four cases
to consider:

1. There is an n-gram arc leaving states si and s′i labeled with w, but no
backoff arc leaving the state.

2. There is no n-gram arc labeled with w leaving the states, but there is a
backoff arc.

3. There is no n-gram arc labeled with w and no backoff arc leaving the
states.

4. There is both an n-gram arc labeled with w and a backoff arc leaving
the states.

In cases (1) and (2), there is only one possible transition to take in either M or M′, and
based on the algorithm for construction of M′ given in Section 2.1.2, these transitions
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will point to sj and s′j , respectively. Case (3) leads to failure of intersection with either
machine. This leaves case (4) to consider. In M, because there is a transition leaving state
si labeled with w, the backoff arc, which is a failure transition, cannot be traversed, hence
the destination of the n-gram arc sj will be the next state in p. However, in M′, both the
n-gram transition labeled with w and the backoff transition, now labeled with ε, can be
traversed. What we will now prove is that the shortest path through M′ cannot include
the backoff arc in this case.

In order to emit w by taking the backoff arc out of state s′i , one or more backoff
(ε) transitions must be taken, followed by an n-gram arc labeled with w. Let k be the
order of the history represented by state s′i , hence the cost of the first backoff arc is
〈(n− k)Φ,− log(αs′i

)〉 in our semiring. If we traverse m backoff arcs prior to emitting the
w, the first dimension of our accumulated cost will be m(n− k + m−1

2 )Φ, based on our
algorithm for the construction of M′ given in Section 2.1.2. Let s′l be the destination state
after traversing m backoff arcs followed by an n-gram arc labeled with w. Note that,
by definition, m ≤ k, and k−m + 1 is the order of state s′l . Based on the construction
algorithm, the state s′l is also reachable by first emitting w from state s′i to reach state s′j
followed by some number of backoff transitions, as can be seen from the paths between
state wi−1 and wi in the trigram model schematic in Figure 1. The order of state s′j
is either k (if k is the highest order in the model) or k + 1 (by extending the history
of state s′i by one word). If it is of order k, then it will require m− 1 backoff arcs to
reach state s′l , one fewer than the path to state s′l that begins with a backoff arc, for
a total cost of (m− 1)(n− k + m−1

2 )Φ, which is less than m(n− k + m−1
2 )Φ. If state s′j

is of order k + 1, there will be m backoff arcs to reach state s′l , but with a total cost of
m(n− (k + 1) + m−1

2 )Φ = m(n− k + m−3
2 )Φ, which is also less than m(n− k + m−1

2 )Φ.
Hence the state s′l can always be reached from s′i with a lower cost through state s′j than
by first taking the backoff arc from s′i . Therefore the shortest path on M′ must follow
s′0...s

′
is
′
j . 2

This completes the proof.

2.3 Experimental Comparison of ε, φ, and 〈T , T 〉 Encoded Language Models

For our experiments we used lattices derived from a very large vocabulary contin-
uous speech recognition system, which was built for the 2007 GALE Arabic speech
recognition task, and used in the work reported in Lehr and Shafran (2011). The
lexicographic semiring was evaluated on the development set (2.6 hours of broadcast
news and conversations; 18K words). The 888 word lattices for the development set
were generated using a competitive baseline system with acoustic models trained on
about 1,000 hours of Arabic broadcast data and a 4-gram language model. The language
model consisting of 122M n-grams was estimated by interpolating 14 components. The
vocabulary is relatively large at 737K, and the associated dictionary has only single
pronunciations.

The language model was converted to the automaton topology described earlier,
using OpenFst (Allauzen et al. 2007), and represented in three ways: (1) as an approxi-
mation of a failure machine using epsilons instead of failure arcs; (2) as a correct failure
machine; and (3) using the lexicographic construction derived in this article. Note that
all of these options are available for representing language models in the OpenGrm
library (Roark et al. 2012).

The three versions of the LM were evaluated by intersecting them with the 888
lattices of the development set. The overall error rate for the systems was 24.8%—
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comparable to the state-of-the-art on this task.2 For the shortest paths, the failure
and lexicographic machines always produced identical lattices (as determined by FST
equivalence); in contrast, 78.6% of the shortest paths from the epsilon approximation are
different, at least in terms of weights, from the shortest paths using the failure LM. For
full lattices 6.1% of the lexicographic outputs differ from the failure LM outputs, due to
small floating point rounding issues; 98.9% of the epsilon approximation outputs differ.3

In terms of size, the failure LM, with 5.7 million arcs, requires 97 Mb. The equiv-
alent 〈T , T 〉-lexicographic LM requires 120 Mb, due to the doubling of the size of the
weights.4 To measure speed, we performed the intersections 1,000 times for each of
our 888 lattices on a 2993 MHz Intel Xeon CPU, and took the mean times for each
of our methods. The 888 lattices were processed with a mean of 1.62 seconds in total
(1.8 msec per lattice) using the failure LM; using the 〈T , T 〉-lexicographic LM required
1.8 seconds (2.0 msec per lattice), and is thus about 11% slower. Epsilon approximation,
where the failure arcs are approximated with epsilon arcs, took 1.17 seconds (1.3 msec
per lattice). The slightly slower speeds for the exact method using the failure LM, and
〈T , T 〉 are due to the overhead of (1) computation of the failure function at runtime for
the failure LM, and (2) determinization for the 〈T , T 〉 representation. After intersection
(and determinization, if required), there is no size difference in the lattices resulting
from any of the three methods.

In this section we have shown that the failure-arc representation of backoff in
a finite-state language model topology can be exactly represented using ε arcs, and
weights in the 〈T , T 〉 lexicographic semiring.

We turn in the next section to another application of lexicographic semirings, this
time involving a novel string semiring as one of the components.

3. Tagging Determinization on Lattices

In many applications of speech and language processing, we generate intermediate
results in the form of a lattice to which we apply finite-state operations. For example, we
might POS tag the words in an ASR output lattice as an intermediate stage for detecting
out-of-vocabulary nouns. This involves composing the lattices with a POS tagger and
will result in a weighted transducer that maps from input words to tags.

Suppose we want from that transducer all the recognized word sequences, but for
each word sequence just the single-best tagging. One obvious way to do this would be
to extract sublattices containing all possible taggings of each word sequence, compute
the shortest path of each such sublattice, and unite the results back together. There are
various ways this might be accomplished algorithmically, but in general it will be an
expensive operation.

With a little thought it will be clear that at an appropriate level of abstraction
the problem we have just described involves determinization. That is, the result is
deterministic in the sense that for any input, there is a unique path through the

2 The error rate is a couple of points higher than in Lehr and Shafran (2011) because we discarded
non-lexical words, which are absent in maximum likelihood estimated language model and are typically
augmented to the unigram backoff state with an arbitrary cost, fine-tuned to optimize performance for
a given task.

3 The very slight differences in these percentages (less than 3% absolute in all cases) versus those originally
reported in Roark, Sproat, and Shafran (2011) are due to small changes in conversion from ARPA format
language models to OpenFst encoding in the OpenGrm library (Roark et al. 2012), related to ensuring
that, for every n-gram explicitly included in the model, every proper prefix and proper suffix is also
included in the model, something that the ARPA format does not require.

4 If size became an issue, the first dimension of the 〈T , T 〉-weight can be represented by a single byte.
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lattice. But one cannot simply apply transducer determinization because, for one reason,
any given input may have multiple outputs and thus is non-functional and not even
p-subsequential (Mohri 2009).

In this section we describe two methods, both of which make use of novel weight
classes consisting of a pair of a tropical weight and a string weight, which allow a
solution that involves determinization on an acceptor in that semiring. One, due to Povey
et al. (2012), is described in Section 3.1. Our own work, also previously reported in
Shafran et al. (2011), is presented in Sections 3.2 and 3.3. In Section 3.4 we compare the
approaches for efficiency.

3.1 Povey et al.’s Approach

Povey et al. (2012) define an appropriate pair weight structure such that determinization
yields the single-best path for all unique sequences. In their pair weight (T, S), T is the
original (tropical) weight in the lattice, and S is a form of string weight representing
the tags. Using here the more formal ‘·’ to denote concatenation, they define ⊕ and ⊗
operations as:

(w1, w2)⊕ (w3, w4) =



(w1, w2) if w1 < w3; else
(w3, w4) if w1 > w3; else
(w1, w2) if |w2| < |w4|; else
(w3, w4) if |w2| > |w4|; else
(w1, w2) if w2 <L w4; else
(w3, w4)

(w1, w2)⊗ (w3, w4) = (w1 + w3, w2 · w4) (5)

Here |wi| denotes the length of the sequence wi. The ⊕ of two pair weights in this
definition does not necessarily left-divide the weights, so the standard definition of
determinization does not work on this semiring. They change the standard determiniza-
tion of a lexicographic semiring by defining a new “common divisor” operation �
for their pair weight. In the standard determinization, ⊕ operation finds the common
divisor of the weights.

(w1, w2) � (w3, w4) = (w1 ⊕ w3, LongestCommonPrefix(w2, w4)) (6)

Povey et al. describe their method in the context of an exact lattice generation task.
They create a state-level lattice during ASR decoding and determinize it to retain only
the best-scoring path for each word sequence. They invert the state-level lattice, encode
it as an acceptor with its input label equal to the input label of lattice (word), and the
pair weight equal to the weight and output label of the lattice, and finally determinize
the acceptor to get the best state-level alignment for each word sequence.

For efficiency reasons, determinization and epsilon removal (which is optimized for
this particular type of weight) are done simultaneously in their method. For the string
part, they use a data structure involving a hash table which enables string concatenation
in linear time.

3.2 Categorial Semiring

An alternative approach to that of Povey et al. eschews a special definition of de-
terminization, using instead the standard definition already provided in the OpenFst
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library. To this end, we designed a lexicographic weight pair that incorporates a tropical
weight as the first dimension and a novel form of string weight for the second dimen-
sion to represent the tags. Note that the standard string weight (e.g., that implemented
in the OpenFst library) will not do. In that semiring, w1 ⊗ w2 is defined as concatenation;
and w1 ⊕ w2 is defined as the longest common prefix of w1 and w2, which is not in
general equal to either w1 or w2. Thus the string weight class does not have the path
property, and hence it cannot be used as an element of a lexicographic semiring tuple.

We can solve that problem by having w1 ⊕ w2 be the lexicographic minimum (ac-
cording to some definition of string ordering) of w1 and w2, which will guarantee that
the semiring has the path property. But now we need a way to make the semiring
weakly divisible, so that when weights are pushed during the determinization operation,
the “loser” can be preserved. For a string weight, this can be achieved by recording
the division so that a subsequent ⊗ operation with the appropriate (inverse) string is
cancellative. Thus if x⊕ y = y, then there should be a z = y\x, such that (x⊕ y)⊗ z =
(x⊕ y)⊗ y\x = y⊗ y\x = x.

A natural model for this is categorial grammar (Lambek 1958). In categorial gram-
mar, there are a set of primitive categories, such as N, V, NP, as well as a set of complex
types constructed out of left (\) or right (/) division operators. An expression X\Y
denotes a category that, when combined with an X on its left, makes a Y. For example,
a verb phrase in English could be represented as a NP\S, because when combined with
an NP on the left, it makes an S. Similarly, a determiner is NP/N, because it combines
with an N on the right to make an NP.

A categorial semiring can be defined for both left- and righthand versions. We restrict
ourselves in this discussion to the left-categorial semiring, the right-categorial version
being equivalently defined. Thus we define the left-categorial semiring (Σ∗,⊕,⊗,∞s,ε)
over strings Σ∗ with ε and ∞s as special infinity and null string symbols, respec-
tively (as in the normal string semiring). The ⊗ operation accumulates the symbols
along a path using standard string concatenation. The ⊕ operation simply involves a
string comparison between the string representations of (possibly accumulated versions
of) the output symbols or tags using lexicographic less-than (<L). The ; operation
records the left-division in the same sense as categorial grammar. Finally, we introduce
a function REDUCE, which performs reductions on any string, so that for example
REDUCE(a · a\b) = b:

w1 ⊕ w2 =

{
w1 if w1 <L w2
w2 otherwise

w1 ⊗ w2 = REDUCE(w1 · w2)

w1 ; w2 = w2\w1 (7)

We further define grouping brackets 〈 and 〉 as part of the notation so that, for example,
a complex weight a\bc divided into d is 〈a\bc〉\d.

Unfortunately, although this definition is close to what we want, it is not a semiring,
because with that definition, ⊗ is not distributive over ⊕. As stated in Section 1.1, a
semiring must be defined in such a way that w1 ⊗ (w2 ⊕ w3) = (w1 ⊗ w2)⊕ (w1 ⊗ w3).
To see that this is not in general the case with the above definition, let w1 = c, w2 = c\a
and w3 = b. Using ‘ ’ to indicate concatenation of two weights, and assuming that a <L
b <L c, then:

c⊗ (c\a⊕ b) = c⊗ b = c b (8)
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whereas

(c⊗ c\a)⊕ (c⊗ b) = a⊕ c b = a (9)

To solve this problem requires modifying our semiring definition slightly to distinguish
between the history, denoted as h, and the value, denoted as v. The history records
the concatenations involved in creating the particular weight instance, without any
concomitant reductions, and the value is the actual value of the weight, including the
reductions. We redefine the left categorial semiring as follows:

w1 ⊕ w2 =

{
w1 if h(w1) <L h(w2)
w2 otherwise

w1 ⊗ w2 = w3, where h(w3) = h(w1) · h(w2) and v(w3) = REDUCE(h(w3))

w1 ; w2 = w3, where h(w3) = h(w2)\h(w1) and v(w3) = v(w2)\v(w1) (10)

Note that the history now defines the natural ordering of the semiring. Returning
to the earlier problematic case we note that it is still the case that c⊗ (c\a⊕ b) = c⊗ b =
c b. This is because for c\a⊕ b, h(b) <L h(c\a), so that c\a⊕ b = b. For (c⊗ c\a)⊕ (c⊗ b),
however, we now get the same result. (c⊗ b) has both a history and a value of c b.
(c⊗ c\a), on the other hand, has a value of a as before, but a history of c c\a. The sum
of these weights is determined by the lexicographic comparison c b <L c c\a, and thus
(c⊗ c\a)⊕ (c⊗ b) = c b.

The value of ⊗ is defined as the reduction of the history of the concatenated weight
histories rather than the concatenated weight values, in order to guarantee that ⊗ is
associative: for semiring ⊗ it must be the case that w1 ⊗ (w2 ⊗ w3) = (w1 ⊗ w2)⊗ w3.
Let w1 = a, w2 = a\b, and w3 = 〈a\b〉\c. If we compute the values of the multiplications
on the basis of the values of the weights, we have

a⊗ (a\b⊗ 〈a\b〉\c) = a⊗ c = a c (11)

but

(a⊗ a\b)⊗ 〈a\b〉\c = b⊗ 〈a\b〉\c = b〈a\b〉\c (12)

However, the histories in both cases are given as:

a⊗ (a\b⊗ 〈a\b〉\c) = a a\b 〈a\b〉\c

= (a⊗ a\b)⊗ 〈a\b〉\c (13)

The value v(a a\b 〈a\b〉\c), if we follow a greedy right-to-left reduction, becomes a c.
Note that one difference between the categorial semiring and standard catego-

rial grammar is that the categorial semiring division may involve complex categorial
weights that are themselves concatenated, as we have already seen. For example, one
may need to left-divide a category NN by a complex category that itself involves a divi-
sion and a multiplication. We might thus produce a category such as 〈VB\JJ NN〉\NN.
We assume division has precedence over multiplication (concatenation), so in order
to represent this complex category, the disambiguating brackets 〈〉 are needed. The
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interpretation of this category is something that, when combined with the category
VB\JJ NN on the left, makes an NN.

3.3 Implementation of Tagging Determinization Using a Lexicographic Semiring

Having chosen the semirings for the first and second weights in the transformed
weighted finite-state automaton, we now need to define a joint semiring over both
the weights and specify its operation. For this we return to the lexicographic semiring.
Specifically, we define the 〈T , C〉 lexicographic semiring (〈< ∪ {∞}, Σ∗〉,⊕,⊗, 0̄, 1̄) over
a tuple of tropical and left-categorial weights, inheriting their corresponding identity
elements. The 0̄ and 1̄ elements for the categorial component are defined the same way
as in the standard string semiring, namely, respectively, as the infinite string, and as the
empty string ε, discussed previously.

A Sketch of a Proof of Correctness: The correctness of this lexicographic semiring,
combined with determinization, for our problem could be shown by tracing the results
of operation in a generic determinization algorithm, as in Mohri (2009). Instead, here
we provide an intuition using the example in Figure 4. The two input strings fine me
and fine mead share the prefix fine. In the first case, fine is a verb (VB), whereas in the
second it is an adjective (JJ). When two outgoing arcs have the same input symbols, the
determinization algorithm chooses the arc with the lowest weight, 〈1, JJ〉. For potential
future use the other weight 〈2, VB〉 is divided by the lowest weight 〈1, JJ〉 and the
result 〈1, JJ\VB〉 is saved. (Note that the divide operation for the tropical semiring
is arithmetic subtraction.) When processing the next set of arcs, the determinization
algorithm will encounter two paths for the input fine mead. The accumulated weight on
the path through nodes 0-2-3 is straightforward and is 〈1, JJ〉 ⊗ 〈6, NN〉 = 〈7, JJ_NN〉.
The accumulated weight computed by the determinization algorithm through 0-1-3
consists of three components: the lowest weight for fine, the saved residual, and the
arc weight for mead from 1-3. Thus, the accumulated weight for 0-1-3 for fine mead is
〈1, JJ〉 ⊗ 〈1, JJ\VB〉 ⊗ 〈7, NN〉 = 〈9, VB_NN〉. From the two possible paths that terminate
at node 3 with input string fine mead, the determinization algorithm will pick one with
the lowest accumulated weight, 〈7, JJ_NN〉 ⊕ 〈9, VB_NN〉 = 〈7, JJ_NN〉, the expected re-
sult. Similarly, the determinization algorithm for the input fine me will result in picking
the weight 〈5, VB_PRP〉. Thus, the determinization algorithm will produce the desired
result for both input strings in Figure 4 and this can be shown to be true in general.

After determinization, the output symbols (tags) on the second weight may accu-
mulate in certain paths, as in the earlier example. These weights need to be mapped
back to associated input symbols (words). This mapping and the complete procedure for

0

1fine:VB/2

2

fine:JJ/1 3

me:PRP/3

mead:NN/7

me:PRP/5

mead:NN/6

Figure 4
A simple example for illustrating the application of the 〈T , C〉-lexicographic semiring, plus
determinization, for finding the single best tagging for each word sequence. Note that a simple
application of the shortest path to this example would discard all analyses of fine mead.
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0

1time:NN/0.25

6time:NN/0.25

9
time:VB/0.5

12

time:NN/0.25

2flies:VBZ/1

7
flies:NNS/0.9

10
flies:NNS/0.7

13
flies:NNS/1

3
like:RB/0.9

4
an:DT/0.8

5

arrow:NN/0.2

8
like:VB/0.7 meat:NN/0.5

11
like:VB/0.3

wasps:NNS/1.2

14
like:RB/2.5

15
an:DT/0.8

arrow:NN/0.2

Figure 5
Sample input lattice.

computing the single-best transduction paths for all unique input sequences for a given
WFST (word lattice) using the 〈T , C〉 lexicographic semiring is described in the next
few sections. Note that our categorial semiring allows for synchronizing the resulting
output labels with their associated input labels, which the Povey et al. (2012) approach
in general does not.

3.3.1 Lattice Representation. Consider a lattice transducer where input labels are words
(e.g., generated by a speech recognizer), output labels are tags (e.g., generated by a
part-of-speech tagger), and weights in the tropical semiring represent negative log
probabilities. For example, the toy lattice in Figure 5 has four paths, with two possible
tag sequences for the string Time flies like an arrow. In general, for any given word
sequence, there may be many paths in the lattice with that word sequence, with different
costs corresponding to different ways of deriving that word sequence from the acoustic
input, as well as different possible ways of tagging the input.

The procedure for removing all but the single best-scoring path for each input word
sequence is as follows. We convert the weighted transducer to an equivalent acceptor in
the 〈T , C〉-lexicographic semiring as in the algorithm in Figure 6. This acceptor is then
determinized in the 〈T , C〉-lexicographic semiring, to yield a lattice where each distinct
sequence of input-labels (words) corresponds to a single path. The result of converting
the lattice in Figure 5 to the 〈T , C〉 semiring, followed by determinization, and conver-
sion back to the tropical semiring, is shown in Figure 7. Note now that there are three
paths, as desired, and that the tags on several of the paths are complex categorial tags.

We now have an acceptor in the 〈T , C〉-lexicographic semiring with, in general,
complex categorial weights in the second component of the weight pair. It is now
necessary to simplify these categorial weight sequences down to sequences of simplex
categories, and reconstruct a transducer that maps words to tags with tropical weights.
Figure 8 presents the result of such a simplification.

There are two approaches to this, outlined in the next two sections. The first in-
volves pushing 〈T , C〉-lexicographic weights back from the final states, splitting states
as needed, and then reconstructing the now simple categorial weights as output labels
on the lattice. The latter reconstruction is essentially the inverse of the algorithm in
Figure 6. The second approach involves creating a transducer in the tropical semiring
with the input labels as words, and the output labels as complex tags. For this approach
we need to construct a mapper transducer which, when composed with the lattice, will
reconstruct the appropriate sequences of simplex tags.

3.3.2 State Splitting and Weight Pushing. In the first approach we push weights back from
the final states, thus requiring a reverse topological traversal of states in the lattice.
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CONVERT(L)

1 L′← new FST
2 for s in States(L) do
3 add state s′ to L′
4 if s is Start(L) then � If (unique) start state

Start(L′)← s′
5 if Final(s, L) =∞ then � If state not final

Final(s′, L′)← 〈∞,∞s〉
6 else Final(s′, L′)← 〈Final(s, L),ε〉
7 for arc in Arcs(s, L) do
8 ADDARC(L′, s′, Arc(next-state(arc)′, in-label(arc), in-label(arc),

〈weight(arc), out-label(arc)〉))
9 return L′

Figure 6
Pseudocode for converting POS-tagged word lattice into an equivalent 〈T , C〉 lexicographic
acceptor, with the arc labels corresponding to the input label of the original transducer.

The categorial weights of each arc are split into a prefix and a suffix, according to the
SPLITWEIGHT function of Figure 9. The prefixes will be pushed towards the initial state,
but if there are multiple prefixes associated with arcs leaving the state, then the state will
need to be split: For k distinct prefixes, k distinct states are required. The PUSHSPLIT
algorithm in Figure 10 first accumulates the set of distinct prefixes at each state
(lines 5–13), as well as storing the vector of arcs leaving the state, which will be
subsequently modified. For each prefix, a new state is created (lines 22–25), although
the first prefix in the set simply uses the state itself. Note that any categorial weight

0

1

time:NN/0.25

2

flies:NNS/0.9

3

like:NNS\<NN\VB_NNS_VB>/0.3498

4

wasps:NNS/1.2 meat:<NNS\<NN\VB_NNS_VB>>\VB_NN/0.85059 5

an:<NNS\<NN\VB_NNS_VB>>\<NNS\VBZ_RB_DT>/1.4494

arrow:NN/0.2

Figure 7
Lattice after conversion to the 〈T , C〉 semiring, determinization, and conversion back to the
tropical semiring.
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0

2time:NN/0.25

1
time:VB/0.25

5flies:VBZ/0.9

4flies:NNS/0.9

3
flies:NNS/0.9

6
like:VB/0.3498

8like:RB/0.3498

7
like:VB/0.3498

9

wasps:NNS/1.2

meat:NN/0.85059

10an:DT/1.4494

arrow:NN/0.2

Figure 8
Final output lattice with the desired three paths.

associated with the final cost yields the first prefix, meaning that it would be assigned
the already existing state; hence all newly created states can be non-final. Each state
is thus associated with a distinct single prefix, and each must be reachable from the
same set of previous states as the original state. Thus, for each new state, any arc that
already has the original state as its destination state must be copied, and the new arc
assigned the new destination state and weight, depending on the prefix associated with
the new state (lines 26–30). The prefix associated with the original state must then be
pushed onto the appropriate arcs (line 29). Finally, because all the prefix values have
been pushed, each arc from the original state must be updated so that only the suffix
value remains in the weight, now leaving the state associated with the original weight’s
prefix (lines 31–34).

3.3.3 Mapper Approach. In the second approach, we build a mapper FST (M) that con-
verts sequences of complex tags back to sequences of simple tags. The algorithm for
constructing this mapper is given in Figure 11, and an illustration can be found in Fig-
ure 12. In essence, sequences of observed complex tags are interpreted and the resulting
simplex tags are assigned to the output tape of the transducer. Simplex tags in the lattice
are mapped to themselves in the mapper FST (line 6 of the function BUILDMAPPER in
Figure 11); complex tags require longer paths, the construction of which is detailed in
the MAKEPATH function. The complex labels are parsed, and required input and output
labels are placed on LIFO queues (lines 3–7). Then a path is created from state 0 in the
mapper FST that eventually returns to state 0, labeled with the appropriate input and
output sequences (lines 9–15).

Once the mapper FST has been constructed, the determinized transducer is com-
posed with the mapper—L′ ◦M—to yield the desired result, after projecting onto output
labels. Note, crucially, that the mapper will in general change the topology of the deter-
minized acceptor, splitting states as needed. This can be seen by comparing Figures 7
and 8. Indeed, the mapping approach and PUSHSPLIT are completely equivalent, and,
as we shall see, have similar time efficiency.

SPLITWEIGHT(w)

1 if w = 0 or w = 1 then return w, w
2 if w is atomic then return 1, w
3 � By construction, complex weights must end in an atomic weight, i.e., a simplex tag
4 if w = a\b, where b is atomic � either final atomic weight is preceded by a division
5 then return w, 1
6 let w = a b, where b is atomic � or final atomic weight is concatenated to the preceding
7 return a, b

Figure 9
Pseudocode for the SPLITWEIGHT algorithm on a categorial semiring. It returns a prefix, suffix
pair for weight w.
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PUSHSPLIT(L)

1 TopologicallySort(L)
2 for s in States(L) do � For each s, find all states with outgoing arcs with destination s
3 previous[s]← COMPUTEPREVIOUSSTATES(s, L)
4 for s in Reverse(States(L)) do � Work on states in reverse topological order
5 prefixes← ∅; arcs← ∅ � initialize prefix and arcs vectors
6 if FinalWeight(s) 6= 0 � If non-zero final weight, then:
7 then append Value2(FinalWeight(s)) to prefixes � Categorial component of final
8 Value2(FinalWeight(s))← 1 weight is a prefix; reset to 1
9 for a in Arcs(s, L) do � For all outgoing arcs from s
10 append a to arcs � store arc in arcs vector
11 prefix, suffix← SPLITWEIGHT(Value2(Weight(a)))
12 if prefix not in prefixes � Store unique prefixes in vector
13 then append prefix to prefixes
14 DeleteArcs(s, L) � Will replace with updated arcs later
15 previous-arcs← ∅
16 for previous-s in previous[s] do � For all arcs with destination state s
17 for a in Arcs(previous-s, L) such that next-state(a) = s do
18 a′← a
19 delete a
20 append <previous-s, a′> to previous-arcs
21 new-states← ∅
22 for prefix in prefixes do
23 if new-states = ∅ � first prefix (from FinalWeight if non-zero) uses s
24 then new-states[prefix]← s
25 else new-states[prefix]← ADDNONFINALSTATE(L)
26 for <previous-s, arc> in previous-arcs do � For all arcs with destination s
27 a← arc � create new arc
28 next-state(a)← new-states[prefix] � update destination
29 Value2(Weight(a))← Value2(Weight(a)) ⊗ prefix � push prefix
30 ADDARC(L, previous-s, a)
31 for a in arcs do
32 prefix, suffix← SPLITWEIGHT(Value2(Weight(a)))
33 Value2(Weight(a))← suffix � Categorial component of weight is now just suffix
34 ADDARC(L, new-states[prefix], a) � Origin state of arc is based on prefix
35 return

Figure 10
Pseudocode for the PUSHSPLIT algorithm on a lattice L in the 〈T , C〉 semiring. Note that
Value2(w) for weight w is the categorial component of the weight. For the SPLITWEIGHT
algorithm, see Figure 9.

To understand the semantics of the categorial weights, consider the path that con-
tains the words flies like meat, which has the categorial tag sequence

NNS NNS\<NN\VB_NNS_VB> <NNS\<NN\VB_NNS_VB>>\VB_NN

in Figure 7. The cancellation, working from right to left, first reduces

<NNS\<NN\VB_NNS_VB>>\VB_NN

with

NNS\<NN\VB_NNS_VB>

yielding

VB_NN
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This then is concatenated with the initial simplex category to yield the sequence
NNS VB NN. The actual cancellation is performed by the mapper transducer in Figure 12;
the cancellation just described can be seen in the path that exits state 0, passes through
state 3, and returns to state 0.

The construction in the case of the PUSHSPLIT algorithm is more direct because
it operates on the determinized lattice before it is converted back to the tropical semiring;
after which the simplex categories are reconstructed onto the output labels to yield a
transducer identical to that in Figure 8.

BUILDMAPPER(L)
1 for s in States(L), arc in Arcs(s, L) do
2 SYMBOLS← output-label(arc) � set of symbols labeling lattice arcs
3 M← new FST
4 Start(M)← 0; Final(M)← 0 � single state is both start and final state
5 for λ in SYMBOLS do
6 if ISSIMPLE(λ) then ADDARC(M, 0, Arc(0, λ, λ, 1)) else MAKEPATH(M, λ)
7 return M

MAKEPATH(M, λ)
1 outputs← EXTRACTTRAILINGSYMBOLS(λ) � LIFO input queue
2 inputs← ∅ � LIFO output queue
3 ENQUEUE(λ, inputs)
4 while λ 6= 1
5 λ′, ν← PARSELABEL(λ)
6 if λ′ 6= λ then ENQUEUE(λ′, inputs)
7 λ← ν
8 s← 0
9 while |inputs| > 0 or |outputs| > 0 � create path from state 0 with inputs/outputs
10 a← Arc(0, ε, ε, 1) � default ε arc with destination state 0
11 if |inputs| > 0 then input-label(a)← DEQUEUE(inputs)
12 if |outputs| > 0 then output-label(a)← DEQUEUE(outputs)
13 if |inputs| > 0 or |outputs| > 0 then next-state(a)← ADDNONFINALSTATE(M)
14 ADDARC(M, s, a)
15 s← next-state(a)
16 return

EXTRACTTRAILINGSYMBOLS(λ)
1 outputs← ∅ � LIFO output queue
2 λ̄←MAKESYMBOLQUEUE(λ) � LIFO queue of symbols in string order, incl. delimiters
3 while |λ̄| > 0
4 a← DEQUEUE(λ̄)
5 if a = backslash then return outputs
6 if a 6= left-bracket and a 6= right-bracket then ENQUEUE(a, outputs)
7 return outputs

PARSELABEL(λ)
1 λ← STRIPOUTERBRACKETS(λ)
2 if λ contains no backslash then return λ, 1
3 Let λ = δ\ν for rightmost (non-embedded) backslash � denominator \ numerator
4 return STRIPOUTERBRACKETS(δ), STRIPOUTERBRACKETS(ν)

Figure 11
Pseudocode for construction of mapper transducer. The function ISSIMPLE returns true in cases
where the tag λ is a simple tag, not a complex categorial tag.
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0

VB:VB
NN:NN
NNS:NNS

1

NNS:VBZ

3
NNS\<NN\VB_NNS_VB>:VB

4

NN:VB

2

NNS\<NN\VB_NNS_VB>:RB

<NNS\<NN\VB_NNS_VB>>\VB_NN:NN

5
NNS:NNS

<NNS\<NN\VB_NNS_VB>>\<NNS\VBZ_RB_DT>:DT

NNS\<NN\VB_NNS_VB>:VB

Figure 12
After conversion of the 〈T , C〉 lattice back to the tropical, this mapper will convert the lattice to
its final form.

3.4 Experimental Comparisons Between Povey et al.’s and
〈T , C〉-Lexicographic Semirings

3.4.1 POS-Tagging Problem. Our solutions were empirically evaluated on 4,664 lattices
from the NIST English CTS RT Dev04 test set. The lattices were generated using a
state-of-the-art speech recognizer, similar to Soltau et al. (2005), trained on about 2,000
hours of data, which performed at a word error rate of about 24%. The utterances
were decoded in three stages using speaker independent models, vocal-tract length
normalized models, and speaker-adapted models. The three sets of models were similar
in complexity with 8,000 clustered pentaphone states and 150K Gaussians with diagonal
covariances.

The lattices from the recognizer were tagged using a weighted finite state tagger.
The tagger was trained on the Switchboard portion of the Penn Treebank (Marcus,
Santorini, and Marcinkiewicz 1993). Treebank tokenization is different from the recog-
nizer tokenization in some instances, such as for contractions (“don’t” becomes “do
n’t”) or possessives (“aaron’s” becomes “aaron ’s”). Further, many of the words in the
recognizer vocabulary of 93k words are unobserved in tagger training, and are mapped
to an OOV token “〈unk〉”. Words in the treebank not in the recognizer vocabulary are
also mapped to “〈unk〉”, thus providing probability mass for that token in the tagger.
A tokenization transducer T was created to map from recognizer vocabulary to tagger
vocabulary.

Two POS-tagging models were trained: a first-order and a third-order hidden
Markov model (HMM), estimated and encoded in tagging transducers P . In the first-
order HMM model, the transition probability is conditioned on the previous word’s
tag, whereas in the third-order model the transition probability is conditioned on the
previous three words’ tags. The transition probabilities are smoothed using Witten-Bell
smoothing, and backoff smoothing is achieved using failure transitions. For each word
in the tagger input vocabulary, only POS-tags observed with each word are allowed
for that word; that is, emission probability is not smoothed and is zero for unobserved
tag/word pairs. For a given word lattice L, it is first composed with the tokenizer T ,
then with the POS tagger P to produce a transducer with original lattice word strings
on the input side and tag strings on the output side.

These models were validated on a 2,000-sentence held-aside subset of the Switch-
board treebank. The first-order model achieved 91.4% tagging accuracy, and the third-
order model 93.8% accuracy, which is competitive for this particular task: Eidelman,
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Huang, and Harper (2010) reported accuracy of 92.4% for an HMM tagger on this task
(though for a different validation set). Both models likely suffer from using a single
“〈unk〉” category, which is relatively coarse and does not capture informative suffix and
prefix features that are common in such models for tagging OOVs. For the purposes
of this article, these models serve to demonstrate the utility of the new lexicographic
semiring using realistic models. A similar WFST topology can be used for discrimina-
tively trained models using richer feature sets, which would potentially achieve higher
accuracy on the task.

The tagged lattices, obtained from composing the ASR lattice with the POS tag-
ger, were then converted to 〈T , C〉-lexicographic semiring, determinized in this lexico-
graphic semiring, and then converted back using the mapper transducer as discussed in
Section 3.3.1. Note that the computational cost of this conversion is proportional to the
number of arcs in the lattice and hence is significantly lower than the overhead incurred
in the conventional approach of extracting all unique paths in the lattice and converting
the paths back to a lattice after tagging.

The results of this operation were compared with the method of taking the 1,000
best paths through the original lattice, and removing any path where the path’s word
sequence had been seen in a lower-cost path. This generally resulted in a rank-ordered
set of paths with n < 1, 000 members.

In all cases the n-best paths produced by the method proposed in this article were
identical to the n-best paths produced by the method just described. The only differ-
ences were due to minor floating-point number differences (expected due to weight-
pushing in determinization), and cases where equivalent weighted paths were output
in different orders.

3.4.2 Results. Despite large overall commonalities between Povey et al.’s approach
(henceforth Povey), and 〈T, C〉 lexicographic approaches (henceforth TC), there are
some interesting differences between the two. One difference is that the highly struc-
tured categorial weights used in TC are more complex than the string weight used in
Povey. Another important difference in the approaches is the synchronization issue. In
TC, the original input symbols are synchronized with determinized output symbols,
whereas in Povey they are not. TC uses the semantics of the categorial grammar to
keep the history of the operations while determinizing a lattice, whereas Povey lacks
this semantics. Although POS-tagging is a task that by definition has one tag per
input token, many other tasks of interest (e.g., finding the most likely pronunciation
or state sequence) will have a variable number of output labels per token, making syn-
chronization in the absence of such semantics more difficult. Hence, these differences
may affect time and space complexity, feasibility, and ease of use of the approaches in
various tasks.

In this section, we compare the efficiency of the two approaches under the same
situations on the same data. We ran the experiments detailed in Section 3.4.1 in three
conditions: Povey in the Kaldi toolkit (Povey et al. 2011) (with specialized determiniza-
tion); and both Povey and TC in the OpenFST library (with general determinization).
This allows us to tease apart the impact of the differences in the approaches that are
due to the specialized determinization versus differences in the weight definitions.
There would be nothing in principle to prevent the simultaneous epsilon removal being
implemented in OpenFst for use with general determinization in 〈T, C〉 lexicographic
semiring, although this is not the focus of this article.

We compare these conditions in terms of running time, memory usage, and required
disk space. Tables 1(a) and 1(b) show efficiency results of determinizing lattices tagged
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Table 1
For first-order HMM tagger, comparison of the two approaches for extracting the best and
only the best POS for all the word sequences in the test lattice. The approach by Povey et al.
as implemented in Kaldi using a specialized determinization and our re-implementation in
OpenFST with general determinization.

(a) Time, memory usage, disk space and intermediate tags (average per lattice).

TC
Povey Push-Split Mapper

Determinization Special General General General

running time (ms) 24.8 52.5 122.9 128.2
maximum resident set size (MB) 0.63 1.80 1.83 1.85
page reclaims 157 454 459 465
involuntary context switches 2 4 11 11
# of intermediate tags 49.1 26.6
length of intermediate tags 1.8 2.4

(b) Size of determinized lattices (average per lattice).

Povey TC

Determinization Special General General

# of states 344.7 768.2 187.5
# of transitions 565.5 1,295.6 433.5
# final states 7.6 7.6 7.7
# of input epsilons 190.1 602.6 16.7
# of output epsilons 91.7 299.2 0
# size of determinized lattice (KB) 15.1 31.4 11.6

using the first-order HMM tagger, and Tables 2(a), and 2(b) show those results for the
third-order HMM tagger.

From Table 1(a) we see that Povey is faster and demands less memory compared
with TC. However, results using Povey with general determinization show that the
memory demands between the two approaches are similar in the absence of the spe-
cialized determinization. We also see that the average number of intermediate tags
produced during determinization in Povey is larger, whereas the average length of
intermediate tags is smaller, than those in TC. This is due to the fact that the categorial
semiring keeps a complete history of operations by appending complex tags. We do not
perform any special string compression on these tags, which may yield performance
improvements (particularly with the larger POS-tagging model, as demonstrated in
Table 2).

We compared the approach of using the mapper with that of the PUSHSPLIT al-
gorithm in TC. The outputs were equivalent in both cases and the time and space
complexities were comparable. The PUSHSPLIT algorithm was slightly more efficient
than the mapper approach, although the difference is not significant.

While the intermediate space and processing time is larger for TC, we see from
Table 1(b) that the output lattices resulting from TC are smaller than the output lattices
in Povey in terms of number of states, transitions, input/output epsilons, and required
disk space. Because the lattices produced by Povey are not synchronized, they contain
many input/output epsilons, and therefore an increased number of states and transi-
tions. In contrast, the lattices output by TC are synchronized and minimal. The size
differences are even larger between the two approaches when both are using general
determinization.
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As Tables 2(a) and 2(b) show, time and space efficiencies in tagging using the third-
order HMM tagger follow the same pattern as those using the first-order HMM tagger,
although the differences are more pronounced than in the former. We report these
results on a subset of 4,000 out of 4,664 test lattices, chosen based on input lattice size so
as to avoid cases of very high intermediate memory usage in general determinization.
This high intermediate memory usage does argue for the specialized determinization,
and was the rationale for that algorithm in Povey et al. (2012). The non-optimized string
representation within the categorial semiring makes this even more of an issue for TC
than Povey. Again, though, the size of the resulting lattice is much more compact when
using the lexicographic 〈T, C〉 semiring. We leave investigation of an optimized string
representation, such as storing the history only if it is different from the value, using the
hash table data structure, or memory caching, to future work.

4. Combining the Semirings

In this article, we have described two lexicographic semirings, each consisting of a
weight pair. Suppose one wished to combine these two in a system that tags a lattice,
and then selects the single best tagging for each word sequence. An obvious way to do
this would be to implement a two-stage process. Apply the n-gram Markov model of
the tagger with the backoff strategy implemented using the paired tropical semiring in
Section 2 with tags as acceptor labels. Then, convert the resulting transducer into the
lexicographic 〈T, C〉 semiring with words as acceptor labels and determinize to obtain
the correct results.

Table 2
For third-order HMM tagger, comparison of the two approaches for extracting the best and only
the best POS for all the word sequences in the test lattice. The approach by Povey et al. as
implemented in Kaldi using a specialized determinization and our re-implementation in
OpenFST with general determinization.

(a) Time, memory usage, disk space, and intermediate tags (average per lattice)

TC
Povey Push-Split Mapper

Determinization Special General General General

running time (sec) 2.9 9.6 49.9 50.7
maximum resident set size (MB) 28.0 62.8 240.9 241.1
page reclaims 7,890.9 16,589.9 62,963.7 63,002.8
involuntary context switches 270.1 895 4,985.4 4,915.2
# of intermediate tags 131.6 70.2
length of intermediate tags 3.1 9.3

(b) Size of determinized lattices (average per lattice)

Povey TC

Determinization Special General General

# of states 4,946.2 19,824.9 2,244.0
# of transitions 6,152.3 25,307.7 4,002.8
# final states 153.1 154.0 174.9
# of input epsilons 3,555.1 18,041.2 197.2
# of output epsilons 956.4 4,652.9 0
# size of determinized lattice (KB) 150.6 613.5 86.9
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Because the lexicographic semiring is extensible, one might also think of combining
the two semirings into a single 〈T, T, C〉 lexicographic triple where, for example, the first
dimension is the failure arc cost, the second dimension holds the tag cost (n-gram
transition costs of tags and the cost of observing the word given the tag), and the
third dimension holds the tags represented in the categorial semiring. One might then
compose the tagging model with the lattice, and then determinize in one step in the
triple semiring.

Although this works in the sense that it is technically possible to construct this
semiring and determinize in it, it yields the wrong results. The reason for this is that
the lexicographic semirings for the two tasks (the tagging task and the subsequent
determinization of the tagged lattice) involve determinization with respect to different
labels. In the first task, the backoff models are defined with respect to the Markov chain
or n-grams of the tags and the labels on the resulting acceptor are tags. In the second
task, the determinization needs to be performed with respect to the word labels to obtain
unique tags for all word sequences. A cross product of the two types of labels would
not accomplish the task either, because the determinization would then produce unique
paths for all word and tag combinations, and not the best tag sequences for all word
sequences. There is no obvious or easy way to determinize with respect to both sets of
labels simultaneously.

We can illustrate this problem with an example, which is also useful for clearly
understanding how each of the semirings functions. The simple example involves a
cost-free word lattice consisting of two paths a a and b a, in a scenario where word
a can take two possible tags A or B. We will assign variables to model costs, so that
we can illustrate the range of scenarios where the use of the triple semiring will yield
an incorrrect answer, and why. Let c(a:A) be the cost of the tag A with word a, which
in our HMM POS tagger is –log P(a | A). Let g(x, y) be the cost in the grammar (tag
sequence model) of transitioning from state x to state y in the model. See Figure 13 for
our example L, T, L ◦ T, and G. All costs in the example are in the 〈T , T 〉 semiring for
ease of explication; the first dimension of the cost is zero except for backoff arcs in G.

In Figure 14 we show the result of L ◦ T ◦ G both after simple composition and after
epsilon removal and conversion from a transducer in the 〈T , T 〉 semiring to an acceptor
in the 〈〈T , T 〉, C〉 semiring. In the second and third WFSTs, we highlight the paths that
have zero cost in the first dimension of that semiring, which are the only paths that can
result from determinization (whatever the model costs). These paths only include tag
B for the initial instance of symbol a. However, if g(0, 2) + c(a:A) + g(2, 3) + c(a:A) +
g(3, 3) < c(a:B) + g(0, 1) + c(a:A) + g(1, 3), then the tag sequence a:A a:A would have
lower (second dimension) cost than a:B a:A, despite having taken a backoff arc. Because
using a backoff arc is the only way to produce the tag sequence A A, then that path
should be the result. In order to get the correct result, one must first determinize with
x:Y labels as unit (using fstencode) in the 〈T , T 〉 semiring; then project into the 〈T , C〉
semiring and determinize again.

5. Conclusions

In this article, we have introduced two applications of lexicographic semirings to speech
and language processing problems. The first application used the 〈T , T 〉 lexicographic
semiring to provide an exact encoding of failure arcs in an n-gram language model using
an epsilon representation for the failure arc. This lexicographic language model semiring
allows much more flexibility in combining the language model with other linguistic
models without danger of prohibitive blow-up in the size of the resulting transducers:
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(a) L (b) T

(c) L ◦ T

(d) L ◦ G

Figure 13
Input unweighted lattice L and tag mapper transducer T in 〈T , T 〉 semiring, where c(x:Y) is the
cost of word x with tag Y. When composed, L ◦ T yields a lattice of word:tag sequences. G is a
tag language model, which encodes the smoothed transition probabilities of the HMM tagger. ε
represents backoff transitions; and g(x, y) gives the cost of transitioning from state x to state y in
the model. Again, costs are in the 〈T , T 〉 semiring, so that backoff transitions have a cost of 1 in
the first dimension.

for example, precomposing the language model with a lexicon and a context model in a
CLG model of speech recognition (Mohri, Pereira, and Riley 2002).

The second application was of a 〈T , C〉 lexicographic semiring to the problem of
determinizing a tagged word lattice so that each word sequence has the single best
tag sequence. This was accomplished by encoding the tags as the second dimension
of the 〈T , C〉 semiring, then determinizing the resulting acceptor. Finally we map the
second dimension categorial weights back as output labels. This latter stage generally
requires that we push complex categorial weights back to reconstruct a sequence of
simplex categories, an operation that can be performed in two distinct and equally
efficient ways. As part of this work we developed a novel string semiring, the categorial
semiring, which we have described in detail for the first time here.

For both of these applications, the lexicographic semiring solution was shown to be
competitive in terms of efficiency with alternative approaches.

In the future, one can imagine various extensions of the core ideas presented here to
further applications. For example, one might use an Optimality Theory–inspired model
with ranked constraints implemented using a lexicographic semiring as part of a pro-
nunciation modeling system that ranks pronunciations according to the degree to which
they violate various constraints of the language.. The 〈T , C〉-lexicographic semiring
introduced in Section 3 can be generalized to compute the single-best transduction path
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in multi-tape weighted transducers. For instance, by encoding the arc likelihoods, the
phone sequence, the clustered allophone sequence, acoustic state sequence, and acoustic
segmental duration associated with word sequence as a 〈T , C, C, C, T 〉 lexicographic
semiring and determinizing the resulting automaton, we can extract the tags corre-
sponding to the single-best word sequence. Thus, our method is much more flexible and
powerful than algorithms developed specifically for determinizing POS-tagged word

(a) L ◦ T ◦ G

(b) L ◦ T ◦ G after epsilon removal and conversion to triple semiring

(c) Paths with 0 cost in first dimension (only possible resulting paths after determinization)

Figure 14
Full FST after composing L ◦ T ◦ G and then following epsilon removal and conversion to
〈〈T , T 〉, C〉 “triple” semiring. Only four paths have zero cost (i.e., no backoff arcs taken) through
the resulting automaton, and these are the only possible paths after determinization.
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lattices as in Roche and Schabes (1995) or approximations specific to applications as
in Shugrina (2010).

All of the software described in this article is publicly available. The lexico-
graphic semiring is distributed as part of the core OpenFst distribution at http://www
.openfst.org. The categorial semiring is available in the contributed section
at http://www.openfst.org/twiki/bin/view/Contrib/FstContrib. The categorial
rescoring methods including both the mapping and push-split approaches are available
from http://www.opengrm.org.
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