
Pushdown Automata in Statistical

Machine Translation

Cyril Allauzen∗

Google Research

Bill Byrne∗∗

University of Cambridge

Adrià de Gispert∗∗

University of Cambridge

Gonzalo Iglesias∗∗

University of Cambridge

Michael Riley∗

Google Research

This article describes the use of pushdown automata (PDA) in the context of statistical machine

translation and alignment under a synchronous context-free grammar. We use PDAs to com-

pactly represent the space of candidate translations generated by the grammar when applied to an

input sentence. General-purpose PDA algorithms for replacement, composition, shortest path,

and expansion are presented. We describe HiPDT, a hierarchical phrase-based decoder using the

PDA representation and these algorithms. We contrast the complexity of this decoder with a de-

coder based on a finite state automata representation, showing that PDAs provide a more suitable

framework to achieve exact decoding for larger synchronous context-free grammars and smaller

language models. We assess this experimentally on a large-scale Chinese-to-English alignment

and translation task. In translation, we propose a two-pass decoding strategy involving a weaker

language model in the first-pass to address the results of PDA complexity analysis. We study

in depth the experimental conditions and tradeoffs in which HiPDT can achieve state-of-the-art

performance for large-scale SMT.

∗ Google Research, 76 Ninth Avenue, New York, NY 10011. E-mail: {allauzen,riley}@google.com.
∗∗ University of Cambridge, Department of Engineering. CB2 1PZ Cambridge, U.K. and SDL Research,

Cambridge U.K. E-mail: {wjb31,ad465,gi212}@eng.cam.ac.uk.

Submission received: 6 August 2012; revised version received: 20 February 2013; accepted for publication:
2 December 2013.

doi:10.1162/COLI a 00197

© 2014 Association for Computational Linguistics

Computational Linguistics Volume 40, Number 3

1. Introduction

Synchronous context-free grammars (SCFGs) are now widely used in statistical machine
translation, with Hiero as the preeminent example (Chiang 2007). Given an SCFG and
an n-gram language model, the challenge is to decode with them, that is, to apply them
to source text to generate a target translation.

Decoding is complex in practice, but it can be described simply and exactly in
terms of the formal languages and relations involved. We will use this description
to introduce and analyze pushdown automata (PDAs) for machine translation. This
formal description will allow close comparison of PDAs to existing decoders which are
based on other forms of automata. Decoding can be described in terms of the following
steps:

1. Translation: T = Π2({s}◦G)
The first step is to compose the finite language {s}, which represents the
source sentence to be translated, with the algebraic relation G for the
translation grammar G. The result of this composition projected on the
output side is T , a weighted context-free grammar that contains all possible
translations of s under G. Following the usual definition of Hiero grammars,
we assume that G does not allow unbounded insertions so that T is a
regular language.

2. Language Model Application: L=T ∩M
The next step is to compose the result of Step 1 with the weighted regular
grammarM defined by the n-gram language model, M. The result of this
composition is L, whose paths are weighted by the combined language
model and translation scores.

3. Search: l̂=argmaxl∈LL
The final step is to find the path through L that has the best combined
translation and language model score.

The composition {s} ◦ G in Step 1 that generates T can be performed by a modified
CYK algorithm (Chiang 2007). Our interest is in the different types of automata that can
be used to represent T as it is produced by this composition. We focus on three types
of representations: hypergraphs (Chiang 2007), weighted finite state automata (Iglesias
et al. 2009a; de Gispert et al. 2010), and PDAs. We will give a formal definition of PDAs
in Section 2, but we will first illustrate and compare these different representations by
a simple example.

Consider translating a source sentence ‘s1 s2 s3’ with a simple Hiero grammar G :

X→〈s1, t2 t3〉
S→〈X s2 s3, t1 t2 X t4 t7〉
S→〈X s2 s3, t1 t3 X t6 t7〉

Step 1 yields the translations T = {‘t1 t2 t2 t3 t4 t7’ , ‘t1 t3 t2 t3 t6 t7’}, and Figure 1 gives
examples of the different representations of these translations. We summarize the salient
features of these representations as they are used in decoding.

Hypergraphs. As described by Chiang (2007), a Hiero decoder can generate translations
in the form of a hypergraph, as in Figure 1a. As the figure shows, there is a
1:1 correspondence between each production in the CFG and each hyperedge in
the hypergraph.

688

Allauzen et al. Pushdown Automata in Statistical Machine Translation

(a) Hypergraph

0

1t1

6

t1

2
t2

7
t3

3
X 4t4 5t7

8
X

9
t6

10
t7 0 1

t2
2

t3

S X
(b) RTN

0

1t1

2

t1

3
t2

4
t3

5
eps

6
eps

7
t2

8
t2

9t3

10
t3

11eps

12
eps

13t4

14
t6

15t7

16
t7

(c) FSA

0

1t1

6

t1

2
t2

7
t3

11

(

12
t2

3 4t4 5
t7

[
8 9

t6
10

t7
13

t3
)

]

(d) PDA
Figure 1
Alternative representations of the regular language of possible translation candidates. Valid
paths through the PDA must have balanced parentheses.

Decoding proceeds by intersecting the translation hypergraph with a language
model, represented as a finite automaton, yielding L as a hypergraph. Step 3
yields a translation by finding the shortest path through the hypergraphL (Huang
2008).

Weighted Finite State Automata (WFSAs). Because T is a regular language and M is
represented by a finite automaton, it follows that T and L can themselves
be represented as finite automata. Consequently, Steps 2 and 3 can be solved

689

Computational Linguistics Volume 40, Number 3

using weighted finite-state intersection and single-source shortest path algo-
rithms, respectively (Mohri 2009). This is the general approach adopted in the
HiFST decoder (Iglesias et al. 2009a; de Gispert et al. 2010), which first represents
T as a Recursive Transition Network (RTN) and then performs expansion to
generate a WFSA.
Figure 1b shows the space of translations for this example represented as an RTN.
Like the hypergraph, it also has a 1:1 correspondence between each production
in the CFG and paths in the RTN components. The recursive RTN itself can be
expanded into a single WFSA, as shown in Figure 1c. Intersection and shortest
path algorithms are available for both of these WFSAs.

Pushdown Automata. Like WFSAs, PDAs are easily generated from RTNs, as will be
described later, and Figure 1d gives the PDA representation for this example. The
PDA represents the same language as the FSA, but with fewer states. Procedures
to carry out Steps 2 and 3 in decoding will be described in subsequent sections.

We will show that PDAs provide a general framework to describe key aspects
of several existing and novel translation algorithms. We note that PDAs have long
been used to describe parsing algorithms (Aho and Ullman 1972; Lang 1974), and it is
well known that pushdown transducers, the extended version of PDA with input and
output labels in each transition, do not have the expressive power needed to generate
synchronous context-free languages. For this reason, we do not use PDAs to implement
Step 1 in decoding: throughout this article a CYK-like parsing algorithm is always used
for Step 1. However, we do use PDAs to represent the regular languages produced in
Step 1 and in the intersection and shortest distance operations needed for Steps 2 and 3.

1.1 HiPDT: Hierarchical Phrase-Based Translation with PDAs

We introduce HiPDT, a hierarchical phrase-based decoder that uses a PDA representa-
tion for the target language. The architecture of the system is shown in Figure 2, where

CYK parse s with G

Build RTN

Expand RTN to FSA

Intersect FSA with LM

FSA
Shortest
Path

FSA
Pruning

Lattice

1-Best
Hypothesis

RTN to PDA Replacement

Intersect PDA with LM

PDA
(Pruned)
Expansion

PDA
Shortest
Path

HiPDTHiFST

Figure 2
HiPDT versus HiFST: General flow and high-level operations.

690

Allauzen et al. Pushdown Automata in Statistical Machine Translation

we contrast it with HiFST (de Gispert et al. 2010). Both decoders parse the sentence with
a grammar G using a modified version of the CYK algorithm to generate the translation
search space as an RTN. Each decoder then follows a different path: HiFST expands
the RTN into an FSA, intersects it with the language model, and then prunes the result;
HiPDT performs the following steps:

1. Convert the RTN into PDA using the replacement algorithm. The PDA
representation for the example grammar in Section 1 is shown in Figure 1.
The algorithm will be described in Section 3.2.

2. Apply the language model scores to the PDA by composition. This operation
is described in Section 3.3.

3. Perform either one of the following operations:

(a) Shortest path through the PDA to get the exact best translation under
the model. Shortest distance/path algorithm is described in Section 3.4.

(b) Pruned expansion to an FSA. This expansion uses admissible pruning
and outputs a lattice. We do this for posterior rescoring steps. The
algorithm will be presented in detail in Sections 3.5 and 3.5.2.

The principal difference between the two decoders is the point at which finite-state
expansion is performed. In HiFST, the RTN representation is immediately expanded to
an FSA. In HiPDT, the PDA pruned expansion or shortest path computation is done
after the language model is applied, so that all computation is done with respect to both
the translation and language model scores.

The use of RTNs as an initial translation representation is somewhat influenced by
the development history of our FST and SMT systems. RTN algorithms were available
in OpenFST at the time HiFST was developed. HiPDT was developed as an extension to
HiFST using PDA algorithms, and these have subsequently been included in OpenFST.
A possible alternative approach could be to produce a PDA directly by traversing the
CYK grid. WFSAs could then be generated by PDA expansion, with a computational
complexity in speed and memory usage similar to the RTN-based approach. We present
RTNs as the initial translation representation because the generation of RTNs during
parsing is straightforward and has been previously presented (de Gispert et al. 2010).
We note, however, that RTN composition is algorithmically more complex than PDA
(and FSA) composition, so that RTNs themselves are not ideal representations of T if a
language model is to be applied. Composition of PDAs with FSAs will be discussed in
Section 3.3.

Figure 3 continues the simple translation example from earlier, showing how
HiPDT and HiFST both benefit from the compactness offered by WFSA epsilon removal,
determinization, and minimization operations. When applied to PDAs, these operations
treat parentheses as regular symbols. Compact representations of RTNs are shared by
both approaches. Figure 4 illustrates the PDA representation of the translation space
under a slightly more complex grammar that includes rules with alternative orderings
of nonterminals. The rule S→〈X1 s2 X2, t1 X1 X2〉 produces the sequence ‘t1 t3 t4 t5 t6’,
and S→〈X1 s2 X2, t2 X2 X1〉 produces ‘t2 t5 t6 t3 t4’. The PDA efficiently represents the
alternative orderings of the phrases ‘t3 t4’ and ‘t5 t6’ allowed under this grammar.

In addition to translation, this architecture can also be used directly to carry out
source-to-target alignment, or synchronous parsing, under the SCFG in a two-step
composition rather than one synchronous parsing stage. For example, by using M as the
automata that accepts ‘t1 t2 t3 t6 t7’, Step 2 will yield all derivations that yield this string

691

Computational Linguistics Volume 40, Number 3

0 1
t1

2t2

3

t3

4
X

5
X

6

t4

t6 7
t7

0 1
t2

2
t3

S X
(a) Optimized RTN

0 1
t1

2t2

3

t3

4
t2

5
t2

6
t3

7
t3

8

t4

t6 9
t7

(b) Optimized FSA

0 1
t1

2t2

3

t3 8

(

[9
t2

4

6

t4

7
t7

5

t610
t3

)

]

(c) Optimized PDA
Figure 3
Optimized representations of the regular language of possible translation candidates.

as a translation of the source string. This is the approach taken in Iglesias et al. (2009a)
and de Gispert et al. (2010) for the RTN/FSA and in Dyer (2010b) for hypergraphs. In
Section 4 we analyze how PDAs can be used for alignment.

1.2 Goals

We summarize here the aims of this article.

We will show how PDAs can be used as compact representations of the space T
of candidate translations generated by a hierarchical phrase-based SCFG when
applied to an input sentence s and intersected with a language model M.
We have described the architecture of HiPDT, a hierarchical phrase-based de-
coder based on PDAs, and have identified the general-purpose algorithms needed

0

1
t1

2t2

3
(

4

[

5

t3

6
t5

7
t4

8
t6

9
)

10
]

)

11]
(

[

X→〈s1, t3 t4〉
X→〈s3, t5 t6〉
S→〈X1 s2 X2, t1 X1 X2〉
S→〈X1 s2 X2, t2 X2 X1〉

Figure 4
Example of translation grammar with reordered nonterminals and the PDA representing the
result of applying the grammar to input sentence s1 s2 s3.

692

Allauzen et al. Pushdown Automata in Statistical Machine Translation

to perform translation and alignment; in doing so we have highlighted the
similarities and differences relative to translation with FSAs (Section 1.1). We
will provide a formal description of PDAs (Section 2) and present in detail
the associated PDA algorithms required to carry out Steps 2 and 3, including
RTN replacement, composition, shortest path, expansion, and pruned expansion
(Section 3).

We will show both theoretically and experimentally that the PDA representation is
well suited for exact decoding under a large SCFG and a small language model.
An analysis of decoder complexity in terms of the automata used in the repre-
sentation is presented (Section 3). One important aspect of the translation task
is whether the search for the best translation is admissible (or exact) under the
translation and language models. Stated differently, we wish to know whether a
decoder produces the actual shortest path found or whether some form of pruning
might have introduced search errors. In our formulation, we can exclude inadmis-
sible pruning from the shortest-path algorithms, and doing so makes it straight-
forward to compare the computational complexity of a full translation pipeline
using different representations of T (Section 4). We empirically demonstrate that
a PDA representation is superior to an FSA representation in the ability to perform
exact decoding both in an inversion transduction grammar–style word alignment
task and in a translation task with a small language model (Section 4). In these
experiments we take HiFST as a contrastive system for HiPDT, but we do not
present experimental results with hypergraph representations. Hypergraphs are
widely used by the SMT community, and discussions and contrastive experiments
between HiFST and cube pruning decoders are available in the literature (Iglesias
et al. 2009a; de Gispert et al. 2010).

We will propose a two-pass translation decoding strategy for HiPDT based on
entropy-pruned first-pass language models.
Our complexity analysis prompts us to investigate decoding strategies based on
large translation grammars and small language models. We describe, implement,
and evaluate a two-pass decoding strategy for a large-scale translation task using
HiPDT (Section 5). We show that entropy-pruned language models can be used in
first-pass translation, followed by admissible beam pruning of the output lattice
and subsequent rescoring with a full language model. We analyze the search
errors that might be introduced by a two-pass translation approach and show
that these can be negligible if pruning thresholds are set appropriately (Sec-
tion 5.2). Finally, we detail the experimental conditions and speed/performance
tradeoffs that allow HiPDT to achieve state-of-the-art performance for large-
scale SMT under a large grammar (Section 5.3), including lattice rescoring steps
under a vast 5-gram language model and lattice minimum Bayes risk decoding
(Section 5.4).
With this translation strategy HiPDT can yield very good translation performance.
For comparison, the performance of this Chinese-to-English SMT described in
Section 5.4 is equivalent to that of the University of Cambridge submission to the
NIST OpenMT 2012 Evaluation.1

1 For details see http://www.nist.gov/itl/iad/mig/openmt12.cfm.

693

Computational Linguistics Volume 40, Number 3

2. Pushdown Automata

Informally, pushdown transducers are finite-state transducers that have been aug-
mented with a stack. Typically this is done by adding a stack alphabet and labeling
each transition with a stack operation (a stack symbol to be pushed onto, popped, or
read from the stack) in addition to the usual input and output labels (Aho and Ullman
1972; Berstel 1979) and weight (Kuich and Salomaa 1986; Petre and Salomaa 2009). Our
equivalent representation allows a transition to be labeled by a stack operation or a
regular input/output symbol, but not both. Stack operations are represented by pairs
of open and close parentheses (pushing a symbol on and popping it from the stack).
The advantage of this representation is that it is identical to the finite automaton repre-
sentation except that certain symbols (the parentheses) have special semantics. As such,
several finite-state algorithms either immediately generalize to this PDA representation
or do so with minimal changes. In this section we formally define pushdown automata
and transducers.

2.1 Definitions

A (restricted) Dyck language consist of “well-formed” or “balanced” strings over a
finite number of pairs of parentheses. Thus the string ([() ()] { } []) () is in the
Dyck language over three pairs of parentheses (see Berstel 1979 for a more detailed
presentation).

More formally, let A and A be two finite alphabets such that there exists a bijection
f from A to A. Intuitively, f maps an open parenthesis to its corresponding close
parenthesis. Let ā denote f (a) if a∈A and f−1(a) if a∈A. The Dyck language DA

over the alphabet Â=A ∪ A is then the language defined by the following context-free

grammar: S→ ǫ, S→ SS and S→ aSā for all a∈A. We define the mapping cA : Â∗ → Â∗

as follows. cA(x) is the string obtained by iteratively deleting from x all factors of the

form aā with a ∈ A. Observe that DA=c−1
A (ǫ). Finally, for a subset B ⊆ A, we define the

mapping rB : A∗ → B∗ by rB(x1 . . . xn)=y1 . . . yn with yi=xi if xi∈B and yi=ǫ otherwise.
A semiring (K,⊕,⊗, 0, 1) is a ring that may lack negation. It is specified by a set

of values K, two binary operations ⊕ and ⊗, and two designated values 0 and 1.
The operation ⊕ is associative, commutative, and has 0 as identity. The operation ⊗
is associative, has identity 1, distributes with respect to ⊕, and has 0 as annihilator:
for all a ∈ K, a⊗ 0 = 0⊗ a = 0. If ⊗ is also commutative, we say that the semiring is
commutative.

The probability semiring (R+,+,×, 0, 1) is used when the weights represent prob-
abilities. The log semiring (R ∪ {∞},⊕log,+,∞, 0), isomorphic to the probability semi-
ring via the negative-log mapping, is often used in practice for numerical stability. The
tropical semiring (R ∪ {∞}, min,+,∞, 0) is derived from the log semiring using the
Viterbi approximation. These three semirings are commutative.

A weighted pushdown automaton (PDA) T over a semiring (K,⊕,⊗, 0, 1) is an
8-tuple (Σ,Π,Π, Q, E, I, F, ρ) where Σ is the finite input alphabet, Π and Π are the finite
open and close parenthesis alphabets, Q is a finite set of states, I∈Q the initial state,
F ⊆ Q the set of final states, E ⊆ Q× (Σ ∪ Π̂ ∪ {ǫ})×K×Q a finite set of transitions,
and ρ : F→ K the final weight function. Let e= (p[e], i[e], w[e], n[e]) denote a transition
in E; for simplicity, (p[e], i[e], n[e]) denotes an unweighted transition (i.e., a transition
with weight 1̄).

694

Allauzen et al. Pushdown Automata in Statistical Machine Translation

A path π is a sequence of transitions π=e1 . . . en such that n[ei]=p[ei+1] for 1 ≤ i <
n. We then define p[π]=p[e1], n[π]=n[en], i[π]= i[e1] · · · i[en], and w[π]=w[e1]⊗ . . .⊗
w[en]. A path π is accepting if p[π]= I and n[π]∈F. A path π is balanced if r

Π̂
(i[π])∈DΠ.

A balanced path π accepts the string x∈Σ∗ if it is a balanced accepting path such that
rΣ(i[π])=x.

The weight associated by T to a string x∈Σ∗ is

T(x)=
⊕

π∈P(x)

w[π]⊗ρ(n[π]) (1)

where P(x) denotes the set of balanced paths accepting x. A weighted language is
recognizable by a weighted pushdown automaton iff it is context-free. We define the
size of T as |T|= |Q|+|E|.

A PDA T has a bounded stack if there exists K ∈ N such that for any path π from I
such that cΠ(r

Π̂
(i[π])) ∈ Π∗:

|cΠ(r
Π̂

(i[π]))| ≤ K (2)

In other words, the number of open parentheses that are not closed along π is bounded.
If T has a bounded stack, then it represents a regular language. Figure 5 shows non-
regular, regular, and bounded-stack PDAs. A weighted finite automaton (FSA) can be
viewed as a PDA where the open and close parentheses alphabets are empty (see Mohri
2009 for a stand-alone definition).

Finally, a weighted pushdown transducer (PDT) T over a semiring (K,⊕,⊗, 0, 1)
is a 9-tuple (Σ,∆,Π,Π, Q, E, I, F, ρ) where Σ is the finite input alphabet, ∆ is the finite
output alphabet, Π and Π are the finite open and close parenthesis alphabets, Q is a
finite set of states, I∈Q the initial state, F ⊆ Q the set of final states, E ⊆ Q× (Σ ∪ Π̂ ∪

0

1a

2
ε
(

3)
b

0
1

a

2

ε

(
ε

3

)
ε
b

0

1
(

3

ε

2
a

4(

)

5
b

)

(a) (b) (c)

0,ε

1,(
ε

3,ε

ε

2,(
a

4,(ε

ε

5,(
b

ε

0

1a:c/1

2
ε:ε
(:(/1

3):)
b:c/1

2

0

ε:ε

1

a:c/1
3

S: /1ε

b:c/1

TS

(d) (e) (f)

Figure 5
PDA Examples: (a) Non-regular PDA accepting {anbn|n ∈ N}. (b) Regular (but not
bounded-stack) PDA accepting a∗b∗. (c) Bounded-stack PDA accepting a∗b∗ and (d) its
expansion as an FSA. (e) Weighted PDT T1 over the tropical semiring representing the
weighted transduction (anbn, c2n) 7→ 3n and (f) equivalent RTN ({S},{a, b}, {c}, {TS}, S).

695

Computational Linguistics Volume 40, Number 3

{ǫ})×K×Q a finite set of transitions, and ρ : F→ K the final weight function. Let
e= (p[e], i[e], o[e], w[e], n[e]) denote a transition in E. Note that a PDA can be seen as
a particular case of a PDT where i[e] = o[e] for all its transitions. For simplicity, our
following presentation focuses on acceptors, rather than the more general case of trans-
ducers. This is adequate for the translation applications we describe, with the exception
of the treatment of alignment in Section 4.3, for which the intersection algorithm for
PDTs and FSTs is given in Appendix A.

3. PDT Operations

In this section we describe in detail the following PDA algorithms: Replacement, Com-
position, Shortest Path, and (Pruned) Expansion. Although these are needed to implement
HiPDT, these are general purpose algorithms, and suitable for many other applications
outside the focus of this article. The algorithms described in this section have been
implemented in the PDT extension (Allauzen and Riley 2011) of the OpenFst library
(Allauzen et al. 2007). In this section, in order to simplify the presentation we will only
consider machines over the tropical semiring (R+ ∪ {∞}, min,+,∞, 0). However, for
each operation, we will specify in which semirings it can be applied.

3.1 Recursive Transition Networks

We briefly give formal definitions for RTNs that will be needed to present the RTN
expansion operation. Examples are shown earlier in Figures 1(b) and 3(a). Informally,
an RTN is an automaton where some labels, nonterminals, are recursively replaced
by other automata. We give the formal definition for acceptors; the extension to RTN
transducers is straightforward.

An RTN R over the tropical semiring (R+ ∪ {∞}, min,+,∞, 0) is a 4-tuple
(N,Σ, (Tν)ν∈N, S) where N is the alphabet of nonterminals, Σ is the input alpha-
bet, (Tν)ν∈N is a family of FSTs with input alphabet Σ ∪N, and S ∈ N is the root
nonterminal.

A sequence x ∈ Σ∗ is accepted by (R,ν) if there exists an accepting path π in Tν such
that π = π1e1 . . . πnenπn+1 with i[πk] ∈ Σ∗, i[ek] ∈ N and such that there exists sequences
xk such that xk is accepted by (R, i[ek]) and x = i[π1]x1 . . . i[πn]xni[πn+1]. We say that x is
accepted by R when it is accepted by (R, S). The weight associated by (R,ν) (and by R)
to x can be defined in the same recursive manner.

As an example of testing whether an RTN accepts a sequence, consider the RTN R
of Figure 6 and the sequence x = a a b. The path in the automata TS can be written as
π = π1 e1 π2, with i[π1] = a, i[e1] = X1, and i[π2] = b. In addition, the machine (R, i[e1])
accepts x1 = a. Because x = i[π1] x1 i[π2], it follows that x is accepted by (R, S).

3.2 Replacement

This algorithm converts an RTN into a PDA. As explained in Section 1.1, this PDT
operation is applied by the HiPDT decoder in Step 1, and examples are given in earlier
sections (e.g., in figures 1 and 3).

Replacement acts on every transition of the RTN that is associated with a non-
terminal. The source and destination states of these transitions are used to define the
matched opening and closing parentheses, respectively, in the new PDA. Each RTN
nonterminal transition is deleted and replaced by two new transitions that lead to and

696

Allauzen et al. Pushdown Automata in Statistical Machine Translation

from the automaton indicated by the nonterminal. These new transitions have matched
parentheses, taken from the source and destination states of the RTN transition they
replace. Figure 6 gives a simple example.

Formally, given an RTN R, defined as (N,Σ, (Tν)ν∈N, S), its replacement is the PDA
T equivalent to R defined by the 8-tuple (Σ,Π,Π, Q, E, I, F, ρ) with Q = Π =

⋃
ν∈N Qν,

I = IS, F = FS, ρ = ρS, and E =
⋃

ν∈N

⋃
e∈Eν

Ee where Ee = {e} if i[e] 6∈ N and

Ee
={(p[e], n[e], ǫ, w[e], Iµ), (f, n[e], ǫ, ρµ(f), n[e])|f ∈Fµ} (3)

with µ = i[e] ∈ N otherwise.
The complexity of the construction is in O(|T|). If |Fν| = 1 for all ν ∈ N, then

|T| = O(
∑

ν∈N |Tν|) = O(|R|). Creating a superfinal state for each Tν would lead to a T
whose size is always linear in the size of R. In this article, we assume this optimization
is always performed. We note here that RTNs can be defined and the replacement
operation can be applied in any semiring.

3.3 Composition

Once we have created the PDA with translation scores, Step 2 in Section 1.1 applies the
language model scores to the translation space. This is done by composition with an
FSA containing the relevant language model weights.

The class of weighted pushdown transducers is closed under composition with
weighted finite-state transducers (Bar-Hillel, Perles, and Shamir 1964; Nederhof and
Satta 2003). OpenFST supports composition between automata T1 and T2, where T1

is a weighted pushdown transducer and T2 is a weighted finite-state transducer. If
both T1 and T2 are acceptors, rather than transducers, the composition of a PDA and
an FSA produces a PDA containing their intersection, and so no separate intersection
algorithm is required for these automata. Given this, we describe only the simpler,
special case of intersection between a PDA and an FSA, as this is sufficient for most
of the translation applications described in this article. The alignment experiments of

RTN R

1 2 3 4

a X1 b

TS

5 6

X2

a 7 8

b

TX1
TX2

R accepts a a b and a b b.

PDT T

1 2

a

5 6

3 4

7 8

a

b

b

6

3 3̄

6̄

T accepts a 3 a 3̄ b and a 3 6 b 6̄ 3̄ b.

Figure 6
Conversion of an RTN R to a PDA T by the replacement operation of Section 3.2. Using the
notation of Section 2.1, in this example Π = {3, 5} and Π = {3̄, 5̄}, with f (3) = 3̄ and f (5) = 5̄.
The unweighted transition (2, X1, 3) in R is deleted and replaced by two new transitions (2, 3, 5)
and (6, 3̄, 3); similarly, (5, X2, 6) is replaced by (5, 6, 7) and (8, 6̄, 6). After application of the rΣ
mapping, the strings accepted by R and by T are the same.

697

Computational Linguistics Volume 40, Number 3

0 1a
b

2a
b

3a
b

4a
b

T2

0

1a

2
ε
(

3)
b

T1

0,0

1,1a

2,0

ε

0,1(

3,0)

1,2a

2,1

ε

b

0,2(

3,1)

1,3a

2,2

ε

b

0,3(

3,2)

1,4a

2,3

ε

b

0,4(

3,3)

2,4
ε

b

T
Figure 7
Composition example: Composition of a PDA T1 accepting {an, bn} with an FSA T2 accepting
{a, b}4 to produce a PDA T = T1 ∩ T2 . T has only one balanced path, and this path accepts
a(a(ǫ)b)b. Composition is performed by the PDA-FSA intersection described in Section 3.3.

Section 4.3 do require composition of transducers; the algorithm for composition of
transducers is given in Appendix A.

An example of composition by intersection is given in Figure 7. The states of T are
created as the product of all the states in T1 and T2. Transitions are added as illustrated
in Figure 8. These correspond to all paths through T1 and T2 that can be taken by
a synchronized reading of strings from {a, b}∗. The algorithm is very similar to the
composition algorithm for finite-state transducers, the difference being the handling
of the parentheses. The parenthesis-labeled transitions are treated similarly to epsilon
transitions, but the parenthesis labels are preserved in the result. This adds many
unbalanced paths to T. In this example, T has five paths but only one balanced path,
so that T accepts the string a a b b.

Formally, given a PDA T1 = (Σ,Π,Π, Q1, E1, I1, F1, ρ1) and an FSA T2 =

(Σ, Q2, E2, I2, F2, ρ2), intersection constructs a new PDA T = (Σ,Π,Π, Q, E, I, F, ρ),
where T = T1 ∩ T2 as follows:

1. The new state space is in the product of the input state spaces: Q ⊂ Q1 ×Q2.

2. The new initial and final states are I = (I1, I2), and F = {(q1, q2) : q1 ∈ F1, q2 ∈ F2}.

3. Weights are assigned to final states (q1, q2) ∈ Q as ρ(q1, q2) = ρ(q1) + ρ(q2).

4. For pairs of transitions (q1, a1, w1, q′1) ∈ E1 and (q2, a2, w2, q′2) ∈ E2, a transition
is added between states (q1, q2) and (q′1, q′2) as specified in Figure 8.

PDT T1 FSA T2 PDT T = T1 ∩ T2 Input Symbols

q1 q′1

a1/w1

q2 q′2

a2/w2

q1, q2 q′1, q′2

a1/w1 + w2

a1 ∈ Σ and a1 = a2

q1, q2 q′1, q2

a1/w1

a1 ∈ Π ∪Π or a1 = ǫ

Transitions are added to T if and only if the conditions on the input symbols are satisfied.

Figure 8
PDA–FSA intersection under the tropical semiring. The PDA T is created by the intersection of
the PDA T1 and the FSA T2, i.e., T = T1 ∩ T2.

698

Allauzen et al. Pushdown Automata in Statistical Machine Translation

The intersection algorithm given here assumes that T2 has no input-ǫ transitions.
When T2 has input-ǫ transitions, an epsilon filter (Mohri 2009; Allauzen, Riley, and
Schalkwyk 2011) generalized to handle parentheses can be used. Note that Steps 1 and 2
do not require the construction of all possible pairs of states; only those states reachable
from the initial state and needed in Step 4 are actually generated. The complexity of
the algorithm is in O(|T1| |T2|) in the worst case, as will be discussed in Section 4.
Composition requires the semiring to be commutative.

3.4 Shortest Distance and Path Algorithms

With a PDA including both translation and language model weights, HiPDT can ex-
tract the best translation (Step 3a in Section 1.1). To this end, a general PDA shortest
distance/path algorithm is needed.

A shortest path in a PDA T is a balanced accepting path with minimal weight
and the shortest distance in T is the weight of such a path. We show that when
T has a bounded stack, shortest distance and shortest path can be computed in
O(|T|3 log |T|) time (assuming T has no negative weights) and O(|T|2) space. Figure 9
gives a pseudo-code description of the shortest-distance algorithm, which we now
discuss.

SHORTESTDISTANCE(T)

1 for each q ∈ Q and a ∈ Π do
2 B[q, a]← ∅
3 for each q ∈ Q do
4 d[q, q]←∞
5 GETDISTANCE(T, I) ⊲ I is the unique initial state
6 return d[I, f] ⊲ f is the unique final state

RELAX(s, q, w,S)

1 if d[s, q] > w then ⊲ if w is a better estimate of the distance from s to q
2 d[s, q]← w ⊲ update d[s, q]
3 if q 6∈ S then ⊲ enqueue q in S if needed
4 ENQUEUE(S, q)

GETDISTANCE(T,s)

1 for each q ∈ Q do
2 d[s, q]←∞
3 d[s, s]← 0
4 Ss ← {s}
5 while Ss 6=∅ do
6 q← HEAD(Ss)
7 DEQUEUE(Ss)
8 for each e ∈ E[q] do ⊲ E(q) is the set of transitions leaving state q
9 if i[e] ∈ Σ ∪ {ǫ} then ⊲ i[e] is a regular symbol

10 RELAX(s, n[e], d[s, q] + w[e],Ss)
11 elseif i[e] ∈ Π then ⊲ i[e] is a close parenthesis

12 B[s, i[e]]← B[s, i[e]] ∪ {e}
13 elseif i[e] ∈ Π then ⊲ i[e] is an open parenthesis
14 if d[n[e], n[e]]=∞ then ⊲ n[e] is the destination state of transition e
15 GETDISTANCE(T, n[e])
16 for each e′ ∈ B[n[e], i[e]] do
17 w← d[s, q] + w[e] + d[n[e], p[e′]] + w[e′]
18 RELAX(s, n[e′], w,Ss)

Figure 9
PDT shortest distance algorithm.

699

Computational Linguistics Volume 40, Number 3

Given a PDA T = (Σ,Π,Π, Q, E, I, F, ρ), the GETDISTANCE(T) algorithm computes
the shortest distance from the start state I to the final state2 f ∈ F. The algorithm
recursively calculates

d[q, q′] ∈ K – the shortest distance from state q to state q′ along a balanced path

At termination, the algorithm returns d[I, f] as the cost of the shortest path through T.
The core of the shortest distance algorithm is the procedure GETDISTANCE(T, s)

which calculates the distances d[s, q] for all states q that can be reached from s. For an
FSA, this procedure is called once, as GETDISTANCE(T, I), to calculate d[I, q] ∀q.

For a PDA, the situation is more complicated. Given a state s in T with at least
one incoming open parenthesis transition, we denote by Cs the set of states that can be
reached by a balanced path starting from s. If s has several incoming open parenthesis
transitions, a naive implementation might lead to the states in Cs to be visited exponen-
tially many times. This is avoided by memoizing the shortest distance from s to states in
Cs. To do this, GETDISTANCE(T, s) calculates d[s, s′] for all s′ ∈ Cs, and it also constructs
sets of transitions

B[s, a] = {e ∈ E : p[e] ∈ Cs and i[e] = a} ∀a ∈ Π (4)

These are the transitions with label a leaving states in Cs.
Consider any incoming transition to s, (q, a, w, s), with a ∈ Π. For every transition

e′ = (s′, a, w′, q′), e′ ∈ B[s, a] the following holds3

d[q, q′] = w + d[s, s′] + w′ (5)

If d[s, s′] is available, the shortest distance from q to q′ along any balanced path through
s can be computed trivially by Equation (5). For any state s with incoming open paren-
thesis transitions, only a single call to GETDISTANCE(T, s) is needed to precompute the
necessary values.

Figure 10 gives an example. When transition (2, (1, 0, 5) is processed,
GETDISTANCE(T, 5) is called. The distance d[5, 7] is computed, and following tran-
sitions are logged: B[5, (1]← {(7,)1, 0, 8)} and B[5, (2]← {(7,)2, 0, 9)}. Later, when the
transition (4, (2, 0, 5) is processed, its matching transition (7,)2, 0, 9) is extracted from
B[5, (2]. The distance d[4, 9] is then found by Equation (5) as d[5, 7]. This avoids redun-
dant re-calculation of distances along the shortest balanced path from state 4 to state 9.

We now briefly discuss the shortest distance pseudo-code given in Figure 9. The
description may be easier to follow after reading the worked example in Figure 10. Note
that the sets Cs are not computed explicitly by the algorithm.

The shortest distance calculation proceeds as follows. Self-distances, that is, d[q, q],
are set initially to ∞; when GETDISTANCE(T, q) is called it sets d[q, q] = 0 to note that
q has been visited. GETDISTANCE(T, s) starts a new instance of the shortest-distance
algorithm from s using the queue Ss, initially containing s. While the queue is not empty,
a state is dequeued and its outgoing transitions examined (lines 7–11). Transitions
labeled by non-parenthesis are treated as in Mohri (2009) (lines 7–8). When a transition

e is labeled by a close parenthesis, e is added to B[s, i[e]] to indicate that this transition

2 For simplicity, we assume T has only one final state.
3 This assumes all paths from q to q′ pass through s. The RELAX operation (Figure 9) handles the

general case.

700

Allauzen et al. Pushdown Automata in Statistical Machine Translation

0

1 2

5 6 7

8

10

3 4 9
t1/20

t3/200

(2

t1/10

t2/100
(1 t2/1 t3/1

)1
t4/1, 000

)2

t6/1, 000

GETDISTANCE(T) runs
1. Initialization: d[q, q]←∞, ∀q ∈ Q
2. GETDISTANCE(T, 0) is called

GETDISTANCE(T, 0) runs
3. Distances are calculated from state 0:

d[0, 0]← 0; d[0, 1]← d[0, 0] + w[0, 1]; d[0, 2]← d[0, 1] + w[1, 2]
4. Transition e1 = (2, (1, 0, 5) is reached. e1 has symbol i[e1] = (1 and destination state n[e1] = 5
5. d[5, 5] =∞ so GETDISTANCE(T, 5) is called

GETDISTANCE(T, 5) runs
6. Distances are calculated from state 5:

d[5, 5]← 0; d[5, 6]← d[5, 5] + w[5, 6]; d[5, 7]← d[5, 6] + w[6, 7]
7. The transitions (7,)1, 0, 8) and (7,)2, 0, 9) are reached and memoized

B[5, (1]← {(7,)1, 0, 8)}
B[5, (2]← {(7,)2, 0, 9)}

GETDISTANCE(T, 5) ends
GETDISTANCE(T, 0) resumes
8. Transition e1 = (2, (1, 0, 5) is still being processed, with p[e1] = 2, n[e1] = 5, and i[e1] = (1

9. Transition e2 = (7,)1, 0, 8) matching (1 is extracted from B[n[e1], i[e1]], with p[e2] = 7
and n[e2] = 8

10. Distance d[0, 8] is calculated as d[0, n[e2]] :
d[0, n[e2]]← d[0, p[e1]] + w[p[e1], n[e1]] + d[n[e1], p[e2]] + w[p[e2], n[e2]]

10. Processing of e1 finishes, and calculation of distances from 0 continues:
d[0, 10]← d[0, 8] + w[8, 10]
10 is a final state. Processing continues with transition (0, t1, 20, 3)
d[0, 3]← d[0, 0] + w[0, 3]; d[0, 4]← d[0, 3] + w[3, 4]

13. Transition e3 = (4, (2, 0, 5) is reached
e3 has symbol i[e3] = (2, source state p[e3] = 4, and destination state n[e3] = 5

14. GETDISTANCE(T, 5) is not called, since d[5, 5] = 0 indicates state 5 has been previously
visited

15. Transition e4 = (7,)2, 0, 9) matching (2 is extracted from B[n[e3], i[e3]], with p[e4] = 7 and
n[e4] = 9

16. Distance d[0, 9] is calculated as d[0, n[e4]], using cached values:
d[0, n[e4]]← d[0, p[e3]] + w[p[e3], n[e3]] + d[n[e3], p[e4]] + w[p[e4], n[e4]]

17. d[0, 10] is less than∞ :
d[0, 10]← min(d[0, 10], d[0, 9] + w[9, 10])

18. GETDISTANCE(T, 0) ends and returns d[0, 10]
GETDISTANCE(T) ends

Figure 10
Step-by-step description of the shortest distance calculation for the given PDA by the algorithm
of Figure 9. For simplicity, w[q, q′] indicates the weight of the transition connecting q and q′.

balances all incoming open parentheses into s labeled by i[e] (lines 9–10). Finally, if e has
an open parenthesis, and if its destination has not already been visited, a new instance of
GETDISTANCE is started from n[e] (lines 12–13). The destination states of all transitions
balancing e are then relaxed (lines 14–16).

The space complexity of the algorithm is quadratic for two reasons. First, the
number of non-infinity d[q, s] is |Q|2. Second, the space required for storing B is at
most in O(|E|2) because for each open parenthesis transition e, the size of |B[n[e], i[e]]|

701

Computational Linguistics Volume 40, Number 3

is O(|E|) in the worst case. This last observation also implies that the accumulated
number of transitions examined at line 16 is in O(Z|Q| |E|2) in the worst case, where
Z denotes the maximal number of times a state is inserted in the queue for a given
call of GETDISTANCE. Assuming the cost of a queue operation is Γ(n) for a queue
containing n elements, the worst-case time complexity of the algorithm can then be
expressed as O(Z|T|3 Γ(|T|)). When T contains no negative weights, using a shortest-
first queue discipline leads to a time complexity in O(|T|3 log |T|). When all the
Cs’s are acyclic, using a topological order queue discipline leads to a O(|T|3) time
complexity.

As was shown in Section 3.2, when T has been obtained by converting an RTN
or a hypergraph into a PDA, the polynomial dependency in |T| becomes a linear
dependency both for the time and space complexities. Indeed, for each q in T, there
exists a unique s such that d[s, q] is non-infinity. Moreover, for each open parenthesis
transition e, there exists a unique close parenthesis transition e′ such that e′∈B[n[e], i[e]].
When each component of the RTN is acyclic, the complexity of the algorithm is O(|T|)
in time and space.

The algorithm can be modified (without changing the complexity) to compute the
shortest path by keeping track of parent pointers. The notion of shortest path requires
the semiring (K,⊕,⊗, 0, 1) to have the path property: for all a, b in K, a⊕ b ∈ {a, b}. The
shortest-distance operation as presented here and the shortest-path operation can be
applied in any semiring having the path property by using the natural order defined by
⊕: a ≤ b iff a⊕ b = a. However, the shortest distance algorithm given in Figure 9 can be
extended to work for k-closed semirings using the same techniques that were used by
Mohri (2002).

The shortest distance in the intersection of a string s and a PDA T determines if T
recognizes s. PDA recognition is closely related to CFG parsing; a CFG can be repre-
sented as a PDT whose input recognizes the CFG and whose output identifies the parse
(Aho and Ullman 1972). Lang (1974) showed that the cubic tabular method of Earley
can be naturally applied to PDAs; others give the weighted generalizations (Stolcke
1995; Nederhof and Satta 2006). Earley’s algorithm has its analogs in the algorithm in
Figure 9: the scan step corresponds to taking a non-parenthesis transition at line 10, the
predict step to taking an open parenthesis at lines 14–15, and the complete step to taking
the closed parentheses at lines 16–18.

Specialization to Translation. Following the formalism of Section 1, we are interested
in applying shortest distance and shortest path algorithms to automata created as
L = Tp ∩M, where Tp, the translation representation, is a PDA derived from an RTN
(via replacement) and M, the language model, is a finite automaton.

For this particular case, the time complexity is O(|Tp||M|
3) and the space complexity

is O(|Tp||M
2|). The dependence on |Tp| is linear, rather than cubic or quadratic. The

reasoning is as follows. Given a state q in Tp, there exists a unique sq such that q belongs
to Csq

. Given a state (q1, q2) in Tp∩M, (q1, q2)∈C(s1,s2) only if s1 = sq1
, and hence (q1, q2)

belongs to at most |M| components.

3.5 Expansion

As explained in Section 1.1, HiPDT can apply Step 3b to generate translation lattices.
This step is typically required for any posterior lattice rescoring strategies. We first

702

Allauzen et al. Pushdown Automata in Statistical Machine Translation

describe the unpruned expansion. However, in practice a pruning strategy of some sort
is required to avoid state explosion. Therefore, we also describe an implementation of
the PDA expansion that includes admissible pruning under a likelihood beam, thus
controlling on-the-fly the size of the output lattice.

3.5.1 Full Expansion. Given a bounded-stack PDA T, the expansion of T is the FSA T′

equivalent to T. A simple example is given in Figure 11.
Expansion starts from the PDA initial state. States and transitions are added to

the FSA as the expansion proceeds along paths through the PDA. In the new FSA,
parentheses are replaced by epsilons, and as open parentheses are encountered on
PDA transitions, they are “pushed” into the FSA state labels; in this way the stack
depth is maintained along different paths through the PDA. Conversely, when a closing
parenthesis is encountered on a PDA path, a corresponding opening parenthesis is
“popped” from the FSA state label; if this is not possible, for example, as in state (5, ǫ)
in Figure 11, expansion along that path halts.

The resulting automata accept the same language. The FSA topology changes,
typically with more states and transitions than the original PDA, and the number of
added states is controlled only by the maximum stack depth of the PDA.

Formally, suppose the PDA T = (Σ,Π,Π, Q, E, I, F, ρ) has a maximum stack depth
of K. The set of states in its FSA expansion T′ are then

Q′ = {(q, z) : q ∈ Q , z ∈ Π∗ and |z| ≤ K} (6)

and T′ has initial state (I, ǫ) and final states F′ = {(q, ǫ) : q ∈ F}. The condition that T
has a bounded stack ensures that Q′ is finite. Transitions are added to T′ as described in
Figure 12.

The full expansion operation can be applied to PDA over any semiring. The com-
plexity of the algorithm is linear in the size of T′. However, the size of T′ can be
exponential in the size of T, which motivates the development of pruned expansion,
as discussed next.

0

1

2 3

4 5 6[[

[

a
]

b]

c

0,ǫ

1, [2, [[3, [[4, [5, [6,ǫǫ

ǫ a ǫ b ǫ

2, [
3, [

ǫ

a

c

4,ǫ 5,ǫ
ǫ

b

Figure 11
Full expansion of a PDA to an equivalent FSA. The PDA maximum stack depth is 2; therefore
the FSA states belong to {0, .., 6} × {ǫ, [, [[}. Expansion can create incomplete paths in the FSA
(e.g., corresponding here to the unbalanced PDA path [a] b]); however these are guaranteed to
be unconnected, namely, not to lead to a final state. Any unconnected states are removed after
expansion.

703

Computational Linguistics Volume 40, Number 3

Transition in PDA T New transition in FSA T′ Conditions Explanation

q, z q′, z

a/w

a ∈ Σ ∪ {ǫ}
a is not a parenthesis; stack
depth is unchanged

q q′

a/w

q, z q′, za

ǫ

a ∈ Π

a is an open parenthesis; an
epsilon transition is added,
and a is “pushed” into the
destination state, increas-
ing the stack depth

q, z′a q′, z′

ǫ

a ∈ Π

a is a closing parenthe-
sis; an epsilon transition
is added, and the match-
ing open parenthesis a is
“popped” from the destina-
tion state, decreasing the
stack depth

Figure 12
PDA Expansion. A states (q, z) and (q′, z′) in the FSA T′ will be connected by a transition if and
only if the above conditions hold on the corresponding transition between q and q′ in the PDA T.

3.5.2 Pruned Expansion. Given a bounded-stack PDA T, the pruned expansion of T with
threshold β is an FST T′β obtained by deleting from T′ all states and transitions that do

not belong to any accepting path π in T′ such that w[π]⊗ ρ[π] ≤ d + β, where d is the
shortest distance in T.

A naive implementation consisting of fully expanding T and then applying the

FST pruning algorithm would lead to a complexity in O(|T′| log |T′|)=O(e|T||T|).
Assuming that the reverse TR of T is also bounded-stack, an algorithm whose com-
plexity is in O(|T| |T′β|+ |T|

3 log |T|) can be obtained by first applying the shortest
distance algorithm from the previous section to TR and then using this to prune the
expansion as it is generated. To simplify the presentation, we assume that F={ f} and
ρ(f)=0.

The motivation for using reversed automaton in pruning is easily seen by looking
at FSAs. For an FSA, the cost of the shortest path through a transition (q, x, w, q′) can
be stated as d[I, q] + w + d[q′, f]. Distances d[I, q] (i.e., distances from the start state) are
computed by the shortest distance algorithm, as discussed in Section 3.4. However,
distances of the form d[q′, f] are not readily available. To compute these, a shortest
distance algorithm is run over the reversed automaton. Reversal preserves states and
transitions, but swaps the source and destination state (see Figure 13 for a PDA ex-
ample). The start state in the reversed machine is f , so that distances are computed
from f ; these are denoted dR[f, q] and correspond to d[q, f] in the original FSA. The
cost of the shortest path through an FSA transition (q, x, w, q′) can then be computed as
d[I, q] + w + dR[f, q′].

Calculation for PDAs is more complex. Transitions with parentheses must be han-
dled such that distances through them are calculated over balanced paths. For example,
if T in Figure 13 was an FSA, the shortest cost of any path through the transition
e = (4, (2, 0, 5) could be calculated as d[0, 4]+ 0 + d[5, 10]. However, this is not correct,
because d[5, 10], the shortest distance from 5 to 10, is found via a path through the
transition (7,)1, 0, 8).

Correct calculation of the minimum cost of balanced paths through PDA transitions
can be done using quantities computed by the PDA shortest distance algorithm. For a

704

Allauzen et al. Pushdown Automata in Statistical Machine Translation

0

1 2

5 6 7

8

10

3 4 9
t1/20

t3/200

(2

t1/10

t2/100

(1 t2/1 t3/1
)1

t4/1, 000

)2

t6/1, 000

T

0

1 2

5 6 7

8

10

3 4 9
t1/20

t3/200

(2

t1/10

t2/100

(1 t2/1 t3/1
)1

t4/1, 000

)2

t6/1, 000

TR

Figure 13

PDA T and its reverse TR. TR has start state 10, final state 0, ΠR = {)1,)2}, and Π
R
= {(1, (2}.

PDA transition e = (q, a, w, q′), a ∈ Π, the cost of the shortest balanced path through e
can be found as4

c(e) = d[I, q] + w[e] + min
e′∈B[q′,a]

d[q′, p[e′]] + w[e′] + dR[n[e′], f] (7)

where B[q′, a] and d[p[e′], q′] are computed by the PDA shortest distance algorithm over
T, and dR[n[e′], f] is computed by the PDA shortest distance algorithm over TR.

In Figure 13, the shortest cost of paths through the transition e = (4, (2, 0, 5) is found
as follows: the shortest distance algorithm over T calculates d[0, 4] = 220 , d[5, 7] = 2,
and B[5, (2] = {7,)2, 0, 9}; the shortest distance algorithm over TR calculates dR[10, 9] =
1, 000 (trivially, here); the cost of the shortest path through e is

d[0, 4]+ w[e] + d[5, 7] + w[e′] + dR[10, 9] = 220 + 0 + 2 + 0 + 1, 000

Pruned expansion is therefore able to avoid expanding transitions that would not
contribute to any path that would survive pruning. Prior to expansion of a PDA T to an
FSA T′, the shortest distance d in T is calculated. Transitions e = (q, a, w, q′), a ∈ Π, are
expanded as transitions e = ((q, z), q, w, (q′, za)) in T′ only if c(e) ≤ d + β, as calculated
by Equation (7).

The pruned expansion algorithm implemented in OpenFST is necessarily more
complicated than the simple description given here. Pseudo-code describing the Open-
FST implementation is given in Appendix B.

The pruned expansion operation can be applied in any semiring having the path
property.

4 Note that d[p[e′], q′] could be replaced by dR[q′, p[e′]].

705

Computational Linguistics Volume 40, Number 3

4. HiPDT Analysis and Experiments: Computational Complexity

We now address the following questions:

r What are the differences between the FSA and PDA representations as
observed in a translation/alignment task?

r How do their respective decoding algorithms perform in relation to the
complexity analysis described here?

r How many times is exact decoding achievable in each case?

We will discuss the complexity of both HiPDT and HiFST decoders as well as the
hypergraph representation, with an emphasis on Hiero-style SCFGs. We assess our
analysis for FSA and PDA representations by contrasting HiFST and HiPDT with large
grammars for translation and alignment. For convenience, we refer to the hypergraph
representation as Th, and to the FSA and PDA representations as Tf and Tp.

We first analyze the complexity of each MT step described in the introduction:

1. SCFG Translation: Assuming that the parsing of the input is performed by a
CYK parse, then the CFG, hypergraph, RTN, and PDA representations can
be generated in O(|s|3|G|) time and space (Aho and Ullman 1972). The FSA

representation can require an additional O(e|s|
3|G|) time and space because

the RTN expansion to FSA can be exponential.

2. Intersection: The intersection of a CFG Th with a finite automaton M can be
performed by the classical Bar-Hillel algorithm (Bar-Hillel, Perles, and
Shamir 1964) with time and space complexity O(|Th||M|

l+1), where l is the
maximum number of symbols on the right-hand side of a grammar rule in
Th. Dyer (2010a) presents a more practical intersection algorithm that avoids
creating rules that are inaccessible from the start symbol. With deterministic
M, the intersection complexity becomes O(|Th||M|

lN+1), where lN is the
rank of the SCFG (i.e., lN is the maximum number of nonterminals on the
right-hand side of a grammar rule). With Hiero-styles rules, lN = 2 so the
complexity is O(|Th||M|

3) in that case.5 The PDA intersection algorithm
from Section 3.3 has time and space complexity O(|Tp||M|). Finally, the FSA
intersection algorithm has time and space complexity O(|Tf ||M|) (Mohri 2009).

3. Shortest Path: The shortest path algorithm on the hypergraph, RTN, and
FSA representations requires linear time and space (given the underlying
acyclicity) (Huang 2008; Mohri 2009). As presented in Section 3.4, the PDA
representation can require time cubic and space quadratic in |M|.

Table 1 summarizes the complexity results for SCFGs of rank 2. The PDA represen-
tation is equivalent in time and superior in space complexity to the CFG/hypergraph
representation, in general, and it can be superior in both space and time to the FSA
representation depending on the relative SCFG and language model (LM) sizes. The
FSA representation favors smaller target translation grammars and larger language
models.

5 The modified Bar-Hillel construction described by Chiang (2007) has time and space complexity

O(|Th||M|
4); the modifications were introduced presumably to benefit the subsequent pruning method

employed (but see Huang, Zhong, & Gildea 2005).

706

Allauzen et al. Pushdown Automata in Statistical Machine Translation

Table 1
Translation complexity of target language representations for translation grammars of rank 2.

Representation Time Complexity Space Complexity

CFG/hypergraph O(|s|3 |G| |M|3) O(|s|3 |G| |M|3)
PDA O(|s|3 |G| |M|3) O(|s|3 |G| |M|2)

FSA O(e|s|
3|G| |M|) O(e|s|

3|G| |M|)

In practice, the PDA and FSA representations benefit greatly from the optimiza-
tions mentioned previously (Figure 3 and accompanying discussion). For the FSA
representation, these operations can offset the exponential dependencies in the worst-
case complexity analysis. For example, in a translation of a 15-word sentence taken
at random from the development sets described later, expansion of an RTN yields a
WFSA with 174× 106 states. By contrast, if the RTN is determinized and minimized
prior to expansion, the resulting WFSA has only 34× 103 states. Size reductions of this
magnitude are typical. In general, the original RTN, hypergraph, or CFG representation
can be exponentially larger than the RTN/PDT optimized as described.

Although our interest is primarily in Hiero-style translation grammars, which have
rank 2 and a relatively small number of nonterminals, this complexity analysis can be
extended to other grammars. For SCFGs of arbitrary rank lN, translation complexity in
time for hypergraphs becomes O(|G||s|lN+1|M|lN+1); with FSAs the time complexity be-

comes O(e|G||s|
lN+1
|M|); and with PDAs the time complexity becomes O(|G||s|lN+1|M|3).

For more complex SCFGs with rules of rank greater than 2, such as SAMT (Zollmann
and Venugopal 2006) or GHKM (Galley et al. 2004), this suggests that PDA represen-
tations may offer computational advantages in the worst case relative to hypergraph
representations, although this must be balanced against other available strategies such
as binarization (Zhang et al. 2006; Xiao et al. 2009) or scope pruning (Hopkins and
Langmead 2010). Of course, practical translation systems introduce various pruning
procedures to achieve much better decoding efficiency than the worst cases given here.

We will next describe the translation grammar and language model for our ex-
periments, which will be used throughout the remainder of this article (except when
stated otherwise). In the following sections we assess the complexity discussion with a
contrast between HiFST (FSA representation) and HiPDT (PDA representation) under
large grammars.

4.1 Translation Grammars and Language Models

Translation grammars are extracted from a subset of the GALE 2008 evaluation par-
allel text;6 this is 2.1M sentences and approximately 45M words per language. We
report translation results on a development set tune-nw (1,755 sentences) and a test set
test-nw (1,671 sentences). These contain translations produced by the GALE program
and portions of the newswire sections of the NIST evaluation sets MT02 through MT06.7

6 See http://projects.ldc.upenn.edu/gale/data/catalog.html. We excluded the UN material and the
LDC2002E18, LDC2004T08, LDC2007E08, and CUDonga collections.

7 See http://www.itl.nist.gov/iad/mig/tests/mt/.

707

Computational Linguistics Volume 40, Number 3

Table 2
Number of n-grams with explicit conditional probability estimates assigned by the 4-gram
language models Mθ

1 after entropy pruning of M1 at threshold values θ. Perplexities over the
(concatenated) tune-nw reference translations are also reported. The Kneser-Ney and Katz
4-gram LM have 416,190 unigrams, which are not removed by pruning.

θ 0 7.5× 10−9 7.5 × 10−8 7.5 × 10−7 7.5 × 10−6 7.5 × 10−5 7.5 × 10−4 7.5× 10−3

KN

2-grams 28M 10M 2.5M 442K 37K 1.3K 21 0
3-grams 61M 6M 969K 74K 2.7K 38 0 0
4-grams 117M 3M 219K 5K 44 0 0 0
perplexity 98.1 122.2 171.5 290.4 605.1 1270.2 1883.6 2200.0

KATZ

2-grams 28M 7M 2M 391K 52K 4K 117 1
3-grams 64M 10M 1.5M 148K 8.4K 197 1 0
4-grams 117M 4.6M 398K 19K 510 1 0 0
perplexity 106.7 120.4 146.9 210.5 336.6 596.5 905.0 1046.1

In tuning the systems, MERT (Och 2003) iterative parameter estimation under IBM
BLEU8 is performed on the development set.

The parallel corpus is aligned using MTTK (Deng and Byrne 2008) in both source-
to-target and target-to-source directions. We then follow published procedures (Chiang
2007; Iglesias et al. 2009b) to extract hierarchical phrases from the union of the
directional word alignments. We call a translation grammar (G) the set of rules
extracted from this process. For reference, the number of rules in G that can apply to the
tune-nw is 1.1M, of which 593K are standard non-hierarchical phrases and 511K are
strictly hierarchical rules.

We will use two English language models in these translation experiments. The
first language model, denoted M1, is a 4-gram estimated over 1.3B words taken
from the target side of the parallel text and the AFP and Xinhua portions of the
English Gigaword Fourth Edition (LDC2009T13). We use both Kneser-Ney (Kneser
and Ney 1995) and Katz (Katz 1987) smoothing in estimating M1. Where language
model reduction is required, we apply Stolcke entropy pruning (Stolcke 1998) to M1

under the relative perplexity threshold θ. The resulting language model is labeled
as Mθ

1 .
The reduction in size in terms of component n-grams is summarized in Table 2.

For aggressive enough pruning, the original 4-gram model can be effectively reduced
to a trigram, bigram, or unigram model. For both the Katz and the Kneser-Ney 4-gram
language models: at θ = 7.5E− 05 the number of 4-grams in the LM is effectively
reduced to zero; at θ = 7.5E− 4 the number of 3-grams is effectively 0; and at
θ = 7.5E− 3, only unigrams remain. Development set perplexities increase as entropy
pruning becomes more aggressive, with the Katz smoothed model performing better
under pruning (Chelba et al. 2010; Roark, Allauzen, and Riley 2013).

We will also use a larger language model, denoted M2, obtained by interpolat-
ing M1 with a zero-cutoff stupid-backoff 5-gram model (Brants et al. 2007) estimated
over 6.6B words of English newswire text; M2 is estimated as needed for the n-grams
required for the test sets.

8 See ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13.pl.

708

Allauzen et al. Pushdown Automata in Statistical Machine Translation

Table 3
Success in finding the 1-best translation under G with various Mθ

1 under a memory size limit of
10GB as measured over tune-nw (1,755 sentences). We note which operations in translation
exceeded the memory limit: either Expansion and Intersection for HiFST, or Intersection and
Shortest Path operation for HiPDT.

Decoding with G + Mθ
1 under a 10GB memory size limit

θ HiFST HiPDT

Success Failure Success Failure

Expansion Intersection Intersection Shortest Path

2 7.5× 10−9 12% 51% 37% 40% 8% 52%
3 7.5× 10−8 16% 53% 31% 76% 1% 23%
4 7.5× 10−7 18% 53% 29% 99.8% 0% 0.2%

4.2 Exact Decoding with Large Grammars and Small Language Models

We now compare HiFST and HiPDT in translation with our large grammar G. In this
case we know that exact search is often not feasible for HiFST.

We run both decoders over tune-nw with a restriction on memory use of 10 GB.
If this limit is reached in decoding, the process is killed.9 Table 3 shows the number
of times each decoder succeeds in finding a hypothesis under the memory limit when
decoding with various entropy-pruned LMs Mθ

1 . With θ=7.5× 10−9 (row 2), HiFST
can only decode 218 sentences, and HiPDT succeeds in 703 cases. The difference in
success rates between the decoders is more pronounced as the language model is more
aggressively pruned: for θ=7.5× 10−7 HiPDT succeeds for all but three sentences.

As Table 3 shows, HiFST fails most frequently in its initial expansion from RTN
to FSA; this operation depends only on the translation grammar and does not benefit
from any reduction in the language model size. Subsequent intersection of the FSA
with the language model can still pose a challenge, although as the language model
is reduced, this intersection fails less often. By contrast, HiPDT intersects the translation
grammar with the language model prior to expansion and this operation nearly always
finishes successfully. The subsequent shortest path (or pruned expansion) operation is
prone to failure, but the risk of this can be greatly reduced by using smaller language
models.

In the next section we contrast both HiPDT and HiFST for alignment.

4.3 Alignment with Inversion Transduction Grammars

We continue to explore applications characterized by large translation grammars G
and small language models M. As an extreme instance of a problem involving a large
translation grammar and a simple target language model, we consider parallel text
alignment under an Inversion Transduction Grammar (ITG) (Wu 1997). This task, or
something like it, is often done in translation grammar induction. The process should
yield the set of derivations, with scores, that generate the target sentence as a translation

9 We use the UNIX ulimit command. The experiment was carried out over machines with different
configurations and loads, so these numbers should be considered as approximate values.

709

Computational Linguistics Volume 40, Number 3

of the source sentence. In alignment the target language model is extremely simple:
It is simply an acceptor for the target language sentence so that |M| is linear in the
length of the target sentence. In contrast, the search space needs now to be represented
with pushdown transducers (instead of pushdown automata) keeping track of both
translations and derivations, that is, indices of the rules in the grammar (Iglesias et al.
2009a; de Gispert et al. 2010; Dyer 2010b).

We define a word-based translation grammar GITG for the alignment problem as
follows. First, we obtain word-to-word translation rules of the form X→〈s, t〉 based
on probabilities from IBM Model 1 translation tables estimated over the parallel text,
where s and t are one source and one target word, respectively (∼16M rules). Then,
we allow monotonic and inversion transduction of two adjacent nonterminals in the
usual ITG style (i.e., add X→〈X1 X2, X1 X2〉 and X→〈X1 X2, X2 X1〉). Additionally,
we allow unrestricted source word deletions (X→〈s, ǫ〉), and restricted target word
insertions (X→〈X1 X2, X1 t X2〉). This restriction, which is solely motivated by ef-
ficiency reasons, disallows the insertion of two consecutive target words. We make
no claims about the suitability or appropriateness of this specific grammar for either
alignment or translation; we introduce this grammar only to define a challenging
alignment task.

A set of 2,500 sentence pairs of up to 50 source and 75 target words was chosen
for alignment. These sentences come from the same Chinese-to-English parallel data
described in Section 4.1. Hard limits on memory usage (10GB) and processing time
(10 minutes) were imposed for processing each sentence pair. If HiPDT or HiFST ex-
ceeded either limit in aligning any sentence pair, alignment was stopped and a “mem-
ory/time failure” was noted. Even if the resource limits are not exceeded, alignment
may fail due to limitations in the grammar. This happens when either a particular word
pair rule that is not in our Model 1 table, or more than one consecutive target insertions
are needed to reach alignment. In such cases, we record a “grammar failure,” as opposed
to a “memory/time failure.”

Results are reported in Table 4. Of the 2,500 sentence pairs, HiFST successfully
aligns only 41% of the sentence pairs under these time and memory constraints. The
reason for this low success rate is that HiFST must generate and expand all possible
derivations under the ITG for a given sentence pair. Even if it is strictly enforced
that the FSA in every CYK cell contains only partial derivations which produce sub-
strings of the target sentence, expansion often exceeds the memory/time constraints.
In contrast, HiPDT succeeds in aligning all sentence pairs that can be aligned under
the grammar (89%), because it never fails due to memory or time constraints. In this
experiment, if alignment is at all possible, HiPDT will find the best derivation. Align-
ment success rate (or coverage) could trivially be improved by modifying the ITG to
allow more consecutive target insertions, or by increasing the number of word-to-word

Table 4
Percentages of success and failure in aligning 2,500 sentence pairs under GITG with HiFST and
HiPDT. HiPDT finds an alignment whenever it is possible under the translation grammar.

HiFST HiPDT

Success Failure Success Failure

memory/time grammar memory/time grammar
41% 53% 6% 89% 0% 11%

710

Allauzen et al. Pushdown Automata in Statistical Machine Translation

rules, but that would not change the conclusion in the contrast between HiFST and
HiPDT.

The computational analysis from the beginning of this section applies to alignment.
The language model M is replaced by an acceptor for the target sentence, and if we
assume that the target sentence length is proportional to the source sentence length, it
follows that |M| ∝ |s| and the worst-case complexity for HiPDT in alignment mode is
O(|s|6|G|). This is comparable to ITG alignment (Wu 1997) and the intersection algo-
rithm of Dyer (2010b).

Our experimental results support the complexity analysis summarized in Table 1.
HiPDT is more efficient in ITG alignment and this is consistent with its linear depen-
dence on the grammar size, whereas HiFST suffers from its exponential dependence.
This use of PDAs in alignment does not rely on properties specific either to Hiero
or to ITGs. We expect that the approach should be applicable with other types of
SCFGs, although we note that alignment under SCFGs with an arbitrary number of
nonterminals can be NP-hard (Satta and Peserico 2005).

5. HiPDT Two-Pass Translation Architecture and Experiments

The previous complexity analysis suggests that PDAs should excel when used with
large translation grammars and relatively small n-gram language models. In hierar-
chical phrase-based translation, this is a somewhat unusual scenario: It is far more
typical that translation tasks requiring a large translation grammar also require large
language models. To accommodate these requirements we have developed a two-
pass decoding strategy in which a weak version of a large language model is ap-
plied prior to the expansion of the PDA, after which the full language model is
applied to the resulting WFSA in a rescoring pass. An effective way of generating
weak language models is by means of entropy pruning under a threshold θ; these are
the language models Mθ

1 of Section 4.1. Such a two-pass strategy is widely used in
automatic speech recognition (Ljolje, Pereira, and Riley 1999). The steps in two-pass
translation using entropy-pruned language models are given here, and depicted in
Figure 14.

Step 1. We translate with Mθ
1 and G using the same parameters obtained by MERT

for the baseline system, with the exception that the word penalty parameter
is adjusted to produce hypotheses of roughly the correct length. This produces
translation lattices that contain hypotheses with exact scores under G and Mθ

1 :
Π2({s} ◦ G) ◦Mθ

1 .
Step 2. These translation lattices are pruned at beamwidth β: [Π2({s} ◦ G) ◦Mθ

1]β.

Step 3. We remove the Mθ
1 scores from the pruned translation lattices, reapply the full

language model M1, and restore the word penalty parameter to the baseline
value obtained by MERT. This gives an approximation to Π2({s} ◦ G) ◦M1:
scores are correctly assigned under G and M1, but only hypotheses that survived
pruning at Step 2 are included.

We can rescore the lattices produced by the baseline system or by the two-pass
system with the larger language model M2. If β=∞ or if θ=0, the translation lattices
obtained in Step 3 should be identical to lattices produced by the baseline system (i.e.,
the rescoring step is no longer needed). The aim is to increase θ to shrink the language
model used at Step 1, but β will then have to increase accordingly to avoid pruning
away desirable hypotheses in Step 2.

711

Computational Linguistics Volume 40, Number 3

CYK parse
s with G

Build RTN
RTN to PDA
Replacement

Intersect PDA

with WFSA M1
Ɵ

PDA to FSA
Pruned Expansion,

threshold B

Intersect FSA with LM M1

FSA
Shortest
Path

FSA
Pruning

Lattice1-Best Hypothesis

Remove
LM scores

Entropy Pruning,
threshold Ɵ

LM M1

(as WFSA)

further rescoring

Figure 14
Two-pass HiPDT translation with an entropy pruned language model.

5.1 Efficient Removal of First-Pass Language Model Scores Using
Lexicographic Semirings

The two-pass translation procedure requires removal of the weak language model
scores used in the initial expansion of the translation search space; this is done so
that only the translation scores under G remain after pruning. In the tropical semiring,
the weak LM scores can be “subtracted” at the path level from the lattice, but this
involves a determinization of an unweighted translation lattice, which can be very
inefficient.

As an alternative we can define a lexicographic semiring (Shafran et al. 2011;
Roark, Sproat, and Shafran 2011) 〈w1, w2〉 over the tropical weights w1 and w2 with the
operations ⊕ and ⊗:

〈w1, w2〉 ⊕ 〈w3, w4〉 =

{
〈w1, w2〉 if w1 < w3 or (w1 = w3 and w2 < w4)
〈w3, w4〉 otherwise

(8)

〈w1, w2〉 ⊗ 〈w3, w4〉 = 〈w1 + w3, w2 + w4〉 (9)

The PDA algorithms described in Section 3 are valid under this new semiring because
it is commutative and has the path property. In particular, the PDA representing {s} ◦ G
is constructed so that the translation grammar score appears in both w1 and w2 (i.e., it is
duplicated). In the first-pass language model, w1 has the n-gram language model scores
and the w2 are 0. After composition, the resulting automata have the combined trans-
lation grammar score and language model score in the first dimension, and the second
dimension contains the translation grammar scores alone. Pruning can be performed
under the lexicographic semiring with a threshold set so that only the combined scores
in the first dimension are considered. The resulting automata can easily be mapped back
into the regular tropical semiring such that only the translation scores in the second

712

Allauzen et al. Pushdown Automata in Statistical Machine Translation

dimension are retained (this is a linear operation done by the fstmap operation in the
OpenFST library).

5.2 Translation Quality and Modeling Errors in Two-Pass Decoding

We wish to analyze the degree to which the two-pass decoding strategy introduces
“modeling errors” into translation. A modeling error occurs in two-pass decoding
whenever the decoder produces a translation whose score is less than the best attainable
under the grammar and language model (i.e., whenever the best possible translation
is discarded by pruning at Step 2). We refer to these as modeling errors, rather than
search errors, because they are due to differences in scores assigned by the models
M1 and Mθ

1 .
Ideally, we would compare the two-pass translation system against a baseline sys-

tem that performs exact translation, without pruning in search, under the grammar G
and language model M1. This would allow us to address the following questions:

r Is a two-pass decoding procedure that uses entropy-pruned language
models adequate for translation? How many modeling errors are
introduced? Does two-pass decoding impact on translation quality?

r Which smoothing/discounting technique is best suited for the first-pass
language model in two-pass translation, and which smoothing/
discounting technique is best at avoiding modeling errors?

Our grammar G is not suitable for these experiments, as we do not have a system
capable of exact decoding under both G and M1. To create a suitable baseline we there-
fore reduce G by excluding rules that have a forward translation probability p < 0.01,
and refer to this reduced grammar as Gsmall. This process reduces the number of strictly
hierarchical rules that apply to our tune-nw set from 511K to 189K, while the number of
standard phrases is unchanged.

Under Gsmall, both HiFST and HiPDT are able to exactly compose the entire space of
possible candidate hypotheses with the language model and to extract the shortest path
hypothesis. Because an exact decoding baseline is thus available, we can empirically
evaluate the proposed two-pass strategy. Any degradation in translation quality can
only be due to the modeling errors introduced by pruning under β with respect to the
entropy-pruned Mθ

1 .
Figure 15 shows translation performance under grammar Gsmall for different values

of entropy pruning threshold θ. Performance is reported after first-pass decoding with
Mθ

1 (Step 1, Section 5), and after rescoring with M1 (Step 3, Section 5) the first-pass
lattices pruned at alternative β beams. The first column reports the baseline for either
Kneser-Ney and Katz language models, which are found by translation without entropy
pruning, that is, performed with M1. Both yield 34.5 on test-nw.

The first and main conclusion from this figure is that the two-pass strategy is ade-
quate because we are always able to recover the baseline performance. As expected, the
harsher the entropy-pruning of M1 (as we lower θ) the greater β must be to recover from
the significant degradation in first-pass decoding. But even at a harsh θ = 7.5× 10−7,
when first-pass performance drops over 7 BLEU points, a relatively-low value of β = 15
can recover the baseline performance.

Although this is true independently of the LM smoothing approach, a second
conclusion from the figure is that the choice of LM smoothing does impact first-pass

713

Computational Linguistics Volume 40, Number 3

Figure 15

Results (lower case IBM BLEU scores over test-nw) under Gsmall with various Mθ
1 as obtained

with several values of θ. Performance in subsequent rescoring with M1 after likelihood-based
pruning of the resulting translation lattices for various β is also reported. In the pipeline, M1

(and Mθ
1) are estimated with either Katz or Kneser-Ney smoothing.

translation performance. For entropy pruning at θ = 7.5× 10−7, the Katz LMs perform
better for smaller beamwidths β. These results are consistent with the test set
perplexities of the entropy pruned LMs (Table 2), and are also in line with other studies
of Kneser-Ney smoothing and entropy pruning (Chelba et al. 2010; Roark, Allauzen,
and Riley 2013).

Modeling errors are reported in Table 5 at the entropy pruning threshold θ = 7.5×
10−7. As expected, modeling errors decrease as the beamwidth β increases, although
we find that the language model with Katz smoothing has fewer modeling errors.
However, modeling errors do not necessarily impact corpus level BLEU scores. For wide
beamwidths (e.g., β = 15 here), there are still some modeling errors, but these are either
few enough or subtle enough that two-pass decoding under either smoothing method
yields the same corpus level BLEU score as the exact decoding baseline.

Table 5
Two-pass translation modeling errors as a function of RTN expansion pruning threshold β. A
modeling error occurs whenever the score of a hypothesis produced by the two-pass translation
differs from the score found by the exact baseline system. Errors are tabulated over systems
reported in Figure 15, at θ = 7.5× 10−7.

β Kneser-Ney Katz

8 814 619
12 343 212
15 240 110

714

Allauzen et al. Pushdown Automata in Statistical Machine Translation

5.3 HIPDT Two-Pass Decoding Speed and Translation Performance

r What are the speed and quality tradeoffs for HiPDT as a function of
first-pass LM size and translation grammar complexity?

r How do these compare against the predicted computational complexity?

In this section we turn back to the original large grammar, for which HiFST cannot
perform exact decoding (see Table 3). In contrast, HiPDT is able to do exact decoding
so we study tradeoffs in speed and translation performance. The speed of two-pass
decoding can be increased by decreasing β and/or increasing θ, but at the risk of
degradation in translation performance. For grammar G and language model M1 we
plot in Figure 16 the BLEU score against speed as a function of β for a selection of θ
values. BLEU score is measured over the entire test set test-nw but speed is calculated
only on sentences of length up to 20 words (∼500 sentences). In computing speed we
measure not only the PDA operations, but the entire HiPDT decoding process described
in Figure 14, including CYK parsing and the application of M1. We note in passing that
these unusually slow decoding speeds are a consequence of the large grammars, lan-
guage models, and broad pruning thresholds chosen for these experiments; in practice,
translation with either HiPDT or HiFST is much faster.

In these experiments we find that the language model entropy pruning threshold
θ and the likelihood beamwidth β work together to balance speed against translation
quality. For every entropy pruning threshold θ value considered, there is a value of β
for which there is no degradation in translation quality. For example, suppose we want
to attain a translation quality of 34.5 BLEU: then β should be set to 12 or greater. If the
goal is to find the fastest system at this level, then we choose θ = 7.5× 10−5.

The interaction between pruning in expansion and pruning of the language model
is explained by Figure 17, where decoding and rescoring times are shown for various

Figure 16

HiPDT translation quality versus speed (decoding with G, Mθ
1 + rescoring with M1) under

different entropy pruning thresholds θ and for likelihood beamwidths β = 15, 12, 9, 8, 7.

715

http://www.mitpressjournals.org/action/showImage?doi=10.1162/COLI_a_00197&iName=master.img-197.jpg&w=336&h=205

Computational Linguistics Volume 40, Number 3

Figure 17
Accumulated decoding+rescoring times for HiPDT under different entropy pruning thresholds,
reaching a performance of at least 34.5 BLEU, for which β is set to 12.

values of θ and β that achieve at least the translation quality target of 34.5. As θ

increases, decoding time decreases because a smaller language model is easier to apply;
however, rescoring times increase, because the larger values of β lead to larger WFSAs
after expansion, and these are costly to rescore. The balance occurs at θ = 7.5× 10−5

and a translation rate of 3.0 words/sec. In this case, entropy pruning yields a severely
shrunken bigram language model, but this may vary depending on the translation
grammar and the original, unpruned LM.

5.4 Rescoring with 5-Gram Language Models and LMBR Decoding

r Does the HiPDT two-pass decoding generate lattices that can be useful in
rescoring?

We now report on rescoring experiments using WFSAs produced by the two-pass
HiPDT translation system under the large translation grammar G. We demonstrate that
HiPDT can be used to generate large, compact representations of the translation space
that are suitable for rescoring with large language models or by alternative decoding
procedures. We investigate translation performance by applying versions of the lan-
guage model M2 estimated with stupid backoff. We also investigate minimum Bayes
risk (MBR) decoding (Kumar and Byrne 2004) as an alternative search strategy. We are
particularly interested in lattice MBR (LMBR) (Tromble et al. 2008), which is well suited
for the large WFSAs that the system can generate; we use the implementation described
by Blackwood, de Gispert, & Byrne (2010). There are two parameters to be tuned: a
scaling parameter to normalize the evidence scores and a word penalty applied to the
hypotheses space; these are tuned jointly on the tune-nw set. Results are reported in
Figure 18.

We note first that rescoring with the large language model M2, which is effectively
interpolated with M1, gives consistent gains over initial results obtained with M1 alone.
After 5-gram rescoring there is already +0.5 BLEU improvement compared with Gsmall.
With a richer translation grammar we have generated a richer lattice that allows gains
to be gotten by our lattice rescoring techniques.

716

Allauzen et al. Pushdown Automata in Statistical Machine Translation

Figure 18

HiPDT decoding with G. Decoding language model Mθ
1 and first pass rescoring language model

M1 are Katz. Results on test-nw are given for ML-Decoding under the 5-gram stupid backoff
language model (‘5gML’) and for LMBR and for LMBR decoding. Parameter values are
β = 15, 12, 9, 8 and θ = 7.5× 10−7 , 7.5× 10−5, 7.5× 10−3.

We also find that BLEU scores degrade smoothly as β decreases and the expansion
pruning beamwidth narrows, and at all values of β LMBR gives improvement over
the MAP hypotheses. Because LMBR relies on posterior distributions over n-grams, we
conclude that HiPDT is able to generate compact representations of large search spaces
with posteriors that are robust to pruning conditions.

Finally, we find that increasing θ degrades performance quite smoothly for β ≥ 9.
Again, with appropriate choices of θ and β we can easily reach a compromise between
decoding speed and final performance of our HiPDT system. For instance, with θ =

7.5× 10−7 and β = 12, for which we decode at a rate of 3 words/sec as seen in Figure 16,
we are losing only 0.5 BLEU after LMBR compared to θ = 7.5× 10−7 and β = 15.

6. Related Work

There is extensive prior work on computational efficiency and algorithmic complexity
in hierarchical phrase-based translation. The challenge is to find algorithms that can be
made to work with large translation grammars and large language models.

Following the original algorithms and analysis of Chiang (2007), Huang and
Chiang (2007) developed the cube-growing algorithm, and more recently Huang and
Mi (2010) developed an incremental decoding approach that exploits the left-to-right
nature of n-gram language models.

Search errors in hierarchical translation, and in translation more generally, have
not been as extensively studied; this is undoubtedly due to the difficulties inherent in
finding exact translations for use in comparison. Using a relatively simple phrase-based
translation grammar, Iglesias et al. (2009b) compared search via cube-pruning to an
exact FST implementation (Kumar, Deng, and Byrne 2006) and found that cube-pruning
suffered significant search errors. For Hiero translation, an extensive comparison of
search errors between the cube pruning and FSA implementation was presented by
Iglesias et al. (2009a) and de Gispert et al. (2010). The effect of search errors has also been

717

Computational Linguistics Volume 40, Number 3

studied in phrase-based translation by Zens and Ney (2008). Relaxation techniques have
also recently been shown to find exact solutions in parsing (Koo et al. 2010), phrase-
based SMT (Chang and Collins 2011), and in tree-to-string translation under trigram
language models (Rush and Collins 2011); this prior work involved much smaller
grammars and languages models than have been considered here.

Efficiency in synchronous parsing with Hiero grammars and hypergraphs has been
studied previously by Dyer (2010b), who showed that a single synchronous parsing al-
gorithm (Wu 1997) can be significantly improved upon in practice through hypergraph
compositions. We developed similar procedures for our HiFST decoder (Iglesias et al.
2009a; de Gispert et al. 2010) via a different route, after noting that with the space of
translations represented as WFSAs, alignment can be performed using operations over
WFSTs (Kumar and Byrne 2005).

Although entropy-pruned language models have been used to produce real-time
translation systems (Prasad et al. 2007), we believe our use of entropy-pruned language
models in two-pass translation to be novel. This is an approach that is widely used in
automatic speech recognition (Ljolje, Pereira, and Riley 1999) and we note that it relies
on efficient representation of very large search spaces T for subsequent rescoring, as is
possible with FSAs and PDAs.

7. Conclusion

In this article, we have described a novel approach to hierarchical machine translation
using pushdown automata. We have presented fundamental PDA algorithms including
composition, shortest-path, (pruned) expansion, and replacement and have shown how
these can be used in PDA-based machine translation decoding and how this relates to
and compares with hypergraph and FSA-based decoding.

On the basis of the experimental results presented in the previous sections, we can
now address the questions laid out in Sections 4 and 5:

r A two-pass translation decoding procedure in which translation is first
performed with a weak entropy-pruned language model and followed by
admissible likelihood-based pruning and rescoring with a full language
model can yield good quality translations. Translation performance does
not degrade significantly unless the first-pass language model is very
heavily pruned.

r As predicted by the analysis of algorithmic complexity, intersection and
expansion algorithms based on the PDA representation are able to
perform exact decoding with large translation and weak language models.
By contrast, RTN to FSA expansion fails with large translation grammars,
regardless of the size of the language model. With large translation
grammars, language model composition prior to expansion may be more
attractive than expansion prior to language model composition.

r Our experimental results suggest that for a translation grammar and a
language model of a particular size, and given a value of language model
entropy pruning threshold θ, there is a value of the pruned expansion
parameter β for which there is no degradation in translation quality with
HiPDT. This makes exact decoding under large translation grammars
possible. The values of θ and β will be grammar- and task-dependent.

718

Allauzen et al. Pushdown Automata in Statistical Machine Translation

r Although there is some interaction between parameter tuning, pruning
thresholds, and language modeling strategies, the variation is not
significant enough to indicate that a particular language model or
smoothing technique is best. This is particularly true if minimum Bayes
risk decoding is applied to the output translation lattices.

Several questions naturally arise about the decoding strategies presented here. One
is whether inadmissible pruning methods can be applied to the PDA-based systems that
are analogous to those used in current hypergraph-based systems such as cube-pruning
(Chiang 2007). Another is whether a hybrid PDA–FSA system, where some parts of the
PDA are pre-expanded and some not, could provide benefits over full pre-expansion
(FSA) or none (PDA). We leave these questions for future work.

Appendix A. Composition of a Weighted PDT and a Weighted FST

Given a pair (T1, T2) where T1 is a weighted pushdown transducer and the T2 is a
weighted finite-state transducer, and such that T1 has input and output alphabets Σ

and ∆ and T2 has input and output alphabets ∆ and Γ, then there exists a weighted
pushdown transducer T1 ◦ T2, which is the composition of T1 and T2, such that for all
(x, y) ∈ Σ∗ × Γ∗:

T = (T1 ◦ T2)(x, y) = min
z∈∆∗

(T1(x, z) + T2(z, y)) (A.10)

We also assume that T2 has no input-ǫ transitions, noting that for T2 with input-ǫ tran-
sitions, an epsilon filter (Mohri 2009; Allauzen, Riley, and Schalkwyk 2011) generalized
to handle parentheses could be used.

A state in T is a pair (q1, q2) where q1 is a state of T1 and q2 a state of T2. Given a
transition e1 = (q1, a, b, w1, q′1) in T1, transitions out of (q1, q2) in T are obtained using the
following rules. If b ∈ ∆, then e1 can be matched with a transition (q2, b, c, w2, q′2) in T2

resulting in a transition ((q1, q2), a, c, w1 + w2, (q′1, q′2)) in T. If b = ǫ, then e1 is matched
with staying in q2 resulting in a transition ((q1, q2), a, ǫ, w1, (q′1, q2)). Finally, if b = a ∈ Π̂,
e1 is also matched with staying in q2, resulting in a transition ((q1, q2), a, a, w1, (q′1, q2)) in
T. The initial state is (I1, I2) and a state (q1, q2) in T is final when both q1 and q2 are both
final. Weight values are assigned as ρ((q1, q2)) = ρ1(q1) + ρ2(q2).

Appendix B. Pruned Expansion

Let dR and BR be the data structures computed by the shortest-distance algorithm
applied to TR. For a state q in T′ (or equivalently T′β), let d[q] denote the shortest distance
from the initial state to q, d[q] denote the shortest distance from q to the final state, and
s[q] denote the destination state of the last unbalanced open-parenthesis transition on a
shortest path from the initial state to q.

The algorithm is based on the following property: Letting e denote a transition in
T′ such that p[e] = (q, z) and z = z′a, the weight of a shortest path through e can be
expressed as:

d[(q, z)] + w[e] + min
e′∈BR[qs ,a]

dR[n[e], p[e′]] + w[e′] + d[(n[e′], z′)] (B.11)

719

Computational Linguistics Volume 40, Number 3

PRUNEDEXPANSION(T, β)

1 (dR, BR)← SHORTESTDISTANCE (TR)
2 λ← dR[I, f] +β ⊲ Compute the pruning threshold
3 B← REVERSE (BR) ⊲ Compute the balance information in T from the one in TR

4 (I′, f ′)← ((I,ǫ), (f,ǫ)) ⊲ I′ and f ′ are the initial and final states of the pruned expansion
5 (F′,ρ′(f ′))← ({ f ′}, 0)
6 (d[I′], s[I′])← (0, I′)
7 (d[I′], d[f ′])← (dR[I, f], 0)
8 (zD, D[f])← (ǫ, 0)
9 S← Q′← {I′}

10 while S 6=∅ do
11 (q, z)← HEAD(S)
12 DEQUEUE (S)
13 if s[(q, z)] = (q, z) then
14 if z 6= zD then ⊲ If the stack has changed, D needs to be cleared and recomputed
15 CLEAR (D)
16 zD← z
17 for each e ∈ B[q, z|z|] do ⊲ For each close paren. transition balancing the incoming z|z|-labeled open paren. transition in q

18 D[p[e]]← min(D[p[e]], w[e] + d[(n[e], z1 · · · z|z|−1)])
19 for each e ∈ E[q] do
20 if i[e] ∈ Σ∪ {ǫ} then ⊲ If i[e] is a regular symbol
21 if RETAINPATH (q, z, w[e], n[e]) then
22 E′← E′ ∪ {((q, z), i[e], o[e], w[e], (n[e], z))}
23 elseif i[e] ∈Π then ⊲ If i[e] is an open parenthesis
24 z′← zi[e]
25 r← false
26 for each e′ ∈ B[n[e], i[e]] do ⊲ For each close paren. transition e′ that balances e
27 w← w[e] + dR[n[e], p[e′]] + w[e′] ⊲ w: weight of the shortest bal. path beginning by e and ending by e′ in T
28 r← r∨ RETAINPATH (q, z, w, n[e′]) ⊲ Does the expansion of that path belong to an accepting path below threshold?

29 wF ←min(wF, dR[n[e], p[e′]] + w[e′] + d[(n[e′], z)])
30 if r then ⊲ If any of the paths considered above are below threshold
31 E′← E′ ∪ {((q, z),ǫ,ǫ, w[e], (n[e], z′))}
32 PROCESSSTATE ((n[e], z′))
33 s[(n[e], z′)]← (n[e], z′)
34 d[(n[e], z′)]←min(d[(n[e], z′)], d[(q, z)] + w[e])
35 d[(n[e], z′)]←min(d[(n[e], z′)], wF)
36 elseif i[e] ∈Π and cΠ(zi[e]) ∈ Π∗ then ⊲ If i[e] is the close parenthesis matching the top of the stack
37 z′← cΠ(zi[e])
38 if d[(q, z)] + w[e] + d[(n[e], z′)] ≤ λ then
39 E′← E′ ∪ {((q, z),ǫ,ǫ, w[e], (n[e], z′))}
40 return (Σ,∆,Π,Π, Q′, E′, I′, F′,ρ′)

RETAINPATH(q, z, w, q′)

1 ⊲ Returns true iff a path from (q, z) to (q′, z) with weight w belongs to an accepting path below threshold
2 wI ← d[(q, z)] + w ⊲ Shortest distance from I to (q′, z) when taking a path from (q, z) to (q′, z) of weight w
3 wF← min{dR[q′, t] + D[t]|D[t] 6=∞}⊲ Current estimate of s. d. from (q′, z) to f ′

4 if wI < d[(q′ , z)] then ⊲ If wI is a better estimate of s.-d. from I′ to (q′, z), update d[(q′, z)] and s[(q′, z)]
5 d[(q′ , z)]← wI
6 s[(q′, z)]← s[(q, z)]
7 if wF < d[(q′, z)] then ⊲ If wF is a better estimate of s. d. from (q′, z) to f ′ , update d[(q′, z)]
8 d[(q′, z)]← wF
9 if λ < wI + wF then ⊲ wI + wF: min. weight of an accepting path taking a path of weight w from (q, z) to (q′, z)

10 return false
11 PROCESSSTATE ((q′ , z))
12 return true

PROCESSSTATE((q, z))

1 if (q, z) 6∈ Q′ then ⊲ If state (q, z) does not exist yet, create it and add it to the queue
2 Q′← Q′ ∪{(q, z)}
3 ENQUEUE (S, (q, z))

Figure 19
PDT pruned expansion algorithm. We assume that F={ f} and ρ(f)=0 to simplify the
presentation.

720

Allauzen et al. Pushdown Automata in Statistical Machine Translation

where (qs, z) = s[(q, z)]. This implies that assuming when (q, z) is visited, d[(n[e′], z′)] is
known; we then have all the required information for deciding whether e should be
pruned or retained. In order to ensure that each state is visited once, we need to ensure
that d[(q, z)] is known when (q, z) is visited so we can apply an A∗ queue discipline
among the states sharing the same stack.

Both conditions can be achieved by using a queue discipline defined by a partial
order≺ such that

z is a prefix of z′ ⇒ (q, z) ≺ (q′, z′) (B.12)

d[(q, z)] + d[(q, z)] < d[(q′, z)] + d[(q′, z)]⇒ (q, z) ≺ (q′, z) (B.13)

We also assume that all states sharing the same stack will be dequeued consecutively
(z 6= z′ → for all (q, q′), (q, z) ≺ (q′, z′) or for all (q, q′), (q′, z′) ≺ (q, z)). This allows us to
cache some computations (the D data structure as described subsequently).

The pseudo code of the algorithm is given in Figure 19. First, the shortest distance
algorithm is applied to TR and the absolute pruning threshold is computed accordingly
(lines 1–2). The resulting balanced data information is then reversed (line 3). The initial

and final states are created (lines 4–5) and the d, d, and D data structures are initialized
accordingly (lines 6–8). The default value in these data structures is assumed to be∞.
The queue is initialized containing the initial state (line 9).

The state (q, z) at the head of the queue is dequeued (lines 10–12). If (q, z) admits an
incoming open-parenthesis transition, B contains the balance information for that state
and D can be updated accordingly (lines 13–18).

If e is a regular transition, the resulting transition ((q, z), i[e], o[e], w[e], (n[e], z)) in T′

can be pruned using the criterion derived from Equation (B.11). If it is retained, the
transition is created as well as its destination state (n[e], z) if needed (lines 20–22).

If e is an open-parenthesis transition, each balanced path starting by the resulting
transition in T′ and ending by a close-parenthesis transition is treated as a meta-
transition and pruned using the same criterion as regular transitions (lines 23–29). If any
of these meta-transitions is retained, the transition ((q, z), ǫ, ǫ, w[e], (n[e], zi[e])) resulting
from e is created as well as its destination state (n[e], zi[e]) if needed (lines 30–35).

If e is a closed-parenthesis transition, it is created if it belongs to a balanced path
below the threshold (lines 36–39).

Finally, the resulting transducer T′β is returned (line 40).

Acknowledgments
The research leading to these results has
received funding from the European Union
Seventh Framework Programme
(FP7-ICT-2009-4) under grant agreement
number 247762, and was supported in part
by the GALE program of the Defense
Advanced Research Projects Agency,
contract no. HR0011-06-C-0022, and a
May 2010 Google Faculty Research Award.

References
Aho, Alfred V. and Jeffrey D. Ullman. 1972.

The Theory of Parsing, Translation and
Compiling, volume 1-2. Prentice-Hall.

Allauzen, Cyril and Michael Riley, 2011.
Pushdown Transducers. http://pdt.
openfst.org.

Allauzen, Cyril, Michael Riley, and Johan
Schalkwyk. 2011. Filters for efficient
composition of weighted finite-state
transducers. In Proceedings of CIAA,
volume 6482 of LNCS, pages 28–38. Blois.

Allauzen, Cyril, Michael Riley, Johan
Schalkwyk, Wojciech Skut, and Mehryar
Mohri. 2007. OpenFst: A general and
efficient weighted finite-state transducer
library. In Proceedings of CIAA,
pages 11–23. http://www.openfst.org.

Bar-Hillel, Y., M. Perles, and E. Shamir. 1964.
On formal properties of simple phrase

721

Computational Linguistics Volume 40, Number 3

structure grammars. In Y. Bar-Hillel,
editor, Language and Information: Selected
Essays on their Theory and Application.
Addison-Wesley, pages 116–150.

Berstel, Jean. 1979. Transductions and
Context-Free Languages. Teubner.

Blackwood, Graeme, Adrià de Gispert,
and William Byrne. 2010. Efficient path
counting transducers for minimum
Bayes-risk decoding of statistical machine
translation lattices. In Proceedings of the
ACL: Short Papers, pages 27–32, Uppsala.

Brants, Thorsten, Ashok C. Popat, Peng Xu,
Franz J. Och, and Jeffrey Dean. 2007.
Large language models in machine
translation. In Proceedings of EMNLP-ACL,
pages 858–867, Prague.

Chang, Yin-Wen and Michael Collins. 2011.
Exact decoding of phrase-based translation
models through lagrangian relaxation.
In Proceedings of EMNLP, pages 26–37,
Edinburgh.

Chelba, Ciprian, Thorsten Brants, Will
Neveitt, and Peng Xu. 2010. Study
on interaction between entropy
pruning and Kneser-Ney smoothing.
In Proceedings of Interspeech,
pages 2,242–2,245, Makuhari.

Chiang, David. 2007. Hierarchical
phrase-based translation. Computational
Linguistics, 33(2):201–228.

de Gispert, Adrià, Gonzalo Iglesias, Graeme
Blackwood, Eduardo R. Banga, and
William Byrne. 2010. Hierarchical
phrase-based translation with weighted
finite state transducers and shallow-n
grammars. Computational Linguistics,
36(3):201–228.

Deng, Yonggang and William Byrne. 2008.
HMM word and phrase alignment for
statistical machine translation. IEEE
Transactions on Audio, Speech, and Language
Processing, 16(3):494–507.

Dyer, Chris. 2010a. A Formal Model of
Ambiguity and its Applications in Machine
Translation. Ph.D. thesis, University of
Maryland.

Dyer, Chris. 2010b. Two monolingual parses
are better than one (synchronous parse). In
Proceedings of NAACL-HLT, pages 263–266,
Los Angeles, CA.

Galley, M., M. Hopkins, K. Knight, and
D. Marcu. 2004. What’s in a translation
rule. In Proceedings of HLT-NAACL,
pages 273–280, Boston, MA.

Hopkins, M. and G. Langmead. 2010. SCFG
decoding without binarization. In
Proceedings of EMNLP, pages 646–655,
Cambridge, MA.

Huang, Liang. 2008. Advanced dynamic
programming in semiring and hypergraph
frameworks. In Proceedings of COLING,
pages 1–18, Manchester.

Huang, Liang and David Chiang. 2007.
Forest rescoring: Faster decoding with
integrated language models. In Proceedings
of ACL, pages 144–151, Prague.

Huang, Liang and Haitao Mi. 2010. Efficient
incremental decoding for tree-to-string
translation. In Proceedings of EMNLP,
pages 273–283, Cambridge, MA.

Huang, Liang, Hao Zhang, and Daniel
Gildea. 2005. Machine translation as
lexicalized parsing with hooks. In
Proceedings of the Ninth International
Workshop on Parsing Technology,
Parsing ’05, pages 65–73, Vancouver.

Iglesias, Gonzalo, Adrià de Gispert,
Eduardo R. Banga, and William Byrne.
2009a. Hierarchical phrase-based
translation with weighted finite state
transducers. In Proceedings of NAACL-HLT,
pages 433–441, Boulder, CO.

Iglesias, Gonzalo, Adrià de Gispert,
Eduardo R. Banga, and William Byrne.
2009b. Rule filtering by pattern for efficient
hierarchical translation. In Proceedings of
EACL, pages 380–388, Athens.

Katz, Slava M. 1987. Estimation of
probabilities from sparse data for the
language model component of a speech
recognizer. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 35(3):400–401.

Kneser, Reinhard and Herman Ney. 1995.
Improved backing-off for m-gram
language modeling. In Proceedings of
ICASSP, volume 1, pages 181–184,
Detroit, MI.

Koo, Terry, Alexander M. Rush, Michael
Collins, Tommi Jaakkola, and David
Sontag. 2010. Dual decomposition for
parsing with non-projective head
automata. In Proceedings of EMNLP,
pages 1,288–1,298, Cambridge, MA.

Kuich, Werner and Arto Salomaa. 1986.
Semirings, automata, languages. Springer.

Kumar, Shankar and William Byrne.
2004. Minimum Bayes-risk decoding
for statistical machine translation. In
Proceedings of HLT-NAACL, pages 169–176,
Boston, MA.

Kumar, Shankar and William Byrne.
2005. Local phrase reordering models
for statistical machine translation.
In Proceedings of EMNLP-HLT,
pages 161–168, Rochester, NY.

Kumar, Shankar, Yonggang Deng, and
William Byrne. 2006. A weighted finite

722

http://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTASL.2008.916056
http://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTASL.2008.916056
http://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTASL.2008.916056
http://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTASSP.1987.1165125
http://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTASSP.1987.1165125
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli.2007.33.2.201
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli.2007.33.2.201
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli_a_00006

Allauzen et al. Pushdown Automata in Statistical Machine Translation

state transducer translation template
model for statistical machine translation.
Natural Language Engineering, 12(1):35–75.

Lang, Bernard. 1974. Deterministic
techniques for efficient non-deterministic
parsers. In Proceedings of ICALP,
pages 255–269, Saarbrücken.

Ljolje, Andrej, Fernando Pereira, and
Michael Riley. 1999. Efficient general lattice
generation and rescoring. In Proceedings of
Eurospeech, pages 1,251–1,254, Budapest.

Mohri, Mehryar. 2002. Semiring frameworks
and algorithms for shortest-distance
problems. Journal of Automata, Languages
and Combinatorics, 7:321–350.

Mohri, Mehryar. 2009. Weighted automata
algorithms. In M. Drosde, W. Kuick,
and H. Vogler, editors, Handbook of
Weighted Automata. Springer, chapter 6,
pages 213–254.

Nederhof, Mark-Jan and Giorgio Satta. 2003.
Probabilistic parsing as intersection. In
Proceedings of 8th International Workshop on
Parsing Technologies, pages 137–148, Nancy.

Nederhof, Mark-Jan and Giorgio Satta. 2006.
Probabilistic parsing strategies. Journal of
the ACM, 53(3):406–436.

Och, Franz J. 2003. Minimum error rate
training in statistical machine translation.
In Proceedings of ACL, pages 160–167,
Sapporo.

Petre, Ion and Arto Salomaa. 2009.
Algebraic systems and pushdown
automata. In M. Drosde, W. Kuick,
and H. Vogler, editors, Handbook of
Weighted Automata. Springer, chapter 7,
pages 257–289.

Prasad, R., K. Krstovski, F. Choi, S. Saleem,
P. Natarajan, M. Decerbo, and D. Stallard.
2007. Real-time speech-to-speech
translation for PDAs. In Proceedings
of IEEE International Conference on
Portable Information Devices, pages 1–5,
Orlando, FL.

Roark, Brian, Cyril Allauzen, and
Michael Riley. 2013. Smoothed marginal
distribution constraints for language
modeling. In Proceedings of ACL,
pages 43–52, Sofia.

Roark, Brian, Richard Sproat, and Izhak
Shafran. 2011. Lexicographic semirings for
exact automata encoding of sequence
models. In Proceedings of ACL-HLT,
pages 1–5, Portland, OR.

Rush, Alexander M. and Michael Collins.
2011. Exact decoding of syntactic

translation models through lagrangian
relaxation. In Proceedings of ACL-HLT,
pages 72–82, Portland, OR.

Satta, Giorgio and Enoch Peserico. 2005.
Some computational complexity results
for synchronous context-free grammars.
In Proceedings of HLT-EMNLP,
pages 803–810, Vancouver.

Shafran, Izhak, Richard Sproat, Mahsa
Yarmohammadi, and Brian Roark.
2011. Efficient determinization of
tagged word lattices using categorial
and lexicographic semirings. In
Proceedings of ASRU, pages 283–288,
Honolulu, HI.

Stolcke, Andreas. 1995. An efficient
probabilistic context-free parsing
algorithm that computes prefix
probabilities. Computational Linguistics,
21(2):165–201.

Stolcke, Andreas. 1998. Entropy-based
pruning of backoff language models.
In Proceedings of DARPA Broadcast
News Transcription and Understanding
Workshop, pages 270–274, Landsdowne,
VA.

Tromble, Roy, Shankar Kumar, Franz J. Och,
and Wolfgang Macherey. 2008. Lattice
minimum Bayes-risk decoding for
statistical machine translation. In
Proceedings of EMNLP, pages 620–629,
Edinburgh.

Wu, Dekai. 1997. Stochastic inversion
transduction grammars and bilingual
parsing of parallel corpora. Computational
Linguistics, 23:377–403.

Xiao, Tong, Mu Li, Dongdong Zhang,
Jingbo Zhu, and Ming Zhou. 2009. Better
synchronous binarization for machine
translation. In Proceedings of EMNLP,
pages 362–370, Singapore.

Zens, Richard and Hermann Ney. 2008.
Improvements in dynamic programming
beam search for phrase-based statistical
machine translation. In Proceedings of
IWSLT, pages 195–205, Honolulu, HI.

Zhang, Hao, Liang Huang, Daniel Gildea,
and Kevin Knight. 2006. Synchronous
binarization for machine translation. In
Proceedings of HLT-NAACL, pages 256–263,
New York, NY.

Zollmann, Andreas and Ashish Venugopal.
2006. Syntax augmented machine
translation via chart parsing. In Proceedings
of NAACL Workshop on Statistical Machine
Translation, pages 138–141, New York, NY.

723

http://www.mitpressjournals.org/action/showLinks?crossref=10.1017%2FS1351324905003815
http://www.mitpressjournals.org/action/showLinks?crossref=10.1145%2F1147954.1147959
http://www.mitpressjournals.org/action/showLinks?crossref=10.1145%2F1147954.1147959

