
Identification of Multiword Expressions
by Combining Multiple Linguistic
Information Sources

Yulia Tsvetkov∗

Carnegie Mellon University

Shuly Wintner∗∗
University of Haifa

We propose a framework for using multiple sources of linguistic information in the task of
identifying multiword expressions in natural language texts. We define various linguistically
motivated classification features and introduce novel ways for computing them. We then man-
ually define interrelationships among the features, and express them in a Bayesian network.
The result is a powerful classifier that can identify multiword expressions of various types
and multiple syntactic constructions in text corpora. Our methodology is unsupervised and
language-independent; it requires relatively few language resources and is thus suitable for a
large number of languages. We report results on English, French, and Hebrew, and demonstrate
a significant improvement in identification accuracy, compared with less sophisticated baselines.

1. Introduction

Multiword expressions (MWEs) are lexical items that consist of multiple orthographic
words (ad hoc, New York, look up). MWEs constitute a significant portion of the lexicon
of any natural language (Jackendoff 1997; Erman and Warren 2000; Sag et al. 2002). They
are a heterogeneous class of constructions with diverse sets of characteristics, distin-
guished by their idiosyncratic behavior. Morphologically, some MWEs allow some of
their constituents to freely inflect while restricting (or preventing) the inflection of other
constituents. In some cases MWEs may allow constituents to undergo non-standard
morphological inflections that they would not undergo in isolation. Syntactically, some
MWEs behave like words and other are phrases; some occur in one rigid pattern (and a
fixed order), and others permit various syntactic transformations. The most characteris-
tic property of MWEs is their semantic opacity, although the compositionality of MWEs
is gradual, and ranges from fully compositional to completely idiomatic (Bannard,
Baldwin, and Lascarides 2003).
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Because of their prevalence and irregularity, MWEs must be stored in lexicons
of natural language processing (NLP) applications. Awareness of MWEs was proven
beneficial for a variety of applications, including information retrieval (Doucet and
Ahonen-Myka 2004), building ontologies (Venkatsubramanyan and Perez-Carballo
2004), text alignment (Venkatapathy and Joshi 2006), and machine translation (Baldwin
and Tanaka 2004; Uchiyama, Baldwin, and Ishizaki 2005; Carpuat and Diab 2010).

We propose a novel architecture for identifying MWEs, of various types and syn-
tactic categories, in monolingual corpora. Unlike much existing work, which focuses
on a particular syntactic construction, our approach addresses MWEs of various types
by zooming in on the general idiosyncratic properties of MWEs rather than on spe-
cific properties of each subclass thereof. Addressing multiple types of MWEs has its
limitations: The task is less well-defined, one cannot rely on specific properties of
a particular construction, and the type of the MWE is not extracted along with the
candidate expression. Nevertheless, there are clear benefits to such an approach. Certain
applications can benefit from a large, albeit untyped, mixed bag of MWEs; machine
translation is an obvious candidate (Lambert and Banchs 2005; Ren et al. 2009; Bouamor,
Semmar, and Zweigenbaum 2012). Another use, which motivates our current work, is
the construction of computational lexicons. Clearly, manual supervision is required be-
fore MWE candidates are added to a high-precision lexicon, but our approach provides
the lexicographer with a large-scale set of potential candidates.

We focus on bigrams only in this work, that is, on MWEs consisting of two consec-
utive tokens. Many of the features we design, as well as the general architecture, can in
principle be extended to longer MWEs, but we do not address longer (and, in particular,
the harder case of non-contiguous) MWEs here. The architecture uses Bayesian net-
works (Pearl 1985) to express multiple interdependent linguistically motivated features.

First, we automatically generate a small (training) set of MWE and non-MWE
bigrams (positive and negative instances, respectively) from a small parallel corpus.
We then define a set of linguistically motivated features that embody observed char-
acteristics of MWEs. We augment these by features that reflect collocation measures.
Finally, we define dependencies among these features, expressed in the structure of a
Bayesian network model, which we then use for classification. A Bayesian network (BN)
is a directed graph whose nodes express the features used for classification and whose
edges define causal relationships among these features. In this architecture, learning
does not result in a black box, expressed solely as feature weights. Rather, the structure
of the BN allows us to study the impact of different MWE features on the classification.
The result is a new method for identifying MWEs of various types in text corpora. It
combines statistics with an array of linguistically motivated features, organized in an
architecture that reflects interdependencies among the features.

The contribution of this work is manifold.1 First, we use existing approaches to
MWE extraction to automatically generate training material. Specifically, we use our
earlier work (Tsvetkov and Wintner 2012) to extract a set of positive and negative MWE
candidates from a small parallel corpus, and use them for training a BN that can then
extract a new set of MWEs from a potentially much larger monolingual corpus. As

1 This article is a thoroughly revised and extended version of Tsvetkov and Wintner (2011). Whereas the
methodology of that paper required minor supervision, we now present a completely unsupervised
approach. We added several linguistically motivated features to the classification task. We demonstrate
results on two new languages, English and French, to emphasize the generality of the method.
Additional extensions include a more complete literature survey and, because new languages are added,
different, more reliable data sets for evaluating our results.

450



Tsvetkov and Wintner Identification of Multiword Expressions

a result, our method is completely unsupervised (more precisely, it does not require
manual annotation; we do need several language resources, see Section 3.2).

Second, we propose several linguistically motivated features that can be computed
from data and that are demonstrably productive for improving the accuracy of MWE
identification. These features focus on the expression of linguistic idiosyncrasies of var-
ious types, a phenomenon typical of MWEs. Some of these features are commonplace,
but others are new, or are implemented in novel ways. In particular, we account for
the morphological idiosyncrasy of MWEs using a histogram of the number of inflected
forms, in a technique that draws from image processing. We also use frequency his-
tograms to model the semantic contexts of MWEs.

Finally, the methodology we advocate is not language-specific; given relatively few
language resources, it can be easily adapted to new languages. We demonstrate the
generality of our methodology by applying it to three languages: English, French, and
Hebrew. Our evaluation shows that the use of linguistically motivated features results
in a reduction of between one quarter and one third of the errors compared with a
collocation baseline; organizing the knowledge in a Bayesian network reduces the error
rate by an additional 3–9%.

After discussing related work in the next section (borrowing from Tsvetkov and
Wintner [2012]), we motivate in Section 3 the methodology we propose, and list the re-
sources needed for implementing it. Section 4 discusses the linguistically motivated fea-
tures and their implementation; the organization of the Bayesian network is described
in Section 5. We explain how we generate training materials in Section 6. Section 7
provides a thorough evaluation of the results. We conclude with suggestions for future
research.

2. Related Work

Early approaches to MWE identification concentrated on their collocational behavior
(Church and Hanks 1990). One of the first approaches was implemented as Xtract
(Smadja 1993): Here, word pairs that occur with high frequency within a context of
five words in a corpus are first collected, and are then ranked and filtered according
to contextual considerations, including the parts of speech of their neighbors. Pecina
(2008) compares 55 different association measures in ranking German Adj-N and PP-
Verb collocation candidates. He shows that combining different collocation measures
using standard statistical classification methods improves over using a single colloca-
tion measure. Other results (Chang, Danielsson, and Teubert 2002; Villavicencio et al.
2007) suggest that some collocation measures (especially point-wise mutual information
and log-likelihood) are superior to others for identifying MWEs.

Co-occurrence measures alone are probably not enough to identify MWEs, and their
linguistic properties should be exploited as well (Piao et al. 2005). Hybrid methods that
combine word statistics with linguistic information exploit morphological, syntactic,
and semantic idiosyncrasies to extract idiomatic MWEs.

Cook, Fazly, and Stevenson (2007), for example, use prior knowledge about the
overall syntactic behavior of an idiomatic expression to determine whether an instance
of the expression is used literally or idiomatically. They assume that in most cases,
idiomatic usages of an expression tend to occur in a small number of canonical forms
for that idiom; in contrast, the literal usages of an expression are less syntactically
restricted, and are expressed in a greater variety of patterns, involving inflected forms
of the constituents.
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Ramisch et al. (2008) evaluate a number of association measures on the task of
identifying English verb-particle constructions and German adjective-noun pairs. They
show that adding linguistic information (mostly POS and POS-sequence patterns) to the
association measure yields a significant improvement in performance over using pure
frequency.

Several works address the lexical fixedness or syntactic fixedness of (certain types
of) MWEs in order to extract them from texts. An expression is considered lexically
fixed if replacing any of its constituents by a semantically (and syntactically) similar
word generally results in an invalid or literal expression. Syntactically fixed expressions
prohibit (or restrict) syntactic variation. For example, Van de Cruys and Villada Moirón
(2007) use lexical fixedness to extract Dutch verb-noun idiomatic combinations (VNICs).
Bannard (2007) uses syntactic fixedness to identify English VNICs. Another work uses
both the syntactic and the lexical fixedness of VNICs in order to distinguish them from
non-idiomatic ones, and eventually to extract them from corpora (Fazly and Stevenson
2006). Recently, Green et al. (2011) use parsing, and in particular Tree Substitution
Grammars, for identifying MWEs in French.

Semantic properties of MWEs can be used to distinguish between compositional
and non-compositional (idiomatic) expressions. Katz and Giesbrecht (2006) and
Baldwin et al. (2003) use Latent Semantic Analysis (LSA) for this purpose. They show
that compositional MWEs appear in contexts more similar to their constituents than
non-compositional MWEs. For example, the co-occurrence measured by LSA between
the expression kick the bucket and the word die is much higher than co-occurrence
of this expression and its component words. The disadvantage of this methodology is
that to distinguish between idiomatic and non-idiomatic usages of the MWE it relies on
the MWE’s known idiomatic meaning, and this information is usually not available. In
addition, this approach fails when only idiomatic or only literal usages of the MWE are
overwhelmingly frequent.

Although these approaches are in line with ours, they require lexical semantic
resources (e.g., a database that determines semantic similarity among words) and
syntactic resources (parsers) that are unavailable for many languages. Our approach
only requires morphological processing and a bilingual dictionary, which are more
readily available for several languages. Note also that these approaches target a specific
syntactic construction, whereas ours is appropriate for various types of MWEs.

Several properties of Hebrew MWEs are described by Al-Haj (2010); Al-Haj and
Wintner (2010) use them in order to construct a support vector machine (SVM) classifier
that can distinguish between MWE and non-MWE noun-noun constructions in Hebrew.
The features of the SVM reflect several morphological and morphosyntactic properties
of such constructions. The resulting classifier performs much better than a naive base-
line, reducing the error rate by over one third. We rely on some of these insights, as we
implement more of the linguistic properties of MWEs. Again, our methodology is not
limited to a particular construction: Indeed, we demonstrate that our general methodol-
ogy, trained on automatically generated, general training data, performs almost as well
as the noun-noun-specific approach of Al-Haj and Wintner (2010) on the very same data
set (Section 7).

Recently, Tsvetkov and Wintner (2010b, 2012) introduced a general methodology
for extracting MWEs from bilingual corpora, and applied it to Hebrew. The results
were a highly accurate set of Hebrew MWEs, of various types, along with their English
translations. A major limitation of this work is that it can only be used to identify MWEs
in the bilingual corpus, and is thus limited in its scope. We use this methodology to
extract both positive and negative instances for our training set in the current work;
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but we extrapolate the results much further by extending the method to monolingual
corpora, which are typically much larger than bilingual ones.

Probabilistic graphical models are widely used in statistical machine learning in
general, and natural language processing in particular (Smith 2011). Bayesian networks
are an instance of such models, and have been used for classification in several natural
language applications. For example, BNs have been used for POS tagging of unknown
words (Peshkin, Pfeffer, and Savova 2003), dependency parsing (Savova and Peshkin
2005), and document classification (Lam, Low, and Ho 1997; Calado et al. 2003; Denoyer
and Gallinari 2004). Very recently, Ramisch et al. (2010) used BN for Portuguese MWE
identification. The features used for classification were of two kinds: (1) various colloca-
tion measures; (2) bigrams aligned together by an automatic word aligner applied to a
parallel (Portuguese–English) corpus. A BN was used to combine the predictions of the
various features on the test set, but the structure of the network is not described. The
combined classifier resulted in a much higher accuracy than any of the two methods
alone. However, the use of BN is not central to this work, and its structure does not
reflect any insights or intuitions on the structure of the problem domain or on inter-
dependencies among features.

We, too, acknowledge the importance of combining different sources of knowledge
in the hard task of MWE identification. In particular, we also believe that collocation
measures are highly important for this task, but cannot completely solve the problem:
Linguistically motivated features are crucial in order to improve the accuracy of the
classifier. In this work we focus on various properties of different types of MWEs,
and define general features that may accurately apply to some, but not necessarily all,
of them. An architecture of Bayesian networks is optimal for this task: It enables us
to define weighted dependencies among features, such that certain features are more
significant for identifying some class of MWEs, whereas others are more prominent
in identifying other classes (although we never predefine these classes). As we show
herein, this architecture results in significant improvements over a more naive combi-
nation of features.

3. Methodology

3.1 Motivation

The task we address is identification of MWEs, of various types and syntactic construc-
tions, in monolingual corpora. These include proper names, noun phrases, verb-particle
pairs, and so forth. We focus on bigrams (MWEs consisting of two consecutive tokens)
in this work; the methodology, however, can be extended to longer n-grams. Several
properties of MWEs make this task challenging: MWEs exhibit idiosyncrasies on a
variety of levels, orthographic, morphological, syntactic, and of course semantic. Such a
complex task calls for a combination of multiple approaches, and much research indeed
suggests “hybrid” approaches to MWE identification (Duan et al. 2009; Hazelbeck and
Saito 2010; Ramisch et al. 2010; Weller and Fritzinger 2010). We believe that Bayesian
networks provide an optimal architecture for expressing various pieces of knowledge
aimed at MWE identification, for the following reasons (noted, e.g., by Heckerman
1995):

� In contrast to many other classification methods, Bayesian networks can
learn (and express) causal relationships between features. This facilitates
better understanding of the problem domain.
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� Bayesian networks can encode not only statistical data, but also
prior domain knowledge and human intuitions, in the form of
interdependencies among features (a possibility that we use here).

Furthermore, we try in this work to leverage the idiosyncrasy of MWEs and use it as a
tool for identifying them.

Our definition of MWEs is operational: An expression is considered a MWE if it
has to be stored in the lexicon of some NLP application; typically, this is because the
expression exhibits some level of idiosyncratic behavior (semantic, syntactic, morpho-
logical, orthographic, etc.). In order to properly handle such expressions in downstream
applications, the lexicon must store some specific information about the expression. This
working definition motivates and drives our methodology: We leverage the idiosyn-
cratic behavior of MWEs and define (Section 4) an array of features that capture and
reflect this idiosyncrasy in order to extract MWEs from corpora.

3.2 Resources

Although our approach is in general not language-specific, applying it to any partic-
ular language requires several language resources which we specify in this section. In
general, we require corpora (both monolingual and bilingual), morphological analyzers
or stemmers, part-of-speech taggers, and bilingual dictionaries. No deeper processing
is assumed (e.g., no parsers or lexical semantic resources are needed). The method we
advocate is thus appropriate for medium-density languages (Varga et al. 2005).

To compute the features discussed in Section 4, we need large monolingual corpora.
For English and French, we use the 109 corpora released for WMT-11 (Callison-Burch
et al. 2011); the corpora were syntactically parsed using the Berkeley parser (Petrov
and Klein 2007), but we only use the POS tags in this work. For Hebrew, we use a
monolingual corpus (Itai and Wintner 2008), which we pre-process as in Tsvetkov and
Wintner (2012): We use a morphological analyzer (Itai and Wintner 2008) to segment
word forms (separating prefixes and suffixes) and induce POS tags. Summary statistics
for each corpus are listed in Table 1.

For some features we need access to the lemma of word tokens. In Hebrew, the
MILA morphological analyzer (Itai and Wintner 2008) provides the lemmas, but the
parsed corpora we use in English and French do not. We therefore use the DELA
dictionaries of English and French, available from LADL as part of the Unitex project
(http://www-igm.univ-mlv.fr/~unitex/). The French dictionary lists 683,824 single-
word entries corresponding to 102,073 lemmas, and 108,436 multiword entries corre-
sponding to 83,604 MWEs. The English dictionary is smaller, with 296,606 single-word
forms corresponding to 150,145 lemmas, and 132,990 multiword entries, corresponding

Table 1
Statistics of the monolingual corpora.

English French Hebrew

Tokens 447,073,250 522,964,336 46,239,285
Types 2,421,181 2,416,269 188,572
Bigram tokens 429,550,149 505,441,224 45,858,152
Bigram types 22,929,768 21,428,007 5,698,581
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Table 2
Statistics of the bilingual corpora.

English–French English–Hebrew

Sentences 30,000 30,000 19,626 19,626
Tokens 834,707 895,632 271,787 280,508
Types 22,787 27,880 14,142 12,555
Bigram tokens 804,704 865,632 252,183 280,506
Bigram types 218,108 225,660 128,987 149,688

to 69,912 MWEs. If the corpus surface form is not listed in the dictionary, we use the
surface form in lieu of its lemma. The multiword entries of the DELA dictionaries are
only used for evaluation.

For some features we also need a bilingual dictionary. For English–Hebrew, we
use a small dictionary consisting of 78,313 translation pairs. Some of the entries are
collected manually, whereas others are produced automatically (Itai and Wintner
2008; Kirschenbaum and Wintner 2010). For English–French, because we are unable to
obtain a good-quality dictionary, we use instead Giza++ (Och and Ney 2000) 1-1 word
alignments computed automatically from the entire WMT-11 parallel corpus.

In order to prepare training material automatically (Section 6), we use small bilin-
gual corpora. For English–French, we use a random sample of 30,000 parallel sentences
from the WMT-11 corpus. For English-Hebrew, we use the parallel corpus of Tsvetkov
and Wintner (2010a). Statistics of the parallel corpora are listed in Table 2.

For evaluation we need lists of MWEs, ideally augmented by lists of non-MWE
bigrams. Such lists are notoriously hard to obtain. As a general method of evaluation,
we run 10-fold cross-validation evaluation using the training materials (which we
generate automatically). Additionally, we use three sets of MWEs for evaluation. First,
we extract all the MWE entries from the English WordNet (Miller et al. 1990); we use the
WordNet version that is distributed with NLTK (Bird, Klein, and Loper 2009). Second,
we use the MWEs listed in the DELA dictionaries of English and French (see above).
These sets only include positive examples, of course, so we only report recall results on
them. For Hebrew, we use a small set that was used for evaluation in the past (Al-Haj
and Wintner 2010; Tsvetkov and Wintner 2012). This is a small annotated corpus,
NN, of Hebrew noun-noun constructions. The corpus consists of 413 high-frequency
bigrams of the same syntactic construction; of those, 178 are tagged as MWEs (in this
case, noun compounds) and 235 as non-MWEs. This corpus consolidates the annotation
of three annotators: Only instances on which all three agreed were included. Because it
includes both positive and negative instances, this corpus facilitates a robust evaluation
of precision and recall.

4. Linguistically Motivated Features

We define several linguistically motivated features that are aimed at capturing some
of the unique properties of MWEs. Although many idiosyncratic properties of MWEs
have been previously studied, we introduce novel ways to express these properties as
computable features that inform a classifier. Note that many of the features we describe
in the following are completely language-independent; others are applicable to a wide
range of languages, whereas few are specific to morphologically rich languages, and can
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be exhibited in different ways in different languages. We provide examples in English,
French, and Hebrew, drawn from the resources listed in Section 3.2. The methodology
we advocate, however, is completely general.

A common theme for all these features is idiosyncracy: They are all aimed at locating
some linguistic property on which MWEs may differ from non-MWEs. We begin by
detailing these properties, along with the features that we define to reflect them. In all
cases, the feature is applied to a candidate MWE, defined here as a bigram of tokens (all
possible bigrams are potential candidates). The features are computed from the large
monolingual corpora described in Section 3.2. In order for a feature to fire, at least five
instances of the candidate MWE have to be present in the corpus.

Orthographic variation. Sometimes, MWEs are written with hyphens instead of inter-
token spaces. Examples include Hebrew2 xd-cddi (one sided) ‘unilateral’, English
elephant-bird, and French aide-soignant (help carer) ‘caregiver’. Of course, this feature
is only relevant for languages that use the hyphen in this way.

We define a binary feature, HYPHEN, whose value is 1 iff the corpus includes
instances of the candidate MWE in which the hyphen character connects the two tokens
of the bigram.

Capitalization. MWEs are often named entities, and in languages such as English and
French a large number of MWEs involve words whose first letter is capital. We therefore
define a feature, CAPS, whose value is a binary vector with 1 in the i-th place iff the
i-th word of the MWE candidate is capitalized.3 For example, the White House will
have the value 〈0, 1, 1〉. This feature is of course irrelevant for languages that do not use
capitalization.

Fossil words. MWEs sometimes include constituents that have no usage outside the
particular expression. Examples include Hebrew ird lTmiwn (went-down to-treasury)
‘was lost’, French night club, and English hocus pocus; as far as we know, this is a rather
universal property.

We define a feature, FOSSIL, whose value is a binary vector with 1 in the i-th place
iff the i-th word of the candidate only occurs in this particular bigram; the other words
of the candidate expression can be morphological variants of each other, but must share
the same lemma. For example, the value of FOSSIL for hocus pocus is 〈1, 1〉, whereas
for French night club it is 〈1, 0〉. In order to filter out potential typos, candidates must
occur at least five times in the corpus in order for this feature to fire.

Frozen form. MWE constituents sometimes occur in one fixed, frozen form, where the
language’s morphology licenses also other forms. For example, spill the beans does
not license spill the bean, although bean is a valid form. Similarly, Hebrew bit xwlim
(house-of sick-people) ‘hospital’ requires that the noun xwlim be in the plural; the
variant bit xwlh (house-of sick-person) ‘a sick person’s house’ only has the literal
meaning. This feature is of use for languages that are not isolating.

2 To facilitate readability we use a transliteration of Hebrew using Roman characters; the letters used,
in Hebrew lexicographic order, are abgdhwzxTiklmnsypcqršt.

3 Here and in subsequent examples we do not assume that the length of an MWE is limited to 2.
In the present work, however, the vector is of length exactly 2.
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We define a feature, FROZEN, whose value is a binary vector with 1 in the i-th place
iff the i-th word of the candidate never inflects in the context of this expression. For
example, the value of FROZEN for spill the beans is 〈0, 1, 1〉, and for Hebrew bit xwlim
(house-of sick-people) ‘hospital’ it is 〈0, 1〉.

Partial morphological inflection. In some cases, MWE constituents undergo a (strict but
non-empty) subset of the full inflections that they would undergo in isolation. For
example, the Hebrew bit mšpT (house-of law) ‘court’ occurs in the following inflected
forms: bit hmšpT ‘the court’ (75%); bit mšpT ‘a court’ (15%); bti hmšpT ‘the courts’ (8%);
and bti mšpT ‘courts’ (2%). Crucially, forms in which the second word, mšpT ‘law,’ is
in the plural are altogether missing. Our assumption is that the inflection histograms of
non-MWEs are more uniform than the histograms of MWEs, in which some inflections
may be more frequent and others may be altogether missing. Of course, restrictions on
the histogram may stem from the part of speech of the expression; such constraints are
captured by dependencies in the BN structure.

We capture this property, which is again relevant for all non-isolating languages,
with a technique that has been proven useful in the area of image processing (Jain
1989, Section 7.3). We compute a histogram of the distribution in the corpus of all
the possible surface forms of each MWE candidate. Such histograms can compactly
represent distributional information on morphological behavior, in the same way that
histograms of the distribution of gray levels in a picture are used to represent the picture
itself. For example, the histogram corresponding to bit mšpT (house-of law) ‘court’
would be

〈(bit hmšpT, 0.75), (bit mšpT, 0.15), (bti hmšpT, 0.08), (bti mšpT, 0.02)〉

Because each MWE is idiosyncratic in its own way, we do not expect the histograms
of MWEs to have some specific pattern, except non-uniformity. We therefore sort the
columns of each histogram, thereby losing information pertaining to the specific inflec-
tions, and retaining only information about the idiosyncrasy of the histogram. For the
example given, the obtained histogram is 〈75, 15, 8, 2〉. In contrast, the non-MWE txwm
mšpT (domain-of law) ‘domain of the law’, which is syntactically identical, occurs in
nine different inflected forms, and its sorted histogram is 〈59, 14, 7, 7, 5, 2, 2, 2, 2〉. The
longer “tail” of the histogram is typical of compositional expressions.

Off-line, we compute the average histogram for positive and negative examples:
The average histogram of MWEs is shorter and less uniform than the average histogram
of non-MWEs. We define a binary feature, HIST, that determines whether the histo-
gram of the candidate is closer, in terms of L1 (Manhattan) distance, to the average
histogram of positive or of negative examples.

In our corpora, the average histogram of English positive examples has exactly four
elements: 93.62, 5.86, 0.45, and 0.05. This shows a clear tendency (93.62%) of English
MWEs to occur in a single form only; and it also implies that no English MWE occurs in
more than four variants. The English negative instances, in contrast, have a much longer
histogram (12 elements); the first element is 85.83, much lower than the dominating
element of the positive examples. In French, which is morphologically much richer, the
number of elements in the average histogram of positive examples is 32 (the domi-
nating elements are 90.8, 6.9, 1.1, 0.4), whereas the number of elements in the average
histogram of negative examples is 92 (dominated by 75.6, 14.5, 3.9, 2.0).
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Context. We hypothesize that MWEs tend to constrain their (semantic) context more
strongly than non-MWEs. We expect words that occur immediately after MWEs to vary
less freely than words that immediately follow other expressions. One motivation for
this hypothesis is the observation that MWEs tend to be less polysemous than free
combinations of words, thereby limiting the possible semantic context in which they
can occur. This seems to us to be a universal property.

We define a feature, CONTEXT, as follows. We first compute a histogram of the
frequencies of words following each candidate MWE. We trim the tail of the histogram
by removing words whose frequency is lower than 0.1% (the expectation is that non-
MWEs would have a much longer tail). Off-line, we compute the same histograms for
positive and negative examples and average them as before. The value of CONTEXT
is 1 iff the histogram of the candidate is closer (in terms of L1 distance) to the positive
average.

For example, the histogram of Hebrew bit mšpT ‘court’ includes 15 values, dom-
inated by bit mšpT yliwn ‘supreme court’ (20%) and bit mšpT mxwzi ‘district court’
(13%), followed by contexts whose frequency ranges between 5% and 0.6%. In contrast,
the non-MWE txwm mšpT ‘domain-of law’ has a much shorter histogram, namely
(12, 11, 6): Over 70% of the words following this expression occur with frequency lower
than 0.1% and are hence in the trimmed tail.

Syntactic diversity. MWEs can belong to various part of speech categories. We define as
feature, POS, the category of the candidate, with values obtained by selecting frequent
tuples of POS tags. For example, English heart attack is Noun-Noun, dark blue is
Adj-Adj, Al Capone is PropN-PropN; French chant funèbre (song funeral ) ‘dirge’ is
Noun-Adj, en bas (in low) ‘down’ is Prep-Adj; Hebrew rkbt hrim (train-of mountains)
‘roller-coaster’ is Noun-Noun, and so forth.

Translational equivalents. Because MWEs are often idiomatic, they tend to be translated in
a non-literal way, sometimes to a single word. We use a bilingual dictionary to generate
word-by-word translations of candidate MWEs from Hebrew to English, and check
the number of occurrences of the English literal translation in a large English corpus.
For French–English, we check whether the literal translation occurs in the Giza++ (Och
and Ney 2000) alignment results (we use grow-diag-final-and for symmetrization in this
case, to improve the precision). Due to differences in word order between the two
languages, we create two variants for each translation, corresponding to both possible
orders. We expect non-MWEs to have some literal translational equivalent (possibly
with frequency that correlates with their frequency in the source language), whereas for
MWEs we expect no (or few) literal translations. For example, consider Hebrew sprwt
iph (literature pretty) ‘belles lettres’. Literal translation of the expression to English
yields literature pretty and pretty literature; we expect these phrases to occur rarely
in an English corpus. In contrast, the compositional tmwnh iph (picture pretty) ‘pretty
picture’ is much more likely to occur literally in English.

We define a binary feature, TRANS, whose value is 1 iff some literal translation
of the candidate occurs more than five times in the corpus. Although this feature is
not language-specific, we assume that it should work best for pairs of rather distinct
languages.

Collocation. As a baseline, statistical association measure, we use pointwise mutual
information (PMI). We define a binary feature, PMI, with two values, low and high,
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MWECAPS

FOSSILHYPHEN CNTXT

POS

HIST

PMI

TRANS

FRZN

Figure 1
The Bayesian network for MWE identification.

reflecting an experimentally determined threshold. Clearly, other association measures
(as well as combinations of more than one) could be used (Pecina 2005).

5. Feature Interdependencies Expressed as a Bayesian Network

A Bayesian network (Jensen and Nielsen 2007) is organized as a directed acyclic
graph whose nodes are random variables and whose edges represent interdependencies
among those variables. We use a particular view of BN, known as causal networks, in
which directed edges lead to a variable from each of its direct causes.4 This facilitates the
expression of domain knowledge (and intuitions, beliefs, etc.) as structural properties of
the network. We use the BN as a classification device: Training amounts to computing
the joint probability distribution of the training set, and classification maximizes the
posterior probability of the particular node (variable) being queried.

For MWE identification we define a BN whose nodes correspond to the features de-
scribed in Section 4. In addition, we define a node, MWE, for the complete classification
task. Over these nodes we impose the structure depicted graphically in Figure 1. This
structure, which we motivate below, is manually defined: It reflects our understanding
of the problem domain and is a result of our linguistic intuition. That said, it can of
course be modified in various ways, and, in particular, new nodes can be easily added
to reflect additional features.

All nodes depend on MWE, as all are affected by whether or not the candidate is
an MWE. The POS of an expression influences its morphological inflection, hence the
edges from POS to HIST and to FROZEN. For example, Hebrew noun-noun constructions
allow their constituents to undergo the full inflectional paradigm, but when such a
construction is a MWE, inflection is severely constrained (Al-Haj and Wintner 2010);

4 The direction of edges is from the target to the observable; this is compatible with the use of BNs in
latent-variable generative models.
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similarly, when one of the constituents of a MWE is a conjunction, the entire expression
is very likely to be frozen, as in English by and large and more or less.

Fossil words clearly affect all statistical metrics, hence the edge from FOSSIL to
PMI. They also affect the existence of literal translations, because if a word is not in
the lexicon, it does not have a translation, hence the edge from FOSSIL to TRANS. Also,
we assume that there is a correlation between the frequency (and PMI) of a candidate
and whether or not a literal translation of the expression exists, hence the edge from
PMI to TRANS. The edges from PMI and HIST to CONTEXT are justified by the correlation
between the frequency and variability of an expression and the variability of the context
in which it occurs.

Clearly, the process of determining the structure of the graph, and in particular the
direction of some of the edges, is somewhat arbitrary. Having said that, it does give the
designer of the system a clear and explicit way of expressing linguistically motivated
intuitions about dependencies among features.

Once the structure of the network is established, the conditional probabilities of
each dependency have to be determined. We compute the conditional probability tables
from our training data (see Section 6) using Weka (Hall et al. 2009), and obtain values for
P(X | X1, . . . , Xk) for each variable X and all variables Xi, 1 ≤ i ≤ k (parents of X), such
that the graph includes an edge from Xi to X. We then use the network for classification
by maximizing P(Xmwe | X1, . . . , Xk), where Xmwe corresponds to the node MWE, and
X1, . . . , Xk are the variables corresponding to all other nodes in the network. According
to Bayes rule, we have

P(Xmwe | X1, . . . , Xk) ∝
P(X1, . . . , Xk | Xmwe) × P(Xmwe)

We define the prior, P(Xmwe), to be 0.41: This is the percentage of MWEs in WordNet 1.7
(Fellbaum 1998). This figure is of course rather arbitrary, but several studies indicate that
the percentage of MWEs in the (mental) lexicon is approximately one half (Jackendoff
1997; Erman and Warren 2000; Sag et al. 2002). Post factum, we experimented with
various other values for this parameter. We chose values between 0.3 and 0.55, in
increments of 0.05, and computed the F-score of the system on the task of extracting
English MWEs (see Section 7). As Table 3 shows, the differences are small (and not
statistically significant), meaning that the accuracy of the system seems to be rather
robust to the actual value of the prior. Given a small tuning set, it should be possible to
optimize the choice of the prior more systematically.

The conditional probabilities P(X1, . . . , Xk | Xmwe) are determined by Weka from
the conditional probability tables:

P(X1, . . . , Xk | Xmwe) = Πk
i=1P(Xi | pai)

where k is the number of nodes in the BN (other than Xmwe) and pai is the set of parents
of Xi.

Table 3
F-score as a function of the value of the prior.

P(Xmwe) 0.3 0.35 0.4 0.41 0.45 0.5 0.55
F-score 0.848 0.84 0.833 0.835 0.831 0.836 0.843
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Table 4
Sizes of the training sets.

MWE non-MWE Total

English 1,381 2,004 3,385
French 1,445 2,089 3,534
Hebrew 350 504 854

6. Automatic Generation of Training Data

For training we need samples of positive and negative instances of MWEs, each asso-
ciated with a vector of the values of all features discussed in Section 4. We generate
this training material automatically, using the small bilingual corpora described in
Section 3.2. Each parallel corpus is first word-aligned with IBM Model 4 (Brown et al.
1993), implemented in Giza++ (Och and Ney 2003); we use union for symmetrization
here, to improve the recall. Then, we apply the (completely unsupervised) algorithm of
Tsvetkov and Wintner (2012), which extracts MWE candidates from the aligned corpus
and re-ranks them using statistics computed from a large monolingual corpus.

The core idea behind this algorithm is that MWEs tend to be translated in non-
literal ways; in a parallel corpus, words that are 1:1 aligned typically indicate literal
translations and are hence unlikely constituents of MWEs. The algorithm hence focuses
on misalignments: It trusts the quality of 1:1 alignments (which are further verified with
a bilingual dictionary) and searches for MWEs exactly in the areas that word alignment
failed to properly align, not relying on the alignment in these cases. Specifically, the
algorithm views all words that are not included in 1:1 alignments as potential areas
in which to search for MWEs, independently of how these words were aligned by the
word-aligner. Then, it uses statistics computed from a large monolingual corpus to rank
the MWE candidates; specifically, we use the PMI score of candidates based on counts
from the monolingual corpora. Finally, the algorithm extracts maximally long sequences
of words from the unaligned parallel phrases, in which each bigram has a PMI score
above some threshold (determined experimentally). All bigrams in those sequences are
considered MWEs. See Tsvetkov and Wintner (2012) for more details.

The set of MWEs that is determined in this way constitutes the positive examples
in the training set. For negative examples, we use two sets of bigrams: Those that are 1:1
aligned and have high PMI; and those that are misaligned but have low PMI. To decide
how many negative examples to generate, we rely on the ratio between MWE and non-
MWE entries in WordNet, as mentioned above: P(Xmwe) = 0.41. We thus select from the
negative set approximately 50% more negative examples than positive ones, such that
the ratio between the sizes of the sets is 0.41 : 0.59. The sizes of the resulting training
sets are listed in Table 4.

7. Results and Evaluation

We use the training data described in Section 6 for training and evaluation: We perform
10-fold cross validation experiments, reporting accuracy and (balanced) F-score in three
set-ups: One (SVM) in which we train an SVM classifier5 with the features described

5 We use Weka SMO with the PolyKernel set-up; experimentation with several other kernels yielded
worse results.
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Table 5
10-fold cross validation evaluation results.

Hebrew French English
Accuracy (%) F-score Accuracy (%) F-score Accuracy (%) F-score

PMI 66.98 0.67 70.88 0.762 74.15 0.737
BN-auto 71.19 0.71 77.45 0.775 82.16 0.822
SVM 74.59 0.75 78.38 0.736 82.95 0.828
BN 76.82 0.77 79.04 0.778 83.52 0.835

in Section 4; one (BN-auto) in which we train a Bayesian network with these features,
but let Weka determine its structure (using the K2 algorithm); and one (BN) in which
we train a Bayesian network whose structure reflects manually crafted linguistically
motivated knowledge, as depicted in Figure 1. The results are listed in Table 5; they are
compared with a PMI baseline, obtained by defining a Bayesian network with only two
nodes, MWE and PMI.

The linguistically motivated features defined in Section 4 are clearly helpful in the
classification task: The accuracy of an SVM, informed by these features, is close to 75%
for Hebrew, over 78% for French, and as high as 83% for English, reducing the error rate
of the PMI baseline by 23% (Hebrew) to 34% (English). The contribution of the BN is
also highly significant, reducing 3–9% more errors (with respect to the errors made by
the SVM classifier).6 In total, the best method, BN, reduces the error rate of the PMI-
based classifier by one third. Interestingly, a BN whose structure does not reflect prior
knowledge, but is rather learned automatically, performs worse than these two methods
(but still much better than relying on PMI alone).7 It is the combination of linguistically
motivated features with feature interdependencies reflecting domain knowledge that
contribute to the best performance.

We did not investigate the contribution of each of the features to the classification
task. However, we did analyze the weights assigned by the SVM classifier to specific
features. Unsurprisingly, the most distinctive feature is PMI. Among the POS features,
the strongest feature is VB NNS, an indication of a negative instance. Capitalization is
also unsurprisingly a very strong feature. We leave a more systematic analysis of the
contribution of each feature to future work.

To further assess the quality of the results, we performed a human evaluation on
the English data set. We first produced the results in the BN set-up, and then sorted
both the (predicted) positive and the (predicted) negative instances by their PMI. We
randomly picked 100 instances of both lists, at the same positions in the ranked lists,
to constitute an evaluation set. We asked three English-speaking annotators to deter-
mine whether the 200 expressions were indeed MWEs. The annotation guidelines are
given in Appendix A. Comparing the three annotators’ labels, we found out that they
agreed on 141 of the 200 (70.5%). This should probably be taken as an upper bound for
the task.

6 The improvement of both BN and SVM over the baseline is highly significant statistically (sign test,
p < 0.01 in all three cases); the improvement of BN over SVM is significant for English (p < 0.01)
but not for French.

7 We are not sure why this is the case. One possible explanation is that our training set contains noisy
examples, and as the BN-auto classifier learns the dependencies from noisy data, it performs worse
than the SVM classifier. Another possible explanation is that it attempts to learn more dependencies,
thereby increasing the parameter space of the model.

462



Tsvetkov and Wintner Identification of Multiword Expressions

We then computed the majority label and compared it with our predicted label.
Exactly 142 of the predicted labels were annotated as correct; that’s an accuracy of
71%. Of the 141 instances that the three annotators agreed on, our results predict the
correct label for 112 instances (79.4%). We take these figures as a strong indication of the
accuracy of the results.

As an additional evaluation measure, we use the sets of bigrams in the English
WordNet, and the bigram MWEs in the DELA dictionaries of English and French
(Section 3.2). Because we only have positive instances in these evaluation sets, we can
only report recall. We therefore use the Bayesian network classifier to extract MWEs
from the large monolingual corpora discussed in Section 3.2. For each evaluation set
(WordNet, DELA English, and DELA French), we divide the number of bigrams in the
set that are classified as MWEs by the size of the intersection of the evaluation set with
the monolingual corpus. In other words, we exclude from the evaluation those MWEs
in the evaluation set that never occur in our corpora. The results are listed in Table 6.

As examples of correctly identified MWEs, consider English advisory board, air
cargo, adoption agency, air ticket, crude oil, and so on, and French accord international
‘international agreement’, acte final ‘final act’, banque centrale ‘central bank’, ce soir
‘tonight’, and so forth, all taken from the DELA dictionaries. The relatively low recall of
our method on these dictionaries is to a large extent due to a very liberal definition of
MWEs that the dictionaries use. Many entries that are listed as MWEs are actually highly
compositional, and hence our method fails to identify them. DELA entries that are not
identified by our classifier include examples such as English abnormal behavior, abso-
lute necessity, academic research, and so on. The French DELA dictionary is especially
extensive, with examples such as action sociale, action antitumorale, action associa-
tive, action caritative, action collective, action commerciale, action communautaire,
and many more, all listed as MWEs. Our system only recognizes the first of these.

The WordNet results are obviously much better. Correctly identified MWEs include
ad hoc, outer space, web site, inter alia, road map, and so forth. WordNet MWEs that
our system failed to identify include has been, as well, in this, a few, set up, and so on.
A more involved error analysis is required in order to propose potential directions for
improvement on this set.

As a further demonstration of the utility of our approach, we evaluate the algorithm
on the set NN of Hebrew noun-noun constructions described in Section 3.2. We train a
Bayesian network on the training set described in Section 6 and use it to classify the
set NN. We compare the results of this classifier with a PMI baseline, and also with
the classification results reported by Al-Haj and Wintner (2010); the latter reflects 10-
fold cross-validation evaluation using the entire set, so it may be considered an upper
bound for any classifier that uses a general training corpus.

The results are depicted in Table 7. They clearly demonstrate that the linguistically
motivated features we define provide a significant improvement in classification accu-
racy over the baseline PMI measure. Note that our F-score, 0.77, is very close to the

Table 6
Evaluation results: WordNet and DELA dictionaries.

True positives Evaluation set size Recall (%)

WordNet 25,549 42,403 60
DELA English 11,955 26,460 45
DELA French 886 4,798 18
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Table 7
Evaluation results: noun-noun constructions.

Accuracy Precision Recall F-score

PMI 71.43% 0.71 0.71 0.71
BN 77.00% 0.77 0.77 0.77
AW 80.77% 0.77 0.81 0.79

AW = results from Al-Haj and Wintner (2010)

best result of 0.79 obtained by Al-Haj and Wintner (2010) as the average of 10-fold cross
validation runs, using only high-frequency noun-noun constructions for training. We
interpret this result as a further proof of the robustness of our architecture.

Finally, we conduct an analysis of the quality of extracted (Hebrew) MWEs. We
used the trained BN to classify the entire set of bigrams present in the (Hebrew side of
the) Hebrew–English parallel corpus described in Section 3.2. Of the more than 140,000
candidates, only 4,000 are classified as MWEs. We sort this list of potential MWEs by the
probability assigned by the BN to the positive value of the variable Xmwe. The resulting
sorted list is dominated by high-PMI bigrams, especially proper names, all of which are
indeed MWEs. The first non-MWE (false positive) occurs in the 50th place on the list; it
is crpt niqwla ‘France Nicolas’, which is obviously a sub-sequence of the larger MWE,
neia crpt niqwla srqwzi ‘French president Nicolas Sarkozy’. Similar sub-sequences are
also present, but only five are in the top 100. Such false positives can be reduced when
longer MWEs are extracted, as it can be assumed that a sub-sequence of a longer MWE
does not have to be identified. Other false positives in the top 100 include some highly
frequent expressions, but over 85 of the top 100 are clearly MWEs.

Although more careful evaluation is required in order to estimate the rate of true
positives in this list, we trust that the vast majority of the positive results are indeed
MWEs.

8. Conclusions and Future Work

We presented a novel architecture for identifying MWEs in text corpora. The main
insights we emphasize are sophisticated computational encoding of linguistic knowl-
edge that focuses on the idiosyncratic behavior of such expressions. This is reflected
in two ways in our work: by defining computable features that reflect different facets
of irregularities; and by framing the features as part of a larger Bayesian network that
accounts for interdependencies among them. We also introduce a method for automat-
ically generating a training set for this task, which renders the classification entirely
unsupervised. The result is a classifier that can identify MWEs of several types and
constructions. Evaluation on three languages (English, French, and Hebrew) shows sig-
nificant improvement in the accuracy of the classifier compared with less sophisticated
baselines.

The modular architecture of Bayesian networks facilitates easy exploration with
more features. We are currently investigating the contribution of various other sources
of information to the classification task. For example, Hebrew lacks large-scale lexical
semantic resources. However, it is possible to literally translate an MWE candidate to
English and rely on the English WordNet for generating synonyms of the literal transla-
tion. Such “literal synonyms” can then be back-translated to Hebrew. The assumption is
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that if a back-translated expression has a low PMI, the original candidate is very likely
not a MWE. Although such a feature may contribute little on its own, incorporating it
in a well-structured BN may improve performance. Another feature that can easily be
implemented in this way is whether the POS of MWE constituents is retained when the
expression is translated to another language; we hypothesize that this is much more
likely when the expression is compositional.

Appendix A. Annotation Guidelines

These are the instructions given to the annotators.

The task is to annotate each line as either a multi-word expression, in which case mark
1 in the first field; or not, in which case the value is 0. It’s a hard task, but you are
requested to be decisive. Please do not change the file in any other way.

The main criterion for determining whether an expression is a MWE is whether it
has to be stored in a computational lexicon. Typically, expressions are stored in lexicons
if they exhibit idiosyncratic (irregular) behavior. This could be due to:

� non-compositional meaning. For example, ‘green light’ is an MWE because it is not
a light. ‘kill time’ is not a violent action. A good indication of non-compositional
meaning is limited reference. For example, if someone gives you a green light, you
can’t then refer to it as ‘the light I was given’.

� non-substitutability of elements. For example, ‘breast cancer’ is an MWE because
while ‘breast’ and ‘chest’ can often be substituted, ‘breast cancer’ and ‘chest
cancer’ cannot.

� fossil words, i.e., words that only occur in the context of the expression. For
example, ‘mutatis mutandis’.

� nominalization. If the expression can occur as a single word, or with a connecting
hyphen, it is a strong indication that it is an MWE. For example, ‘road map’ can be
written ‘roadmap’.

� irregular syntactic and/or morphological behavior. For example, ‘look up’ is an
MWE because while ordinarily you can convert ‘I walked up the alley’ to ‘Up the
alley I walked’, you can’t convert ‘I looked up that word in a dictionary’ to ‘Up that
word I looked’.

� proper names. All proper names are by definition MWEs. This includes people
(‘Barack Obama’), places (‘Tel Aviv’), organizations (‘United Nations’), etc.

But really, the best criterion is: if I hadn’t known this expression, would I be able to use
it properly simply by knowing its two constituents? Would I understand its meaning,
be able to inflect it properly, construct syntactic constructions, and in general use it in
the right context in the right way?
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Viktor Nagy, László Németh, and Viktor
Trón. 2005. Parallel corpora for medium
density languages. In Proceedings of
RANLP’2005, pages 590–596, Borovet.

Venkatapathy, Sriram and Aravind Joshi.
2006. Using information about multi-word
expressions for the word-alignment
task. In Proceedings of the COLING/ACL
Workshop on Multiword Expressions:
Identifying and Exploiting Underlying
Properties, pages 20–27, Sydney.

Venkatsubramanyan, Shailaja and Jose
Perez-Carballo. 2004. Multiword
expression filtering for building
knowledge. In Second ACL Workshop
on Multiword Expressions: Integrating
Processing, pages 40–47, Barcelona.

Villavicencio, Aline, Valia Kordoni, Yi Zhang,
Marco Idiart, and Carlos Ramisch. 2007.
Validation and evaluation of automatically
acquired multiword expressions for
grammar engineering. In Proceedings of the
2007 Joint Conference on Empirical Methods
in Natural Language Processing and
Computational Natural Language Learning
(EMNLP-CoNLL), pages 1,034–1,043,
Prague.

Weller, Marion and Fabienne Fritzinger. 2010.
A hybrid approach for the identification
of multiword expressions. In Proceedings
of the SLTC 2010 Workshop on Compounds
and Multiword Expressions, pages 1–2,
Linköping.
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