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Recent research has shown clear improvement in translation quality by exploiting linguistic
syntax for either the source or target language. However, when using syntax for both languages
(“tree-to-tree” translation), there is evidence that syntactic divergence can hamper the extraction
of useful rules (Ding and Palmer 2005). Smith and Eisner (2006) introduced quasi-synchronous
grammar, a formalism that treats non-isomorphic structure softly using features rather than
hard constraints. Although a natural fit for translation modeling, its flexibility has proved
challenging for building real-world systems. In this article, we present a tree-to-tree machine
translation system inspired by quasi-synchronous grammar. The core of our approach is a new
model that combines phrases and dependency syntax, integrating the advantages of phrase-based
and syntax-based translation. We report statistically significant improvements over a phrase-
based baseline on five of seven test sets across four language pairs. We also present encouraging
preliminary results on the use of unsupervised dependency parsing for syntax-based machine
translation.

1. Introduction

Building translation systems for many language pairs requires addressing a wide range
of translation divergence phenomena. Several researchers have studied divergence be-
tween languages in corpora and found it to be considerable, even for closely related
languages (Dorr 1994; Fox 2002; Wellington, Waxmonsky, and Melamed 2006; Segaard
and Kuhn 2009). To address this, many have incorporated linguistic syntax into trans-
lation model design. The statistical natural language processing (NLP) community
has developed automatic parsers that can produce syntactic analyses for sentences in
several languages (Klein and Manning 2003; Buchholz and Marsi 2006; Nivre et al.
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2007). The availability of these parsers, and gains in their accuracy, triggered research
interest in syntax-based statistical machine translation (Yamada and Knight 2001).

Syntax-based translation models are diverse, using different grammatical for-
malisms and features. Some use a parse tree for the source sentence (“tree-to-string”),
others produce a parse when generating the target sentence (“string-to-tree”), and
others combine both (“tree-to-tree”). We focus on the final category in this article.
Tree-to-tree translation has proved to be a difficult modeling problem, as initial at-
tempts at it underperformed systems that used no syntax at all (Cowan, Kucerov4,
and Collins 2006; Ambati and Lavie 2008; Liu, Lii, and Liu 2009). Subsequent re-
search showed that substantial performance gains can be achieved if hard constraints—
specifically, isomorphism between a source sentence’s parse and the parse of its
translation—are relaxed (Liu, Lii, and Liu 2009; Chiang 2010; Zhang, Zhai, and Zong
2011; Hanneman and Lavie 2011). This suggests that constraints must be handled
with care.

Yet the classic approach to tree-to-tree translation imposes hard constraints through
the use of synchronous grammars developed for programming language compilation
(Aho and Ullman 1969). A synchronous grammar derives two strings simultaneously:
one in the source language and one in the target language. A single derivation is
used for both strings, which limits the divergence phenomena that can be captured.
As a result, researchers have developed synchronous grammars with larger rules
that, rule-internally, capture more phenomena, typically at increased computational
expense (Shieber and Schabes 1990; Eisner 2003; Gildea 2003; Ding and Palmer 2005).

We take a different approach. We take inspiration from a family of formalisms
called quasi-synchronous grammar (QG; Smith and Eisner 2006). Unlike synchronous
grammar, QG assumes the entire input sentence and some syntactic parse of it are
provided and fixed. QG then defines a monolingual grammar whose language is a
set of translations inspired by the input sentence and tree. The productions in this
monolingual grammar generate a piece of the translation’s tree and align it to a piece of
the fixed input tree. Therefore, arbitrary non-isomorphic structures are possible between
the two trees. A weighted QG uses feature functions to softly penalize or encourage
particular types of syntactic divergence.

In this article, we present a statistical tree-to-tree machine translation system in-
spired by quasi-synchronous grammar. We exploit the flexibility of QG to develop a
new syntactic translation model that seeks to combine the benefits of both phrase-based
and syntax-based translation. Our model organizes phrases into a tree structure inspired
by dependency syntax (Tesniere 1959). Instead of standard dependency trees in which
words are vertices, our trees have phrases as vertices. The result captures phenomena
like local reordering and idiomatic translations within phrases, as well as long-distance
relationships among the phrases in a sentence. We use the term phrase dependency tree
when referring to this type of dependency tree; phrase dependencies have also been
used by Wu et al. (2009) for opinion mining and previously for machine translation by
Hunter and Resnik (2010). Because we combine phrase dependencies with features from
quasi-synchronous grammar, we refer to our model as a quasi-synchronous phrase
dependency (QPD) translation model.

Our tree-to-tree approach requires parsers for both the source and target languages.
For two of the language pairs we consider (Chinese—English and German— English),
treebanks of hand-annotated parse trees are available (e.g., the Penn Treebank;
Marcus, Santorini, & Marcinkiewitz 1993), allowing the use of highly accurate statistical
parsers (Levy and Manning 2003; Rafferty and Manning 2008; Martins, Smith, and
Xing 2009). We also want to apply our model to languages that do not have tree-
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banks (e.g., Urdu and Malagasy), and for this we turn to unsupervised parsing. The
NLP community has developed a range of statistical algorithms for building unsuper-
vised parsers (Klein and Manning 2002, 2004; Smith 2006; Blunsom and Cohn 2010;
Naseem et al. 2010; Spitkovsky, Alshawi, and Jurafsky 2010; Cohen 2011). They require
only raw, unannotated text in the language of interest, making them ideal for use in
translation.

Unsupervised shallow syntactic analysis has been used successfully for translation
modeling by Zollmann and Vogel (2011), who showed that unsupervised part-of-speech
tags could be used to label the hierarchical translation rules of Chiang (2005) to match
the performance of a system that uses supervised full syntactic parses. We take addi-
tional steps in this direction, leveraging state-of-the-art unsupervised models for full
syntactic analysis (Klein and Manning 2004; Berg-Kirkpatrick et al. 2010; Gimpel and
Smith 2012a) to obtain improvements in translation quality. We find that replacing a
supervised parser for Chinese with an unsupervised one has no effect on performance,
and using an unsupervised English parser only hurts slightly. We use unsupervised
parsing to apply our full model to Urdu—English and English—Malagasy translation,
reporting statistically significant improvements over our baselines. These initial results
offer promise for researchers to apply syntactic translation models to the thousands of
languages for which we do not have manually annotated corpora, and naturally suggest
future research directions.

The rest of this article is laid out as follows. In Section 2, we discuss quasi-
synchronous grammar and dependency syntax and motivate our modeling choices.
We present our translation model in Section 3, describe how we extract rules in Sec-
tion 4, and list our feature functions in Section 5. Decoding algorithms are given in
Section 6. We present experiments measuring our system’s performance on translation
tasks involving four language pairs and several test sets in Section 7. We find statistically
significant improvements over a strong phrase-based baseline on five out of seven test
sets across four language pairs. We also perform a human evaluation to study how our
system improves translation quality. This article is a significantly expanded version of
Gimpel and Smith (2011), containing additional features, a new decoding algorithm,
and a more thorough experimental evaluation. It presents key material from Gimpel
(2012), to which readers seeking further details are referred.

2. Background and Motivation

We begin by laying groundwork for the rest of the article. We define notation in
Section 2.1. Section 2.2 discusses how synchronous and quasi-synchronous grammar
handle syntactic divergence. In Section 2.3, we introduce dependency syntax and review
prior work that has used it for machine translation. Section 2.4 presents two examples
of syntactic divergence that motivate the model we develop in Section 3.

2.1 Notation

We use boldface for vectors and we denote individual elements in vectors using sub-
scripts; for example, the source and target sentences are denoted x = (x1,...,x,) and
Yy = (V1,...,Ym). We denote sequences of elements in vectors using subscripts and su-
perscripts; for example, the sequence from source word i to source word j (inclusive)

is denoted x/, and therefore x| = (x;). We denote the set containing the first k positive
integers as [k]. This notation is summarized in Table 1.
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Table 1
Notation used in this article.

ijk,1 integers

X,y vectors

X entry i in vector x

x! sequence from entry i to entry j (inclusive) in vector x
[i] the set containing the first i positive integers

x| length of vector x

2.2 Synchronous and Quasi-Synchronous Grammars

To model syntactic transformations, researchers have developed powerful grammat-
ical formalisms, many of which are variations of synchronous grammars. The most
widely used is synchronous context-free grammar (Wu 1997; Gildea 2003; Chiang 2005;
Melamed 2003), an extension of context-free grammar to a bilingual setting where two
strings are generated simultaneously with a single derivation. Synchronous context-free
grammars are computationally attractive but researchers have shown that they cannot
handle certain phenomena in manually aligned parallel data (Wellington, Waxmonsky,
and Melamed 2006; Segaard and Kuhn 2009). Figure 1 shows two such examples of
word alignment patterns in German-English data. These patterns were called “cross-
serial discontinuous translation units” (CDTUs) by Segaard and Kuhn (2009). CDTUs
cannot even be handled by the more sophisticated synchronous formalisms given by
Eisner (2003) and Ding and Palmer (2005). CDTUs can be handled by synchronous
tree adjoining grammar (STAG; Shieber and Schabes 1990), but STAG comes with sub-
stantially heftier computational requirements. Furthermore, Segaard and Kuhn (2009)
found examples in parallel data that even STAG cannot handle.

Smith and Eisner (2006) noted that these limitations of synchronous grammars
result from an emphasis on generating the two strings. However, for many real-world
applications, such as translation, one of the sentences is provided. The model only needs
to score translations of the given source sentence, not provide a generative account for
sentence pairs. Smith and Eisner proposed an alternative to synchronous grammar—
quasi-synchronous grammar (QG)—that exploits this fact for increased flexibility in
translation modeling. A QG assumes the source sentence and a parse are given and
scores possible translations of the source sentence along with their parses. That is, a
quasi-synchronous grammar is a monolingual grammar that derives strings in the target
language. The strings’ derivations are scored using feature functions on an alignment
from nodes in the target tree to nodes in the source tree. The quasi-synchronous depen-
dency grammars of Smith and Eisner (2006) and Gimpel and Smith (2009b) can generate
the translations in Figure 1, as can phrase-based models like Moses (Koehn et al. 2007)
and the phrase dependency model we present in Section 3.

wir wollen keinen . wir durchleben keine wiederholung des jahres 1938 .
we do not want one . we are not living a replay of 1938 .
Figure 1

Examples of word alignment patterns in German-English that require the increased expressive
power of synchronous tree adjoining grammar.
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Quasi-synchronous grammar, like synchronous grammar, can in principle be in-
stantiated for a wide range of formalisms. Dependency syntax (which we discuss in
Section 2.3) has been used in most previous applications of QG, including word align-
ment (Smith and Eisner 2006) and machine translation (Gimpel and Smith 2009b). Aside
from translation, QG has been used for a variety of applications involving relationships
among sentences, including question answering (Wang, Smith, and Mitamura 2007),
paraphrase identification (Das and Smith 2009), parser projection and adaptation (Smith
and Eisner 2009), title generation (Woodsend, Feng, and Lapata 2010), sentence sim-
plification (Woodsend and Lapata 2011), information retrieval (Park, Croft, and Smith
2011), and supervised parsing from multiple treebanks with different annotation
conventions (Li, Liu, and Che 2012).

2.3 Dependency Syntax and Machine Translation

Many syntactic theories have been applied to translation modeling, but we focus in
this article on dependency syntax (Tesniere 1959). Dependency syntax is a lightweight
formalism that builds trees consisting of a set of directed arcs from words to their
syntactic heads (also called “parents”). Examples of dependency trees are shown in
Figure 2. Each word has exactly one parent, and $ is a special “wall” symbol that is
located at position 0 in the sentence and acts as parent to words that have no other
parent in the sentence. Formally, a dependency tree on an m-word sentence y is a
function T, : {1,...,m} — {0,...,m} where 7,(i) is the index of the parent of word
yi. If 1,(i) = 0, we say word y; is a root of the tree. The function T, is not permitted
to have cycles. We restrict our attention to projective dependency trees in this article.
Projective dependency trees are informally defined as having no crossing arcs when all
dependencies are drawn on one side of the sentence. See Kiibler, McDonald, and Nivre
(2009) for formal definitions of these terms.

Researchers have shown that dependency trees are better preserved when pro-
jecting across word alignments than phrase structure trees (Fox 2002). This makes
dependency syntax appealing for translation modeling, but to date there are not many
tree-to-tree translation models that use dependency syntax on both sides. One exception
is the system of Ding and Palmer (2005), who used a synchronous tree substitution
grammar designed for dependency syntax, capturing non-isomorphic structure within
rules using elementary trees. Another is the system of Riezler and Maxwell III (2006),
who used lexical-functional dependency trees on both sides and also include phrase
translation rules. Relatedly, Quirk, Menezes, and Cherry (2005) used a source-side
dependency parser and projected automatic parses across word alignments in order
to model dependency syntax on phrase pairs.

/\m

$ konnten sie es iibersetzen ?

$ could you translate it ?
%

Figure 2

Examples of dependency trees with word alignment. Arrows are drawn from children to
parents. A child word is a modifier of its parent. Each word has exactly one parent and $ is a
special “wall” symbol that serves as the parent of all root words in the tree (i.e., those with
no other parent).
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But most who have used dependency syntax have done so either on the source side
in tree-to-string systems (Lin 2004; Xiong, Liu, and Lin 2007; Xie, Mi, and Liu 2011) or
the target side in string-to-tree systems (Shen, Xu, and Weischedel 2008; Carreras and
Collins 2009; Galley and Manning 2009; Hunter and Resnik 2010; Su et al. 2010; Tu et al.
2010). Others have added features derived from source dependency parses to phrase-
based or hierarchical phrase-based translation models (Gimpel and Smith 2008; Gao,
Koehn, and Birch 2011).

2.4 Motivating Examples

Although Fox (2002) found that dependencies are more often preserved across hand-
aligned bitext than constituents, there are still several concerns when using dependency
syntax for tree-to-tree translation. First, we only have hand-aligned sentence pairs for
small data sets and few language pairs, so in practice we must deal with the noise in
automatic word aligners and parsers. Second, not all dependencies are preserved in
hand-aligned data, so we would need to be able to handle non-isomorphic structure
even if we did have perfect tools. The model we present in Section 3 avoids isomor-
phism constraints from synchronous grammar and encourages dependency preserva-
tion across languages by using dependencies on phrases—flat multi-word units—rather
than words.

To motivate these choices, we now give two frequently occurring examples of de-
pendency tree-to-tree divergence in German-English data.! We consider the German-
English parallel corpus used in our experiments (and described in Appendix A). We
parsed the English side using TurboParser (Martins et al. 2010), a state-of-the-art depen-
dency parser. TurboParser was trained on the Penn Treebank (Marcus, Santorini, and
Marcinkiewicz 1993) converted to dependencies using the Yamada-Matsumoto head
rules (Yamada and Matsumoto 2003). We parsed the German side using the factored
model in the Stanford parser (Rafferty and Manning 2008), which is trained from
the NEGRA phrase-structure treebank (Skut et al. 1997). The Stanford parser’s source
code defines a set of head rules for converting the phrase-structure parse output to
dependencies.?

The first example is shown in Figure 3. The bold words illustrate a “sibling” rela-
tionship, meaning that the source words aligned to the parent and child in the English
sentence have the same parent on the German side. Many sibling configurations appear
when the English dependency is DET—N within a PP. By convention, the NEGRA
treebank uses flat structures for PPs like “P DET N” rather than using a separate NP
for DET N. When the parser converts this to a dependency tree, the DET and N are made
children of the P. In English dependency parsing, due to the Penn Treebank conventions,
the DET is made a child of the N, which is a child of the P. There are many other instances
like this one that frequently lie within PPs, like the—us and recent—years. However, if
we tokenized the us as a phrase and also den usa, then both would be children of the
preposition, and the dependency would be preserved.

1 The study that uncovered these examples is detailed in Gimpel (2012). It gives evidence of frequent
non-isomorphic dependency structure between German and English with automatic word aligners
and parsers.

2 These rules use comparable conventions to the Yamada-Matsumoto head rules for English (modulo
the differences in languages and tag/label sets): finite verbs are sentence roots, adpositions are heads
of adpositional phrases, nouns are heads of noun phrases, and so forth.
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AN AN

. . . . V—\.
$ auch die mietméarkte in den usa sind flexibler

$ rental markets are also more flexible in the us
~— X v\/\\/ﬂ

Figure 3

Example of a sentence pair containing a frequently-observed “sibling” relationship in
German-English data: in the the—us dependency, the aligned German words are siblings
in the source dependency tree. This occurs due to differences in treebank and head rule
conventions between the two data sets. The German parser produces flat PPs with little
internal structure, so when the dependency tree is generated, each word in the PP attaches
to the P, the head of the phrase.

The second example is shown in Figure 4, which gives an example of a
“grandparent-grandchild” relationship. In the English dependency until<recently, the
aligned source words are in a grandparent relationship in the source sentence’s depen-
dency tree. We note, however, that if vor kurzem is tokenized as a phrase, then we might
let the entire phrase be the child of bis, preserving the dependency across languages.

By considering phrasal structure and dependencies among phrases, we can reduce
some of the syntactic divergence in real-world data. The model we develop in the next
section is based on this idea.

3. Model

In the previous section we noted two examples in which flattening dependency tree
structure into “phrasal dependencies” could improve dependency preservation be-
tween German and English. This idea is compatible with the well-known principle that
translation quality is improved when larger units are modeled within translation rules.
For example, improvements were found by moving from word-based models to so-
called phrase-based translation models. Modern phrase-based translation systems are
typified by the Moses system (Koehn et al. 2007), based on the approach presented by
Koehn, Och, and Marcu (2003). Phrase-based models excel at capturing local reordering
phenomena and memorizing multi-word translations.

N el N O\

$ bis vor kurzem hielten sich beide seiten an diesen stillschweigenden vertrag

$ until recently , both sides adhered to this tacit contract

L N

Figure 4

Example of a sentence pair containing a frequently-observed “grandparent-grandchild”
relationship in German-English data: the English parent and child words in the until<recently
dependency are aligned to German words in a grandparent-grandchild relationship.
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On the other hand, models that use rules employing syntax (Yamada and Knight
2001) or syntax-like representations (Chiang 2005) handle long-distance reordering
better than phrase-based systems (Birch, Blunsom, and Osborne 2009), and therefore
perform better for certain language pairs (Zollmann et al. 2008). In order to better handle
syntactic divergence and obtain the benefits of these two types of models, we use rules
that combine phrases and syntax. In particular, our rules use dependencies between
phrases rather than words; we call them phrase dependencies. When adding in source
syntax, we eschew the constraints of synchronous grammar in favor of the feature-based
approach of quasi-synchronous grammar. So we call our model a quasi-synchronous
phrase dependency (QPD) translation model.

In Section 3.1, we define phrase dependency trees and in Section 3.2 we present
our model. We discuss rule extraction in Section 4 and define the feature functions in
the model in Section 5. Decoding is discussed in Section 6 and an empirical evaluation
is given in Section 7. Key definitions used throughout this section and the remaining
sections are listed in Table 2.

3.1 Phrase Dependencies

In Section 2.3 we defined dependency trees. Now we provide an analogous definition
for phrase dependency trees. We first define a segmentation of a sentence into phrases.
Given a sentence y, where m = |y|, we define a phrase ¢ as a word sequence y;“, forjand

Table 2

Key definitions for our model.

X=(x1,..., %) source language sentence

Y= Yn) target language sentence, translation of x

T = x’]f source-sentence phrase: subsequence of words in the source
sentence x, i.e., 1 <j <k < n; the number of words in 7 is ||

¢ = y}‘ target-sentence phrase: subsequence of words in the target
sentencey,ie,1 <j<k<m

= (T,...,Ty) segmentation of x into phrases such that for i € [n'], ; = x}‘ is
a source-sentence phraseand 7 - ... - m,; =x

b= (d1,...,0,) segmentation of y into phrases such that for i € ['], ¢; = y}‘ is
a target-sentence phraseand ¢, - ... ¢,y =y

b:{1,....7n} = {1,...,n'} one-to-one alignment (bijection) from phrases in ¢ to phrases
inT; foralli € [n'],if b(i) = j, then 7i; is a subsequence of x and
¢; is a subsequence of y

T :{1,...,n} = {0,...,n} dependency tree on source words x, where T, (i) is the index

of the parent of word x; (0 is the wall symbol $)

T :{L,...,n'} = {0,...,n'} dependency tree on target phrases ¢, where T4 (i) is the index
of the parent of phrase ¢; (0 is the wall symbol $)

h=(,n") vector of feature functions; b’ holds the Moses feature func-
tions and k" holds the QPD feature functions

0=(0,0") vector of feature weights for h

356



Gimpel and Smith Phrase Dependency MT with Quasi-Synchronous Tree-to-Tree Features

k such that 1 <j < k < m. The number of words in phrase ¢ is denoted |$p|. We define a
phrase segmentation of y as ¢ = (¢1,...,d,/) such that fori € [#'], §; = y}‘ is a phrase
and ¢q - ... ¢,y =y, where - denotes string concatenation.

Given a phrase segmentation ¢, we define a phrase dependency tree as a function
Ty @ [n'] = {0} U [n'] where T4 (i) is the index of the parent of phrase ¢;. If T4, (i) = 0, we
say phrase ¢; is the root of the phrase dependency tree; we require there to be exactly
one root phrase. As with dependency trees, T4 cannot have cycles.®> To distinguish
phrase dependency trees from the ordinary dependency trees defined in Section 2.3,
we will sometimes refer to the latter as “lexical dependency trees.”

Phrase dependency trees have also been used by Wu et al. (2009) to extract features
for opinion mining and a similar formalism was used previously for machine translation
by Hunter and Resnik (2010). Phrase dependencies allow us to capture phenomena like
local reordering and idiomatic translations within each phrase as well as longer-distance
relationships among the phrases in a sentence.

3.2 Quasi-Synchronous Phrase Dependency Translation

Let X denote the set of all strings in a source language and, for a particularx € X, let ),
denote the set of its possible translations (correct and incorrect) in the target language.
Given a sentence x and its lexical dependency tree T,, we formulate the translation
problem as finding the target sentence y*, the phrase segmentation 7* of x, the phrase
segmentation ¢” of y*, the phrase dependency tree Tj, on the target phrases ¢*, and the
one-to-one phrase alignment b* such that

<y*/7-[*/ ¢*/T$/b*> - argmax e : h(xr Tx/y/ 7T, d)/ Td)rb) (1)
<y/7Tr¢IT¢/b>

where h is a vector of feature functions and 0 is a vector of feature weights. The source-
language dependency parse T, is optional and can be omitted if no source dependency
parser is available. If T, is provided, we include tree-to-tree configurational features
from QG, which are described in Section 5.3. Hence we call the model defined in
Equation (1) a quasi-synchronous phrase dependency (QPD) translation model.

Our model extends the phrase-based translation model of Koehn, Och, and Marcu
(2003). The phrase segmentation variables ¢ and the one-to-one phrase alignment b :
[n'] — [n'] are taken directly from phrase-based translation. For all i € [n'], if b(i) = j,
then 7; is a subvector of x and ¢; is a subvector of y. If T, is not given and the features
ignore 14, then the remaining variables (x, y, 7, ¢, and b) are defined in the same way
as in phrase-based models.

Computational tractability requires that the feature functions h decompose across
“parts” of the output structures in the model. The feature functions that look only at
the phrase-based variables (x, ¥, 7, ¢, and b) are identical to the features used in the
Moses phrase-based system (Koehn et al. 2007), so they decompose in the same way
as in Moses.* For clarity, we partition the features and weights into two parts, namely,
0 =(0',0") and h = (W',h"), where 0’ are the weights for the phrase-based features k'

3 Further, we restrict our attention to projective phrase dependency trees in this article. We conjecture that
non-projective trees may be a better fit for translation modeling (Carreras and Collins 2009; Galley and
Manning 2009), particularly for certain language pairs, but we leave their exploration for future work.

4 A more detailed discussion of how the Moses features decompose can be found in Gimpel (2012).
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and 0" are the weights for the QPD features h”’. So we rewrite the right-hand side of
Equation (1) as the following:

argmax 0’ -h'(x,y, 7 &,b) + 0" -h"(x, 10, y, 7, &, 74, b) 2)
<y/7t/¢/’f¢ ,b>

Furthermore, we assume an additive decomposition across individual phrase depen-
dencies in the phrase dependency tree T4, allowing us to rewrite Equation (2) as

argmax 0’ -h'(x,y,7, ¢,b)
ymd, e b)

/

+ 307 f T, i, Ty (1), by Dy 1), D ), BTy (D), Ty, Ty i) (3)

i=1

where we introduce new notation f to represent the feature vector that operates on a
single phrase dependency at a time in the “arc-factored” decomposition of h”. Each
feature in f can look at the entirety of x and T, because they are inputs, but can only
look at a single target-side phrase dependency (¢;, ¢, ;) at a time (along with their
aligned source phrases 7,;) and 7t () and the indices).

Example. Figure 5 shows an example. The inputs to the model are a segmented Chi-
nese sentence and its lexical dependency tree. We used the Stanford Chinese word
segmenter (Chang, Galley, and Manning 2008) to segment the Chinese data and the
Stanford parser (Levy and Manning 2003) to get Chinese dependency trees. The outputs

. i\ X
s [z [ 2] [wxi] [eds 2] €] [F4] B

$ [annan][will][hold talks][with][the united states]|, russia and |[the european union[to discuss|[the middle east|[situation]|

references: annan to hold talks with us, russia and eu over situation in middle east
annan will discuss middle east situation with u.s., russia and european union
annan to discuss mideast situation with us , russia and eu
annan to meeting the us, russia and eu to discuss middle east crisis

Figure 5

Example output of our model for Chinese—English translation. The word-segmented Chinese
sentence and dependency tree are inputs. Our model’s outputs include the English translation,
phrase segmentations for each sentence (a box surrounds each phrase), a one-to-one alignment
between the English and Chinese phrases, and a projective dependency tree on the English
phrases. Note that the Chinese dependency tree is on words whereas the English dependency
tree is on phrases.
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of the model include a segmentation of the Chinese sentence into phrases, the English
translation, its segmentation into phrases, a projective dependency tree on the English
phrases, and a one-to-one alignment between the English phrases and Chinese phrases.
Four reference translations are also shown. In this example, the model correctly moved
the phrase hold talks and also noted its connection to to discuss by making the latter a
phrasal dependent.

4. Rule Extraction

In typical statistical machine translation (SMT) models, the space of allowable trans-
lations is constrained by a set of rules. Informally, a rule consumes part of the input
text and emits text in the output language. Building an SMT system typically requires
collecting a massive set of rules from parallel text, a process called rule extraction.

For phrase-based translation, these rules are phrase pairs and the translation space
is constrained by the phrase pairs in the phrase table.” In our model, even though
we have additional structure (i.e., the phrase dependency tree 14), we do not want
to enforce any additional constraints on the search space. That is, the space of valid
translations is still constrained solely by a standard phrase table. We allow Ty, to be
any projective phrase dependency tree on ¢, so the structure of T4, merely affects how
translations are scored, not what translations are permitted. We made this decision
because we did not want to reduce the coverage of phrase-based models, which is one
of their strengths. Rather, we wanted to better score their translations.®

So, even though our phrase dependency rules do not consume parts of the input,
we still speak in terms of “rule extraction” because our procedure is similar to rule
extraction in other systems and we define feature functions on our rules in a standard
way. In particular, we use the extracted rule instances to compute relative frequency
estimates for many of the features presented in Section 5.

The rest of this section is organized as follows. In Section 4.1 we describe how we
extract rules that only look at target-side words and syntactic structure. In Section 4.2
we extract rules that also look at the source sentence, but not its syntax. (Although our
system uses unlexicalized features based on source-side syntax, they do not derive from
rules; we turn to features in Section 5). This lets us avoid the computational expense of
parsing the source side of the parallel training corpus.

4.1 Target-Tree Rules

We first extract rules that only consider the target side: y, ¢, and t4,. These rules can be
used as the basis for “dependency language model” features (Shen, Xu, and Weischedel
2008; Galley and Manning 2009; Zhang 2009), though unlike previous work, our features
model both the phrase segmentation and dependency structure. Typically, these sorts
of features are relative frequencies from a corpus parsed using a supervised parser.
However, there do not currently exist treebanks with annotated phrase dependency

5 It is common to add “identity” phrase pairs for unknown words to allow them to pass through
untranslated.

6 This strategy can also lead to limitations. Because we do not expand the search space beyond what is
licensed by the phrase table, we are limited by the ability of the underlying phrase-based model to
provide us with a good search space.
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trees. Our solution is to use a standard lexical dependency parser and extract phrase
dependencies using bilingual information.” Essentially, we combine phrases from the
standard phrase extraction pipeline with selected lexical dependencies from the output
of a dependency parser.

We first give an overview of our approach and then describe it more formally. We
begin by obtaining word alignments and extracting phrase pairs using the standard
heuristic approach of Koehn, Och, and Marcu (2003). We then parse the target sentence
with a projective dependency parser to obtain a projective dependency tree T, for a
sentence y. Note that T, is a tree on words, not phrases (cf. T¢,). For each pair of target-
side phrases in the phrase pairs from phrase extraction, we extract a phrase dependency
(along with its direction) if the phrases do not overlap and there is at least one lexical
dependency between them. If there is only a dependency in one direction, we extract
a single phrase dependency with that direction. If there are lexical dependencies in
both directions, we extract a phrase dependency only for the single longest lexical
dependency, and in its direction. Because we use a projective dependency parser, the
longest lexical dependency between two phrases is guaranteed to be unique. If a phrase
contains a root word in T, we extract a phrase dependency with the wall symbol as
its head.

We now present the procedure more formally. Given word-aligned sentence pairs,
we extract phrase pairs that are p-consistent with (i.e., do not violate) the word align-
ments. Let R denote a relation between the two sets [n] and [m], where n = |x| and
m = |y|. If a pair (i,j) belongs to R for some i € [n] and j € [m], then we say that x; is
aligned to y;. We define new notation R here instead of using b because R allows many-

to-many word alignments, which are typically used for phrase extraction.® A phrase
pair (¥}, y.) is p-consistent with R if, for all u such that i < u < j, and all v such that (u, v)
belongs to R, it is the case that k < v < [. So far this is identical to the phrase extraction
pipeline used in Moses.

Given word alignments R and a dependency tree T, on y, we extract (target-side)
phrase dependencies. We say a phrase dependency (), y.) with y. as the parent phrase

is d-consistent with T, and R if:
1. Hxéi,xfg, such that (xi:,yb and (x,l{,/, y.) are p-consistent with R
2. yﬁandyidonotoverlap: 1<i<j<k<I<mV(A<k<I<i<j<m)
3. thelongest lexical dependency from yg toy! is longer than the longest from

/
toy;: max Ty(u) —u| > max T,(0) —v
i oY, “ﬁiS“SfrkSTy(WSl' y() = v:kgvg,isw(wéil y(©) —

The final condition also implies that there is a lexical dependency from a word in yﬁ toa
word in yi: Ju,i <u <j,such thatk < Ty(u) <l

7 Other ways of getting phrase dependencies are possible. For example, for a monolingual task, Wu et al.
(2009) used a shallow parser to convert lexical dependencies from a dependency parser into phrase
dependencies.

8 Many-to-many word alignments can be obtained from certain alignment models or, more frequently, by
using heuristics to combine alignments from one-to-many and many-to-one alignments (Koehn, Och, and
Marcu 2003).
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We also need to extract root phrase dependencies. We say a root phrase dependency
(y.,$) is d-consistent with Ty and R if:

1. Hxi,, such that (x},,y}) is p-consistent with R
2. Ju,i <u < j, such that Ty(u) =0

We extract all phrase dependencies that are d-consistent with the word alignments
and target-side lexical dependency trees. We note that while extracting phrase depen-
dencies we never explicitly commit to any single phrase dependency tree for a target
sentence. Rather, we extract phrase dependencies from all phrase dependency trees
compatible with the word alignments and the lexical dependency tree. Thus we treat
phrase dependency trees analogously to phrase segmentations in phrase extraction.

When actually extracting phrase dependencies, we record additional information
from the sentence pairs in which we found them. Specifically, for d-consistent phrase

dependencies (y},y,) (where y!. is the parent), we extract tuples of the following form:

W Yho Yu Yy, 1 [j < K) (4)

where [ [P] is the indicator function that returns 1 if P evaluates to true and 0 otherwise.
The index u™ is chosen to make (y,+, ¥, (u*)) the longest lexical dependency within the
phrase dependency:
ut = argmax |1, (u) — ul (5)
wi<u<jk<Ty(u)<I

This lexical dependency is recorded for use in back-off features, analogous to the lexical
weighting in phrase-based models. The fifth field in Equation (4) holds the direction of
the phrase dependency, which is also the direction of the longest lexical dependency.
Root phrase dependencies use k = I = 0 in the parent phrase and designate $ as y. The
direction of root phrase dependencies is inconsequential and can remain as I [j < k|.

4.1.1 Examples. What do typical phrase dependencies look like? Tables 3 and 4
show some of the most frequent examples of root phrases and parent-child phrase
dependencies extracted by this technique on our German-English (DE—EN) corpus.
The English side of the parallel corpus was parsed using TurboParser (Martins et al.
2010). Naturally, there are many phrase dependencies with a single word in each
phrase, but because these are very similar to lists of frequent lexical dependencies in a
parsed corpus, we have only shown dependencies with phrases containing more than
one word.

Root phrases (Table 3) frequently contain a subject along with a verb (it is, i would
like, etc.), though the lexical root is typically a verb or auxiliary. These are examples of
how we can get syntactic information for phrases that typically would not correspond
to constituents in phrase structure trees.

Table 4 shows frequent phrase dependencies from the same corpus; because this
corpus is mostly European Parliamentary proceedings, certain formulaic and domain-
specific phrases appear with large counts. When phrases attach to each other, they
typically behave like their heads. For example, in the phrase dependency of the<—union,
the word union is the child phrase because of the is behaving like of. There is likely also a
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Table 3

Top 60 most frequent root phrases in DE—EN data with at least two words, shown with their
counts. Shown in bold are the actual root words in the lexical dependency trees from which these
phrases were extracted; these are extracted along with the phrases and used for back-off features.

35,265 itis 6,210 1ithink 4,843 would be 2918 thank you
13,751 thisis 6,115 is that 4289 we will 2,816 itwill
12,763 isa 6,105 isnot 4262 ibelieve that 2,788 isto
11,831 we have 6,019 ,itis 4,018 isalso 2,737 itisa
11,551 would like 5975 believe that 3,910 thatis why 2,736 ithas
11,245 we must 5,818 will be 3,838 iwouldliketo 2,730 they are
11,243  is the 5,706 we need 3,775 would like to 2,611 we can
11,015 iwouldlike 5,628 there are 3,505 hope that 2,580 1ithink that
10,008 thereis 5,495 should like 3,427 isan 2,551 iwill
8,983 iam 5,453 ishouldlike 3,239 ,iwould like 2,483 does not
8,019 we are 5227 ihope 3,130 ihope that 2,482  debate is
7,722  thatis 5150 ,is 3,101 need to 2,445 ican
6,883 iwould 5,110 we should 3,059 itwas 2,438 want to
6,443 ihave 5,010 has been 3,021 have been 2,416 mustbe
6,328 1ibelieve 4917 donot 2,937  think that 2,405 thisisa

dependency from the to union whenever the longer phrase dependency is extracted, but
due to our practice of following the longest lexical dependency in deciding the direction,
of <—union is favored over the—union.

We note that even though these phrase dependencies only contain words from the
target language (English), the presence and counts of the phrase dependencies will

Table 4

Most frequent phrase dependencies in DE—EN data, shown with their counts and attachment
directions. Child phrases point to their parents. To focus on interesting phrase dependencies,
we only show those in which one phrase has at least two tokens and neither phrase is entirely
punctuation. The words forming the longest lexical dependency in each extracted phrase
dependency are shown in bold; these are used for back-off features.

30,064 mr — president, 4582 ibelieve + that

19,931 the — european union 4516 ,which «is

18,819  the european — union 4347  that < will be

12,318 i — would like 4,297  the fact < that

11,990 the — member states 4,289 itis < important
8,169 itis <« that 4,232 one < of the
7,779  the — european parliament 4,215 of the < commission
7,762 madam — president, 3,932 itis < not
7,448  the european — parliament 3,793 i — would like to
6,897  of the + union 3,761 in the + union
6,196 mr — president, i 3,752 in < member states
6,188 i — should like 3,673 president — ladies and gentlemen ,
6,087 that the < is 3,673 is < that the
5,478 i — believe that 3,667 president , — ladies and gentlemen ,
5,283  of the < european union 3,602 ihope < that
5,268 that — and that 3,531 we — need to
4,956  of the european < union 3,495 the — fact that
4902 ,and —is 3,494 that the — commission
4,798 the — united states 3,462 i— donot
4,607 ) mr — president, 3,446 ,the — commission
4592 ,it—is 3,421 that the + will

362



Gimpel and Smith Phrase Dependency MT with Quasi-Synchronous Tree-to-Tree Features

depend on the source language through the word alignments. For example, when of
the union is expressed in German, the preposition will often be dropped and the definite
article chosen to express genitive case. In our corpus, the most common translation of
the English union is the German noun union, which is feminine. The genitive feminine
definite article is der and, indeed, we find in the phrase table that the translation of of
the union with highest probability is der union.” Thus the dominance of the phrase depen-
dency of the<—union (6,897 occurrences) as compared with of <—the union (142 occurrences)
is caused by the German translation.

4.1.2 Word Clusters. When trying to compute feature functions for dependencies between
long phrases, we expect to face problems of data sparseness. Long phrases do not occur
very often, so pairs of long phrases will occur less often still. One way to address this is
to also extract rules that use part-of-speech (POS) tags in place of words. However, since
words can have multiple POS tags, we would then need to infer POS tags for the words
in order to determine which rule is applicable. So we instead use hard word clusters,
which provide a deterministic mapping from words to cluster identifiers. Furthermore,
certain types of hard word clusters, such as Brown clusters (Brown et al. 1992), have
been shown to correspond well to POS tag categories (Christodoulopoulos, Goldwater,
and Steedman 2010). We chose Brown clusters for this reason.

Brown clustering uses a bigram hidden Markov model (HMM) in which states
are hard cluster labels and observations are words. The emission distributions are
constrained such that each word has a nonzero emission probability from at most
one cluster label. Clusters can be obtained efficiently through a greedy algorithm that
approximately maximizes the HMM'’s log-likelihood by alternately proposing new
clusters and merging existing ones. This procedure actually produces a hierarchical
clustering, but we discard the hierarchy information and simply use unique IDs for
each cluster. The number of clusters is specified as an input to the algorithm; we used
100 clusters for all experiments in this article. Additional details on cluster generation
for our data sets are provided in Appendix B.

Given Brown clusters, we extract tuples like those above in which we replace each
word by its Brown cluster ID:

(clust@), clust(yl), clust(y,-), clust(y, =), 1 [j < k]) (6)

where clust() is a function that takes a sequence of words and replaces each by
its Brown cluster ID. The index u* is defined as in Equation (5). Examples of fre-
quent Brown cluster phrase dependencies, including root dependencies, are shown in
Table 5.

4.2 String-to-Tree Rules

Our simplest probability features use the information in these tuples, but we also extract
tuples with more information to support richer features. In particular, we record aligned

9 The phrase table probability of the German der union given the English of the union is 0.64. The next
most-probable German phrase is der europiischen union, with probability 0.03.
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Table 5

Most frequent Brown cluster phrase dependencies extracted from DE—EN data, shown with
their counts. As in Table 4, we only show those in which one phrase has at least two tokens and
neither phrase is entirely punctuation. Each cluster is shown as a set of words large enough to
cover 95% of the token counts in the cluster, up to a maximum of four words. It is characteristic
of Brown clustering that very frequent tokens (e.g., function words) often receive their own
clusters.

47,137  {mr, mrs, madam, mr.} — {president, president-in-office, van, barroso} ,

35,656 $<«itis

29,775  the — {time, way, right, question} of

28,199  the — {european, soviet} {union, parliament, globalisation}

27,373 $ i {say, believe, think, know}

26,480 the — {state, development, group, security} of

26,388  the {european, soviet} — {union, parliament, globalisation}

24,726  {one, part, number, behalf} < of the

22,536  of the « {people, countries, members, citizens}

21,449  {state, development, group, security} {and, or} — {state, development, group, security}
21,007  $ + {we, they} {should, must, cannot, shall}

20,933  {state, development, group, security} — {and, or} {state, development, group, security}
20,919  the — {one, part, number, behalf} of

20,897  of the + {report, committee, issue, agreement}

20,081 the — {economic, political, international, national} {policy, years, rights, market}

19,209  the — {report, committee, issue, agreement} of

18,535  {people, countries, members, citizens} < of the

18,523  $ < {say, believe, think, know} that

18,510  {time, way, right, question} < of the

18,232 the — {member, united} {states, nations}

18,157  {one, part, number, behalf} of <— {people, countries, members, citizens}

17,950  {people, countries, members, citizens} {and, or} — {people, countries, members, citizens}
17,643  {state, development, group, security} < of the

17,539  the — {people, countries, members, citizens} of

17,457  the — {economic, political, international, national} {state, development, group, security}
16,608  to {take, make, see, help} < {people, countries, members, citizens}

16,163  the {time, way, right, question} < of

15,517  the — {economic, political, international, national} {people, countries, members, citizens}
15,292 in the < {report, committee, issue, agreement}

15,257  a — {new, good, u.s., common} {report, committee, issue, agreement}

15,223  the {state, development, group, security} < of

15,217  {people, countries, members, citizens} — {and, or} {people, countries, members, citizens}
15,214  itis + {important, clear, necessary, concerned}

14,977 i — {say, believe, think, know} that

14,697  $ < is {important, clear, necessary, concerned}

14,582 i {say, believe, think, know} < that

14,399  {should, must, cannot, shall} < be {made, taken, put, set}

14,146  $ < thisis

14,089  a {new, good, u.s., common} — {report, committee, issue, agreement}

14,047  {europe, china, today, women} — {and, or} {europe, china, today, women}

13,599  {made, taken, put, set} < {by, from, into, between} the

13,190  the — {new, good, u.s., common} {report, committee, issue, agreement}

13,089  the — {new, good, u.s., common} {people, countries, members, citizens}

13,035 $ < {we, they} have

13,034  {economic, political, international, national} — {and, or} {economic, political, international,... }
13,013 $+«isa

12,713 $ < {need, want, needs, wish} to

12,399  $ <1 {say, believe, think, know} that

12,387  the — {time, way, right, question} of the

12,319 i — would {like, according, relating}

12,217  in the < {eu, world, government, country}

12,125  the — {economic, political, international, national} {report, committee, issue, agreement}
11,979  of + {economic, political, international, national} {state, development, group, security}
11,955  the {report, committee, issue, agreement} <— of

11,838  $ < {we, they} {are, were}

11,551  $ < would {like, according, relating}

11,537  the — {people, countries, members, citizens} of the
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source phrases and details about reordering and the presence of gaps between phrases.
That is, for d-consistent phrase dependencies (yi ,Yi), we extract tuples

Wy,

I[j<k],

IIfj<k] =1 <K]],

I[Gj+1=kv(I+1=10)],

I['+1=K)v ' +1=1)]) @)

for all #/,j,k', and I' such that the phrase pairs ( (xl ,,y/ and (xl,,y.) are p-consistent
with R, and such that x] does not overlap with xk, 10" Again, I[P] is the indicator
function that returns 1 if P evaluates to true and 0 otherwise. That i is, we include the
two target phrases, their aligned source phrases, the direction of the target attachment,
the orientation between the source and target phrases (whether the two target phrases
are in the same order as their aligned source phrases or swapped), whether a gap is
present between the two target phrases, and finally whether a gap is present between
the two source phrases. When yf( = $, all of the additional fields are irrelevant except
the aligned source phrase x;

We now note some examples of the phenomena that we can model with these richer
tuples. A common cause of reordering in German-to-English translation relates to verbs.
Figure 6 shows two examples of frequently extracted phrase dependencies that model
verb movement. Figure 6(a) gives an example of how German reorders the finite verb
to the end of a dependent clause, whereas English keeps it next to the subject. The
extracted rule, shown below the sentence pair, only applies when intervening words
appear on the German side and no intervening words appear on the English side. This
is indicated by the presence (absence) of an ellipsis on the German (English) side of the
rule.

Figure 6(b) shows an example of how German moves an infinitive (danken, “to
thank”) to the end of an independent clause when a modal verb (mdchte, “would like”)
is present. The ellipses on both sides indicate that other words must be present between
both the source and target phrase pairs. We note that this rule says nothing about what
fills the gap. In particular, the gap-filling material does not have to be translationally
equivalent, and indeed in the given sentence pair it is not. As opposed to rules in
hierarchical phrase-based models (Chiang 2005), which typically specify translationally
equivalent substructures, this rule simply models the reordering and long-distance
movement of the infinitive. Much prior work has found phrase pairs with gaps to
be useful for machine translation (Simard et al. 2005; Crego and Yvon 2009; Galley
and Manning 2010), and we extract tuples as in Equation (7) so that we can model
such structures, even though we do not directly model gap-filling like hierarchical
models and other models based on synchronous context-free grammar (Zollmann and
Venugopal 2006, inter alia).

10 This non-overlapping constraint is what differentiates these tuples from the target-tree rule tuples from
the previous section, which are extracted even when the source phrases overlap.
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(a) ich meine deshalb

eine frage der geeigneten methodik .

i think consequently a question of the appropriate methodologies .

(b) abschliefend mdchte ich herrn langen herzlich |f1'ir seinen | bericht | danken

Jooe

report,...

mr langen warmly

finally , mr president, i would like

|fiir seinen| |danken|

|t0 thank| |for his|

Figure 6

Examples of illustrative sentence pairs and frequently extracted rules that model verb
movement between German and English. An ellipsis indicates that there must be material
between the two phrases for the rule to apply. (a) Example of movement of the finite verb

to the end of a dependent clause. (b) Example of movement of an infinitive to the end of an
independent clause following a modal verb (mdchte, “‘would like”). Discussion of the features
used to score these string-to-tree rules is given in Section 5.2.

The tuples described here are used to compute all of the lexicalized phrase depen-
dency features in our model. We extract each tuple with a count of 1 each time it is
observed, aggregate the counts across all sentence pairs in the parallel corpus, and use
the counts to compute the statistical features we present in the next section. We also
have structural features that consider string-to-tree and tree-to-tree configurations, but
these do not require any rule extraction. In the next section we describe the full set of
features in our model.

5. Features

Our model extends the phrase-based translation model of Moses (Koehn et al. 2007), so
we include all of its features in our model. These include four phrase table probability
features, a phrase penalty feature, an n-gram language model, a distortion cost, six
lexicalized reordering features, and a word penalty feature. These features are contained
in k' in Equation (3), reproduced here:

argmax 0" -H(x,y,7 ¢,b)
ymd, T b)

+ Z 0" f(x, Te, i, Tg (i), &) by, (1), b(0), b(Tg (D), Ty, Ty ) (8)

i=1
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We now describe in detail the additional features f that are used to score phrase de-
pendency trees. Each operates on a single phrase dependency and takes the arguments
(x, Ty, c,d, b, &g, ', d', 7, my), which are, in order, the source sentence (x), the source
dependency tree (Ty), the target child phrase index (c), the target parent phrase index
(d), the target child phrase (¢.), the target parent phrase (¢,), the index of the source
phrase aligned to the target child (¢’), the index of the source phrase aligned to the
target parent (d’), the child-aligned source phrase (1), and the parent-aligned source
phrase (7).

Like the phrase probability features in Moses, many of our feature functions are
conditional probabilities computed using relative frequency estimation given the full
collection of extracted tuples. That is, for a tuple («x, 3), the conditional probability of
field o given field f3 is estimated as

PR 1 (. 4:3),
Pl B) = s~ ) ©)

where #{ (o, 3)} denotes the count of the tuple (e, ) in the multiset of extracted tuples.
We use the notation j in the following to indicate that relative frequency estimates are
being used.!!

5.1 Target-Tree Features

We first include features that only consider the target-side words and phrase depen-
dency tree; these are computed based on the rules extracted in Section 4.1. The first
feature is the sum of the scaled log-probabilities of each phrase dependency attachment
inTg:

¢

fpdep (x/ Ty, C, d/ d)C/ (bd/ C// d// Tt ﬂd’) = maXx (0/ C + log ﬁ((bc | (I)d/ dir(C/ d))) (10)

where dir(c, d) is defined

root ifd=20
dir(c,d) = S left  ifd >c¢ 11)
right otherwise

and returns the direction of the attachment for head index d and child index c, that is,
the direction in which the child resides; root indicates that phrase c is the root.
Although we use log-probabilities in this feature function, we add a constant C,
chosen to ensure the feature value is never negative. The reasoning here is that when-
ever we use a phrase dependency that we have observed in the training data, we
want to boost the score of the translation. If we used log-probabilities, each observed
dependency would incur a penalty. The max expression prevents unseen parent-child
phrase dependencies from causing the score to be negative infinity. Our motivation is
a desire for the features to prefer one derivation over another but not to rule out a
derivation completely if it merely happens to contain an unseen phrase dependency.

11 Note that, as is standard across many SMT models, all frequencies here are counts of extraction events.
They are not counts of derivation or translation events, since many competing rules may be extracted from
each training instance.
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Because we will use this same practice for all other probability features, we intro-
duce some shorthand for simplicity of presentation. We first redefine this feature:

fpdep (x, T, ¢, d, e, bg, ¢, d' 70, Tg) =

max (0, Cpdep + 108 &pdep (X, Ta, €, d, b, bg, ¢, d', 70er, 741)) (12)

where

8pdep & Tx, 6, d, &g, g, ¢, d T, ) = p(dc | by, dir(c, d)) (13)

In what follows, we will restrict our attention to defining the g-style functions for
probability features, and assume that there is always a corresponding f that has the same
subscript and takes the same inputs, as in Equation (12). Furthermore, when presenting
the remaining features, we will suppress the arguments of each for clarity; all take the
same arguments as fydep and gpdep-

We will assume C is chosen appropriately for each g based on the minimum log-
probability for the feature. For example,

Cpdep = 0.01 — ¢I)I/1qi)rl}rlogﬁ(d) | ¢/, 7) (14)

that is, the minimum log-probability is found, negated, and a small positive value
(0.01) is added to ensure the feature is greater than zero. This ensures that, if a phrase
dependency has been seen, its contribution is at least 0.01.

To counteract data sparseness, we include other features that are less specific than
$pdep- First, we include a version of this feature with words replaced by Brown clusters:

Spdep = P(clust(d,) | clust(dy), dir(c, d)) (15)

clust

We also include lexical weighting features similar to those used in phrase-based ma-
chine translation (Koehn, Och, and Marcu 2003). These use the longest lexical depen-
dencies extracted during rule extraction. First, for all (child, parent, direction) lexical
dependency tuples (y,1/, ) in the parsed target side of the parallel corpus, we estimate
conditional probabilities piex (v | ¥/, 7) using relative frequency estimation.

Then, assuming the given phrase dependency (¢., ¢,4) has longest child-parent
lexical dependency (y,y’) for direction dir(c, d), we include the feature:

8idep = Prex(y | y// dir(c, d)) (16)

We include an analogous feature with words replaced by Brown clusters. Different
instances of a phrase dependency may have different lexical dependencies extracted
with them. We only use the lexical weight for the most frequent, breaking ties by
choosing the lexical dependency that maximizes fiex(y | i/, 7), as was done similarly by
Koehn, Och, and Marcu (2003).

So far we described four features that consider y, ¢, and T4: one for phrase de-
pendencies, one for lexical dependencies, and the same two features computed on
a transformed version of the corpus in which each word is replaced by its Brown
cluster ID.
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5.2 String-to-Tree Features

We next discuss features that consider properties of the source sentence x, its phrase
segmentation 71, and the phrase alignment b, in addition toy, ¢, and t4,. However, these
features still do not depend on the source tree Ty, so they can be included even when a
parser for the source language is not available. We will discuss features that use T, in
Section 5.3.

These features are similar to the previously defined gpq4ep, but condition on addi-
tional pieces of structure. All features condition on direction. The first pair of features
condition on the source phrase (71./) aligned to the child phrase (¢,) in the target phrase

dependency ((b¢, Pg)):

8pdep = p(de | g, dir(c,d), 7o) 17)
child

8pdep = ﬁ((bc | CluSt((bd)/ dir(cl d), 7-CC,) (18)
child
clust

In the second feature, we condition on word clusters for the parent phrase ¢, but on
words in the aligned source phrase 7. Because Brown clusters often correspond to
syntactic clusters, even at times resembling part-of-speech tags (Christodoulopoulos,
Goldwater, and Steedman 2010), it did not seem logical to model translation probabili-
ties between source- and target-language word clusters. This is why we did not include
a feature like the above with word clusters for ¢, and 7t.,. Our use of these clusters is a
simple kind of backoff or smoothing that allows some sharing across specific phrases,
since statistics on phrase pairs are expected to be sparse.

The next set of features includes those that condition on the orientation between
the source- and target-side phrases. The ori function returns the orientation of the
aligned source phrases in a target phrase dependency attachment, namely, whether the
aligned source phrases are in the same order as the target phrases (“same”) or if they
are in the opposite order (“swap”):

root ifd=0
ori(c,d,c’,d’) = { same if dir(c,d) = dir(c/,d’) (19)
swap otherwise

Given this definition of ori, we define the following features that condition on orienta-
tion (in addition to other fields):

8pdep = p(dc | dg, dir(c,d), ori(c, d, c,d")) (20)
orient

Spdep = Plclust(dc) | clust(dy), dir(c,d), ori(c,d, ¢, d")) 21)
i

gp(f!ep - fj(d)c | (bd/ dil’(C, d)/ T, ori(c, d/ C// d/)) (22)
Srent

Spdep = P(bc | clust(dby), dir(c, d), 7, ori(c,d, ¢, d")) (23)
child
i
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where the last two features condition on the aligned child phrase 7./ in addition to the
direction and orientation.

We next give features that condition on the presence of gaps between the child and
parent target phrases and gaps between the aligned phrases on the source side. The
gap(c,d) function indicates whether there is a gap between the phrases indexed by ¢
and d:

root ifd=0
gap(c,d)=<{yes if|d—c|>1 (24)
no otherwise

Given this gap function, we define the following features:

Spdep = P(bc | b, dir(c,d), ori(c,d, c’,d"), gap(c,d), gap(c’,d")) (25)

orient
gap

Spdep = P(clust(d,) | clust(dy), dir(c,d), ori(c,d, c’,d"), gap(c,d), gap(c’,d"))  (26)
orient
gap
clust

All the features mentioned so far have the child phrase on the left-hand side of the
conditioning bar. We now present features that have both the child and parent phrases
on the left-hand side:

8pdep = ﬁ(d)m b4, dir(cl d) | T, Tcd’) (27)
pc

8pdep = p(de, ba, dir(c,d) | o, 7z, 01i(c, d, ,d) (28)
pc

orient

Spdep = P(Pe, Py, dir(c,d), gap(c,d) | s, 7y, ori(c, d, c’,d"), gap(c’,d")) (29)
pC

orient
gap

These last features score larger rules composed of two phrase pairs from the phrase
table. Including direction, orientation, and gaps enables us to model longer-distance re-
orderings; we showed some examples of such frequently extracted phrase dependencies
in Section 4.2.

In all, we introduced 11 features in this section, giving us a total of 15 so far. For
the feature ablation experiments in Section 7, we will partition these features into two
parts: We refer to the six features with subscript clust as CLUST and the other nine
as WORD.

5.2.1 String-to-Tree Configurations (CFG). We now present features that count instances of
local reordering configurations involving phrase dependencies. We refer to the features
described in this section and the next section as CFG. These features consider the target
segmentation ¢, the target phrase dependency tree T4, and the phrase alignment b,
but not the target words y or the source words x, segmentation 7, or dependency
tree T.
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Our first set of features only looks at configurations involving direction and orien-
tation. The first feature value is incremented if the child is to the left and the aligned
source-side phrases are in the same order:

fierr = 1 [dir(c,d) = left A ori(c,d, ¢/, d’) = same] (30)
same

Another feature fires if the aligned source phrases are in the opposite order:

fierr =1 [dir(c,d) = left A ori(c,d, ¢/, d’) = swap| (31)
swap

Analogous features are used when the child is to the right of the parent:

frignt = L[dir(c,d) = right A ori(c,d,c’,d") = same| (32)
same

fright = I [dir(c,d) = right A ori(c, d, c’,d") = swap] (33)
Swap

These four configuration features are shown in order in the leftmost column in
Figure 7. They are agnostic as to the presence of gaps between the two target phrases
and between the two source phrases. We include 16 features that add gap information
to these four coarse configurations, as shown in the remainder of the table. Four gap
configurations are possible, constructed from one binary variable indicating the pres-
ence or absence of a source gap paired with a binary variable indicating the presence or
absence of a target gap. We replicate the four coarse features for each gap configuration,
giving us a total of 20 string-to-tree configuration features, all shown in Figure 7.

coarse configurations
(only direction no gaps source gap target gap
and orientation)

source and
target gaps

Figure 7
String-to-tree configurations; each is associated with a feature that counts its occurrences in
a derivation.

371



Computational Linguistics Volume 40, Number 2

5.2.2 Dependency Length Features. Related to the string-to-tree configurations are features
that score source- and target-side lengths (i.e., number of words crossed) of target-side
phrase dependencies. These lengths can also be useful for hard constraints to speed up
inference; we return to this in Section 6. These features and constraints are similar to
those used in vine grammar (Eisner and Smith 2005).

We first include a feature that counts the number of source-side words between the
aligned source phrases in each attachment in t,. Letting 7. = x] and 7y = xfc,

ff,ﬁ%e =1[dir(c,d’) = left] (K — (' + 1)) + 1 [dir(c/,d’) = right] (i’ — (' + 1)) (34)

Although this feature requires the segmentation of the source sentence in order to
determine the number of source words crossed, the actual identities of those words are
not needed, so the feature does not depend on x. We would expect this feature’s weight
to be negative for most language pairs, encouraging closeness in the source sentence of
phrases aligned to each phrase dependency in the target.

We would like to use a similar feature for target-side dependency lengths, for

example, where ¢, = yi and ¢y = xf(:

I[dir(c,d) = left] (k — (j + 1)) + I[dir(c,d) = right] (i — ( + 1)) (35)

However, such a feature could require looking at the entire phrase segmentation being
generated to score a single phrase dependency (e.g., if T4, (1) = #’). Using this feature
would prevent us from being able to use dynamic programming for decoding (we
discuss our approach to decoding in Section 6). Instead, we use a feature that considers
bounds on the number of target words crossed by each phrase dependency. In particular,
the feature sums the maximum number of target words that could be crossed by a
particular phrase dependency. We will discuss how this feature is computed when we
discuss decoding in Section 6.

We use CFG to refer to the set containing the 20 string-to-tree configuration features
and the 2 string-to-tree dependency length features. Adding these 22 features to the 15
from Sections 5.1 and 5.2 gives us 37 QPD features so far.

5.3 Tree-to-Tree Features (TREETOTREE)

The last two sets of features consider the source-side dependency tree T, in addition
tox, 7, b, y, ¢, and T4. These are the only features that use source and target syntax
simultaneously. We use TREETOTREE to refer to these features.

5.3.1 Quasi-Synchronous Tree-to-Tree Configurations. We begin with features based on
the quasi-synchronous configurations from Smith and Eisner (2006), shown for lexical
dependency trees in Figure 8. For a child-parent dependency on the target side, these
configurations consider the relationship between the aligned source words. For exam-
ple, if the aligned source words form a child-parent dependency in the source tree, then
we have a “parent-child” configuration. There is also an “other” category for those that
do not fit any of the named categories.

However, for our model we need to score configurations involving phrase depen-
dencies. That is, for a child-parent phrase dependency (¢, ¢,) in T4, we consider the
relationship between 7., and 7y, the source-side phrases to which ¢, and ¢, align.
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root-root parent-child child-parent same-node
$/—\ x/—\‘x x/—\x X;

o X L X L X

| | LN

$ .o Vi e Vi Vi e Vi Lo
x_/ N N

siblings grandparent-grandchild c-command
X N /AR TR 2
X) e X; .../)g/ xh\ X; .../x/ xixh xi)x/.

Vi o Vi Vi e Vi Vi e Vi
Figure 8

Quasi-synchronous tree-to-tree configurations from Smith and Eisner (2006). There are
additional configurations involving NULL alignments and an “other” category for those that do
not fit into any of the named categories.

There are several options for computing configuration features for our model, since we
use a phrase dependency tree for the target sentence, a lexical dependency tree for the
source sentence, and a phrase alignment.

We use a heuristic approach. First we find the full set of configurations that are
present between any word in one source phrase and any word in the other source
phrase. That is, given a pair of source words, one with index j in source phrase d’
and the other with index k in source phrase ¢/, we have a parent-child configura-
tion if T,(k) = j; if T,(j) =k, a child-parent configuration is present. In order for the
grandparent-grandchild configuration to be present, the intervening parent word must
be outside both phrases. For sibling configurations, the shared parent must also be
outside both phrases. In lieu of standard (non-sibling) c-command relationships, we
define a modified c-command category as follows. We first find the highest ancestors of
words j and k that are still in their respective phrases. Of these two ancestors, if neither
is an ancestor of the other and if they are not siblings, then the “c-command” feature
fires.

After obtaining a list of all configurations present for each pair of words (j, k), we fire
the feature for the single configuration corresponding to the maximum distance |j — k|.
If no configurations are present between any pair of words, the “other” feature fires.
Therefore, only one configuration feature fires for each extracted phrase dependency
attachment.

For the six configurations other than “root-root,” we actually include multiple
instances of each configuration feature: one set includes direction (6 x 2 = 12 features),
another set includes orientation (12 features), and the final set includes both source- and
target-side gap information (24 features). There are therefore 49 features in this category
(including the single “root-root” feature).

5.3.2 Tree-to-Tree Dependency Path Length Features. Finally, we include features that con-
sider the dependency path length between the source phrases aligned to the target
phrases in each phrase dependency. The features in Section 5.2.2 considered distance
along the source sentence (the number of words crossed). Now we add features that
consider distance along the source tree (the number of lexical dependency arcs crossed).
We expect the learned weights for these features to encourage short dependency path
lengths on the source side.
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We first include a feature that sums, for each target phrase i, the inverse of the
minimum undirected path length between each word in 7./ = xl, and each word in
1
Ty = xk,

i

f uneir = Zkzlg mmUnderathLen(x Ty, J k)
l/ !

(36)

where minUndirPathLen(x, Ty, j, k) returns the shortest undirected dependency path
length from x; to x; in Ty. The shortest undirected path length is defined as the number
of dependency arcs that must be crossed to travel from one word to the other along the
arcs in Ty.

Assuming an analogous function minDirPathLen(x, Ty, j, k) that computes the mini-
mum directed dependency path length, we also include the following feature:

i

f ggt Ekz: mlerPathLen(x Ty, J, k)

(37)

If there is no directed path from x; to x;, minDirPathLen returns oc.
Adding these two features gives us a total of 88 QPD features. Along with the 14
phrase-based features there are a total of 102 features in our model.

6. Decoding

For our model, decoding consists of solving Equation (1)—that is, finding the highest-
scoring tuple (y, 7, , T¢,, b) for an input sentence x and its parse 7. This is a challenging
search problem, because it is at least as hard as the search problem for phrase-based
models, which is intractable (Koehn, Och, and Marcu 2003). Because of this we use a
coarse-to-fine strategy for decoding (Charniak and Johnson 2005; Petrov 2009). Coarse-
to-fine inference is a general term for procedures that make two (or more) passes over
the search space, pruning the space with each pass. Typically, feature complexity is
increased in each pass, as richer features can often be computed more easily in the
smaller search space.

One simple coarse-to-fine procedure for our model would start by generating a
k-best list of derivations using a phrase-based decoder. This “coarse model” would
account for all of the phrase-based features. Then we could parse each derivation to
incorporate the QPD features and rerank the k-best list with the modified scores; this is
the “fine model.” The advantage of this approach is its simplicity, but other research has
shown that k-best lists for structured prediction tend to have very little diversity (Huang
2008), and we expect even less diversity in cases like machine translation where latent
variables are almost always present. Instead, we generate a phrase lattice (Ueffing, Och,
and Ney 2002) in a coarse pass and perform lattice dependency parsing as the fine pass.

The remainder of this section is laid out as follows. We begin by reviewing phrase
lattices in Section 6.1. In Section 6.2 we present our basic lattice dependency parsing
algorithm. We give three ways to speed it up in Section 6.3; one enables a more judicious
search without affecting the search space, and the other two prune the search space
in different ways. In Section 6.4, we discuss how decoding affects learning of the
feature weights 0, and we describe the structured support vector machine reranking
formulation from Yadollahpour, Batra, and Shakhnarovich (2013) that we use. We close
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source: konnten sie es iibersetzen ?

reference: could you translate it ? 00000
...you
00000 sie es | {ibersetzen / you translate it
... could ]

! {ibersetzen /

konnten / could L sie / you A translate

konnten sie / could you es iibersetzen / translate it

iibersetzen /
konnten / couldk translate

»

es / it

Q0000
... could

Figure 9

Example phrase lattice for the source sentence shown. Each node contains an n-gram history for
computing n-gram language model features and a coverage vector representing the source
words that have been translated so far. For clarity, the n-gram history (n = 2) and coverage
vector are only shown for three nodes.

in Section 6.5 with a brief discussion of how this decoder differs from earlier versions
published in Gimpel and Smith (2009b, 2011).

6.1 Phrase Lattices

The most common decoding strategy for phrase-based models is to use beam
search (Koehn, Och, and Marcu 2003). The search is performed by choosing phrase
pairs from the phrase table and applying them to translate source phrases into the target
language. Coverage vectors are maintained during decoding to track which words have
been translated so far. They are used to enforce the constraint that each source word
appear in exactly one phrase pair.

It is often convenient to build a packed representation of the (pruned) search space
explored during decoding. For phrase-based models, this representation takes the form
of a phrase lattice (Ueffing, Och, and Ney 2002), a finite-state acceptor in which each
path corresponds to a derivation. Figure 9 shows an example. The source sentence and
a reference translation are shown at the top of the figure. Each path from the start node
on the left to a final node corresponds to a complete output in the model’s output space.
Each lattice edge corresponds to a phrase pair used in the output. All paths leading to a
given node in the lattice must agree in the set of source words that have been translated
thus far. So, every node in the lattice is annotated with the coverage vector of all paths
that end there. This is shown for three of the nodes in the figure.

The lattice is constructed such that all features in the model are locally computable
on individual lattice edges. To make n-gram language model features local, all paths
leading to a given node must end in the same n —1 words.!? In the example, there
are two nodes with equivalent coverage vectors that are separated because they end in

12 In practice, this state replication can be reduced by exploiting sparsity in the language model (Li and
Khudanpur 2008).
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different words (you vs. could). Decoders like Moses can output phrase lattices like these;
the lattice simply encodes the paths explored during the beam search.

6.2 Lattice Dependency Parsing

Each path in a phrase lattice corresponds to a tuple (y, 7, ¢, b) for the input x. To also
maximize over Tg, we perform lattice dependency parsing, which allows us to search
over the space of tuples (y, 7, &,b, T4). Lattice parsing jointly maximizes over paths
through a lattice and parse structures on those paths.

Because we use an arc-factored phrase dependency model (Equation (3)), the lattice
dependency parsing algorithm we use is a straightforward generalization of the arc-
factored dynamic programming algorithm from Eisner (1996). The algorithm is shown
in Figure 10. It is shown as a set of recursive equations in which shapes are used in
place of function names and shape indices are used in place of function arguments.
The equations ground out in functions edgeScore and arcScore that score individual
lattice edges and phrase dependency arcs, respectively.!® A semiring-generic format is
used; for decoding, the semiring “plus” operator (®) would be defined as max and the
semiring “times” operator (®) would be defined as +. The entry point when executing
the algorithm is to build GOAL, which in turn requires building the other structures.

We use a simple top—-down implementation with memoization. Our style of spec-
ifying dynamic programming algorithms is similar to weighted deduction, but ad-
ditionally specifies indices and ranges of iteration, which are useful for a top—down
implementation. Top—down dynamic programming avoids the overhead of maintaining
a priority queue that is required by bottom—up agenda algorithms (Nederhof 2003;
Eisner, Goldlust, and Smith 2005).

The disadvantage of top—down dynamic programming is that wasted work can be
done; structures can be built that are never used in any full parse. This problem appears
when parsing with context-free grammars, and so the CKY algorithm works bottom—
up, starting with the smallest constituents and incrementally building larger ones. This
is because context-free grammars may contain rules with only non-terminals. Top—
down execution may consider the application of such rules in sequence, producing long
derivations of non-terminals that never “ground out” in any symbols in the string. A
dependency model, on the other hand, always works directly on words when building
items, so a top-down implementation can avoid wasted effort.

However, this situation changes with lattice dependency parsing. It is possible for
a top—down lattice dependency parser to consider some dependencies that are never
used in a full parse. We address this issue in the next section.

6.3 Computational Complexity and Speeding Up Decoding

The lattice parsing algorithm requires O(E?V) time and O(E? + VE) space, where E
is the number of edges in the lattice and V is the number of nodes. Typical phrase
lattices might easily contain tens of thousands of nodes and edges, making exact search
prohibitively expensive for all but the smallest lattices. So we use three techniques to
speed up decoding: (1) avoiding construction of items that are inconsequential (i.e.,

13 To prevent confusion, we use the term edge to refer to a phrase lattice edge and arc to refer to a
dependency attachment in a dependency tree.
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Figure 10

Lattice dependency parsing using an arc-factored dependency model. Lone indices like p and
i denote nodes in the lattice, and an ordered pair like (i, j) denotes the lattice edge from node i
to node j. START is the single start node in the lattice and FINAL is a set of final nodes. We use
edgeScore(i, j) to denote the model score of crossing lattice edge (i, j), which only includes

the phrase-based features h’. We use arcScore((i, j), (I, m)) to denote the score of building the
dependency arc from lattice edge (i, j) to its parent (I, m); arcScore only includes the QPD
features h”.

that could never be contained in a full parse), (2) pruning the lattices, and (3) limiting
the maximum length of a phrase dependency.

6.3.1 Avoiding Construction of Inconsequential Items. By design, our phrase lattices impose
several types of natural constraints on allowable dependency arcs. For example, each
node in the phrase lattice is annotated with a coverage vector—a bit vector indicating
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which words in the source sentence have been translated—which implies a topological
ordering of the nodes. Once a word in the source sentence has been covered (i.e.,
translated), it cannot be uncovered later. This can tell us whether certain nodes are
unreachable from other nodes. For example, for a three-word source sentence, there
cannot exist a directed path from a node with coverage vector (0,1,0) to a node with
coverage vector (0,0,1). However, there may or may not be a path from a node with
vector (0,1, 0) to one with (0,1, 1).

Generally, we need an efficient way to determine, for any two nodes in the lattice,
whether there exists a path from one to the other. If there is no path, we can avoid
wasting time figuring out the best way to build items that would end at the two nodes.
To discover this, we use an all-pairs shortest paths algorithm to find the score of the best
path between each pair of nodes in the lattice. The algorithm also tells us whether each
edge is reachable from each other edge, allowing us to avoid drawing dependencies
that will never ground out in a lattice path. We use the Floyd-Warshall algorithm (Floyd
1962). This adds some initial overhead to decoding, but in preliminary experiments we
found that it saves more time than it costs. We actually run a modified version of the
algorithm that computes the length (in words) of the longest path between any two
nodes. If the maximum length between two nodes is oo, the nodes are unreachable from
each other. Before we build an item in the algorithm in Figure 10, we check reachability
of the item endpoints and only proceed if one can reach the other.

We modified the algorithm to output maximum lengths because we use the max-
imum lengths to compute the target-side vine grammar features and constraints, as
mentioned in Section 5.2.2. In particular we use a feature f:fgite that is a target-side
analog to ff]ri% . but using the Floyd-Warshall maximum path lengﬁls in place of the actual
lengths.

6.3.2 Lattice Pruning. To reduce phrase lattice sizes, we prune lattice edges using
forward-backward pruning (Sixtus and Ortmanns 1999), which has also been used by
Tromble et al. (2008). This pruning method computes the max-marginal for each lattice
edge, which is the score of the best full path that uses that edge, then prunes edges
whose max-marginal is below a certain fraction of the best path score in the lattice. Max-
marginals have been used for other coarse-to-fine learning frameworks (Weiss, Sapp,
and Taskar 2010) and offer the advantage that the best path in the lattice is preserved
during pruning.

We only use the score contribution from the phrase-based features when computing
these max-marginals. For each lattice, we use a grid search to find the most liberal
threshold that leaves fewer than 2,000 edges in the resulting lattice. As complexity is
quadratic in E, forcing E to be less than 2,000 improves runtime substantially. After
pruning, the lattices contain more than 10'® paths on average and oracle BLEU scores
are typically 10-15 points higher than the model-best paths.

6.3.3 Maximum Dependency Lengths. We can easily adapt our vine grammar features
to function as hard constraints on allowable dependency trees, as originally done by
Eisner and Smith (2005) for monolingual dependency parsing. We use two simple
constraints on the maximum length of a phrase dependency used during translation.
One constrains the number of source words that are crossed from one aligned source
phrase to the other aligned source phrase by the phrase dependency. The other con-
strains the maximum number of target-side words crossed by any path from one
target phrase to the other target phrase in a phrase dependency. During translation,
we never build items that would require using dependency arcs that violate these
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constraints. In Section 7 we discuss the values we used in our primary experiments
and also compare translation quality and decoding speed for several values of these
hyperparameters.

6.4 Interaction with Learning

The use of a coarse-to-fine decoding procedure affects how we learn the parameters
of our model. We use two separate versions of the phrase-based feature weights: one
for lattice generation and one for lattice dependency parsing. This is common with
coarse-to-fine strategies—separate instances of coarser parameters are required for each
subsequent pass. We first learn parameters for the coarse phrase-based model used
to generate phrase lattices. Then, after generating the lattices, we prune them (Sec-
tion 6.3.2) and use a second round of tuning to learn parameters of the fine model, which
includes all phrase-based and QPD feature weights. We initialized the phrase-based
feature weights using the default Moses weights. For the QPD features, we initialized
the phrase dependency probability feature weights to 0.002 and the weights for all other
features to 0.

For tuning, we need the k-best outputs, for which efficient dynamic programming
algorithms are available. We use Algorithm 3 from Huang and Chiang (2005), which
lazily finds the k best derivations efficiently. In preliminary testing, we found that the
k-best lists tended to be dominated by repeated translations with different derivations,
so we used the technique presented by Huang, Knight, and Joshi (2006), which finds a
unique k-best list, returning the highest-scoring derivation for each of k unique transla-
tions. This modification requires the maintenance of additional data structures to store
all of the previously found string yields for each item built during parsing. This incurs
additional overhead but allows us to obtain a far more diverse k-best list given a fixed
time and memory budget.

For the first round of tuning, we use RAMPION (Gimpel and Smith 2012b), which
performs competitively with minimum error rate training (Och 2003) but is more stable.
For training the fine model, however, we found that RAMPION did not lead to substan-
tial improvements over the output of the coarse phrase-based model alone. We found
better performance by using a fine learner designed for the k-best reranking setting, in
particular the structured support vector machine reranker described by Yadollahpour,
Batra, and Shakhnarovich (2013). Though we are doing Iattice reranking rather than
k-best reranking, the learning problem for our fine model is similar to that for k-best
reranking in that the decoder is exact (i.e., there is no pruning that could lead to different
patterns of search error as the parameters change). That is, phrase lattice generation and
pruning (described in Section 6.3.2) only depend on the coarse phrase-based feature
weights and the maximum dependency length constraints (described in Section 6.3.3);
they do not depend on the fine model parameters.

We now briefly describe how we learn parameters for the fine model via lattice
reranking. For simplicity, we will only write the source sentence x and its translation
y when describing the reranker and omit the additional input and output variables
Ty, T, $, Ty, and b, but they are always present and used for computing features. We
assume a tuning set with N source sentences: {x;}Y ;. Let YR be the set of reference

translations for source sentence x;. Let Y; = {yl(l) .. .yl(.k)} denote the set of k candidate
translations (outputs of our lattice dependency parsing decoder) for x;. Let y; denote

the highest-quality translation in the set, that is, y; = argmin, ¢y, U(YR,y), where ¢(YR, )
is the negated BLEU+1 score (Lin and Och 2004) of y evaluated against references YX.
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We use the following cost function for sentence i and candidate translation y:
LOEy) = G y) = Gy (38)

that is, the negated BLEU+1 score of translation y; relative to that of the best translation
(¥7) in the set.

Yadollahpour, Batra, and Shakhnarovich (2013) formulate the reranking learning
problem as an L,-regularized slack-rescaled structured support vector machine (SSVM;
Tsochantaridis et al. 2005). The feature weights 0 for the fine model are learned by
solving the following quadratic program:

min 03 +A D & (39a)

& i€[N]
5407 (hexi,yp) —hxy)) > 1- awa (39b)
& >0, vy e Y\, (39¢)

In Equation (39b), the violation in the margin &; is scaled by the cost of the translation.
Thus if in addition to y; there are other good solutions in the set, the margin for such
solutions will not be tightly enforced. On the other hand, the margin between y; and
bad solutions will be very strictly enforced. Equation (39) is solved via the 1-slack
cutting-plane algorithm of Joachims, Finley, and Yu (2009).1* During the execution of
the cutting-plane algorithm, we compute the tuning set BLEU score with all param-
eter vector values that are considered. At convergence we return the parameters that
led to the highest tuning BLEU score. This helps to bridge the discrepancy between
our use of sentence-level BLEU+1 in the loss function and corpus BLEU for final
evaluation.

We alternate between generating k-best lists using our lattice parser and solving
Equation (39) on the fixed lists, each time pooling all previous iterations’ lists. We repeat
until the parameters do not change, up to a maximum of 15 iterations. We used k-best
lists of size 150 and a fixed, untuned value of A = 0.1 for all experiments.

6.5 Comparison to Earlier Work

The decoder described above represents some advances over those presented in earlier
papers. Our original decoder was designed for a lexical dependency model; we used
lattice dependency parsing on lattices in which each edge contained a single source-
target word pair (Gimpel and Smith 2009b). Inference was approximated using cube
decoding (Gimpel and Smith 2009a), an algorithm that incorporates non-local features
in a way similar to cube pruning (Chiang 2007). After developing our QPD model,
we moved to phrase lattices but still approximated inference using an agenda algo-
rithm (Nederhof 2003; Eisner, Goldlust, and Smith 2005) with pre-pruning of depen-
dency edges in a coarse pass (Gimpel and Smith 2011).

14 We used OOQP (Gertz and Wright 2003) to solve the quadratic program in the inner loop, which uses
HSL, a collection of Fortran codes for large-scale scientific computation (www.hsl.rl.ac.uk).
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All decoders used lattice dependency parsing, but our current decoder uses an exact
algorithm once two simple approximations are made: the pruning of the lattice and the
use of maximum dependency length constraints. Hyperparameters control the severity
of these two approximations and the use of an exact parsing algorithm allows us to
measure their effects on runtime and accuracy.

7. Experiments and Analysis

We now present experimental results using our QPD model. Because our model extends
phrase-based translation models with features on source- and target-side syntactic
structures, we can conduct experiments that simulate phrase-based, string-to-tree, and
tree-to-tree translation, merely by specifying which feature sets to include. This suggests
an additional benefit of using a quasi-synchronous approach for machine translation. By
using features rather than constraints, we can simulate a range of translation systems
in a single framework, allowing clean experimental comparisons among modeling
strategies and combining strengths of diverse approaches.

We describe our experimental setup in Section 7.1 and present our main results in
Section 7.2. We measure the impact of using unsupervised parsing in Section 7.2.1 and
include feature ablation experiments in Section 7.2.2. We present the results of a manual
evaluation in Section 7.3 and give examples. We conclude in Section 7.4 with a runtime
analysis of our decoder and show the impact of decoding constraints on speed and
translation quality.

7.1 Experimental Setup

In this section we describe details common to the experiments reported in this sec-
tion. Details about decoding and learning were described in Section 6. Full details
about language pairs, data sets, and baseline systems are given in Appendix A and
Appendix B. We repeat important details here. We use case-insensitive IBM BLEU
(Papineni et al. 2002) for evaluation. To measure significance, we use a paired bootstrap
(Koehn 2004) with 100,000 samples (p < 0.05).

7.1.1 Language Pairs. We consider German—English (DE—EN), Chinese—English
(ZH—EN), Urdu—English (UR—EN), and English—Malagasy (EN—MG) translation.
These four languages exhibit a range of syntactic divergence from English. They also
vary in the availability of resources like parallel data, monolingual target-language data,
and treebanks. It is standard practice to evaluate unsupervised parsers on languages
that do actually have treebanks, which are used for evaluation. We consider this case
as well, comparing supervised parsers for English and Chinese to our unsupervised
parsers, but we also want to evaluate our ability to exploit unsupervised parsing for
languages that have small or nonexistent treebanks, hence our inclusion of Urdu and
Malagasy.

7.1.2 Baselines. We compare our model to several baselines:

®  Moses, RAMPION, S = 200: This is a standard Moses phrase-based system,
trained with RAMPION. The Moses default stack size S of 200 was used
during tuning and testing. This is the result one would obtain with an
off-the-shelf Moses phrase-based system on these data sets (and trained
using RAMPION).
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. Moses, RAMPION, S = 500: This baseline trains a model in the same way as
the previous using S = 200, but then uses a larger stack size (5 = 500)
when decoding the test sets. This larger stack size was used for generating
phrase lattices for lattice reranking, so it provides a more appropriate
baseline for comparing to our model.

®  Moses, SSVM reranking: Using phrase lattices generated with the
preceding configuration, this baseline uses the SSVM reranker from
Section 6.4 on the phrase lattices with only the Moses phrase-based features,
that is, without any QPD features. This baseline helps to separate out the
gains achieved through SSVM reranking and the addition of QPD features.

e  Hiero, RAMPION: This is a standard hierarchical phrase-based
system (Chiang 2007), as implemented in the Moses toolkit and trained
using RAMPION.

We see the three Moses systems as our primary baselines because Moses was used
to generate phrase lattices for our system. Our model adds new syntactic structures and
features to Moses, but because our decoder use Moses’ phrase lattices, our approach
can be viewed as rescoring Moses’ search space. There are pros and cons to this choice.
It lets us build on a strong baseline rather than building a system from scratch. Also, by
comparing the third baseline (“Moses, SSVM reranking”) to our model, we are able to
cleanly measure the contribution of our QPD features. However, Hiero has been shown
to perform better than phrase-based systems for certain language pairs (Chiang 2007;
Zollmann et al. 2008; Birch, Blunsom, and Osborne 2009), and in these cases Hiero
proves to be a strong baseline for our model to beat as well. We note that our QPD
features could also be used to rescore Hiero’s search space to potentially yield further
improvements, but we leave this to future work.

7.1.3 Parsers. Our full QPD model requires parsers for both source and target languages.
For each language pair, the target-language parser is only used to parse the target side
of the parallel corpus and the source-language parser is only used to parse the source
side of the tuning and test sets.

We have access to supervised parsers for Chinese, German, and English, which we
used for our experiments. In particular, we used the Stanford parser (Levy and Manning
2003; Rafferty and Manning 2008) for Chinese and German and TurboParser (Martins
et al. 2010) for English (see Appendix A for details). The Stanford parser is fundamen-
tally a phrase-structure parser and generates dependency trees via head rules, but we
chose it for our experiments for its ease of use and compatibility with the tokenization
we used, particularly the Chinese segmentation which we obtained from the Stanford
Chinese segmenter.'”

For Urdu and Malagasy, we turn to unsupervised parsing. To measure the impact
of using unsupervised parsers, we also performed experiments in which we replaced
supervised parsers for Chinese and English with unsupervised counterparts. We now
describe how we trained unsupervised parsers for these four languages.

15 More dependency parsers have been made available by the research community since we began this
research and would be natural choices for further experimentation, such as ParZu (Sennrich et al. 2009)
for German, the parser model from Bohnet (2010) adapted for German by Seeker and Kuhn (2012), and
DuDuPlus (Chen et al. 2012) for Chinese.
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The most common approach to unsupervised parsing is to train models on sen-
tences from treebanks (without using the annotated trees, of course) along with their
gold standard POS tags. This practice must be changed if we wish to use unsupervised
parsing for machine translation, because we do not have gold standard POS tags for
our data. Fortunately, Smith (2006) and Spitkovsky et al. (2011) have shown that using
automatic POS tags for dependency grammar induction can work as well as or better
than gold standard POS tags. For syntax-based translation, Zollmann and Vogel (2011)
showed that unsupervised tags could work as well as those from a supervised POS
tagger.

For Urdu and Malagasy, we use fully unsupervised POS tagging, using the ap-
proach from Berg-Kirkpatrick et al. (2010) with 40 tags. We use the “direct gradient”
version optimized by L-BFGS (Liu and Nocedal 1989). For Chinese and English, we
use the gold standard POS tags from their respective treebanks for training the parser,
then use the Stanford POS tagger (Toutanova et al. 2003) to tag the parallel data, tuning,
and test sets. As our dependency parsing model, we use the dependency model with
valence (Klein and Manning 2004) initialized with a convex initializer (Gimpel and
Smith 2012a). The training procedure is described in Gimpel (2012). Our Chinese and
English unsupervised parsers are roughly 30 percentage points worse than supervised
parsers in dependency attachment accuracy on standard treebank test sets.

We also compared the supervised and unsupervised parsers to a uniform-at-random
parser. Well-known algorithms exist for sampling derivations under a context-free
grammar for a sentence (Johnson, Griffiths, and Goldwater 2007). These algorithms can
be used to sample projective dependency trees by representing a projective dependency
grammar using a context-free grammar (Smith 2006; Johnson 2007). We used cdec (Dyer
et al. 2010) to sample projective dependency trees uniformly at random for each
sentence.'®

We only compared the random parser for source-side parsing. Swapping parsers for
the target language requires parsing the target side of the parallel corpus, rerunning
rule extraction and feature computation with the new parses, and finally re-tuning to
learn new feature weights. By contrast, changing the source-side parser only requires
re-parsing the source side of the tuning and test sets and re-tuning.

7.2 Results

We now present our main results, shown in Tables 6-9. We see that enlarging the
search space results in gains in BLEU, as Moses with stack size 500 typically out-
performs Moses with stack size 200. For DE—EN (Table 6), SSVM reranking im-
proves performance even without adding any more features, pushing the numbers
close to that of Hiero; and adding our QPD features does not provide any additional
improvement.

For the other language pairs, however, we do see significant gains over the Moses
baselines. For ZH—EN (Table 7), we see an average gain of 0.5 BLEU over the best
Moses baseline when using target syntactic features (TGTTREE), and a total average gain
of 0.7 BLEU with the full QPD model (TGTTREE + TREETOTREE). The QPD numbers
still lag behind the Hiero results on average, but are statistically indistinguishable from
Hiero on two of the three test sets. Our QPD features are able to mostly close the

16 We thank Chris Dyer for implementing this feature in cdec for us.
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Table 6

%BLEU on tune and test sets for DE—EN translation, comparing the baselines to our QPD model
with target syntactic features (TGTTREE) and then also with source syntax (+ TREETOTREE).
Here, merely using the additional round of tuning with the SSVM reranker improves the BLEU
score to 19.9, which is statistically indistinguishable from the two QPD feature sets. Differences
between Hiero and the three 19.9 numbers are at the border of statistical significance; the first
two are statistically indistinguishable from Hiero but the third is different at p = 0.04.

German—English
model notes tune test
Moses RAMPION, S = 200 16.2 19.0
RAMPION, S = 500 162 19.2
SSVM reranking 169 199
QPD TGTTREE 172 199
TGTTREE + TREETOTREE 17.1 19.9
Hiero RAMPION 171 20.1
Table 7

%BLEU on tune and test sets for ZH—EN translation, showing the contribution of feature sets in
our QPD model. Both QPD models are significantly better than the best Moses numbers on test
sets 1 and 2, but not on test set 3. The full QPD model is significantly better than the version with
only TGTTREE features on test set 1 but statistically indistinguishable on the other two test sets.
Hiero is significantly better than the full QPD model on test set 2 but not on the other two.

Chinese—English
model notes tune testl test2 test3 testavg.
Moses RAMPION, S = 200 360 355 343 313 33.7
RAMPION, S = 500 362 361 346 318 34.2
SSVM reranking 363 361 346 318 34.2
QPD  TGTTREE 371 368 353 320 34.7

TGTTREE + TREETOTREE  37.3 37.2 35.5 31.9 34.9

Hiero RAMPION 373 374 36.1 32.1 35.2

performance gap between Moses and Hiero, suggesting that the Moses search space
(and even our heavily pruned Moses phrase lattices) has the potential for significant
improvements when using the right features.

Results for UR—EN translation are shown in Table 8. Here we only have a super-
vised parser for English, so the TREETOTREE features are incorporated using our unsu-
pervised Urdu parser. All QPD results are significantly better than all Moses baseline
results, but there is no significant difference between the two QPD feature sets. This
may be due to our use of unsupervised parsing; perhaps the Urdu parses are too noisy
for us to see any benefit from the TREETOTREE features. In Section 7.2.1 we measure the
impact of using unsupervised parsing for ZH—EN translation. Hiero still significantly
outperforms the QPD model, although we have halfway closed the gap between Moses
and Hiero.
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Table 8

%BLEU on tune and test sets for UR—EN translation, using our unsupervised Urdu parser to
incorporate source syntactic features. The two QPD rows are statistically indistinguishable on
both test sets. Both are significantly better than all Moses results, but Hiero is significantly better
than all others.

Urdu—English
model notes tune testl test2 testavg.
Moses RAMPION, S = 200 24.6 24.6 24.5 24.5
RAMPION, S = 500 247 248 249 24.8
SSVM reranking 249 244 247 24.6
QPD TGTTREE 258 254 255 254
TGTTREE + (unsup.) TREETOTREE  25.8 254 25.6 255
Hiero RAMPION 257 264 267 26.6
Table 9

%BLEU on tune and test sets for EN—MG translation, using a supervised English parser and an
unsupervised Malagasy parser. The 15.6 BLEU reached by the full QPD model is statistically
significantly better than all other results on the test set. All other test set numbers are statistically
indistinguishable.

English—Malagasy
model notes tune test
Moses RAMPION, S = 200 176 15.1
RAMPION, S = 500 17.8 15.1
SSVM reranking 17.8 151
QPD (unsup.) TGTTREE 176 152

(unsup.) TGTTREE + TREETOTREE 179 15.6

Hiero RAMPION 174 150

For EN—MG translation (Table 9), we see significant gains in BLEU over both
Moses and Hiero when using the full QPD model.”” We used unsupervised parsing
to incorporate TGTTREE features but we only see a statistically significant improvement
when we add TREETOTREE features, which use a supervised English parser.

7.2.1 Impact of Unsupervised Parsing. Table 10 shows results when comparing parsers
for ZH—EN translation. We pair supervised and unsupervised parsers for English and
Chinese. The final row shows the Moses BLEU scores for comparison.

17 For the EN—MG experiments, we modified our initialization procedure for the QPD feature weights.
When using the same initialization as the other language pairs (setting QPD probability feature weights
to 0.002 and all other QPD weights to 0), we found that SSVM reranking did not find any higher BLEU
score in the initial k-best lists than the 1-best translations for all sentences. So we multiplied the initial
QPD weights by 10 in an effort to inject more diversity in the initial k-best lists.
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Table 10

%BLEU on tune and test sets when comparing parsers for ZH—EN translation. QPD uses all
features, including TGTTREE and TREETOTREE. The table first pairs supervised English parsing
with supervised, unsupervised, and random Chinese parsing, then pairs unsupervised English
parsing with supervised and unsupervised Chinese parsing. t = significantly better than
sup/sup, * = significantly worse than sup/sup.

EN parser ZH parser tune test 1 test 2 test 3 avg. test
%BLEU  %BLEU  %BLEU  %BLEU  %BLEU
sup. 37.3 372 355 319 349
o sup. unsup. 372 37.0 35.8" 31.8 349
%( random 37.1 36.5% 35.2 31.6" 344
unsu sup. 372 37.1 35.3 31.7* 34.7
p- unsup. 37.2 36.8* 353 315 345
Moses, RAMPION, S = 500 36.2 36.1% 34.6" 31.8 342

When using supervised English parsing, we find that using our unsupervised
Chinese parser in place of the Stanford parser leads to the same average test set BLEU
score. When instead using random Chinese parses, we see a significant drop on two of
the three test sets and an average decrease of 0.5 BLEU. When pairing unsupervised
English parsing with supervised Chinese parsing, we see an average drop of just 0.2
BLEU compared to the fully supervised case. When both parsers are unsupervised,
BLEU scores drop further but are still above the best Moses baseline on average.

One idea that we have not explored is to parse our parallel corpus using each
parser (unsupervised and supervised), then extract rules consistent with any of the
parses. This might give us some of the benefits of forest-based rule extraction, which has
frequently been shown to improve translation quality (Liu et al. 2007; Mi, Huang, and
Liu 2008; Mi and Huang 2008). Similarly, because we train systems for several language
pairs, we could pool the rules extracted from all parallel corpora for computing target-
syntactic features. For example, adding the English phrase dependency rules from the
DE—EN corpus could improve performance of our ZH—EN and UR—EN systems.
Moving beyond translation, we could use the pool of extracted rules from all systems
(and using all parsers) to build monolingual phrase dependency parsers for use in other
applications (Wu et al. 2009).

7.2.2 Feature Ablation. We performed feature ablation experiments for UR—EN transla-
tion, shown in Table 11. Starting with TGTTREE features, which consist of word (WORD),
cluster (CLUST), and configuration (CFG) feature sets, we alternately removed each of
the three. We find only a small (and statistically insignificant) drop in BLEU when
omitting word features, but a larger drop when omitting word cluster features. This
may be due to the small size of our training data for UR—EN (approximately 1 million
words of parallel text). With limited training data, it is not surprising that unlexicalized
features like the cluster and configuration features would show a stronger effect than
the lexicalized features.

7.3 Human Evaluation

We focused on UR—EN and ZH—EN translation for our manual evaluation, as these
language pairs showed the largest gains in BLEU when using our QPD model. We
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Table 11

Feature ablation experiments for UR—EN translation with string-to-tree features, showing the
drop in BLEU when separately removing word (WORD), cluster (CLUST), and configuration
(CFG) feature sets. * = significantly worse than TGTTREE. Removing word features causes no
significant difference. Removing cluster features results in a significant difference on both test
sets, and removing configuration features results in a significant difference on test 2 only.

Urdu—English
model notes tune testl test2 testavg. (A)
Moses  SSVM reranking 249 244 247 24.6
QPD TGTTREE = WORD + CLUST + CFG  25.8 254 25.5 254
TGTTREE — WORD 256 250 255 25.2 (—0.2)
TGTTREE - CLUST 254 248" 249* 249 (—0.5)
TGTTREE - CFG 251 251 25.0*  25.0(—0.4)

began by performing a human evaluation using Amazon Mechanical Turk (MTurk)
in order to validate the BLEU differences against human preference judgments and to
identify translations that were consistently judged better under each model for follow-
up manual evaluation.

7.3.1 Procedure. We first removed sentences with unknown words, as we feared they
would only confuse judges.'® We then randomly selected 500 sentences from UR—EN
test 2 and 500 from the concatenation of ZH—EN test 1 and test 2. For each of the 1,000
sentences, we chose a single reference translation from among the four references to
show to judges.!” All text was detokenized. Judges were shown the reference transla-
tion, the translation from the Moses system with SSVM reranking, and the translation
from our QPD system with the full feature set. We randomized the order in which the
two machine translations were presented. Judges were asked to select which translation
was closer in meaning to the reference; alternatively, they could indicate that they were
of the same quality. We obtained judgments like these from three judges for each of the
1,000 sentences.

7.3.2 Results and Analysis. Table 12 shows the results of our MTurk experiments. If a
sentence was judged to be translated better by one system more often than the other,
it was counted as a victory for that system. The QPD translations for 40-43% of the
sentences were preferred over Moses, but for 28-33% of the sentences, the reverse was
true.

We can use these judgments to study when and how our system improves over
Moses, and also when Moses still performs better. For a follow-up manual evaluation,
we looked at ZH—EN sentences for which all three judges selected either Moses or
the QPD model; these should be the clearest examples of success for each system. In

18 Although this filtering step may introduce bias, we confirmed that the system differences in BLEU were
similar whether looking at sentences with unknown words, those without unknown words, or all
sentences.

19 For UR—EN test 2 and ZH—EN test 2, we chose the first reference set from the four provided. For
ZH—EN test 1, we instead chose the second reference set because its average length was closer to the
average across the four reference sets.

387



Computational Linguistics Volume 40, Number 2

Table 12

Results of human evaluation performed via Amazon Mechanical Turk. The percentages
represent the portion of sentences for which one system had more preference judgments
than the other system. If a sentence had an equal number of judgments for the two systems,
it was counted in the final row (“neither preferred”).

% of sentences preferred

ZH—EN UR—EN

Moses, SSVM reranking 33.4% 28.6%
QPD, TGTTREE + TREETOTREE 40.6% 42.8%
neither preferred 26.0% 28.6%

looking at these sentences, we attempted to categorize the primary reasons why all three
judges would have preferred one system’s output over the other. We began with two
broad categories of improvement: word choice and word order. We divided word choice
improvements into two subcategories: those involving verbs and those involving words
other than verbs. The reason we made this distinction is because some differences in
non-verb translation are not as crucial for understanding a sentence as differences in
verb translation or word order. Anecdotally, we observed that when one sentence has
a better verb translation and the other has a better preposition translation, judges tend
to prefer the translation with the better verb. We noted some sentences that fit multiple
categories, but in our analysis we chose a single category that we deemed to be the most
important factor in the judges’ decisions.

Of the 26 sentences for which Moses output was preferred unanimously, we agreed
with the consensus on 25 and found that 19 of these improved due to better word
choice, most frequently (13 out of 19) for words other than verbs. Only 6 of the 25
were determined to be preferred due to word order. The top section of Table 13 shows
representative examples when Moses’ translations were unanimously preferred. Moses
handles prepositions and other function words better than the QPD model in these
examples. This may occur due to the reliance of phrase-based systems upon strong
n-gram language models to ensure local fluency. The QPD model uses all of Moses’
features, including the same n-gram language model, but it adds many other features
that score longer-distance word order and may be overwhelming the n-gram model in
certain cases.

For the 44 sentences for which QPD output was unanimously preferred, we agreed
with the judges on 42. Of these, we found that 15 had improved word order, 14 had
improvements in verb word choice, and 13 had improved word choice for non-verbs.
So the QPD model’s improvements were due to word order on 36% of unanimous
sentences, compared with Moses” 24%, suggesting that the QPD model’s strength is
in improving word order. The lower section of Table 13 shows representative examples.
Consider the final example in the table. The Moses translation has better local fluency,
but mixes words across clauses, confusing the meaning. The QPD translation has two
local disfluencies (“because law-abiding citizen hopes to” and “don’t need to fear will
attack”), but has no erroneous word reordering across clause boundaries.

7.4 Decoding Speed

So far we have reported BLEU scores for various feature sets and parsers, but we
have not discussed decoding speed. BLEU improvements may not be worth substantial
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reductions in translation speed. In this section we report decoding speeds and BLEU
scores for UR—EN translation as pruning thresholds are varied. Our lattice dependency
parsing decoding algorithm is exact, but two pruning stages precede lattice parsing, as
discussed in Section 6.3: (1) pruning the phrase lattices based on the phrase-based model

Table 13

Examples from manual evaluation of ZH—EN output, selected from sentences with unanimous
preference judgments for Moses (top) and our QPD model (bottom). R = reference; M = Moses,
SSVM reranking; Q = QPD, TGTTREE + TREETOTREE.

Moses preferred:

R the purpose of cheney’s trip is to win supports of middle east countries in case of a u.s.
attack on iraq.

M cheney’s trip is to lobby the middle east countries to support the us attack on iraq.

Q cheney’s trip was to lobby the middle east countries support us attacks on iraq.

R he said, "after this conference, our position is clear to all."
M he said: "this time after the talks, our position is well known."
Q he said: "this round of talks, our position is well known."

R ukraine condemned us for interfering its internal affairs.
M ukraine condemned the united states for interfering in its internal affairs.
Q ukraine condemned the united states of interfering in its internal affairs.

R former serbian interior minister, vlajko stojiljkovic, attempts to commit suicide.
M yugoslavia, a former serbian interior minister tried to commit suicide.
Q interior minister tried to commit suicide before the serbian republic of yugoslavia.

R arafat died in a french hospital of an unknown illness on november 11.
M arafat died in a french hospital on nov. 11, due to an unidentified disease.
Q arafat died on nov. 11 in a french hospital, an unidentified disease.

QPD preferred:

R bush: nato must forge a new relationship with russia

M bush said that the establishment of a new type of relationship between russia and nato
must

Q bush says nato must build new relations with russia

R that would portend increased flows of glacial ice from antarctica and a rise in global sea
levels, endangering low-lying land areas.

M this bodes well for the antarctica ice flow will increase, the global sea level will rise in the
lowlands, will cause harm to the region.

Q this indicates that the antarctica’s ice flow will increase, global sea level will rise, and will
cause harm to the lowlands region.

R this is the first sandstorm in north korea since spring this year.
M this is the first since the spring of this year the sandstorms.
Q this is the first sandstorm of the korean experience since spring this year.

R "we really have to tackle the problem of street-crime. law-abiding citizens want to feel safe
when they walk on the street. they want a peaceful life and untroubled by attack," he said.

M he said: "we really should rectify the order because of law-abiding citizens, in the hope of
peace and security on the streets and on the living, not to be afraid of attacks."

Q he said: "we really should rectify the order in the streets, because law-abiding citizen hopes
to secure a safe life on the streets, and don’t need to fear will attack."
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scores, and (2) pruning the search space deterministically based on source- and target-
side limits on dependency lengths. In this section, we measure the impact of the latter
type of pruning only.?

We vary maximum dependency lengths and we report BLEU scores and decoding
speeds. We find that we can set these limits to be relatively strict and get similar BLEU
scores in less time. In all previous experiments, we used a source-side limit w, of 15
and a target-side limit wy, of 20. That is, all target-side phrase dependencies may cover
a maximum of 20 words in the target sentence, and the number of words between the
aligned source phrases can be at most 15. We often use a larger value of w, because
it is constraining an upper bound on the number of words crossed in the translation,
whereas w, constraints the exact number of source words crossed by a dependency (see
Section 6.3.3 for details).

For timing experiments, we ran a single decoding thread on a Sun Fire X2200 M2 x64
server with two 2.6-GHz dual-core CPUs. Decoding during tuning is time-consuming,
because we generate unique 150-best lists for each iteration, so we only use two max
dependency length settings for tuning. But given trained models, finding the 1-best
output on the test data is much faster. So we experimented with more pruning settings
for decoding. Table 14 shows our results. The upper table reminds us of the baseline
BLEU scores. The lower table shows what happens when we train with two pruning
settings: (wy = 10, wy, = 15) and (wy = 15, wy, = 20), and test with many others.

The times reported only include the time required for running the Floyd-Warshall
algorithm on the lattice and performing lattice dependency parsing. We use the Moses
decoder for lattice generation; this typically takes only slightly longer than ordinary
decoding, which is generally in the range of a couple seconds per sentence, depending
on how the phrase table and language model are accessed. The average time required
to run the Floyd-Warshall algorithm on the lattices is approximately 0.8 seconds per
sentence, so it begins to dominate the total time as the pruning thresholds go below
(5, 5). The earlier numbers in this section used (w, = 15, w, = 20) for both tuning and
testing, which causes test-time decoding to take approximately 6 seconds per sentence,
as shown in the table. We can see that we can use stricter constraints during test-
time decoding only (e.g., (wy =5, wy, = 10)) and speed this up by a factor of 3 while
only losing 0.1 BLEU. The only severe drops in BLEU appear when using thresholds
below (5, 5).

8. Conclusion and Future Work

We presented a new approach to machine translation that combines phrases, depen-
dency syntax, and quasi-synchronous tree-to-tree relationships. We introduced several
categories of features for dependency-based translation, including string-to-tree and
tree-to-tree features. We proposed lattice dependency parsing to solve the decoding
problem and presented ways to speed up the search and prune the search space. We
presented experimental results on seven test sets across four language pairs, finding
statistically significant improvements over strong phrase-based baselines on five of the
seven. Manual inspection reveals improvement in the translation of verbs, an important
component in preserving the meaning of the source text. We showed that unsupervised

20 Ideally we could also measure the impact of pruning the phrase lattices to various sizes, but this would
require the time-consuming process of filtering our phrase dependency tables for each lattice size, so we
have not yet tested the effect of this pruning systematically.
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Table 14

%BLEU on tune and test sets for UR—EN translation, comparing several settings for maximum
dependency lengths in the decoder (wy is for the source side and wy, is for the target side). The
upper table shows Moses BLEU scores for comparison. The lower table compares two max
dependency length settings during tuning, and several for decoding on the test sets, showing
both BLEU scores and average decoding times per sentence. See text for discussion.

tune test 1 test 2 avg. test
%BLEU %BLEU %BLEU %BLEU
Moses, SSVM reranking 24.9 24.4 24.7 24.6
tune tune test test 1 test 2 avg. test time

(wy, wy) %BLEU (W, wy) %BLEU %BLEU %BLEU (sec./sent.)

3,3) 21.7 223 22.0 1.11

3,5) 232 235 233 1.28

(5,5) 249 247 24.8 141

(5,10) 25.2 25.0 25.1 2.09

(10, 15) 25.9 (10, 10) 254 253 253 3.01

(10, 15) 25.3 254 254 4.00

(15, 20) 255 255 255 6.15

(20, 20) 25.6 255 25.6 7.18

e (20, 25) 255 255 255 7.83
o

3,3) 222 228 225 1.11

3, 5) 23.2 24.0 23.6 1.28

(5,5) 25.2 25.2 25.2 141

(5, 10) 25.3 254 254 2.08

(15, 20) 25.8 (10, 10) 25.2 255 254 3.01

(10, 15) 254 25.6 255 4.02

(15, 20) 254 25.6 255 6.07

(20, 20) 254 25.6 255 7.16

(20, 25) 254 25.6 255 7.96

dependency parsing can be used effectively within a tree-to-tree translation system,
enabling the use of our system for low-resource languages like Urdu and Malagasy. This
result offers promise for researchers to apply syntactic translation models to languages
for which we do not have manually annotated corpora.

There are many directions for future work. Unsupervised learning of syntax can be
improved if parallel text is available and we have a parser for one of the languages: The
parallel text can be word-aligned and the annotations can be projected across the word
alignments (Yarowsky and Ngai 2001; Yarowsky, Ngai, and Wicentoswki 2001). The
projected parses can be improved by applying manually written rules (Hwa et al. 2005)
or modeling the noisy projection process (Ganchev, Gillenwater, and Taskar 2009; Smith
and Eisner 2009). If we do not have parsers for either language, grammar induction
models have been developed to exploit parallel text without using any annotations
on either side (Kuhn 2004; Snyder, Naseem, and Barzilay 2009). Techniques are also
available for grammar induction using treebanks in different languages that are not
built on parallel data (Cohen, Das, and Smith 2011).

Researchers have recently begun to target learning of parsers specifically for ap-
plications like machine translation. Hall et al. (2011) developed a framework to train
supervised parsers for use in particular applications by optimizing arbitrary evaluation
metrics; Katz-Brown et al. (2011) used this framework to train a parser for reordering
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in machine translation. Relatedly, DeNero and Uszkoreit (2011) tailored unsupervised
learning of syntactic structure in parallel text to target reordering phenomena.

In addition, we may not need full monolingual syntactic parses to obtain the
benefits of syntax-based translation modeling. Indeed, the widely used hierarchical
phrase-based model of Chiang (2005) induces a synchronous grammar from parallel
text without any linguistic annotations. Zollmann and Vogel (2011) and Zollmann (2011)
showed that using a supervised POS tagger to label these synchronous rules can im-
prove performance up to the level of a model that uses a supervised full syntactic parser.
They further showed that unsupervised POS taggers could be effectively used in place
of supervised taggers. These results suggest that it may be fruitful to explore the use of
simpler annotation tools such as POS taggers, whether supervised or unsupervised, in
order to apply syntax-based translation to new language pairs.

Appendix A. Language Pairs

We consider four language pairs in this article, two for which large amounts of par-
allel data are available and two involving low-resource languages. The large-data
language pairs we consider are Chinese—English (ZH—EN) and German—English
(DE—EN). The two low-resource language pairs are Urdu—English (UR—EN) and
English—Malagasy (EN—MG).

For all language pairs, English text was parsed using TurboParser version 0.1
(Martins et al. 2010). We used a second-order model with sibling and grandparent
features that was trained to maximize conditional log-likelihood.

The following sections describe the procedures used to prepare the data for each
language pair. The line and token counts are summarized in Tables A.1-A.3.

Chinese—English. For ZH—EN, we used 303k sentence pairs from the FBIS corpus
(LDC2003E14). We segmented the Chinese data using the Stanford Chinese seg-
menter (Chang, Galley, and Manning 2008) in “CTB” mode, giving us 7.9M Chinese

Table A.1

Statistics of data used for rule extraction and feature computation.
lines source tokens  target tokens

ZH—EN 302,996 7,984,637 9,350,506

DE—EN 1,010,466 23,154,642 24,044,528

UR—EN 165,159 1,169,367 1,083,807

EN—-MG 83,670 1,500,922 1,686,022

Table A.2
Statistics of data used for tuning. The numbers of target tokens are averages across four
reference translations for ZH—EN and UR—EN, rounded to the nearest token.

lines  source tokens target tokens

ZH—EN 919 24,152 28,870
DE—EN 1,300 29,791 31,318
UR—EN 882 18,004 16,606
EN—-MG 1,359 28,408 32,682
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Table A.3
Test data statistics. The numbers of target tokens are averages across four reference translations
for ZH—EN and UR—EN, rounded to the nearest token.

test 1 test 2 test 3

lines ~ Source target lines ~ Source target lines ~ Source target

tokens  tokens tokens  tokens tokens  tokens

ZH—EN 878 22,708 26,877 | 1,082 29956 35227 | 1,664 38,787 48,169
DE—EN 2525 62,699 65,595 N/A N/A
UR—EN 883 21,659 19,575 | 1,792 42,082 39,889 N/A
EN—-MG 1,133 24,362 28,301 N/A N/A

tokens and 9.4M English tokens. For tuning and testing, we used MT03 (“tune”), MT02
(“test 17), MTO05 (“test 2”), and MT06 (“test 3”). The Chinese text was parsed using the
Stanford parser (Levy and Manning 2003).

German—English. We started with the Europarl corpus provided for the WMT12 shared
task. We tokenized both sides, filtered sentences with more than 50 words, and down-
cased the text. We then discarded every other sentence, beginning with the second,
leaving half of the corpus remaining. We did this to speed our experiment cycle. The
corpus still has about 850k sentence pairs. We did the same processing with the news
commentary corpus, but did not discard half of the sentences. There were about 150k
news commentary sentences, giving us a total of about 1M lines of DE—EN parallel
training data. For tuning, we used the first 1,300 sentences from the 2008 2,051-sentence
test set (“tune”). For testing, we used the 2009 test set (“test 1”). The tuning/test sets are
from the newswire domain. The German text was parsed using the factored model in
the Stanford parser (Rafferty and Manning 2008).

Urdu— English. For UR—EN, we used parallel data from the NIST MT08 evaluation.
Although there are 165,159 lines of parallel data, there are many dictionary and
otherwise short entries, so it is close to an order of magnitude smaller than ZH—EN.
We used half of the documents (882 sentences) from the MTO08 test set for tuning
(“tune”). We used the remaining half for one test set (“test 1”) and MT09 as a second
test set (“test 2”). The Urdu text was parsed using an unsupervised dependency parser
as described in Section 7.1.3.

English—Malagasy. For EN—MG translation, we used data obtained from the Global
Voices weblogging community (http://globalvoicesonline.org), prepared by Victor
Chahuneau.?! We used release 12.06 along with its recommended training, development
(tuning), and test set. Like Urdu, the Malagasy text was parsed using an unsupervised
dependency parser as described in Section 7.1.3.

Appendix B. Experimental Details

Appendix A contains details about the data sets used in our experiments. Other experi-
mental details are given here.

21 The data are publicly available at http://www.ark.cs.cmu.edu/global-voices/.
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Translation Models. For phrase-based models, we used the Moses machine translation
toolkit (Koehn et al. 2007). We mostly used default settings and features, includ-
ing the default lexicalized reordering model. Word alignment was performed using
GIZA++ (Och and Ney 2003) in both directions, the grow-diag-final-and heuristic
was used to symmetrize the alignments, and a max phrase length of 7 was used for
phrase extraction. The only exception to the defaults was setting the distortion limit to
10 in all experiments.

Language Models. Language models were trained using the target side of the parallel
corpus in each case augmented with 24,760,743 lines (601,052,087 tokens) of randomly
selected sentences from the Gigaword v4 corpus (excluding the New York Times and Los
Angeles Times). The minimum count cutoff for unigrams, bigrams, and trigrams was one
and the cutoff for fourgrams and fivegrams was three. Language models were estimated
using the SRI Language Modeling toolkit (Stolcke 2002) with modified Kneser-Ney
smoothing (Chen and Goodman 1998). Language model inference was performed using
KenLM (Heafield 2011) within Moses.

For EN—MG, we estimated a 5-gram language model using only the target side
of the parallel corpus, which contained 89,107 lines with 2,031,814 tokens. We did not
use any additional Malagasy data for estimating the EN—MG language models in
order to explore a scenario in which target-language text is limited or expensive to
obtain.

Word Clustering. Brown clusters (Brown et al. 1992) were generated using code provided
by Liang (2005). For each language pair, 100 word clusters were generated for the target
language. The implementation allows the use of a token count cutoff, which causes the
algorithm to only cluster words appearing more times than the cutoff. When the clusters
are used, all words with counts below the cutoff are assigned a special “unknown word”
cluster. So in practice, if a clustering with 100 clusters is generated, there are 101 clusters
used when the clusters are applied.

For ZH—EN, DE—EN, and UR—EN, the target side of the parallel data was used
along with 412,000 lines of randomly selected Gigaword data comprising 10,001,839
words. This data was a subset of the Gigaword data used for language modeling. The
count cutoff was 2. For EN—MG, only the target side of the parallel corpus was used.
The count cutoff was 1. In all cases, the data was tokenized and downcased prior to
cluster generation.
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