
Constrained Arc-Eager Dependency Parsing

Joakim Nivre∗

Uppsala University

Yoav Goldberg∗∗

Bar-Ilan University

Ryan McDonald†

Google

Arc-eager dependency parsers process sentences in a single left-to-right pass over the input

and have linear time complexity with greedy decoding or beam search. We show how such

parsers can be constrained to respect two different types of conditions on the output dependency

graph: span constraints, which require certain spans to correspond to subtrees of the graph,

and arc constraints, which require certain arcs to be present in the graph. The constraints are

incorporated into the arc-eager transition system as a set of preconditions for each transition and

preserve the linear time complexity of the parser.

1. Introduction

Data-driven dependency parsers in general achieve high parsing accuracy without re-
lying on hard constraints to rule out (or prescribe) certain syntactic structures (Yamada
and Matsumoto 2003; Nivre, Hall, and Nilsson 2004; McDonald, Crammer, and Pereira
2005; Zhang and Clark 2008; Koo and Collins 2010). Nevertheless, there are situations
where additional information sources, not available at the time of training the parser,
may be used to derive hard constraints at parsing time. For example, Figure 1 shows
the parse of a greedy arc-eager dependency parser trained on the Wall Street Journal
section of the Penn Treebank before (left) and after (right) being constrained to build a
single subtree over the span corresponding to the named entity “Cat on a Hot Tin Roof,”
which does not occur in the training set but can easily be found in on-line databases. In
this case, adding the span constraint fixes both prepositional phrase attachment errors.
Similar constraints can also be derived from dates, times, or other measurements that
can often be identified with high precision using regular expressions (Karttunen et al.
1996), but are under-represented in treebanks.

∗ Uppsala University, Department of Linguistics and Philology, Box 635, SE-75126, Uppsala, Sweden.
E-mail: joakim.nivre@lingfil.uu.se.

∗∗ Bar-Ilan University, Department of Computer Science, Ramat-Gan, 5290002, Israel.
E-mail: yoav.goldberg@gmail.com.

† Google, 76 Buckingham Palace Road, London SW1W9TQ, United Kingdom.
E-mail: ryanmcd@google.com.

Submission received: 26 June 2013; accepted for publication: 10 October 2013.

doi:10.1162/COLI a 00184

© 2014 Association for Computational Linguistics

Computational Linguistics Volume 40, Number 2

Figure 1
Span constraint derived from a title assisting parsing. Left: unconstrained. Right: constrained.

In this article, we examine the problem of constraining transition-based dependency
parsers based on the arc-eager transition system (Nivre 2003, 2008), which perform a
single left-to-right pass over the input, eagerly adding dependency arcs at the earliest
possible opportunity, resulting in linear time parsing. We consider two types of con-
straints: span constraints, exemplified earlier, require the output graph to have a single
subtree over one or more (non-overlapping) spans of the input; arc constraints instead
require specific arcs to be present in the output dependency graph. The main contri-
bution of the article is to show that both span and arc constraints can be implemented
as efficiently computed preconditions on parser transitions, thus maintaining the linear
runtime complexity of the parser.1

Demonstrating accuracy improvements due to hard constraints is challenging, be-
cause the phenomena we wish to integrate as hard constraints are by definition not
available in the parser’s training and test data. Moreover, adding hard constraints may
be desirable even if it does not improve parsing accuracy. For example, many organi-
zations have domain-specific gazetteers and want the parser output to be consistent
with these even if the output disagrees with gold treebank annotations, sometimes
because of expectations of downstream modules in a pipeline. In this article, we con-
centrate on the theoretical side of constrained parsing, but we nevertheless provide
some experimental evidence illustrating how hard constraints can improve parsing
accuracy.

2. Preliminaries and Notation

Dependency Graphs. Given a set L of dependency labels, we define a dependency graph
for a sentence x = w1, . . . , wn as a labeled directed graph G = (Vx, A), consisting of a
set of nodes Vx = {1, . . . , n}, where each node i corresponds to the linear position of a
word wi in the sentence, and a set of labeled arcs A ⊆ Vx × L × Vx, where each arc (i, l, j)
represents a dependency with head wi, dependent wj, and label l. We assume that the
final word wn is always a dummy word ROOT and that the corresponding node n is a
designated root node.

Given a dependency graph G for sentence x, we say that a subgraph G[i,j] =

(V[i,j], A[i,j]) of G is a projective spanning tree over the interval [i, j] (1 ≤ i ≤ j ≤ n) iff
(i) G[i,j] contains all nodes corresponding to words between wi and wj inclusive, (ii) G[i,j]

is a directed tree, and (iii) it holds for every arc (i, l, j) ∈ G[i,j] that there is a directed path

1 Although span and arc constraints can easily be added to other dependency parsing frameworks, this
often affects parsing complexity. For example, in graph-based parsing (McDonald, Crammer, and Pereira

2005) arc constraints can be enforced within the O(n3) Eisner algorithm (Eisner 1996) by pruning out
inconsistent chart cells, but span constraints require the parser to keep track of full subtree end points,

which would necessitate the use of O(n4) algorithms (Eisner and Satta 1999).

250

Nivre, Goldberg, and McDonald Constrained Arc-Eager Dependency Parsing

from i to every node k such that min(i, j) < k < max(i, j) (projectivity). We now define
two constraints on a dependency graph G for a sentence x:

r G is a projective dependency tree (PDT) if and only if it is a projective
spanning tree over the interval [1, n] rooted at node n.

r G is a projective dependency graph (PDG) if and only if it can be extended
to a projective dependency tree simply by adding arcs.

It is clear from the definitions that every PDT is also a PDG, but not the other way around.
Every PDG can be created by starting with a PDT and removing some arcs.

Arc-Eager Transition-Based Parsing. In the arc-eager transition system of Nivre (2003), a
parser configuration is a triple c = (Σ|i, j|β, A) such that Σ and B are disjoint sublists of
the nodes Vx of some sentence x, and A is a set of dependency arcs over Vx (and some
label set L). Following Ballesteros and Nivre (2013), we take the initial configuration
for a sentence x = w1, . . . , wn to be cs(x) = ([], [1, . . . , n], { }), where n is the designated
root node, and we take a terminal configuration to be any configuration of the form
c = ([], [n], A) (for any arc set A). We will refer to the list Σ as the stack and the list B
as the buffer, and we will use the variables σ and β for arbitrary sublists of Σ and B,
respectively. For reasons of perspicuity, we will write Σ with its head (top) to the right
and B with its head to the left. Thus, c = (σ|i, j|β, A) is a configuration with the node i on
top of the stack Σ and the node j as the first node in the buffer B.

There are four types of transitions for going from one configuration to the next,
defined formally in Figure 2 (disregarding for now the Added Preconditions column):

r LEFT-ARCl adds the arc (j, l, i) to A, where i is the node on top of the stack
and j is the first node in the buffer, and pops the stack. It has as a
precondition that the token i does not already have a head.

r RIGHT-ARCl adds the arc (i, l, j) to A, where i is the node on top of the stack
and j is the first node in the buffer, and pushes j onto the stack. It has as a
precondition that j 6= n.

r REDUCE pops the stack and requires that the top token has a head.
r SHIFT removes the first node in the buffer and pushes it onto the stack,

with the precondition that j 6= n.

A transition sequence for a sentence x is a sequence C0,m = (c0, c1, . . . , cm) of configu-
rations, such that c0 is the initial configuration cs(x), cm is a terminal configuration, and
there is a legal transition t such that ci = t(ci−1) for every i, 1 ≤ i ≤ m. The dependency
graph derived by C0,m is Gcm

= (Vx, Acm
), where Acm

is the set of arcs in cm.

Complexity and Correctness. For a sentence of length n, the number of transitions in
the arc-eager system is bounded by 2n (Nivre 2008). This means that a parser using
greedy inference (or constant width beam search) will run in O(n) time provided that
transitions plus required precondition checks can be performed in O(1) time. This holds
for the arc-eager system and, as we will demonstrate, its constrained variants as well.

The arc-eager transition system as presented here is sound and complete for the set
of PDTs (Nivre 2008). For a specific sentence x = w1, . . . , wn, this means that any transi-
tion sequence for x produces a PDT (soundness), and that any PDT for x is generated by

251

Computational Linguistics Volume 40, Number 2

Transition Added Preconditions

LEFT-ARCl (σ|i, j|β, A) ⇒ (σ, j|β, A∪{(j, l, i)}) ARC CONSTRAINTS

¬∃a ∈ AC : da = i ∧ [ha ∈ β ∨ la 6= l]
¬∃a ∈ A : da = i ¬∃a ∈ AC : ha = i ∧ da ∈ j|β

SPAN CONSTRAINTS

¬[IN-SPAN(i) ∧ s(i) = s(j) ∧ i = r(s(i))]
¬[IN-SPAN(i) ∧ s(i) 6= s(j) ∧ i 6= r(s(i))]
¬[NONE ∧ IN-SPAN(j) ∧ s(i) 6= s(j)]
¬[ROOT ∧ IN-SPAN(j) ∧ s(i) 6= s(j) ∧ j 6= r(s(j))]

RIGHT-ARCl (σ|i, j|β, A) ⇒ (σ|i|j,β, A∪{(i, l, j)}) ARC CONSTRAINTS

¬∃a ∈ AC : da = j ∧ [ha ∈ σ ∨ la 6= l]
j 6= n ¬∃a ∈ AC : ha = j ∧ da ∈ i|σ

SPAN CONSTRAINTS

¬[ENDS-SPAN(j) ∧ #CC > 1]
¬[IN-SPAN(j) ∧ s(i) = s(j) ∧ j = r(s(j))]
¬[IN-SPAN(j) ∧ s(i) 6= s(j) ∧ j 6= r(s(j))]
¬[NONE ∧ IN-SPAN(i) ∧ s(i) 6= s(j)]
¬[ROOT ∧ IN-SPAN(i) ∧ s(i) 6= s(j) ∧ i 6= r(s(i))]

REDUCE (σ|i, j|β, A) ⇒ (σ, j|β, A) ARC CONSTRAINTS

¬∃a ∈ AC : ha = i ∧ da ∈ j|β
∃a ∈ A : da = i SPAN CONSTRAINTS

¬[IN-SPAN(i) ∧ s(i) = s(j) ∧ i = r(s(i))]

SHIFT (σ, i|β, A) ⇒ (σ|i,β, A) ARC CONSTRAINTS

¬∃a ∈ AC : da = j ∧ ha ∈ i|σ
i 6= n ¬∃a ∈ AC : ha = j ∧ da ∈ i|σ

SPAN CONSTRAINTS

¬[ENDS-SPAN(j) ∧ #CC > 0]

Figure 2
Transitions for the arc-eager transition system with preconditions for different constraints. The
symbols ha, la, and da are used to denote the head node, label, and dependent node, respectively,
of an arc a (that is, a = (ha, la, da)); IN-SPAN(i) is true if i is contained in a span in SC; END-SPAN(i)
is true if i is the last word in a span in SC; s(i) denotes the span containing i (with a dummy span
for all words that are not contained in any span); r(s) denotes the designated root of span s
(if any); #CC records the number of connected components in the current span up to and
including the last word that was pushed onto the stack; NONE and ROOT are true if we allow no
outgoing arcs from spans and if we allow outgoing arcs only from the span root, respectively.

some transition sequence (completeness).2 In constrained parsing, we want to restrict
the system so that, when applied to a sentence x, it is sound and complete for the subset
of PDTs that satisfy all constraints.

3. Parsing with Arc Constraints

Arc Constraints. Given a sentence x = w1, . . . , wn and a label set L, an arc constraint
set is a set AC of dependency arcs (i, l, j) (1 ≤ i, j ≤ n, i 6= j 6= n, l ∈ L), where each arc
is required to be included in the parser output. Because the arc-eager system can only
derive PDTs, the arc constraint set has to be such that the constraint graph GC = (Vx, AC)
can be extended to a PDT, which is equivalent to requiring that GC is a PDG. Thus, the
task of arc-constrained parsing can be defined as the task of deriving a PDT G such

2 Although the transition system in Nivre (2008) is complete but not sound, it is trivial to show that the
system as presented here (with the root node at the end of the buffer) is both sound and complete.

252

Nivre, Goldberg, and McDonald Constrained Arc-Eager Dependency Parsing

that GC ⊆ G. An arc-constrained transition system is sound if it only derives proper
extensions of the constraint graph and complete if it derives all such extensions.

Added Preconditions. We know that the unconstrained arc-eager system can derive any
PDT for the input sentence x, which means that any arc in Vx × L × Vx is reachable
from the initial configuration, including any arc in the arc constraint set AC. Hence, in
order to make the parser respect the arc constraints, we only need to add preconditions
that block transitions that would make an arc in AC unreachable.3 We achieve this
through the following preconditions, defined formally in Figure 2 under the heading
ARC CONSTRAINTS for each transition:

r LEFT-ARCl in a configuration (σ|i, j|β, A) adds the arc (j, l, i) and makes
unreachable any arc that involves i and a node in the buffer (other than
(j, l, i)). Hence, we permit LEFT-ARCl only if no such arc is in AC.

r RIGHT-ARCl in a configuration (σ|i, j|β, A) adds the arc (i, l, j) and makes
unreachable any arc that involves j and a node on the stack (other than
(i, l, j)). Hence, we permit RIGHT-ARCl only if no such arc is in AC.

r REDUCE in a configuration (σ|i, j|β, A) pops i from the stack and makes
unreachable any arc that involves i and a node in the buffer. Hence, we
permit REDUCE only if no such arc is in AC.

r SHIFT in a configuration (σ, i|β, A) moves i to the stack and makes
unreachable any arc that involves j and a node on the stack. Hence,
we permit SHIFTl only if no such arc is in AC.

Complexity and Correctness. Because the transitions remain the same, the arc-constrained
parser will terminate after at most 2n transitions, just like the unconstrained system.
However, in order to guarantee termination, we must also show that at least one
transition is applicable in every non-terminal configuration. This is trivial in the un-
constrained system, where the SHIFT transition can apply to any configuration that
has a non-empty buffer. In the arc-constrained system, SHIFT will be blocked if there
is an arc a ∈ AC involving the node i to be shifted and some node on the stack, and
we need to show that one of the three remaining transitions is then permissible. If a
involves i and the node on top of the stack, then either LEFT-ARCl and RIGHT-ARCl

is permissible (in fact, required). Otherwise, either LEFT-ARCl or REDUCE must be
permissible, because their preconditions are implied by the fact that AC is a PDG.

In order to obtain linear parsing complexity, we must also be able to check all pre-
conditions in constant time. This can be achieved by preprocessing the sentence x and
arc constraint set AC and recording for each node i ∈ Vx its constrained head (if any),
its leftmost constrained dependent (if any), and its rightmost constrained dependent (if
any), so that we can evaluate the preconditions in each configuration without having
to scan the stack and buffer linearly. Because there are at most O(n) arcs in the arc
constraint set, the preprocessing will not take more than O(n) time but guarantees that
all permissibility checks can be performed in O(1) time.

Finally, we note that the arc-constrained system is sound and complete in the sense
that it derives all and only PDTs compatible with a given arc constraint set AC for a sen-
tence x. Soundness follows from the fact that, for every arc (i, l, j) ∈ AC, the preconditions

3 For further discussion of reachability in the arc-eager system, see Goldberg and Nivre (2012, 2013).

253

Computational Linguistics Volume 40, Number 2

force the system to reach a configuration of the form (σ|min(i, j), max(i, j)|β, A) in which
either LEFT-ARCl (i > j) or RIGHT-ARCl (i < j) will be the only permissible transition.
Completeness follows from the observation that every PDT G compatible with AC is also
a PDG and can therefore be viewed as a larger constraint set for which every transition
sequence (given soundness) derives G exactly.

Empirical Case Study: Imperatives. Consider the problem of parsing commands to
personal assistants such as Siri or Google Now. In this setting, the distribution of
utterances is highly skewed towards imperatives making them easy to identify.
Unfortunately, parsers trained on treebanks like the Penn Treebank (PTB) typically
do a poor job of parsing such utterances (Hara et al. 2011). However, we know that
if the first word of a command is a verb, it is likely the root of the sentence. If we
take an arc-eager beam search parser (Zhang and Nivre 2011) trained on the PTB, it
gets 82.14 labeled attachment score on a set of commands.4 However, if we constrain
the same parser so that the first word of the sentence must be the root, accuracy
jumps dramatically to 85.56. This is independent of simply knowing that the first
word of the sentence is a verb, as both parsers in this experiment had access to gold
part-of-speech tags.

4. Parsing with Span Constraints

Span Constraints. Given a sentence x = w1, . . . , wn, we take a span constraint set to be
a set SC of non-overlapping spans [i, j] (1 ≤ i < j ≤ n). The task of span-constrained
parsing can then be defined as the task of deriving a PDT G such that, for every span
[i, j] ∈ SC, G[i,j] is a (projective) spanning tree over the interval [i, j]. A span-constrained
transition system is sound if it only derives dependency graphs compatible with the
span constraint set and complete if it derives all such graphs. In addition, we may add
the requirement that no word inside a span may have dependents outside the span
(NONE), or that only the root of the span may have such dependents (ROOT).

Added Preconditions. Unlike the case of arc constraints, parsing with span constraints
cannot be reduced to simply enforcing (and blocking) specific dependency arcs. In
this sense, span constraints are more global than arc constraints as they require en-
tire subgraphs of the dependency graph to have a certain property. Nevertheless,
we can use the same basic technique as before and enforce span constraints by
adding new preconditions to transitions, but these preconditions need to refer to vari-
ables that are updated dynamically during parsing. We need to keep track of two
things:

r Which word is the designated root of a span? A word becomes the
designated root r(s) of its span s if it acquires a head outside the span or
if it acquires a dependent outside the span under the ROOT condition.

r How many connected components are in the subgraph over the current
span up to and including the last word pushed onto the stack? A variable
#CC is set to 1 when the first span word enters the stack, incremented by
1 for every SHIFT and decremented by 1 for every LEFT-ARCl.

4 Data and splits from the Web Treebank of Petrov and McDonald (2012). Commands used for evaluation
were sentences from the test set that had a sentence initial verb root.

254

Nivre, Goldberg, and McDonald Constrained Arc-Eager Dependency Parsing

Given this information, we need to add preconditions that guarantee the following:

r The designated root must not acquire a head inside the span.
r No word except the designated root may acquire a head outside the span.
r The designated root must not be popped from the stack before the last

word of the span has been pushed onto the stack.
r The last word of a span must not be pushed onto the stack in a

RIGHT-ARCl transition if #CC > 1.
r The last word of a span must not be pushed onto the stack in a SHIFT

transition if #CC > 0.

In addition, we must block outside dependents of all words in a span under the NONE

condition, and of all words in a span other than the designated root under the ROOT

condition. All the necessary preconditions are given in Figure 2 under the heading
SPAN CONSTRAINTS.

Complexity and Correctness. To show that the span-constrained parser always terminates
after at most 2n transitions, it is again sufficient to show that there is at least one
permissible transition for every non-terminal configuration. Here, SHIFT is blocked if
the word i to be shifted is the last word of a span and #CC > 0. But in this case, one of the
other three transitions must be permissible. If #CC = 1, then RIGHT-ARCl is permissible;
if #CC > 1 and the word on top of the stack does not have a head, then LEFT-ARCl is
permissible; and if #CC > 1 and the word on top of the stack already has a head, then
REDUCE is permissible (as #CC > 1 rules out the possibility that the word on top of the
stack has its head outside the span). In order to obtain linear parsing complexity, all
preconditions should be verifiable in constant time. This can be achieved during initial
sentence construction by recording the span s(i) for every word i (with a dummy span
for words that are not inside a span) and by updating r(s) (for every span s) and #CC as
described herein.

Finally, we note that the span-constrained system is sound and complete in the
sense that it derives all and only PDTs compatible with a given span constraint set SC for
a sentence x. Soundness follows from the observation that failure to have a connected
subgraph G[i,j] for some span [i, j] ∈ SC can only arise from pushing j onto the stack in
a SHIFT with #CC > 0 or a RIGHT-ARCl with #CC > 1, which is explicitly ruled out by
the added preconditions. Completeness can be established by showing that a transition
sequence that derives a PDT G compatible with SC in the unconstrained system cannot
violate any of the added preconditions, which is straightforward but tedious.

Empirical Case Study: Korean Parsing. In Korean, white-space-separated tokens corre-
spond to phrasal units (similar to Japanese bunsetsus) and not to basic syntactic cat-
egories like nouns, adjectives, or verbs. For this reason, a further segmentation step is
needed in order to transform the space-delimited tokens to units that are a suitable input
for a parser and that will appear as the leaves of a syntactic tree. Here, the white-space
boundaries are good candidates for posing hard constraints on the allowed sentence
structure, as only a single dependency link is allowed between different phrasal units,
and all the other links are phrase-internal. An illustration of the process is given in
Figure 3. Experiments on the Korean Treebank from McDonald et al. (2013) show that
adding span constraints based on white space indeed improves parsing accuracy for
an arc-eager beam search parser (Zhang and Nivre 2011). Unlabeled attachment score

255

Computational Linguistics Volume 40, Number 2

Figure 3
Parsing a Korean sentence (the man writes the policy decisions) using span constraints derived from
original white space cues indicating phrasal chunks.

increases from an already high 94.10 without constraints to 94.92, and labeled attach-
ment score increases from 89.91 to 90.75.

Combining Constraints. What happens if we want to add arc constraints on top of
the span constraints? In principle, we can simply take the conjunction of the added
preconditions from the arc constraint case and the span constraint case, but some
care is required to enforce correctness. First of all, we have to check that the arc
constraints are consistent with the span constraints and do not require, for example,
that there are two words with outside heads inside the the same span. In addition, we
need to update the variables r(s) already in the preprocessing phase in case the arc
constraints by themselves fix the designated root because they require a word inside
the span to have an outside head or (under the ROOT condition) to have an outside
dependent.

5. Conclusion

We have shown how the arc-eager transition system for dependency parsing can
be modified to take into account both arc constraints and span constraints, without
affecting the linear runtime and while preserving natural notions of soundness and
completeness. Besides the practical applications discussed in the introduction and case
studies, constraints can also be used as partial oracles for parser training.

References
Ballesteros, Miguel and Joakim Nivre.

2013. Getting to the roots of dependency
parsing. Computational Linguistics,
39:5–13.

Eisner, Jason and Giorgio Satta. 1999.
Efficient parsing for bilexical context-free
grammars and head automaton grammars.
In Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics,
pages 457–464, Santa Cruz, CA.

Eisner, Jason M. 1996. Three new
probabilistic models for dependency
parsing: An exploration. In Proceedings
of the 16th International Conference on
Computational Linguistics (COLING),
pages 340–345, Copenhagen.

Goldberg, Yoav and Joakim Nivre.
2012. A dynamic oracle for arc-eager
dependency parsing. In Proceedings

of the 24th International Conference on
Computational Linguistics, pages 959–976,
Shanghai.

Goldberg, Yoav and Joakim Nivre. 2013.
Training deterministic parsers with
non-deterministic oracles. Transactions
of the Association for Computational
Linguistics, 1:403–414.

Hara, Tadayoshi, Takuya Matsuzaki, Yusuke
Miyao, and Jun’ichi Tsujii. 2011. Exploring
difficulties in parsing imperatives and
questions. In Proceedings of the 5th
International Joint Conference on Natural
Language Processing, pages 749–757,
Chiang Mai.

Karttunen, Lauri, Jean-Pierre Chanod,
Gregory Grefenstette, and Anne Schiller.
1996. Regular expressions for language
engineering. Natural Language Engineering,
2(4):305–328.

256

http://www.mitpressjournals.org/action/showLinks?system=10.1162%2FCOLI_a_00132
http://www.mitpressjournals.org/action/showLinks?crossref=10.1017%2FS1351324997001563

Nivre, Goldberg, and McDonald Constrained Arc-Eager Dependency Parsing

Koo, Terry and Michael Collins. 2010.
Efficient third-order dependency parsers.
In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics,
pages 1–11, Uppsala.

McDonald, Ryan, Koby Crammer, and
Fernando Pereira. 2005. Online
large-margin training of dependency
parsers. In Proceedings of the 43rd Annual
Meeting of the Association for Computational
Linguistics, pages 91–98, Ann Arbor, MI.

McDonald, Ryan, Joakim Nivre, Yvonne
Quirmbach-Brundage, Yoav Goldberg,
Dipanjan Das, Kuzman Ganchev, Keith
Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee.
2013. Universal dependency annotation
for multilingual parsing. In Proceedings of
the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2:
Short Papers), pages 92–97, Sofia.

Nivre, Joakim. 2003. An efficient algorithm
for projective dependency parsing. In
Proceedings of the 8th International Workshop
on Parsing Technologies, pages 149–160,
Nancy.

Nivre, Joakim. 2008. Algorithms for
deterministic incremental dependency
parsing. Computational Linguistics,
34:513–553.

Nivre, Joakim, Johan Hall, and Jens Nilsson.
2004. Memory-based dependency parsing.
In Proceedings of the 8th Conference on
Computational Natural Language Learning,
pages 49–56, Boston, MA.

Petrov, Slav and Ryan McDonald. 2012.
Overview of the 2012 shared task on
parsing the web. In Notes of the First
Workshop on Syntactic Analysis of
Non-Canonical Language (SANCL),
Montreal.

Yamada, Hiroyasu and Yuji Matsumoto.
2003. Statistical dependency analysis
with support vector machines.
In Proceedings of the 8th International
Workshop on Parsing Technologies,
pages 195–206, Nancy.

Zhang, Yue and Stephen Clark. 2008.
A tale of two parsers: Investigating
and combining graph-based and
transition-based dependency parsing.
In Proceedings of the Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 562–571,
Honolulu, HI.

Zhang, Yue and Joakim Nivre. 2011.
Transition-based parsing with rich
non-local features. In Proceedings of the
49th Annual Meeting of the Association for
Computational Linguistics, pages 188–193,
Portland, OR.

257

http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli.07-056-R1-07-027

