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1. False and True Starts

I am deeply honored to receive the ACL’s Lifetime Achievement Award. I’m especially
honored when I look back at the list of previous winners—Chuck Fillmore, Eugene
Charniak, Eva Hajičová, Fred Jelinek, Martin Kay, Aravind Joshi, and the others—
they’re all my heroes.

I was of course delighted to learn of this award. The most we can hope for in life is
to take part in the conversation, and an award like this means that you’ve taken part in
the conversation.

It seems to be a tradition to begin with a few formative anecdotes from childhood.
For me, it all begins before I was born. My grandfather, a crusty old country lawyer in
southern Indiana, told my father not to bother trying to go to law school. “You don’t
know English grammar,” he said. “You’ll flunk out.” My dad accepted the challenge,
bought a book entitled English Grammar, by Smith, Magee, and Seward (1928), and
mastered it. He went on to become a very successful lawyer.

Fast-forward to when I was in junior high school. My dad was distressed that my
English classes looked to him more like social studies, and barely touched on grammar.
So he persuaded me—actually, he probably bribed me, but I can’t remember what
with—to master that same book, English Grammar by Smith, Magee, and Seward. This
was a concession, because I was a math nerd, reading only textbooks on trigonometry
and calculus, as my way of avoiding the humiliation of playing baseball. But I read the
book, and I was amazed. English grammar was just like math! It had the same sorts of
rules, the same kinds of abstractions, the same types of puzzles. It was actually fun!

In my junior or senior year of high school we had to take something called the
Kuder Preference Test, which would help us decide what career to choose. I scored high
in math and in language. So my high school counselor told me I should write math
books. In fact, she got it exactly backwards. It wasn’t that I should do language about
math. It was that I should do math about language.

I’ve met any number of computational linguists with a similar story. They grew
up not knowing whether they wanted to be a physicist or a poet. They just knew both
sounded fascinating. Then they discovered our field.

My last near miss happened the week I was drafted into the Army. They gave us a
battery of aptitude tests to see what specialties we’d be best for. One of the tests was to
see if we should be sent to the Monterey Language School. Looking back on it, I realize
now it was testing how well you could understand formal language theory. They’d give
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you a bunch of rules for an artificial language, and you’d have to say whether different
strings were in or not in the language. I’d never seen anything like it, but it was really
fun to do. Later I met with a personnel specialist who went over my test scores. I got a 46
out of 50. He ignored that until I pointed it out to him. Then he said, “That’s a mistake.
Nobody ever gets more than 6 or 7 points on that test.”

I said, “No, I think it might be correct.”
He said, “It doesn’t matter. You’re not going to the Monterey Language School.

You’re going to South Vietnam.”
Actually, I didn’t go to the Monterey Language School or to South Vietnam. I spent

two years in South Carolina, and was glad to be there. How I managed that is a story
for another occasion.

So I didn’t really discover computational linguistics until my third year in grad-
uate school at New York University. In October I passed my oral exam in topics like
algebraic topology and complex analysis, by one generous yes and two abstensions. In
the subsequent months I discovered more and more facts about myself—for example,
that I was never going to figure out a faster way of multiplying matrices, and that
fascinating though recursion theory might be, I was never going to prove a theorem
that Hartley Rogers would be compelled to include in his next edition. As I surveyed
vaguely plausible fields, I realized I had no idea what the next problem to solve would
be or even what makes a problem interesting.

Then in April, when I had nearly resigned myself to becoming a taxi driver, I discov-
ered New York University’s best-kept secret: Naomi Sager’s Linguistic String Project. I
think it is also computational linguistics’ best kept secret as well. She was motivated by
the science, not by the performance, and her very impressive work is nowhere near as
well-known as it should be. I think her Linguistic String Grammar (Sager 1981) ranks,
as a computational specification of English syntax, with Pollard and Sag’s Head-driven
Phrase Structure Grammar (1994), for thoroughness, insight, and elegance. So, for exam-
ple, in 1992 when we developed the FASTUS system for information extraction using
cascaded finite-state transducers (Hobbs et al. 1997), it was straightforward to copy the
rules for Noun Groups straight from her grammar. It’s no accident that in the late 1980s
during the Strategic Computing Initiative and in the early 1990s in the Message Under-
standing Conferences, three of the most important efforts were led by Linguistic String
Project alumni—Ralph Grishman’s group at New York University, Lynette Hirschman’s
at Unisys, and my group at SRI International. I think the most important lesson I learned
from Naomi Sager was to look closely at the data and to take it seriously.

My other thesis advisor was Jack Schwartz. He was a polymath, so to speak. I
took a course in logic from him. I knew about his book on compilers and the classic
Dunford and Schwartz on functional analysis. But when I saw his book on mathematical
economics and his book on the theory of relativity, I did some research to see if there
was more than one Jack Schwartz. Among his writings was an unpublished Chapter 9
of his compilers book, on parsing natural language, which I of course read.

My thesis was on Earley’s algorithm applied to natural language. It quickly became
apparent that the constraints on phrase structure rules had to be expressed and that
one could do that with fairly simple operations on vectors of features, where among
the features were what I called the “cores” of the constituents, since they bundled many
of the relevant features. My “core” was what linguists came to call “head.” Years later,
I ran across Chapter 9 again and reread it, and realized that all the ideas in my thesis
were there. So when in 1987 Schwartz told someone that I had anticipated head-driven
phrase structure grammar, that was his way of saying he had anticipated head-driven
phrase structure grammar.
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My first job was at Yale University as a very temporary instructor—I think the
position is now called “post-doc.” Over the course of the year I became convinced
that syntax was a solved problem—something I still believe. But that left me adrift for
problems to work on. I became discouraged, and found myself thinking again about
driving that taxi. Then late one afternoon, just as I was about to go home, a graduate
student named Fred Howard came into my office to ask a couple of questions. That
triggered a discussion that lasted until 11 o’clock that evening. One of the wheels we
reinvented was a recognition of the pervasiveness of spatial metaphor in discourse.
(This was before Lakoff and Johnson [1980], but after similar observations by the
18th-century Italian philosopher Giambattista Vico (1968 [1744]) and the 20th-century
English literary critic I. A. Richards [1936].) But within a year, everything else of value
that remained of the content of that discussion could be compressed into a long footnote
in a technical report. In any case, this conversation lit a fire that fueled my research for
the next 15 or 20 years.

In particular, I began looking at texts, trying to understand how we understand
them. No doubt influenced by Chuck Rieger’s thesis (Rieger 1974), I asked what infer-
ences we draw in the course of comprehension, and, an issue Rieger did not address,
what inferences we do not draw. This culminated in 1976 in an unreadable (and unread)
technical report (Hobbs 1976), microanalyzing one paragraph from Newsweek, trying to
specify every bit of knowledge required for understanding the text and describing how
every linguistic problem in the text invokes that knowledge to arrive at solutions. One
could say that the rest of my career has been a matter of cleaning up and extending that
technical report, in terms of representation, the process of inference and interpretation,
and the specification of common-sense knowledge.

2. Representation

In 1977 I moved to SRI, where I fell under the influence of Nils Nilsson and Bob Moore,
and of John McCarthy at nearby Stanford. They were campaigning to replace the ad hoc
styles of representation of early AI with representations based on first-order logic. But
the problem in a nutshell is this: When we are trying to represent an English sentence
like Pat believes Chris is tall, we really want to write

(1) believe(Pat, tall(Chris))

The difficulty is that tall is a predicate and tall(Chris) evaluates to true or false, so we
are left with Pat believes a truth value, with not a hint of Chris’s tallness to be found. A
common solution to this is to treat believe not as a predicate but as an opaque operator
that blocks evaluation of its operands.

Many special logics have been developed for such operators. For example, knowing
about modal and temporal logics, Russell’s iota operator, functionals, lambda expres-
sions, and so on, we might represent the sentence

(2) Maybe the boy wanted to build a boat quickly.

by the expression

(3) (ιx : BOY)[�PAST[WANT(x, λz[(∃ y : BOAT)Quick(build)(z, y)]]]

This bothered me because it seemed like we were introducing a new operator with its
own special logic every time we encountered a new word to define or characterize. For
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20,000 words would we have to introduce 20,000 new operators? It seemed to me that
we should rather stay within first-order logic, abiding by two principles:

1. All morphemes are created equal.

2. Every morpheme conveys a predication.

We could achieve this kind of representation by means of reification. Thus, if
tall′(e, Chris) says that eventuality e is the state or eventuality of Chris being tall, then
we can represent Pat believes Chris is tall by

(4) believe(Pat, e) ∧ tall′(e, Chris)

Sentence (2) is then represented

(5) maybe(e5) ∧ the(x, e3) ∧ boy′(e3, x) ∧ want′(e4, x, e6) ∧ Past′(e5, e4)
∧ build′(e6, x, y) ∧ a(y, e8) ∧ boat′(e8, y) ∧ slow(e6)

There’s nothing exotic here (other than reification). It’s all first-order logic, predicates
applied to arguments where the arguments are existentially quantified variables with
widest possible scope, ranging over a universe of possible individuals.

The extremes to which we go in identifying morphemes with predications can
be seen in the predication the(x, e3). What could that possibly mean? Well, ask what
information is being conveyed by the word the. It is a relation between an entity x and
a description e3, and it says the entity is uniquely mutually identifiable in context by
means of the description. We can give this relation a name. We could call it something
like uniquely-mutually-identifiable-in-context. But why not keep it simple, and name the
predicate after the morpheme that conveys it – the?

Knowledge representation schemes that use extensive reification are often called
“Davidsonian,” after the philosopher Donald Davidson (1967), who proposed reifying
events. But he balked at reifying states, let alone negations of states and events. He
would not have treated Chris’s tallness as a thing. By contrast, I adopted a position that,
because I was young and wild, I called “ontological promiscuity.” Now that I’m older
and more domesticated, I would probably call it something like “ontological prosperity”
or “ontological comfortable circumstances” or maybe “ontological glut.”

Many balk at such abandonment of ontological scruples. No doubt I was influenced
by the near solipsism that infected many researchers in the early days of AI. Our brains
could be fooling us, just as we often fool computers to test our programs. Yes, there is
probably a world out there that occasionally bites back. But the world is benevolent—
after all, we evolved in it. When we breathe, there is almost always oxygen there. That’s
no accident. So it doesn’t matter very much what we believe. We can believe all sorts of
crazy things and be completely ignorant of apparently real and pervasive phenomena.
Until the recent past we believed in the spirits of the dead, and we were entirely ignorant
of 98% of the electromagnetic spectrum. If you are willing to admit the existence of
physical objects, sets, numbers, and possible worlds, what ontological scruples do you
have anyway? So why should we give any credence at all to our intuitions about what
exists and what doesn’t? Why not simply stipulate that everything that can be talked
about exists in a Platonic universe of possible individuals, since that makes it so much
easier to represent and reason about the content of natural language discourse?

The result of this move and similar reifications to eliminate quantifier scopings
is that the logical form of a sentence is a flat conjunction of existentially quantified
propositions, with one predication per morpheme.
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But there is a problem. The sentence

(6) John is tall.

would be represented

(7) John′(e1, x) ∧ tall′(e3, x)

whereas the sentence

(8) John is not tall.

would be represented

(9) John′(e1, x) ∧ not′(e2, e3) ∧ tall′(e3, x)

But P ∧ Q ∧ R implies P ∧ R, so it would seem that John is not tall implies John is tall.
The wrinkle is that tall′(e3, x) does not say that x is tall. It says that e3 is a possible

eventuality of x’s being tall. The eventuality e3 may or may not exist in the real world,
and if it does, that is one of its properties – Rexist(e3).

This means that we have to distinguish between the content of a sentence and its
claim. Sentences (6) and (8) have highly overlapping content. But the claim of sen-
tence (6) is e3, the tall-ness, while the claim of sentence (8) is e2, the negation of the
tall-ness.

The general procedure for deciding on whether or not an eventuality really exists is
as follows:

Step 1: Identify the claim.

Step 2: Propagate truth and falsity through implicatives.

Step 3: As a courtesy to the speaker, assume the other propositions are true. (But
note that in modal contexts there is an ambiguity in whether the grammatically
subordinated material holds in the real world [de re] or in the modal context [de
dicto].)

For example, in

(10) The lazy man did not manage to avoid attending the meeting.

Step 1 says the claim is the “not.” Step 2 says that therefore “manage” is false, “avoid”
is false, and “attend” is true. Step 3 says that “lazy,” “man,” and “meeting” are all
true.

This kind of representation has the advantage of yielding a very elegant view
of compositional semantics. In traditional approaches to compositional semantics, the
meanings of constituents are lambda expressions, and composition happens by func-
tion application. With a flat logical form, the only role function application plays is
identifying variables with each other. This gives us a two-part account of compositional
semantics.

1. The lexicon provides predicate–argument relations.

2. Syntax identifies variables.

For the sentence

(11) The man attended the meeting.
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ignoring the and tense, we get from the individual words the propositions

(12) man′(e1, x1), attend′(e2, x2, y2), meeting′(e3, y3)

When we recognize that attended the meeting is a verb phrase, this amounts to recogniz-
ing that y2 = y3. When we recognize the man attended the meeting as a clause, we have
recognized that x1 = x2.

3. Interpretation

In 1979 and 1980, I had the huge good fortune to participate in a biweekly discussion
group on discourse, alternating between Stanford and Berkeley, consisting of some of
the most illustrious scholars of language in the world, including Mike Agar, Dwight
Bolinger, Eve and Herb Clark, Chuck Fillmore, Paul Kay, George Lakoff, Geoff Nunberg,
Ivan Sag, Dan Slobin, Elizabeth Traugott, and Tom Wasow. For me personally, the high
point in these meetings, and one of the high points in my entire career, was when the
sociologist Irving Goffman, visiting Berkeley at the time, used my paper “Conversation
as Planned Behavior” (Hobbs and Evans 1980) as a club to beat the sociolinguist John
Gumperz over the head with. Metaphorically speaking. We read and discussed mem-
bers’ papers on interpreting nominal compounds, metonymy or deferred reference,
de-nominalized nouns, metaphor, and other phenomena that came to be clustered by
linguists under the name of “Radical Pragmatics” (Cole 1981). (I thought a better name
would be “Run-of-the-mill AI”.)

Around this time, I was concerned with the problem of how we delimit the
set of inferences we draw as we understand a text. The answer that seemed most
promising was that we need to draw those inferences required to resolve interpre-
tation problems of the sort we were examining in the discussion group. But what
systematicity was there to this set of problems? How would you know if your list was
complete?

The scheme that made the most sense to me goes like this. A text conveys predi-
cations, that is, a predicate applied to one or more arguments – p(x). This gives rise to
three sorts of problems:

1. What is the predicate? What is p? This question subsumes the problems of
lexical ambiguity, the interpretation of vague predicates like prepositions
and have, and the interpretation of the implicit relation in nominal
compounds.

2. What is the argument? What is x? This question subsumes the problems of
coreference and syntactic ambiguity. (Recall that syntactic structure is a
matter of identifying variables in the right way.)

3. In what way are the predicate and argument congruent? What about p and
x would allow p to be true of x? This question subsumes the problems of
metaphor and metonymy.

This collection of problems I called “local pragmatics.” They are problems that are
presented within the scope of single sentences, but they often require for their solution
the entire discourse, the external context, and world knowledge. (My term never caught
on probably because no one else saw this class of problems as a natural kind.)
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Another issue I was thinking about during these years was the structure of dis-
course, in particular, that structure arising out of coherence relations between discourse
segments. In this I was very much influenced by the work of the linguists Joseph Grimes
(1975) and Robert Longacre (1976). I began collaborating with the anthropologist Mike
Agar around this time, and we called this level of structure “local coherence” (Agar and
Hobbs 1982).

In the mid-1970s Ray Perrault and Phil Cohen (Cohen and Perrault 1979) at the
University of Toronto, later to be my colleagues at SRI, and Chip Bruce (Bruce and
Newman 1978) at BBN were doing very exciting work analyzing the structure of
discourse as arising out of the speaker’s or writer’s plan, employing formalizations
of planning from artificial intelligence. In work with David Evans and work with
Mike Agar I tried to apply these insights to the complexities of ordinary conversa-
tion and to ethnographic interviews. Agar and I called this level of structure “global
coherence.”

All along in investigating all three of these problems—local pragmatics, local coher-
ence, and global coherence—it was clear that a key role was played by the notions of
implicature (Grice 1975), accommodation (Lewis 1979; Thomason 1985), and abduction
(Peirce 1955). To solve even elementary problems like pronoun coreference, one had to
make assumptions to get a good interpretation of the text, where the only justification
for the assumptions was that they led to a good interpretation.

In the fall of 1987 at SRI we organized a discussion group on abduction, reading
the classic papers by Peirce, recent attempts in AI to use abduction in, for exam-
ple, medical diagnosis (Pople 1973; Cox and Pietrzykowski 1986), and contemporary
philosophers like Paul Thagard (1978), as well as work by Wilensky and Norvig at
Berkeley (Wilensky 1983; Norvig 1987) and Charniak and Goldman at Brown (Charniak
and Goldman 1988) that seemed to be taking an approach similar to ours. Among the
people in our group were Mark Stickel, Doug Edwards, and the pragmatics scholar
Steve Levinson, who was visiting Stanford at the time. We argued about what we were
calling identity implicatures and referential implicatures, and about how to distinguish
new from given information in discourse, and how to choose the best interpretation
of a text.

Then late one afternoon in October 1987 Mark Stickel came into my office to say
that he thought he had the answer to all our problems. He described his algorithm for
weighted abduction. It struck me immediately as the double helix of computational
linguistics, a feeling that has not entirely abandoned me today. First of all, it gave us a
characterization of what constituted the interpretation of a stream of discourse. It gave
us a clear criterion for what inferences to draw and not draw. The interpretation was the
most economical explanation for what would make the text true, and an inference was
appropriate if and only if it contributed to that explanation.

On my way home that night, I began driving a little more carefully. In the next
few days, I saw how one would approach all the local pragmatics and local and global
coherence problems in this framework. In discussions with Stu Shieber in the next few
days it became apparent how one could integrate syntax smoothly into the framework.
A big picture emerged (Hobbs et al. 1993).

In the early 1990s I saw an advertisement in a magazine for Polaroid cameras
(quite obsolete now). It showed a man standing by the ocean, holding a camera, and
looking at a scene in which the branch of a tree is on the ground and a small boat
is stuck in the top of another tree. When we see this, we immediately interpret it
by coming up with the best explanation for the observables (abduction). There was
a storm that blew the branch down and blew the boat into the tree. There are other
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possible explanations. Maybe someone chopped the branch down, and maybe the boat
was lifted into the tree with a crane. But this is not as good an interpretation because
we have to assume two things (the chopping and the crane) rather than just one (the
storm). The first interpretation is better because it is more economical. Less explains
more.

But this isn’t the end of the story. There is another observable to be explained. Why
is this picture in the magazine? The explanation is that it is an advertisement. That
means there was an ad agency involved in posing the picture, and they very well could
have done the chopping and used the crane, rather than wait for the rare event of a
storm to arrange the picture for them.

We could call the first explanation the “informational” one. It explains the content
of the picture, thereby explicating the information conveyed by the picture. We could
call the second explanation the “intentional” one. It explains why the message occurs
at all. Note that both interpretations need to be discovered if the advertisement is to be
fully appreciated.

The big picture that emerges is this (see Figure 1). The brain is an abduction
machine, continuously trying to prove abductively (i.e., by making necessary assump-
tions) that the observables in its environment constitute a coherent situation. (We can
encompass action as well as perception by adding to what is proved the proposition
that the owner of the brain will thrive in that situation.)

Sometimes among the observables is another agent’s utterance. What is to be ex-
plained is the proposition utter(i, u, w)—that is, a speaker i utters to a hearer u a string

Figure 1
Interpretation as abduction, the big picture.
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of words w. Generally the best explanation for an utterance is that it is an intentional act
aimed at conveying information. We can capture this with the axiom

(13) Segment(w, e) ∧ goal(i, c) ∧ cog′(c, u, e) ⊃ utter(i, u, w)

That is, if w is an interpretable segment of discourse describing a situation e, and a
speaker i has the goal c that a hearer u adopt some cognitive stance toward e, then
(defeasibly) i will utter to u the string of words w. The first conjunct in the antecedent
is the entry point into the informational side of an interpretation: What is the content
of the message? The second two conjuncts are the entry point into the intentional side:
Why is the speaker conveying this content?

The reason that the speaker has this particular goal is usually that it plays some role
in, or is a subgoal of, a larger plan the speaker is executing in the world. This is where
that reasoning occurs. It encompasses what Agar and I called “global coherence”—how
does the utterance fit in with what else is going on in the world?

The next level of analysis happens when we decompose the segment of discourse
into smaller segments, using the axiom

(14) Segment(w1, e1) ∧ Segment(w2, e2) ∧ CoRel(e1, e2, e)
⊃ Segment(w1w2, e)

This axiom says that if w1 is a segment describing situation e1, and w2 is a segment
describing situation e2, and there is a relation between e1 and e2, then the concatenation
is a segment describing a situation e somehow derivable from the relation. When we
backchain on this axiom, we are explaining an interpretable segment of discourse by
breaking it into parts, explaining the parts, and explaining the relation between them.

The possible coherence relations are just the sort of relations that frequently obtain
between two states or events: causality, similarity, identity, a strong sort of temporal suc-
cession I have called “occasion,” the figure–ground relation, and predicate–argument
relations. These are similar to other catalogues of discourse relations that others have
come up with. However, the intent is to capture the information that can be conveyed
by adjacency. By contrast, the relations of Rhetorical Structure Theory (Mann and
Thompson 1986) are a mixture of informational relations like similarity and intentional
relations like justification. The first is what is conveyed by adjacency; the second is
what the speaker is using adjacency to do. Often the coherence relation conveyed by
adjacency is expressed redundantly (and with less ambiguity) in a conjunction (so), an
adverb (consequently), or a referential expression (That made . . . ). This does not pose a
problem, assuming the two do not conflict; discourse is rife with redundancy.

Decomposition of a discourse in this fashion yields a tree or tree-like structure. It
bottoms out in individual clauses, and this is where syntax takes over. Adjacency in
larger stretches of discourse can convey a variety of possible relations. As we saw at the
end of Section 2, adjacency within clauses conveys predicate–argument relations. Syntax
is a set of rules that enable us to convey and interpret complex predicate–argument
relations with the rather crude device of concatenation. The best explanation of a clause
is the decomposition given to us by compositional semantics. The best explanation for
an individual morpheme is that it is intended to convey its corresponding predication.
Thus, the syntactic analysis of a clause bottoms out in its logical form.

Now all that remains to be explained is the logical form. It was the original insight of
the “Interpretation as Abduction” framework that the best abductive proof (i.e., the best
explanation) of the logical form solved the local pragmatics problems as a side effect.
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I won’t make an extended argument for that here, but one example should convey the
basic idea.

The sentence, due to Hirst (1987),

(15) The plane taxied to the terminal.

has three lexical ambiguities. A plane could be an airplane or a wood-smoother, a
terminal could be an airport terminal or a computer terminal, and taxiing could be a
plane moving on the ground or a person riding in a cab.

We assume we have axioms expressing these possibilities

airplane(x) ⊃ plane(x)
wood-smoother(x) ⊃ plane(x)
airport-terminal(y) ⊃ terminal(y)
computer-terminal(y) ⊃ terminal(y)
move-on-ground(x, y) ∧ airplane(x) ⊃ taxi(x, y)
ride-in-cab(x, y) ∧ person(x) ⊃ taxi(x, y)

together with a rule that says airports have airplanes and airport terminals.

airport(z) ⊃ airplane(x) ∧ airport-terminal(y)

Then the most economical explanation (Figure 2) is constructed by assuming there
is an airport and that an airplane we expect to find there is moving on the ground
to the airport terminal we expect to find there. Note that the ambiguous words are
disambiguated as a by-product by virtue of the axioms that are used in the explanation.
The predicate airport-terminal plays a role; the predicate computer-terminal doesn’t.

All of this raises a question. If the framework is so elegant and so all-encompassing,
why isn’t it more widely adopted?

I think there are three reasons for this, historically.

1. Parsers were not accurate enough to produce good logical forms from
which inference could start.

2. Algorithms for abduction were too inefficient.

3. There was a lack of an adequate knowledge base.

Each of these problems has been alleviated somewhat in the past few years. There
are now highly accurate statistical parsers, and for several of these (e.g., Boxer; Bos 2008)
a component for translating into a flat logical form has been implemented.

Recent work by Naoya Inoue and Kentaro Inui (2011) implements weighted abduc-
tion as a problem in integer linear programming, building on earlier work by Charniak
and Santos (Santos 1996). Our experience with this is that when we switched from a
naive backchaining implementation to the ILP implementation, we got a speed-up of
two orders of magnitude.

Finally, there have been ongoing efforts to build large knowledge bases, manually
and automatically, from a number of different perspectives. Efforts to use Cyc for
natural language processing applications have had mixed success at best. But Schubert’s
efforts (2002) to build a knowledge base by analyzing language use looks very promis-
ing. Some applications have attempted to use OpenMind. WordNet hierarchies are used
very widely and Harabagiu and Moldovan (2002) developed XWN, a conversion of
WordNet glosses into logical axioms, and reported success with its use in question-
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Logical Form:

plane(x) ∧ taxi(x, y) ∧ terminal(y)

Knowledge Base:

�

airplane(x) ⊃ plane(x)

�
�

�
�

�
�

�
���

move-on-ground(x, y) ∧ airplane(x) ⊃ taxi(x, y)

�
�

�
�

�
�

�
�

�
�

���

airport-terminal(y) ⊃ terminal(y)

�
�

�
�

�
�

�
���

�
�
�
�
�
�
��

�

airport(z) ⊃ airplane(x) ∧ airport-terminal(y)

wood-smoother(x) ⊃ plane(x)

ride-in-cab(x, y) ∧ person(x) ⊃ taxi(x, y)

computer-terminal(y) ⊃ terminal(y)

Figure 2
Interpretation of The plane taxied to the terminal.

answering. FrameNet has been converted into logical axioms by Ovchinnikova et al.
(2013), and she and her colleagues have shown that an abduction engine using a
knowledge base derived from these sources is competitive with the best of the statistical
systems in textual entailment and semantic role labeling.

My own particular take on building a knowledge base for inferential NLP is de-
scribed in the next section.

4. Knowledge

We understand discourse so well because we know so much. Thus, one of the central
problems in the study of language is how we use our knowledge of language and the
world to interpret discourse. This breaks into two subproblems:

1. How do we encode the common-sense knowledge required for
understanding discourse?

2. How do we use this knowledge in the processing of discourse?

I had a conversation with Eugene Charniak in the early 1990s in which I said I
thought the second of these is a solved problem. The answer is abduction. He agreed
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with me. We both agreed that the first problem was now the most important focus of
research. But he said that he despaired of encoding that knowledge manually, and that’s
why he had reoriented his research toward statistical methods. I disagreed for two
reasons. I think the kind of knowledge that we want at the very core of a knowledge
base for NLP can only be done manually by thoughtful people and cannot be done by
any automatic methods currently imaginable. And I think there is systematicity that
will make the task more tractable than we might believe at the outset.

As to the first point, suppose we want to define or characterize the word range, as in

(16) The scores on the test ranged from 38 to 96.

From the definition we would want to be able to answer the questions

Did someone get a 96 on the test? Yes.
Did someone get a 54 on the test? Maybe.
Did someone get a 25 on the test? No.

In addition, we want to capture generalizations and we don’t want to multiply word
senses needlessly. So we would like to have the same definition work for the sentences

(17) The timber wolf ranges from northern Mexico to southern Alaska.

(18) His behavior ranges from sullen to downright hostile.

(19) The hepatitis cases range from moderate to severe.

We don’t want a “species” sense of range, and a “behavioral” sense and an “epidemio-
logical” sense.

The sort of axiom we need for this is as follows:

(20) (∀ x, y, z)range(x, y, z) ≡
(∃ s, s1, u1, u2)scale(s) ∧ subscale(s1, s) ∧ bottom(y, s1)

∧ top(z, s1) ∧ u1 ∈ x ∧ at(u1, y) ∧ u2 ∈ x ∧ at(u2, z)
∧ (∀ u ∈ x)(∃ v ∈ s1)at(u, v)

That is, x ranges from y to z if and only if there is a scale s with a subscale s1 whose
bottom is y and whose top is z, such that some member u1 of x is at y, some member u2
of x is at z, and every member u of x is at some point v in s1. (I’ll discuss the predicate at
subsequently.)

It is difficult for me to believe we will any time soon be able to discover automat-
ically rules of this complexity and at the same time rules of this level of abstractness.
I’m sure we’ll be able to discover automatically facts such as “One has to be married
before getting divorced,” and “Houses normally have thermostats.” But facts like the
definition of “range” require human brains.

My formative experience in encoding common-sense knowledge came when I was
at Yale in the early 1970s and immersed myself in the linguistics literature. Among
the papers that struck a chord the most were the Generative Semanticists, like Jeffrey
Gruber, George Lakoff, Haj Ross, James McCawley, and others. They were analyzing
the verb kill into cause to become not alive and the verb move, as in x moves y from z to
w, into x causes a change from y being at z to y being at w. They also speculated on the
abstract nature of the at relation as a source for many of the frozen spatial metaphors
that pervade language.

Generative semantics dropped out of favor rather soon, but I think their funda-
mental insights were exactly right. To my mind, they failed for two reasons. First,
they were doing in tree transformations what they should have been doing in logic,
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a mistake being repeated today by those working on so-called “natural language infer-
ence.” Second, they lacked a notion of defeasibility, so that when they found examples
of when X killed Y and Y didn’t end up not alive, they thought their theory was
refuted.

These interests in lexical semantics got put on the back burner for several years. I
returned to it in the mid-1980s when Bill Croft, Doug Edwards, Ken Laws, and I worked
on building up a knowledge base. Our goal, which we almost achieved, was to be able
to prove as a theorem that wear on a component of an artifact can cause the artifact to
fail, because wear is a loss of material and this causes a change of shape, and shape in
artifacts is normally functional. At the time we were working on U.S. Navy texts dealing
with worn-out air compressors.

Then back to the back burner until 1999 or 2000, since which time knowledge
encoding has been the principal focus of my research. It is not easy research to get
funding for, because its payoff in comparison to building special-purpose applications
is very long-term. One has to find short-term applications that would be helped by
general knowledge in the next logical domain to attempt. For example, I was able to
work with people like George Ferguson, Pat Hayes, and Drew McDermott on devel-
oping the so-called “OWL-Time,” a comprehensive ontology of time (Hobbs and Pan
2004), for DARPA’s DAML program on the Semantic Web, and ARDA’s AQUAINT
program on question-answering provided the resources for my work with Feng Pan and
Rutu Mulkar-Mehta on vague durations of events. Ram Nevatia’s ARDA-sponsored
MOVER project provided the opportunity to develop an ontology of event structure
called VERL (Video Event Representation Language, Alexandre et al. 2005), and this
led to work with Chris Welty, Mike Gruninger, and people at Cycorp on the ARDA-
sponsored IKRIS project for developing an interlingua among several event and process
ontologies. DARPA’s Machine Reading Program supported my student Rutu Mulkar-
Mehta’s work on granular or “how-to” causality (Mulkar-Mehta, Hobbs, and Hovy
2011) and Niloofar Montazeri’s work defining or characterizing several hundred com-
mon event-related words (Montazeri and Hobbs 2011). My work with Andrew Gordon
on encoding common-sense psychology (Gordon and Hobbs 2004) has been funded by
various agencies over the years, most recently by ONR. But some of the research has
been “stealth” research—work you don’t tell anyone about until it’s finished for fear
your boss will find out and make you work on other stuff. My papers on causality and
modality (Hobbs 2005) and on scales and half orders of magnitude (Hobbs 2000) were
like this.

The goal is to develop what I have come to call “Deep Lexical Semantics” (Hobbs
2008). It is not enough to decompose “move” into “cause - change - at.” It is not good
enough to simply stipulate these as primitives. We need to explicate these concepts in
core theories, a theory of causality, a theory of change of state, and a theory of composite
entities and the figure–ground relation. Lexical decompositions have to be anchored in
such theories so we can not only decompose meanings but also be able to reason with
the decomposed meanings.

The structure of the effort is this: We have the predicates corresponding to the
morphemes of the language. We have the underlying core theories. And we have axioms
defining or characterizing the former in terms of the latter. Thus, in the “range” example,
range is the predicate corresponding to the morpheme. There is a core theory of scales
that provides the predicates scale, lessThan, subscale, top, bottom, and at. Axiom (20) is the
rule that links the lexical predicate with the core theory.

Next I will sketch several very basic core theories and show their utility in defining
words for the textual entailment task.
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Composite Entities and the Figure–Ground Relation: A composite entity is a
thing made of other things. This is intended to cover physical objects like a telephone,
mixed objects like a book, abstract objects like a theory, and events like a concert. It is
characterized by a set of components, a set of properties of the components, a set of
relations among its components (the structure), and relations between the entity as a
whole and its environment (including its function). The predicate at relates an external
entity, the figure, to a component in a composite entity, the ground. Different figures
and different grounds give us different meanings for at.

(21) Spatial location: Pat is at the back of the store.

(22) Location on a scale: Nuance closed at 58.

(23) Membership in an organization: Pat is now at Google.

(24) Location in a text: The table is at the end of the article.

(25) Time of an event: At that moment, Pat stood up.

(26) Event at event: Let’s discuss that at lunch.

(27) At a predication: She was at ease in his company.

When at is specialized in this way, we tap into a whole vocabulary for talking about the
domain, including concepts like move and range.

Change of State: The predication change(e1, e2) says that state e1 changes into state
e2. Its principal properties are that e1 and e2 should have an entity in common—a change
of state is a change of state of something. States e1 and e2 are not the same unless there is
an intermediate state. The predicate change is defeasibly transitive; in fact, backchaining
on the transitivity axiom is one way to refine the granularity on processes.

Causality: We distinguish between the “causal complex” for an effect and the
concept “cause.” A causal complex includes all the states and events that have to happen
or hold in order for the effect to occur. We say that flipping a switch causes the light to
go on. But many other conditions must be in the causal complex—the light bulb can’t
be burnt out, the wiring has to be intact, the power has to be on in the city, and so
on. The two key properties of a causal complex are that when everything in the causal
complex happens or holds, so will the effect, and that everything that is in the causal
complex is relevant in a sense that can be made precise. “Causal complex” is a rigorous
or monotonic notion, but its utility in everyday life is limited because we almost never
can specify everything in it.

“Cause” by contrast is a defeasible or nonmonotonic notion. It selects out of a
causal complex a particular eventuality that in a sense is the “active” part of the causal
complex, the thing that isn’t necessarily normally true. Flipping the switch, in most
contexts, is the action that causes the light to come on. Causes are the focus of plan-
ning, prediction, explanation, and interpreting discourse, but not diagnosis, because in
diagnosis, something that normally happens or holds, doesn’t.

Let us now define a few words in terms of these predicates. The verb let as in x lets
e happen means x does not cause e not to happen.

(28) let(x, e1) ≡ not(e8) ∧ cause′(e8, x, e9) ∧ not′(e9, e1)

In its most abstract sense go just means a change of state, as in Sometimes I go crazy.

(29) go′(e1, y, e2, e3) ≡ change′(e1, e2, e3)
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Something y is free of a set of constraints c to do e5 means that it is not the case that the
constraints cause e5 not to happen.

(30) free′(e3, y, c, e5) ≡ not′(e3, e2) ∧ cause′(e2, c, e4) ∧ not′(e4, e5)

Something x holds y at z means that x causes y not to change from being at z.

(31) hold′(e2, x, y, z)
≡ cause′(e2, x, e4) ∧ not′(e4, e5) ∧ change′(e5, e6, e7) ∧ at′(e6, y, z)

Something x releases y from z means that there is a change from x’s holding y at z.

(32) release′(e1, x, y, z) ≡ change′(e1, e2, e3) ∧ hold′(e2, x, y, z)

The Recognizing Textual Entailment task is to determine from a text whether a
hypothesis follows from it or not. For example, from the text A Filippino hostage in Iraq
was released we would like to be able conclude the hypothesis The captors let the hostage
go free. Figure 3 illustrates the proof of this entailment relation, using the five axioms
we just wrote, together with rules from the core theories saying if something exists,
nothing causes it to not exist, and if there is a change from a state, that state no longer
holds (Montazeri and Hobbs 2011).

The final set of examples I’ll give of Deep Lexical Semantics come from work I have
been doing with Andrew Gordon on axiomatizing common-sense psychology, or how
we think we think. We have developed approaches to memory, belief, and mutual belief,
envisioning causal chains in explanation and prediction, perception and control of the
body, and goals and plans. I will focus on goals.

We adopt the strong AI position that people are in a sense planning mechanisms. We
have goals, we develop plans to achieve these goals, we execute the plans, we monitor
the execution, and if things go wrong, we modify our plans and execute the new plans.

Figure 3
A textual entailment example.
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There are two chief properties of goals. The first says that if an agent has a goal
e2 and believes e1 causes e2, then defeasibly that will cause the agent to have e1 as a
subgoal. The second property is a similar rule for enablement. These are the planning
axioms; they generate hierarchical plans.

The word help can be explicated in terms of theories of goals and causality. We can
distinguish three levels of helping. At the lowest level, inadvertant helping, you help
someone when you do an action that is in a causal complex for one of their goals. In
this sense, John McCain helped Barack Obama get elected by picking Sarah Palin as
his running mate. A second level, intentional helping, is like the first with the addition
that the helper performs the action in the service of the helpee’s goal. For example, if I
take away a drunk friend’s car keys, I help him survive, a goal of his, but not driving is
no part of his plan to survive. The third level, collaborative helping, happens when the
helper and helpee engage in a shared plan together, as in helping someone carry a sofa.

We can define the word try, as in X tries to do E, as having the goal that E be
accomplished, and having it be a goal cause one to accomplish one of its subgoals. To
succeed at doing E is to try to do E, and to have that trying cause E to be accomplished.
To fail to do E is to try to do E and have E not happen.

Often in comprehending discourse about artifacts we need to know a great deal
about the structure and function of the artifact. The theory of goals and planning gives
us a handle on this, because normally the structure of an artifact reflects a plan to
achieve its functionality, a goal. For example, the function of a coffee cup is to move
coffee. We achieve this by breaking it into two subgoals: having a cup contain the coffee
and moving the cup. We achieve moving the cup by attaching a handle to the cup and
moving the handle. Artifacts are plans made concrete (or in the case of a coffee cup,
ceramic).

One of the most salient aspects of common-sense psychology is our emotions. What
about emotions? Is it possible to formalize a theory of emotions? I think it is, and
much of it involves goals. In general, we can characterize emotions in terms of what
causes them and what they cause. Emotions, like cognition more generally, mediate
between perception and action. Thus, for a particular emotion, we specify an abstract
type of perceived eventualities that cause the emotion, and we specify an abstract
class of typical responses. This is basically the knowledge we humans need to fake
emotions.

Consider happiness. Happiness occurs when one’s goals are being satisfied (or
sometimes merely when we anticipate that). That must mean that one’s beliefs in the
relevant area are working, especially one’s beliefs about what causes what. So one effect
of happiness is a higher level of activity—we plan to do more because our planning
process is in good working order. A second effect of happiness is that we are not very
open to a change of beliefs. If our beliefs are working, why should we change them?

Other emotions can be defined in similar terms. Sadness is the opposite of happiness
in cause and effects. Fear, anger, and disgust can be seen as various responses to a threat,
given the properties of the threat, where a threat is something that will cause one’s goals
to be defeated.

I’ll close with an obvious question. How long will it be before we are able to
automatically analyze texts in the manner I have described? When I wrote my technical
report analyzing one paragraph of Newsweek in 1976, I thought the answer was that the
goal was ten years away. When we began to implement a system based on weighted
abduction, I thought the goal was ten years away. So now I will show myself to be
consistently optimistic. I think a concerted effort along these lines would yield some
measure of success in about ten years.
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