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Multiword expressions lie at the syntax/semantics interface and have motivated alternative
theories of syntax like Construction Grammar. Until now, however, syntactic analysis and
multiword expression identification have been modeled separately in natural language process-
ing. We develop two structured prediction models for joint parsing and multiword expression
identification. The first is based on context-free grammars and the second uses tree substitution
grammars, a formalism that can store larger syntactic fragments. Our experiments show that
both models can identify multiword expressions with much higher accuracy than a state-of-the-
art system based on word co-occurrence statistics.

We experiment with Arabic and French, which both have pervasive multiword expres-
sions. Relative to English, they also have richer morphology, which induces lexical sparsity
in finite corpora. To combat this sparsity, we develop a simple factored lexical representation
for the context-free parsing model. Morphological analyses are automatically transformed into
rich feature tags that are scored jointly with lexical items. This technique, which we call
a factored lexicon, improves both standard parsing and multiword expression identification
accuracy.

1. Introduction

Multiword expressions are groups of words which, taken together, can have un-
predictable semantics. For example, the expression part of speech refers not to some
aspect of speaking, but to the syntactic category of a word. If the expression is
altered in some ways—part of speeches, part of speaking, type of speech—then the
idiomatic meaning is lost. Other modifications, however, are permitted, as in the plural
parts of speech. These characteristics make multiword expressions (MWEs) difficult to
identify and classify. But if they can be identified, then the incorporation of MWE
knowledge has been shown to improve task accuracy for a range of NLP applications
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including dependency parsing (Nivre and Nilsson 2004), supertagging (Blunsom and
Baldwin 2006), sentence generation (Hogan et al. 2007), machine translation (Carpuat
and Diab 2010), and shallow parsing (Korkontzelos and Manandhar 2010).

The standard approach to MWE identification is n-gram classification. This tech-
nique is simple. Given a corpus, all n-grams are extracted, filtered using heuristics,
and assigned feature vectors. Each coordinate in the feature vector is a real-valued
quantity such as log likelihood or pointwise mutual information. A binary classifier
is then trained to render a MWE/non-MWE decision. All entries into the 2008 MWE
Shared Task (Evert 2008) utilized variants of this technique.

Broadly speaking, n-gram classification methods measure word co-occurrence. Sup-
pose that a corpus contains more occurrences of part of speech than parts of speech. Surface
statistics may erroneously predict that only the former is an MWE and the latter is not.
More worrisome is that the statistics for the two n-grams are separate, thus missing an
obvious generalization.

In this article, we show that statistical parsing models generalize more effectively
over arbitrary-length multiword expressions. This approach has not been previously
demonstrated. To show its effectiveness, we build two parsing models for MWE iden-
tification. The first model is based on a context-free grammar (CFG) with manual
rule refinements (Klein and Manning 2003). This parser also includes a novel lexical
model—the factored lexicon—that incorporates morphological features. The second
model is based on tree substitution grammar (TSG), a formalism with greater strong
generative capacity that can store larger structural tree fragments, some of which are
lexicalized.

We apply the models to Modern Standard Arabic (henceforth MSA, or simply
“Arabic”) and French, two morphologically rich languages (MRLs). The lexical sparsity
(in finite corpora) induced by rich morphology poses a particular challenge for n-gram
classification. Relative to English, French has a richer array of morphological features—
such as grammatical gender and verbal conjugation for aspect and voice. Arabic also
has richer morphology including gender and dual number. It has pervasive verb-
initial matrix clauses, although preposed subjects are also possible. For languages like
these it is well known that constituency parsing models designed for English often do
not generalize well. Therefore, we focus on the interplay among language, annotation
choices, and parsing model design for each language (Levy and Manning 2003; Kiibler
2005, inter alia), although our methods are ultimately very general.

Our modeling strategy for MWESs is simple: We mark them with flat bracketings
in phrase structure trees. This representation implicitly assumes a locality constraint
on idioms, an assumption with a precedent in linguistics (Marantz 1997, inter alia).
Of course, it is easy to find non-local idioms that do not correspond to surface con-
stituents or even contiguous strings (O’Grady 1998). Utterances such as All hell seemed
to break loose and The cat got Mary’s tongue are clearly idiomatic, yet the idiomatic
elements are discontiguous. Our models cannot identify these MWEs, but then again,
neither can n-gram classification. Nonetheless, many common MWE types like nominal
compounds are contiguous and often correspond to constituent boundaries.

Consider again the phrasal compound part of speech,! which is non-compositional:
The idiomatic meaning “syntactic category” does not derive from any of the component

1 It is common to hyphenate some nominal compounds, e.g., part-of-speech. This practice invites a
words-with-spaces treatment of idioms. However, hyphens are inconsistently used in English.
Hyphenation is more common in French, but totally absent in Arabic.
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words. This non-compositionality affects the syntactic environment of the compound as
shown by the addition of an attributive adjective:

(I) a. Nounisa part of speech.
b. *Noun is a big part of speech.
c. *Noun is a big part.
(2) a. Liquidity is a part of growth.
b. Liquidity is a big part of growth.

n

Liquidity is a big part.

In Example (la) the copula predicate part of speech as a whole describes Noun. In
Examples (1b) and (1c) big clearly modifies only part and the idiomatic meaning is
lost. The attributive adjective cannot probe arbitrarily into the non-compositional com-
pound. In contrast, Example (2) contains parallel data without idiomatic semantics.
The conventional syntactic analysis of Example (2a) is identical to that of Example (1a)
except for the lexical items, yet part of growth is not idiomatic. Consequently, many pre-
modifiers are appropriate for part, which is semantically vacuous. In Example (2b), big
clearly modifies part, and of growth is just an optional PP complement, as shown by
Example (2c), which is still grammatical.

This article proposes different phrase structures for examples such as (la) and
(2a). Figure 1la shows a Penn Treebank (PTB) (Marcus, Marcinkiewicz, and Santorini
1993) parse of Example (la), and Figure 1b shows the parse of a paraphrase. The
phrasal compound part of speech functions syntactically like a single-word nominal
like category, and indeed Noun is a big category is grammatical. Single-word para-
phrasability is a common, though not mandatory, characteristic of MWEs (Baldwin
and Kim 2010). Starting from the paraphrase parse, we create a representation like
Figure (1c). The MWE is indicated by a label in the predicted structure, which is
flat. This representation explicitly models the idiomatic semantics of the compound
and is context-free, so we can build efficient parsers for it. Crucially, MWE identifi-
cation becomes a by-product of parsing as we can trivially extract MWE spans from
full parses.

We convert existing Arabic and French syntactic treebanks to the new MWE
representation. With this representation, the TSG model yields the best MWE iden-
tification results for Arabic (81.9% F1) and competitive results for French (71.3%),
even though its parsing results lag state-of-the-art probabilistic CFG (PCFG)-based
parsers. The TSG model also learns human-interpretable MWE rules. The fac-
tored lexicon model with gold morphological annotations achieves the best MWE
results for French (87.3% F1) and competitive results for Arabic (78.2% F1). For both
languages the factored lexicon model also approaches state-of-the-art basic parsing
accuracy.

The remainder of this article begins with linguistic background on common MWE
types in Arabic and French (Section 2). We then describe two constituency parsing
models that are tuned for MWE identification (Sections 3 and 4). These models are
supervised and can be trained on existing linguistic resources (Section 5). We evaluate
the models for both basic parsing and MWE identification (Section 6). Finally, we
compare our results with a state-of-the-art n-gram classification system (Section 7) and
to prior work (Section 8).
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2. Multiword Expressions in Arabic and French

In this section we provide a general definition and taxonomy of MWEs. Then we discuss
types of MWEs in Arabic and French.

2.1 Definition of Multiword Expressions

MWEs, a known nuisance for both linguistics and NLP, blur the lines between syntax
and semantics. Jackendoff (1997, page 156) comments that MWEs “are hardly a marginal
part of our use of language,” and estimates that a native speaker knows at least as many
MWE:s as single words. A linguistically adequate representation for MWEs remains an
active area of research, however. Baldwin and Kim (2010) define MWEs as follows:

Definition 1
Multiword expressions are lexical items that: (a) can be decomposed into multi-
ple lexemes; and (b) display lexical, syntactic, semantic, pragmatic, and/or statistical
idiomaticity.

A

NP vpP
\
NN
| VBZ NP S
Noun |
is /\
DT NN PP N‘P vP
\ \ PN
a part IN NP N‘N VBZ NP
of NN Noun s pT NN
\ \ \
speech a category
(a) Standard analysis of Example (1a) (b) Standard analysis of a paraphrase
S
NP VP
\
NN
‘ VBZ NP
Noun iL /\
DT MWN
\
a
NN IN NN
\ \ \
part of  speech
(c) MWE analysis used in this article
Figure 1

(a) A standard PTB parse of Example (1a). (b) The MWE part of speech functions syntactically
like the ordinary nominal category, as shown by this paraphrase. (c) We incorporate the
presence of the MWE into the syntactic analysis by flattening the tree dominating part of speech
and introducing a new non-terminal label multiword noun (MWN) for the resulting span. The
new representation classifies an MWE according to a global syntactic type and assigns a POS
to each of the internal tokens. It makes no commitment to the internal syntactic structure of
the MWE, however.

198



Green, de Marneffe, and Manning Parsing Models for Identifying Multiword Expressions

Table 1

Semi-fixed MWEs in French and English. The French adverb 4 terme (‘in the end”) can be
modified by a small set of adjectives, and in turn some of these adjectives can be modified
by an adverb such as trés (‘“very’). Similar restrictions appear in English.

French English
a terme in the near term
a court terme in the short term
a tres court terme inthe very short term
a moyen terme in the medium term
a long terme in the long term
a tres long terme inthe very long term

MWE:s fall into four broad categories (Sag et al. 2002):

1. Fixed—do not allow morphosyntactic variation or internal modification (in short,
by and large).

2. Semi-fixed—can be inflected or undergo internal modification (Table 1).

3. Syntactically flexible—undergo syntactic variation such as inflection (e.g.,
phrasal verbs such as look up and write down).

4. Institutionalized phrases—fully compositional phrases that are statistically
idiosyncratic (traffic light, Secretary of State).

Statistical parsers are well-suited for coping with lexical, syntactic, and statistical
idiomaticity across all four MWE classes. However, to our knowledge, we are the first
to explicitly tune parsers for MWE identification.

2.2 Arabic MWEs

The most recent and most relevant work on Arabic MWEs was by Ashraf (2012), who
analyzed an 83-million-word Arabic corpus. He developed an empirical taxonomy of
six MWE types, which correspond to syntactic classes. The syntactic class is defined
by the projection of the purported syntactic head of the MWE. MWEs are further
subcategorized by observed POS sequences. For some of these classes, the syntactic
distinctions are debatable. For example, in the verb-object idiom == -y s2was O o2
Daraba “Sfuurayn bi-Hajar (‘he killed two birds with one stone’)* the composition of
o yas (‘two birds’) with # (‘stone’) is at least as important as composition with the
verb o > (‘he killed’), yet Ashraf (2012) classifies the phrase as a verbal idiom.
The corpus in our experiments only marks three of the six Arabic MWE classes:

Nominal idioms (MWN) consist of proper nouns (Example 3a), noun compounds
(Example 3b), and construct NPs (Example 3c). MWNs typically correspond to NP
bracketings:

(B) a. NN: _¢b g labuu Dabii (‘Abu Dhabi’)

2 For each Arabic example in this work, we provide native script, transliterations in italics according to the
phonetic scheme in Ryding (2005), and English translations in single quotes.
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b. D+N D+N: & L\l al-‘naaya al-fas°qa (‘intensive care unit’)

c. ND+N: r,\.'é.ﬂ 8 S kura al-qudum (‘soccer’)

Prepositional idioms (MWP) include PPs that are commonly used as discourse con-
nectives (Example 4a), function like adverbials in English (Example 4b), or have
been institutionalized (Example 4c). These MWEs are distinguished by a prepositional
syntactic head:

4) a PD+N: oVl s> Hataa al-aan ("until now’)
b.  P+N: 2w bi-“nf (‘violently”)
c. P+D+N D+N: J:J‘ o\ bi-al-twgiit al-maHalii (‘local time”)

Adjectival idioms (MWA) are typically the so-called “false” iDaafa constructs in which
the first term is an adjective that acts as a modifier of some other noun. These constructs
often correspond to a hyphenated modifier in English such as Examples (5a) and
(5b). Less frequent are coordinated adjectives that have been institutionalized such as
Examples (5¢) and (5d):

5) AD+N: s gild ! &ngd, rafii‘a al-mustuuaa (‘high-level’)

a
b. AD+N: CLa.” i5\s g swiiiaatiia al-Sana® (‘Soviet-made”)

c. D+A C+D+A: &y aally &azallal-shagiiga w-al-Sadiiga (‘neighborly’)
d. D+A C+D+A: {_=Jly &_\al-bariia w-al-baHariia (‘land and sea’)

These idiom types usually do not cross constituent boundaries, so constituency parsers
are well suited for modeling them. The other three classes of Ashraf (2012)—verb-
subject, verbal, and adverbial—tend to cross constituent boundaries, so they are dif-
ficult to represent in a PTB-style treebank. Dependency representations may be more
appropriate for these idiom classes.

2.3 French MWEs

In French, there is a lexicographic tradition of compiling MWE lists. For example, Gross
(1986) shows that whereas French dictionaries contain about 1,500 single-word adverbs
there are over 5,000 multiword adverbs. MWEs occur in every part of speech (POS)
category (e.g., noun trousse de secours (‘first-aid kit’); verb faire main-basse [do hand-low]
(‘seize’); adverb comme dans du beurre [as in butter] (‘easily’); adjective a part entiere
(‘wholly”)).

Motivated by the prevalence of MWEs in French, Gross (1984) developed a
linguistic theory known as Lexicon-Grammar. In this theory, MWEs are classified
according to their global POS tags (noun, verb, adverb, adjective), and described in
terms of the sequence of the POS tags of the words that constitute the MWE (e.g., “N
de N” garde d’enfant [guard of child] (‘daycare’), pied de guerre [foot of war] (‘at the
ready’)) (Gross 1986). In other words, MWEs are represented by a flat structure. The
Lexicon-Grammar distinguishes between units that are fixed and have to appear as is
(en tout et pour tout [in all and for all] (‘in total’)) and units that accept some syntactic
variation such as admitting the insertion of an adverb or adjective, or the variation of
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one of the words in the expression (e.g., a possessive as in from the top of one’s hat). It
also notes whether the MWE displays some selectional preferences (e.g., it has to be
preceded by a verb or by an adjective).

We discuss three of the French MWE categories here, and list the rest in Appendix A.

Nominal idioms (MWN) consist of proper nouns (Example (6a)), foreign common
nouns (6b), and common nouns. The common nouns appear in several syntacti-
cally regular sequences of POS tags (Example (7)). Multiword nouns allow inflection
(singular vs. plural) but no insertion:

(6) a. London Sunday Times, Los Angeles
b.  week - end, mea culpa, joint - venture

(7) a. N A:corps médical (‘'medical staff’), dette publique ("public debt’)
b. N P N: mode d’emploi (‘instruction manual’)

c¢. N N: numéro deux (‘number two’), maison mere [house mother] ("headquar-
ters’), greve surprise (‘sudden strike”)

d. N P D N: impot sur le revenu (‘income tax’), ministre de I'économie (‘finance
minister”)

Adjectival idioms (MWA) appear with different POS sequences (Example (8)). They
include numbers like vingt et unieme (21st’). Some MWAs allow internal variation. For
example, some adverbs or adjectives can be added to both examples in (8b) (4 trés haut
risque, de toute derniére minute):

(8) a. P N:d’antan [from before] (‘old’), en question (“under discussion’)

b. P A N: a haut risque (‘high-risk’), de derniere minute [from the last minute]
(“at the eleventh hour”’)

c. A CA:puretsimple [pure and simple] (‘straightforward’), noir et blanc (‘black
and white”)

Verbal idioms (MWYV) allow number and tense inflections (Example (9)). Some MWVs
containing a noun or an adjective allow the insertion of a modifier (e.g., donner grande
satisfication (‘give great satisfaction’)), whereas others do not. When an adverb inter-
venes between the main verb and its complement, the two parts of the MWV may
be marked discontinuously (e.g., [ywv [v prennent]] [APV déja] [pwv [p en] [y cause]]
(‘already take into account’)):

9) a. V N:avoir lieu (‘take place’), donner satisfaction (‘give satisfaction’)
b. VP N: mettre en place ("put in place’), entrer en vigueur (‘to come into effect’)

c. VP ADV: mettre a mal [put at bad] (‘harm’), étre @ méme [be at same] (‘be
able’)

d. V D NP N: tirer la sonnette d’alarme (‘ring the alarm bell’), avoir le vent en
poupe (‘to have the wind astern’)

Both Gross (1986) and Ashraf (2012) classify MWEs according to global syntactic role
and internal POS sequence. In a constituency tree, these two features can be modeled
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Table 2

French grammar development. Incremental effects on grammar size and labeled F1 for each of
the manual grammar features (development set, sentences < 40 words). The baseline is a
parent-annotated grammar. The features tradeoff between maximizing two objectives: overall
parsing F1 and MWE F1.

Feature States Tags ParseF1 AF1 MWEF1
- 4,128 32 77.3 60.7
tagPA 4,360 264 78.4 +1.1 71.4
splitPUNC 4,762 268 78.8 +0.4 71.1
markDe 4,882 284 79.8 +1.0 71.6
markP 4,884 286 79.9 +0.1 71.5

MWADVtypel 4919 286 799  +00 718
MWADVtype2 4970 286 799  +00 717
MWNitypel 504 286 800  +01 719
MWNtype2 509 286 799  —01 719

by a span over the MWE composed of a phrasal label indicating the MWE type and
pre-terminal labels indicating the internal POS sequence. MWE identification then
becomes a trivial process of extracting such subtrees from full parses.

3. Context-Free Parsing Model: Stanford Parser

In this section and Section 4, we describe constituency parsing models that will be
tuned for MWE identification. The algorithmic details of the parsing models may seem
removed from multiword expressions, but this is by design. MWEs are encoded in
the syntactic representation, allowing the model designer to focus on learning that
representation rather than trying to model semantic phenomena directly.

The Stanford parser (Klein and Manning 2003) is a product model that combines the
outputs of a manually refined PCFG with an arc-factored dependency parser. Adapting
the Stanford parser to a new language requires: (1) feature engineering for the PCFG
grammar, (2) specification of head-finding rules for extracting dependencies, and (3)
development of an unknown word model.?

After adapting the basic parser, we develop a novel lexical model, which we call a
factored lexicon. The factored lexicon incorporates morphological information that is
predicted by a separate morphological analyzer.

3.1 Grammar Development

Grammar features consist of manual splits of labels in the training data (e.g., marking
base NPs with the rich label “NP-base”). These features were tuned on a development
set. Some of them have linguistic interpretations, whereas others (e.g., punctuation
splitting) have only empirical justification.

French Grammar Features. Table 2 lists the category splits used in our grammar. Most
of the features are POS splits as many phrasal tag splits did not improve accuracy. This
result may be due to the flat annotation scheme of the FIB.

3 The Stanford parser code, head-finding rules, and trained models are available at
http://nlp.stanford.edu/software/lex-parser.shtml.
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Parent annotation of POS tags captures information about the external context. For
example, prepositions (P) can introduce a prepositional phrase (PP) or an infinitival
complement (VPinf), but some prepositions will uniquely appear in one context and
not the other (e.g., sur (‘on”) will only occur in a PP environment). The tagPA provides
this kind of distribution. We also split punctuation tags (splitPUNC) into equivalence
classes similar to those present in the PTB.

We tried different features to mark the context of prepositions. markP identifies
prepositions which introduce PPs modifying a noun (NP). Marking other kinds of
prepositional modifiers (e.g., verb) did not help. The feature markDe the preposition
de and its variants (du, des, d’), which are very frequent and appear in many contexts.

The features that help MWE F1 depend on idiom frequency. We mark MWADVs
under S nodes (MWADVtypel), and those with POS sequences that occur more than
500 times (“P N” —en jeu, a peine, or “P D N” dans I'immédiat, a I'inverse) (MWADVtype2).
Similarly, we mark MWNs that occur more than 600 times (e.g., “N P N” and “N N”)
(MWNtypel and MWNtype2).

Arabic Grammar Features. The Arabic grammar features come from Green and
Manning (2010), which contains an ablation study similar to Table 2. We added one
additional feature, markMWEPOS, which marks POS tags dominated by MWE phrasal
categories.

3.2 Head-Finding Rules

For Arabic, we use the head-finding rules from Green and Manning (2010). For French,
we use the head-finding rules of Dybro-Johansen (2004), which yielded an approxi-
mately 1% development set improvement over those of Arun (2004).

3.3 Unknown Word Models

For both languages, we create simple unknown word models that substitute word
signatures for rare and unseen word types. The signatures are generated according to
the features in Table 3. For tag t and signature s, the signature parameters p(t|s) are
estimated after collecting counts for 50% of the training data. Then p(s|t) is computed
via Bayes rule with a flat Dirichlet prior.

Table 3

Unknown word model features for Arabic and French.

Arabic Lexical Features French Lexical Features

> Presence of the determiner ! al > Nominal, adjectival, verbal, adverbial, and
plural suffixes

> Contains digits or punctuation > Contains digits or punctuation

> Ends with the feminine affix § ah > Is capitalized (except the first word in a
sentence), or consists entirely of capital
letters

> Various verbal (e.g., o t, ‘j waa, ysuun)and > If none of the above, deterministically

adjectival suffixes (e.g., & iah, s ii) extract one- and two-character suffixes
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3.4 Factored Lexicon with Morphological Features

We will apply our models to Arabic and French, yet we have not dealt with the lexical
sparsity induced by rich morphology (see Table 5 for a comparison to English). One
way to combat sparsity is to parse a factored representation of the terminals, where
factors might be the word form, the lemma, or grammatical features such as gender,
number, and person (¢ features) (Bilmes and Kirchoff 2003; Koehn and Hoang 2007,
inter alia).

The basic parser lexicon estimates the generative probability of a word given a
tag p(w|t) from word/tag pairs observed in the training set. Additionally, the lexicon
includes parameter estimates p(t|s) for unknown word signatures s produced by the
unknown word models (see Section 3.3). At parsing time, the lexicon scores each input
word type w according to its observed count in the training set c(w). We define the
unsmoothed and smoothed parameter estimates:

pltho) = <8 M

c(t,w) + ap(t|s)

psmooth(t|w) = C(ZU) I (2)
We then compute the desired parameter p(w|t) as
PUREE) if c(w) > B
p(w|t) — psmoothlgilt;‘))p(w) lf C(w) > 0 (3)

p(tls)p(s)

70 otherwise

We found that o = 1.0 and 3 = 100 worked well on both development sets.

In the factored lexicon, each token has an associated morphological analysis m,
which is a string describing various grammatical features (e.g., tense, voice, definite-
ness). Instead of generating terminals alone, we generate the word and morphological
analysis using a simple product:

p(w, m|t) = p(w|t)p(m|t) (4)

where p(m|t) is estimated using exactly the same procedure as the lexical insertion
probability p(w|t). Because there are only a few hundred unique (t,m) tuples in the
training data for each language, we tend to get sharper parameter estimates, namely,
we usually estimate p(t|m) directly as in Equation (1). Moreover, at test time, even if
the word type w is unknown, the associated morphological analysis m is almost always
known, providing additional evidence for tagging.

We also experimented with an additional lemma factor, but found that it did not
improve accuracy. We thus excluded the lemma factor from our experiments.

For words that have been observed with only one tagging, the factored lexicon is
clearly redundant. Consider, however, the case of the Arabic triliteral J:B gtl which,
in unvocalized text, can be either a verb meaning “he killed” or a nominal meaning
“murder, killing.” If 5 appears as a verb, and we include the tense feature in the
morphological analysis, then all associated nominal tags (e.g., NN) will be assigned
zero probability because nominals never carry tense in the training data.
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4. Fragment Parsing Model: Dirichlet Process Tree Substitution Grammars

For our task, a shortcoming of CFG-based grammars is that they do not explicitly
capture idiomatic usage. For example, consider the two utterances:

(10) a. He kicked the bucket.
b. He kicked the pail.

Unless horizontal markovization is applied, PCFGs generate words independently.
Consequently, no phrasal rule parameter in the model differentiates between Exam-
ples (10a) and (10b). Recall, however, that in our representation, Example (10a) should
receive a flat analysis as MWV, whereas Example (10b) should have a conventional
analysis of the transitive verb kicked and its two arguments.

TSGs are weakly equivalent to CFGs, but with greater strong generative capacity
(Joshi and Schabes 1997). TSGs can store lexicalized tree fragments as rules. Conse-
quently, if we have seen [\wy kicked the bucket] several times before, we can store that
whole lexicalized fragment in the grammar.

We consider the non-parametric probabilistic TSG (PTSG) model of Cohn,
Goldwater, and Blunsom (2009) in which tree fragments are drawn from a Dirichlet
process (DP) prior.* The DP-TSG can be viewed as a data-oriented parsing (DOP)
model (Scha 1990; Bod 1992) with Bayesian parameter estimation. A PTSG is a 5-tuple
(V,%,R, {,0) where ¢ € V are non-terminals; t € ¥ are terminals; e € R are elementary
trees;” { € V is a unique start symbol; and 0., € 0 are parameters for each tree
fragment. A PTSG derivation is created by successively applying the substitution
operator to the leftmost frontier node (denoted by c™). All other nodes are internal
(denoted by ¢7).

In the supervised setting, DP-TSG grammar extraction reduces to a segmentation
problem. We have a treebank T that we segment into the set R, a process that is modeled
with Bayes’ rule:

p(R|T) o< p(T | R) p(R) ()

Because the tree fragments completely specify each tree, p(T | R) is either 0 or 1, so all
work is performed by the prior over the set of elementary trees.

The DP-TSG contains a DP prior for each ¢ € V and generates a tree fragment ¢
rooted at non-terminal c according to:

eC‘C/ (XC/PO('|C) ~ DP((XC/PO)
e|0. ~ 6,

4 Similar models were developed independently by O’Donnell, Tenenbaum, and Goodman (2009) and Post
and Gildea (2009).
5 We use the terms tree fragment and elementary tree interchangeably.
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Table 4
DP-TSG notation. For consistency, we largely follow the notation of Liang, Jordan, and
Klein (2010).

o DP concentration parameter for each non-terminal typec € V
Py(elc) CFG base distribution

x Set of all non-terminal nodes in the treebank

S Set of sampling sites (one for each x € x)

S A block of sampling sites, where S C S
b = {bs}ses Binary variables to be sampled (b; = 1 for frontier nodes)
z Latent state of the segmented treebank

m Number of sites s € Ss.t. by = 1
n={n.} Sulfficient statistics of z
AnSm Change in counts by setting m sites in S

Table 4 defines notation. The data likelihood is given by the latent state z and the

parameters 0: p(z]0) = [[.c. GZCé"(Z). Integrating out the parameters, we have:

fice(2)
p(z) _ H HE(O(CP()(€|C)) (6)

ne,.(z)
ceV (XCE'

where X" = x(x + 1) ... (x + n — 1) is the rising factorial.

Base Distribution. The base distribution Py is the same maximum likelihood PCFG used
in the Stanford parser.® After applying the manual grammar features, we perform sim-
ple right binarization, collapse unary rules, and replace rare words with their signatures
(Petrov et al. 2006).

For each non-terminal type ¢, we learn a stop probability g, ~ Beta(1,1). Under
Py, the probability of generating a tree fragment AT — B~ C* composed of non-
terminals is

Po(A* — B~ C*) = pmre(A — BC)qp(1 — qc) @)
Unlike Cohn, Goldwater, and Blunsom (2009), we penalize lexical insertion:

Po(c — t) = pvee(c — Hp(t) (8)

where p(t) is equal to the MLE unigram probability of ¢ in the treebank. Lexicalizing a
rule makes it very specific, so we generally want to avoid lexicalization with rare words.
Empirically, we found that this penalty reduces overfitting.

Type-Based Inference Algorithm. To learn the parameters 6 we use the collapsed, block
Gibbs sampler of Liang, Jordan, and Klein (2010). We sample binary variables b,
associated with each sampling site s in the treebank. The key idea is to select a block

6 The Stanford parser is a product model which scores parses with both a dependency grammar and a
PCFG. We extract the TSG from the manually split PCFG only. Bansal and Klein (2010) also experimented
with manual grammar features in an all-fragments (parametric) TSG for English.
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NP+

PUNC-(1) N* N~  PUNC*(2)
| | \ |

“ Jacques Chirac “

Figure 2

Example of two conflicting sites of the same type in a training tree. Define the type of a

site £(z, s) & (An*®, An®1). Sites (1) and (2) have the same type because t(z,51) = t(z,5,). The two
sites conflict, however, because the probabilities of setting b,, and b,, both depend on counts for
the tree fragment rooted at NP. Consequently;, sites (1) and (2) are not exchangeable: The
probabilities of their assignments depend on the order in which they are sampled.

of exchangeable sites S of the same type that do not conflict (Figure 2). Because the
sites in S are exchangeable, we can set bg randomly if we know m, the number of sites
with by = 1. This algorithm is not a contribution of this article, so we refer the interested
reader to Liang, Jordan, and Klein (2010) for further details.

After each Gibbs iteration, we sample each stop probability gq. directly using
binomial-Beta conjugacy. We also infer the DP concentration parameters o with the
auxiliary variable procedure of West (1995).

Decoding. To decode, we first create a maximum a posterior (MAP) grammar in which
tree fragments have fixed estimates according to a single sample from the DP-TSG:

nc,e(z) + O(CP0(€|C)

Oce = 0@ +

©)

This MAP grammar has an infinite rule set, however, because elementary trees with
zero count in 77 have some residual probability under Py. We discard all zero-count trees
except for the zero-count CFG rules in Py. Scores for these rules follow from Equation (9)
with 7n.,(z) = 0. This grammar represents most of the probability mass and permits
inference using dynamic programming (Cohn, Goldwater, and Blunsom 2009).

Because the derivations of a TSG are context-free (Vijay-Shanker and Weir 1993),
we can form a CFG of the derivation sequences and use a synchronous CFG to translate
the most probable CFG parse to its TSG derivation. Consider a unique tree fragment
e; rooted at ¢; with frontier vy, which is a sequence of terminals and non-terminals. We
encode this fragment as an SCFG rule of the form

[ej—=>v,¢g—=ic0...] (10)

where ¢y, ¢y, . .. is a finite-length sequence of the non-terminal frontier nodes in v.7” The
SCFG translates the input string to a sequence of tree fragment indices. Because the
TSG substitution operator applies to the leftmost frontier node, the best TSG parse can
be deterministically recovered from the sequence of indices.

7 This formulation is due to Chris Dyer.
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Table 5

Gross corpus statistics for the pre-processed corpora used to train and evaluate our models. We
compare to the WSJ section of the PTB: train (Sections 02-21); dev. (Section 22); test (Section 23).
Due to its flat annotation style, the FTB sentences have fewer constituents per sentence. In the
ATB, morphological variation accounts for the high proportion of word types to sentences.

ATB FTB WSJ

#sentences 18,818 13,448 39,832
#tokens 597,933 397,917 950,028
Train #word types 37,188 26,536 44,389
#POS types 32 30 45
#phrasal types 31 24 27
avg. length 31.8 29.6 23.9
#sentences 2,318 1,235 1,700
Dev. #tokens 70,656 38,298 40,117
’ #word types 12,358 6,794 6,840
avg. length 30.5 31.0 23.6
OOV rate 15.6% 17.8% 12.8%
Test #sentences 2,313 1,235 2,416
#tokens 70,065 37,961 56,684

The SCFG formulation has a practical benefit: We can take advantage of the heavily
optimized SCFG decoders for machine translation. We use cdec (Dyer et al. 2010) to find
the Viterbi derivation for each input string.

5. Training Data and Morphological Analyzers

We have described two supervised parsing models for Arabic and French. Now we
show how to construct MWE-aware training resources for them.

The corpora used in our experiments are the Penn Arabic Treebank (ATB)
(Maamouri et al. 2004) and the French Treebank (FTB) (Abeillé, Clément, and Kinyon
2003). Prior to parsing, both treebanks require significant pre-processing, which
we perform automatically.® Because parsing evaluation metrics are sensitive to the
terminal /non-terminal ratio (Rehbein and van Genabith 2007), we only remove non-
terminal labels in the case of unary rewrites of the same category (e.g., NP — NP)
(Johnson 1998). Table 5 compares the pre-processed corpora with the WSJ section of
the PTB. Appendix C compares the annotation consistency of the ATB, FTB, and WS]J.

5.1 Arabic Treebank

We work with parts 1-3 (newswire) of the ATB,” which contain documents from three
different news agencies. In addition to phrase structure markers, each syntactic tree also
contains per-token morphological analyses.

8 Tree manipulation is automated with Tregex/Tsurgeon (Levy and Andrew 2006). Our pre-processing
package is available at http://nlp.stanford.edu/software/lex-parser.shtml.
9 LDC catalog numbers: LDC2008E61, LDC2008E62, and LDC2008E22.
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Table 6
Frequency distribution of the MWE types in the ATB and FTB training sets.
Categories ATB FTB

MWN  noun 6975 91.6% 9,680  49.7%
MWP prep. 623 818% 3526 18.1%

MWA adj. 18 0.24% 324 1.66%
MWPRO  pron. - - 266 1.37%
MWC conj. - - 814 4.18%
MWADV  adverb - - 3,852 19.8%
MWV verb - - 585 3.01%
MWD det. - - 328 1.69%
MWCL clitic - - 59 0.30%
MWET  foreign — - 24 0.12%
MWI interj. - - 4 0.02%
Total 7,616 19,462

Tokenization/Segmentation. We retained the default ATB clitic segmentation scheme.

Morphological Analysis. The ATB contains gold per-token morphological analyses, but
no lemmas.

Tag Sets. We used the POS tag set described by Kulick, Gabbard, and Marcus (2006). We
previously showed that the “Kulick” tag set is very effective for basic Arabic parsing
(Green and Manning 2010).

MWE Tagging. The ATB does not mark MWEs. Therefore, we merged an existing Arabic
MWE list (Attia et al. 2010b) with the constituency trees.'” For each string from the MWE
list that was bracketed in the treebank, we flattened the structure over the MWE span
and added a non-terminal label according to the MWE type (Table 6). We ignored MWE
strings that crossed constituent boundaries.

Orthographic Normalization. Orthographic normalization has a significant impact on
parsing accuracy. We remove all diacritics, instances of taTwiil,'! and pro-drop markers.
We also applied alif normalization'? and mapped punctuation and numbers to their
Latin equivalents.

Corpus Split. We divided the ATB into training/development/test sections according
to the split prepared by Mona Diab for the 2005 Johns Hopkins workshop on parsing
Arabic dialects (Rambow et al. 2005).'3

10 The list of 30,277 distinct MWEs is available at: http://sourceforge.net/projects/arabicmwes/.

11 taTwiil (-) is an elongation character for justifying text. It has no morphosyntactic function or phonetic
realization.

12 Variants of alif [\,i,;l:\] are inconsistent in Arabic text.

13 The corpus split is available at: http://nlp.stanford.edu/projects/arabic.shtml.
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5.2 French Treebank

The FTB' contains phrase structure trees with morphological analyses and lemmas. In
addition, the FTB explicitly annotates MWEs. POS tags for MWEs are given not only
at the MWE level, but also internally: Most tokens that constitute an MWE also have
a POS tag. Our FTB pre-processing is largely consistent with Lexicon-Grammar, which
defines MWE categories based on the global POS.

Tokenization/Segmentation. We changed the default tokenization for numbers by fusing
adjacent digit tokens. For example, 500 000 is tagged as an MWE composed of two
words 500 and 000. We made this 500000 and removed the MWE POS. We also merged
numbers like “17,9”.

Morphological Analysis. The FIB provides both gold morphological analyses and lemmas
for 86.6% of the tokens. The remaining tokens lack morphological analyses, and in many
cases basic parts of speech. We restored the basic parts of speech by assigning each token
its most frequent POS tag elsewhere in the treebank.!® This technique was too coarse for
missing morphological analyses, which we left empty.

Tag Sets. We transformed the raw POS tags to the CC tag set (Crabbé and Candito
2008), which is now the standard tag set in the French parsing literature. The CC tag
set includes WH markers and verbal mood information.

MWE Tagging. We added the 11 MWE labels shown in Table 6. We mark MWEs with
a flat bracketing in which the phrasal label is the MWE-level POS tag with an MW
prefix, and the preterminals are the internal POS tags for each terminal. The resulting
POS sequences are not always unique to MWEs: They appear in abundance elsewhere
in the corpus. Some MWEs contain normally ungrammatical POS sequences, however
(e.g., adverb 4 la va vite (“in a hurry’): P D V ADV [at the goes quick]), and some words
appear only as part of an MWE, such as insu in a I'insu de (‘to the ignorance of”). We also
found that 36 MWE spans still lacked a global POS. To restore these labels, we assigned
the most frequent label for that internal POS sequence elsewhere in the corpus.

Corpus Split. We used the 80/10/10 split described by Crabbé and Candito (2008). They
used a previous release of the treebank with 12,531 trees. Subsequently, 3,391 trees were
added to the FIB. We appended these extra trees to the training set, thus preserving the
original development and test sets.

5.3 Morphological Analysis for Arabic and French

The factored lexicon requires predicted per-token morphological analyses at test time.
We used separately trained, language-specific tools to obtain these analyses (Table 7).

14 Version from June 2010. We used the subset of the FTB with functional annotations, not for those
annotations but because this subset is known to be more consistently annotated. Appendix B compares
our pre-processed version of the FTB to other versions in prior work.

15 Seventy-three of the unlabeled word types did not appear elsewhere in the treebank. All but 11 of these
were nouns. We manually assigned the correct tags, but we would not expect a negative effect by
deterministically labeling all of them as nouns.
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Table 7

Linguistic resources required by the factored lexicon. Equivalent resources for Arabic and French
do not presently exist. The ATB lacks gold lemmas and a French morphological ranker
equivalent to MADA—which can produce the full set of morphosyntactic features specified in
the ATB—has not been developed. Morfette is effectively a discriminative classifier that treats
analyses as atomic labels, whereas MADA utilizes a morphological generator.

Arabic (ATB) French (FTB)
Gold Morphological Features Gender, Number, Tense, Gender, Number, Tense,
Person, Mood, Voice, Person
Definiteness
Gold Lemmas X v
Morphological Analyzer v (SAMA) x
Morphological Ranker v (MADA) v (Morfette)
Lemmatizer v (MADA) v' (Morfette)

Arabic. The morphological analyses in the ATB are human-selected outputs of the
Standard Arabic Morphological Analyzer (SAMA),'® a deterministic system that relies
on manually compiled linguistic dictionaries. The latest version of SAMA has complete
lexical coverage of the ATB, thus it does not encounter unseen word types at test time.
To rank the output of SAMA, we use MADA (Habash and Rambow 2005),'” which
makes predictions based on an ensemble of support vector machine (SVM) classifiers.

French. The FTB includes morphological analyses for gender, number, person, tense,
type of pronouns (relative, reflexive, interrogative), type of adverbs (relative or inter-
rogative), and type of nouns (proper vs. common noun). Morfette (Chrupala, Dinu,
and van Genabith 2008) has been used in previous FTB parsing experiments (Candito
and Seddah 2010; Seddah et al. 2010) to predict these features in addition to lemmas.
Morfette is a discriminative sequence classifier that relies on lexical and greedy left con-
text features. Because Morfette lacks a morphological generator like SAMA, however, it
is effectively a tagger that must predict a very large tag set. We trained Morfette on our
split of the FTB and evaluated accuracy on the development set: 88.3% (full morpho-
logical tagging); 95.0% (lemmatization); and 86.5% (full tagging and lemmatization).'®

6. Experiments

For each language, we ran two experiments: standard parsing and MWE identifica-
tion. The evaluation included the Stanford, Stanford-+factored lexicon, and DP-TSG
models.

All experiments used gold tokenization/segmentation. Unlike the ATB, the FTB
does not contain the raw source documents, so we could not start from raw text for both

16 LDC catalog number LDC2010LO01.

17 We used version 3.1. According to the user manual, the training set for the distributed models overlaps
with our ATB development and test sets. Training scripts/procedures are not distributed with MADA,
however.

18 Morfette training settings: 10 tag and 3 lemma training iterations. We excluded punctuation tokens from
the morphological tagging evaluation because our parsers split punctuation deterministically.
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languages. We previously showed that segmentation errors decrease Arabic parsing
accuracy by about 2.0% F1 (Green and Manning 2010).

Morphological analysis accuracy was another experimental resource asymmetry
between the two languages. The morphological analyses were obtained with signifi-
cantly different tools: in Arabic, we had a morphological generator/ranker (MADA),
whereas for French we had only a discriminative classifier (Morfette). Consequently,
French analysis quality was lower (Section 5.3).

6.1 Standard Parsing Experiments

Baselines. We included two parsing baselines: a parent-annotated PCFG (PAPCFG) and
a PCFG with the grammar features in the Stanford parser (SplitPCFG). The PAPCFG is
the standard baseline for TSG models (Cohn, Goldwater, and Blunsom 2009).

Berkeley Parser. We previously showed optimal Berkeley parser (Petrov et al. 2006) pa-
rameterizations for both the Arabic (Green and Manning 2010) and French (Green et al.
2011) data sets.!” For Arabic, our pre-processing and parameter settings significantly
increased the best-published Berkeley ATB baseline. Others had used the Berkeley
parser for French, but on an older revision of the FTB. To our knowledge, we are the
first to use the Berkeley parser for MWE identification.

Factored Lexicon Features. We selected features for the factored lexicon on the develop-
ment sets. For Arabic, we used gender, number, tense, mood, and definiteness. For
French, we used the grammatical and syntactic features in the CC tag set in addition
to grammatical number. For the experiments in which we evaluated with predicted
morphological analyses, we also trained the parser on predicted analyses.

Evaluation Metrics. We report three evaluation metrics. Evalb is the standard labeled
precision/recall metric.”’ Leaf Ancestor measures the cost of transforming guess trees
to the reference (Sampson and Babarczy 2003), and is less biased against flat tree-
banks like the FTB (Rehbein and van Genabith 2007). The Leaf Ancestor score ranges
from 0 to 1 (higher is better). We report micro-averaged (Corpus) and macro-averaged
(Sent.) scores. Finally, EX% is the percentage of perfectly parsed sentences according
to Evalb.

Sentence Lengths. We report results for sentences of lengths < 40 words. This cutoff
accounts for similar proportions of the ATB and FTB. The DP-TSG grammar extractor
produces very large grammars for Arabic,”! and we found that the grammar constant
was too large for parsing all sentences. For example, the ATB development set contains
a sentence that is 268 tokens long.

19 Berkeley training settings: right binarization, no parent annotation, and six split-merge cycles. Results are
the average of three runs in which the random number generator was seeded with the system time.

20 Available at http://nlp.cs.nyu.edu/evalb/ (v.20080701). We used a Java re-implementation included
in the Stanford parser distribution that is compatible with the reference implementation.

21 Average DP-TSG grammar sizes: Arabic, 89,003 rules; French, 46,515 rules.

212



Green, de Marneffe, and Manning Parsing Models for Identifying Multiword Expressions

Table 8

Arabic standard parsing experiments (test set, sentences < 40 words). SplitPCFG is the same
grammar used in the Stanford parser, but without the dependency model. FactLex uses basic
POS tags predicted by the parser and morphological analyses from MADA. FactLex* uses gold
morphological analyses. Berkeley and DP-TSG results are the average of three independent runs.

Arabic Leaf Ancestor Evalb

Sent. Corpus LP LR F1 EX%
PAPCFG 0.777 0.745 69.5 64.6 66.9 129
SplitPCFG 0.821 0.797 75.6 73.4 74.5 17.8
Berkeley 0.865 0.853 83.3 82.7 83.0 24.0
DP-TSG 0.822 0.800 75.5 75.4 75.4 17.7
Stanford 0.851 0.835 81.3 80.7 81.0 23.5
Stanford+FactLex 0.849 0.835 81.2 80.8 81.0 22.8
Stanford+FactLex* 0.852 0.837 81.8 81.3 81.5 24.0

Results. Tables 8 and 9 show Arabic and French parsing results, respectively. For both
languages, the Berkeley parser produces the best results in terms of Evalb F1. The gold
factored lexicon setting compares favorably in terms of exact match.

6.2 MWE Identification Experiments

The predominant approach to MWE identification is the combination of lexical associa-
tion measures (surface statistics) with a binary classifier (Pecina 2010). A state-of-the-art,
language-independent package that implements this approach for higher order n-grams
is mwetoolkit (Ramisch, Villavicencio, and Boitet 2010).

mwetoolkit Baseline. We configured mwetoolkit with the four standard lexical features:
the maximum likelihood estimator, Dice’s coefficient, pointwise mutual information,
and Student’s t-score. We also included POS tags predicted by the Stanford tagger
(Toutanova et al. 2003). We filtered the training instances by removing unigrams and

Table 9

French standard parsing experiments (test set, sentences < 40 words). FactLex uses basic POS
tags predicted by the parser and morphological analyses from Morfette. FactLex* uses gold
morphological analyses.

French Leaf Ancestor Evalb

Sent. Corpus LP LR F1 EX%
PAPCFG 0.857 0.840 73.5 72.8 73.1 14.5
SplitPCFG 0.870 0.853 77.9 77.1 77.5 16.0
Berkeley 0.905 0.894 83.9 83.4 83.6 24.0
DP-TSG 0.858 0.841 77.1 76.8 76.9 16.0
Stanford 0.869 0.853 78.5 79.6 79.0 17.6
Stanford+FactLex 0.877 0.860 79.0 79.6 79.3 19.6
Stanford+FactLex* 0.890 0.874 82.8 84.0 834 27.4
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Table 10
Arabic MWE identification per category and overall results (test set, sentences < 40 words).

#gold PAPCFG SplitPCFG Berkeley DP-TSG Stanford FactLex FactLex*

MWA 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MWP 34 36.9 76.9 81.2 91.8 88.2 88.2 86.6
MWN 465 9.8 66.7 74.6 81.1 76.6 77.0 77.5
Total: 500 13.2 67.4 74.8 81.9 77.5 779 78.2

non-MWE n-grams that occurred only once. For each resulting n-gram, we created real-
valued feature vectors and trained a binary SVM classifier with Weka (Hall et al. 2009)
with an RBF kernel. See Appendix D for further configuration details.

Results. Because our parsers mark MWEs as labeled spans, MWE identification is a by-
product of parsing. Our evaluation metric is category-level Evalb for the MWE non-
terminal categories. We report both the per-category scores (Tables 10 and 11), and
a weighted average for all categories. Table 12 shows aggregate MWE identification
results. All parsing models—even the baselines—exceed mwetoolkit by a wide margin.

7. Discussion
7.1 MWE Identification Results

The main contribution of this article is Table 12, which summarizes MWE identification
results. For both languages, our parsing models yield substantial improvements over
the n-gram classification method represented by mwetoolkit. The best improvements
come from different models: The DP-TSG model achieves 66.9% F1 absolute improve-
ment for Arabic and the Stanford+FactLex* achieves 50.0% F1 absolute improvement
for French.

Differences in how the training resources were constructed may account for differ-
ences in the ordering of the models. The Arabic MWE list consists mainly of named
entities and nominal compounds, hence the high concentration of MWN types in the

Table 11
French MWE identification per category and overall results (test set, sentences < 40 words).
MWI and MWCL do not occur in the test set.

#gold PAPCFG SplitPCFG Berkeley DP-TSG Stanford FactLex FactLex*

MWET 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MWV 26 6.1 56.1 54.3 56.2 57.1 449 83.3
MWA 8 42.9 29.6 36.7 36.0 26.1 25.0 33.3
MWN 457 41.1 56.0 67.4 65.7 64.8 64.9 86.3
MWD 15 60.0 70.3 74.4 65.1 68.4 64.9 70.3
MWPRO 17 83.9 70.3 87.6 753 72.2 72.2 81.3
MWADV 220 46.8 68.0 72.5 77.2 75.0 76.0 87.9
MWP 162 49.0 78.9 81.4 79.5 81.2 81.9 92.9
MWC 47 74.2 80.7 83.7 85.8 86.3 88.2 97.9
Total: 955 46.0 64.2 714 713 70.5 70.5 87.3
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Table 12
MWE identification F1 of the parsing models vs. the mwetoolkit baseline (test set, sentences
< 40 words). FactLex™ uses gold morphological analyses at test time.

Model Arabic F1  French F1
mwetoolkit (baseline) 15.0 37.3
PAPCFG 13.2 46.0
SplitPCFG 67.4 64.2
Berkeley 74.8 714
DP-TSG 81.9 71.3
Stanford 77.5 70.5
Stanford+FactLex 77.8 70.5
Stanford+FactLex* 78.2 87.3

pre-processed ATB (Table 10). Consequently, this particular Arabic MWE identification
experiment is similar to joint parsing and named entity recognition (NER) (Finkel and
Manning 2009). The DP-TSG is effective at memorizing the entities and re-using them
at test time. It would be instructive to compare the DP-TSG to the discriminative model
of Finkel and Manning (2009), which currently represents the state-of-the-art for joint
parsing and NER.

The Berkeley and DP-TSG models are equally effective at learning French MWE
rules. One explanation for this result could be the CC tag set, which was explicitly tuned
for the Berkeley parser. The CC tag set improved Berkeley MWE identification accuracy
by 1.8% F1 and basic parsing accuracy by 1.2% F1 over the previous version of our work
(Green et al. 2011), in which we used the basic FTB tag set. However, this tag set yielded
only 0.2% F1 and 1.1% F1 improvements, respectively, for the DP-TSG.

Interpretation of the factored lexicon results should account for resource asym-
metries. For French, the extraordinary result with gold analyses (Stanford+FactLex*) is
partly due to annotation errors. Gold morphological analyses are missing for many of
the MWE tokens in the FTB. The factored lexicon thus learns that when a token has no
morphology, it is usually part of an MWE. In the automatic setting (Stanford+FactLex),
however, Morfette tends to assign morphology to the MWE tokens because it has no
semantic knowledge. Consequently, the morphological predictions are less consistent,
and the parsing model falls back to the baseline Stanford result. Certainly more
consistent FTB annotations would help Morfette, which we found to be significantly less
accurate on our version of the FTB than MADA on the ATB (see Habash and Rambow
2005). Another remedy would be to incorporate MWE knowledge into the lexical
analyzer, a strategy that Constant, Sigogne, and Watrin (2012) recently found to be very
effective.

The Arabic factored lexicon results are more realistic. Stanford+FactLex* achieves
a 0.7% F1 improvement over Stanford along with a significant improvement in
exact match (EX%). In the automatic setting, a 0.3% F1 improvement is maintained
for MWE identification. One direction for improvement might be the POS tag set. The
“Kulick” tag set encodes some morphological information (e.g., number, definiteness),
so the factored lexicon can be redundant. Eliminating this overlap might improve
accuracy.
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Table 13

Sample of human-interpretable Arabic TSG rules. Recursive rules like MWA—A MWA result
from memoryless binarization of n-ary rules. This pre-processing step not only increases parsing
accuracy, but also allows the generation of previously unseen MWEs of a given type.

MWN MWP MWA
o=l W ‘Los Angeles’ MWP o ‘with MWP’ Soadl &nd;  ‘high-level
sl 581 ¢, ‘Prime Minister oYl ¢~ ‘until now CL.aJ\ ilsew  ‘Soviet-made
6 SNusN  ‘military N’ J’J\ cwdgdl ‘local time’ A MWA

YyJIN 2 ‘national N council’ é A1 &=L -« ‘on the other hand’

7.2 Interpretability of DP-TSG MWE Rules

Arabic. Table 13 lists a sample of the TSG rules learned by the DP-TSG model. Fixed
expressions such as names (Los Angeles) and titles (Prime Minister) are cached
in the grammar. The model also generalizes over nominal compounds with rules
like military N, which captures military coup, military council, and so forth. For
multiword adjectives, the model caches several instances of false iDafa in full (high-
level, Soviet-made). Memoryless binarization permits the grammar to capture rules like
MWA — A MWA, which permits generation of a previously unseen multiword ad-
jectives. Some of these recursive rules are lexicalized, as in the multiword preposition
rule MWP —  MWP.

French. We find that the DP-TSG model also learns useful generalizations over French
MWEs. A sample of the rules is given in Table 14. Some specific sequences like “[jwn
[coup de NJ]” are part of the grammar: such rules can indeed generate quite a few
MWEs, for example, coup de pied (‘kick’), coup de coeur, coup de foudre (‘love at first
sight’), coup de main (‘help’), coup d’état, coup de grdce. Certain of these MWEs are unseen
in the training data. For MWV, the grammar contains “V de N” as in avoir de cesse
("give no peace’), perdre de vue [lose from sight] (‘forget’), prendre de vitesse [take from
speed] (‘outpace’). For prepositions, the grammar stores full subtrees of MWPs, but
also generalizes over very frequent sequences: “en N de” occurs in many multiword
prepositions (e.g., en compagnie de, en face de, en matiére de, en terme de, en cours de, en
faveur de, en raison de, en fonction de). The TSG grammar thus provides a categorization
of MWEs consistent with the Lexicon-Grammar. It also learns verbal phrases which
contain discontiguous MWVs due to the insertion of an adverb or negation such as

“lvN [mwv va] [mwapy d’ailleurs] [yywy bon train]]” [go indeed well], “[yn [Mwy al
[apv jamais] [pwy été question d’]]” [has never been in question].

Table 14

Sample of human-interpretable French TSG rules.
MWN MWV MWP
sociétés de N sous - V de l'ordre de
chef de N mis en N y compris
coup de N VDETN auN de

N d’état VdeN en N de
NdeN VenN ADV de

NaN
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7.3 Basic Parsing Results

The relative rankings of the different models are the same for Arabic and French
(Berkeley > Stanford parser > DP-TSG > PAPCFG), and these rankings correspond to
those observed for English (Cohn, Blunsom, and Goldwater 2010). Although statistical
statements cannot be made about the difficulty of parsing the two languages by com-
paring raw evaluation figures, we can compare the differences between PAPCFG and
the best model for each language. From this perspective, manual rule splitting in the
Stanford parser is apparently more effective for the ATB than for the FTB. Differences in
annotation styles may account for this discrepancy. Consider the unbinarized treebanks.
The ATB training set has 8,937 unique non-unary rule types with mean branching factor
M = 241 and sample standard deviation SD = 0.984. The FIB has a flat annotation
style, which leads to more rule types (16,159) with a higher branching factor (M = 2.87,
SD =1.51).

A high branching factor can lead to more brittle grammars, an empirical observa-
tion that motivated memoryless binarization in both the Berkeley parser (Petrov et al.
2006, page 434) and the DP-TSG. The Berkeley parser results also seem to support the
observation that rule refinement is less effective for the FTB. Automatic rule refinement
results in a 16.1% F1 absolute improvement over PAPCFG for Arabic, but only 10.0% F1
for French.

Of course, the FTB contains 28.5% fewer sentences than the ATB, so the FTB rule
counts are also sparser. In addition, we found that the FIB has lower inner-annotator
agreement (IAA) than the ATB (Appendix C), which also negatively affects super-
vised models. Finally, Evalb penalizes flat treebanks like the FIB (Rehbein and van
Genabith 2007). To counteract that bias, we also included a Leaf Ancestor evaluation.
Nonetheless, even Leaf Ancestor showed that, with respect to PAPCFG, the best Arabic
model improved nearly twice as much as the best French model.

The DP-TSG improves over PAPCFG, but does not exceed the Berkeley parser. One
crucial difference between the two models is the decoding objective. The Berkeley parser
maximizes the expected rule count (max-rule-sum) (Petrov and Klein 2007), an objective
that Cohn, Blunsom, and Goldwater (2010) demonstrated could improve the DP-TSG
by 2.0% F1 over Viterbi for English with no changes to the grammar. We decoded with
Viterbi, so our results are likely a lower bound relative to what could be achieved with
objectives that correlate with labeled recall. Because MWE identification is a by-product
of parsing, we expect that MWE identification accuracy would also improve.

Because the DP-TSG and PAPCFG have the same weak generative capacity, the
improvement must come from relaxing independencies in the grammar rules (by sav-
ing larger tree fragments). This is the same justification for manual rule refinement
for PCFGs (Johnson 1998, page 614). We observe an 8.5% F1 absolute improvement
for Arabic, but just 3.8% F1 for French. Nonetheless, we chose this model precisely for
its greater strong generative capacity, which we hypothesized would improve MWE
identification accuracy. The MWE identification results seem to bear out this hypothesis.

8. Related Work

This section contains three parts. First, we review work on MWEs in linguistics and
relate it to parallel developments in NLP. Second, we describe other syntax-based
MWE identification methods. Finally, we enumerate related experiments on Arabic and
French.
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8.1 Analysis of MWEs in Linguistics and NLP

An underlying assumption of mainline generative grammatical theory is that words
are the basic units of syntax (Chomsky 1957). Lexical insertion is the process by which
words enter into phrase structure, thus lexical insertion rules have the form [N — dog,
car, apple], and so on. This assumption, however, was questioned not long after it was
proposed, as early work on idiomatic constructions like kick the bucket—which functions
like a multiword verb in syntax—seemed to indicate a conflict (Katz and Postal 1963;
Chafe 1968). Chomsky (1981) briefly engaged kick the bucket in a footnote, but idioms
remained a peripheral issue in mainline generative theory.

To others, the marginal status of idioms and fixed expressions seemed inappropri-
ate given their pervasiveness cross-linguistically. In their classic work on the English
construction let alone, Fillmore, Kay, and O’Connor (1988) argued that the basic units of
grammar are not Chomskyan rules but constructions, or triples of phonological, syntac-
tic, and conceptual structures. The subsequent development of Construction Grammar
(Fillmore, Kay, and O’Connor 1988; Goldberg 1995) maintained the central role of
idioms. Jackendoff (1997) has advanced a linguistic theory, the Parallel Architecture,
which includes multiword expressions in the lexicon.

In NLP, concurrent with the development of Construction Grammar, Scha (1990)
conceptualized an alternate model of parsing in which new utterances are built from
previously observed language fragments. In his model, which became known as data-
oriented parsing (DOP) (Bod 1992), “idiomaticity is the rule rather than the exception”
(Scha 1990, page 13). Most DOP work, however, has focused on parameter estimation
issues with a view to improving overall parsing performance rather than explicit mod-
eling of idioms.

Given developments in linguistics, and to a lesser degree DOP, in modeling MWEs,
it is curious that most NLP work on MWE identification has not utilized syntax. More-
over, the words-with-spaces idea, which Sag et al. (2002) dismissed as unattractive on both
theoretical and computational grounds,? has continued to appear in NLP evaluations
such as dependency parsing (Nivre and Nilsson 2004), constituency parsing (Arun and
Keller 2005), and shallow parsing (Korkontzelos and Manandhar 2010). In all cases, the
conclusion was drawn that pre-grouping MWEs improves task accuracy. Because the
yields (and thus the labelings) of the evaluation sentences were modified, however,
the experiments were not strictly comparable. Moreover, gold pre-grouping was usually
assumed, as was the case in most FIB parsing evaluations after Arun and Keller (2005).

The words-with-spaces strategy is especially unattractive for MRLs because (1) it
intensifies the sparsity problem in the lexicon; and (2) it is not robust to morphological
and syntactic processes such as inflection and phrasal expansion.

8.2 Syntactic Methods for MWE Identification

There is a voluminous literature on MWE identification, so we focus on syntax-
based methods. The classic statistical approach to MWE identification, Xtract (Smadja
1993), used an incremental parser in the third stage of its pipeline to identify
predicate-argument relationships. Lin (1999) applied information-theoretic measures
to automatically extracted dependency relationships to find MWEs. To our knowledge,

22 Sag et al. (2002) showed how to integrate MWE information into a non-probabilistic head-driven phrase
structure grammar for English.
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Wehrli (2000) was the first to propose the use of a syntactic parser for multiword
expression identification. No empirical results were provided, however, and the MWE-
augmented scoring function for the output of his symbolic parser was left to future
research. Recently, Seretan (2011) used a symbolic parser for collocation extraction. Col-
locations are two-word MWEs. In contrast, our models handle arbitrary length MWEs.

To our knowledge, only two previous studies considered MWEs in the context
of statistical parsing. Nivre and Nilsson (2004) converted a Swedish corpus into two
versions: one in which MWEs were left as tokens, and one in which they were
grouped (words-with-spaces). They parsed both versions with a transition-based parser,
showing that the words-with-spaces version gave an improvement over the baseline.
Cafferkey (2008) also investigated the words-with-spaces idea along with imposing
chart constraints for pre-bracketed spans. He annotated the PTB using external MWE
lists and an NER system, but his technique did not improve two different constituency
models. At issue in both of these studies is the comparison to the baseline. MWE
pre-grouping changes the number of evaluation units (dependency arcs or bracketed
spans), thus the results are not strictly comparable. From an application perspective,
pre-grouping assumes high accuracy identification, which may not be available for all
languages.

Our goal differs considerably from these two studies, which attempt to im-
prove parsing via MWE information. In contrast, we tune statistical parsers for MWE
identification.

8.3 Related Experiments on Arabic and French

Avrabic Statistical Constituency Parsing. Kulick, Gabbard, and Marcus (2006) were the first
to parse the sections of the ATB used in this article. They adapted the Bikel parser (Bikel
2004) and improved accuracy primarily through punctuation equivalence classing and
the Kulick tag set. The ATB was subsequently revised (Maamouri, Bies, and Kulick
2008), and Maamouri, Bies, and Kulick (2009) produced the first results on the revision
for our split of the revised corpus. They only reported development set results with
gold POS tags, however. Petrov (2009) adapted the Berkeley parser to the ATB, and we
later provided a parameterization that dramatically improved his baseline (Green and
Manning 2010). We also adapted the Stanford parser to the ATB, and provided the first
results for non-gold tokenization. Attia et al. (2010a) developed an Arabic unknown
word model for the Berkeley parser based on signatures, much like those in Table 3.
More recently, Huang and Harper (2011) presented a discriminative lexical model for
Arabic that can encode arbitrary local lexical features.

Arabic MWE Identification. Very little prior work exists on Arabic MWE identi-
fication. Attia (2006) demonstrated a method for integrating MWE knowledge into
a lexical-functional grammar, but gave no experimental results. Siham Boulaknadel
and Aboutajdine (2008) evaluated several lexical association measures in isolation for
MWE identification in newswire. More recently, Attia et al. (2010b) compared cross-
lingual projection methods (using Wikipedia and English Wordnet) with standard
n-gram classification methods.

French Statistical Constituency Parsing. Abeillé (1988) and Abeillé and Schabes (1989)
identified the linguistic and computational attractiveness of lexicalized grammars for
modeling non-compositional constructions in French well before DOP. They developed
a small tree adjoining grammar (TAG) of 1,200 elementary trees and 4,000 lexical items
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that included MWEs. Recent statistical parsing work on French has included stochas-
tic tree insertion grammars (STIG), which are related to TAGs, but with a restricted
adjunction operation.23 Both Seddah, Candito, and Crabbé (2009) and Seddah (2010)
showed that STIGs underperform CFG-based parsers on the FIB. In their experiments,
MWEs were grouped. Appendix B describes additional prior work on CFG-based
FTB parsing.

French MWE Identification. Statistical French MWE identification has only been investi-
gated recently. We previously reported the first results on the FIB using a parser for
MWE identification (Green et al. 2011). Contemporaneously, Watrin and Francois (2011)
applied n-gram methods to a French corpus of multiword adverbs (Laporte, Nakamura,
and Voyatzi 2008). Constant and Tellier (2012) used a linear chain conditional random
fields model (CRF) for joint POS tagging and MWE identification. They incorporated
external linguistic resources as features, but reported results for a much older version of
the FTB. Subsequently, Constant, Sigogne, and Watrin (2012) integrated the CRF model
into the Berkeley parser and evaluated on the pre-processed FTB used in this article.
Their best model (with external lexicon features) achieved 77.8% F1.

9. Conclusion

In this article, we showed that parsing models are very effective for identifying
arbitrary-length, contiguous MWEs. We achieved a 66.9% F1 absolute improvement
for Arabic, and a 50.0% F1 absolute improvement for French over n-gram classifica-
tion methods. All parsing models discussed in the paper improve MWE identification
over n-gram methods, but the best improvements come from different models. Unlike
n-gram classification methods, parsers provide syntactic subcategorization and do not
require heuristic pre-filtering of the training data. Our techniques can be applied to
any language for which the following linguistic resources exist: a syntactic treebank,
an MWE list, and a morphological analyzer.

More fundamentally, we exploited a connection between syntax and idiomatic
semantics. This connection has been debated in linguistics, yet overlooked in statistical
NLP until now. Although empirical task evaluations do not always reinforce linguistic
theories, our results suggest that syntactic context can help identify idiomatic language,
as posited by some modern grammar theories.

We introduced the factored lexicon for the Stanford parser, a simple extension to
the lexical insertion model that helps combat lexical sparsity in morphologically rich
languages. In the gold setting, the factored lexicon yielded improvements over the basic
lexicon for both standard parsing and MWE identification. Results were lower in the
automatic setting, suggesting that it might be helpful to optimize the morphological
analyzers for specific features included in downstream tasks like parsing. We evaluated
on in-domain data, but we expect that the factored lexicon would be even more useful
on out-of-domain text with higher out-of-vocabulary rates.

We have also provided empirical evidence that TSGs can capture idiomatic usage
as well as or better than a state-of-the-art CFG-based parser. The suitability of TSGs
for idioms has been discussed since the earliest days of DOP (Scha 1990), but it has
never been demonstrated with experiments like ours. Although the DP-TSG, which
is a relatively new parsing model, still lags other parsers in terms of overall labeling

23 Unlike TAG and TIG, TSG does not include an adjunction operator.
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accuracy, we have shown that it is already very effective for tasks like MWE iden-
tification. Because we modified the syntactic representation rather than the model
formulation, general improvements to this parsing model should yield improvements
in MWE identification accuracy.

Appendix A: Additional French MWEs

This appendix describes the other French MWE categories annotated in the FTB.

Adverbial idioms (MWADV) often start with a preposition (Example (11)) but can have
very different part-of-speech sequences:

(11) a. P N:du coup (‘so’), sans doute (‘doubtless’)
b. P D A N: avec un bel ensemble [with a nice ensemble] (‘in harmony”)
c. P ADV P ADV:de plus en plus (‘'more and more’)
d. 'V V:peut-étre [can be] (‘maybe”)

ADV A: bien sfir [very certain] (‘of course’)

f.  ET ET: a priori, grosso modo

Foreign words (MWET) include English nominal idioms, such as cash flow and success
story, which are less integrated in French than words such as T-shirt. Expressions such
as Just do it or struggle for life also fall in this category.

Prepositional idioms (MWP) are mostly fixed (Example (12)), but some permit minimal
variation such as de vs. des or a vs. au:

(12)

o

P N P: en dépit de (‘despite’), a hauteur de (‘at the height of’)

b. P D N P: dans le cadre de (‘in the framework of"), a I'exception de (‘at the
exception of”)

P P: afin de ('to’), jusqu’a (‘as far as’)
d. ADV P: autour de (‘around’), quant i (‘as for”)

e. N V P: compte tenu de (‘taking into account’), exception faite de [exception
made of] (“at the exception of”)

Pronominal idioms (MWPRO) consist of demonstrative pronouns (celui-ci ‘this one’,
celui-la ‘that one’) and reflexive pronouns (lui-méme ‘himself’), which vary in gender and
number, as well as a few indefinite pronouns which allow gender inflection (d’aucuns
‘no-one’, quelque chose ‘something’, qui que ce soit “‘who ever it is’, n'importe qui ‘anyone”)
and some which are fixed (d’autres ‘others’, la plupart ‘most’, tout un chacun ‘everyone’,
tout le monde ‘everybody’).

Multiword determiners (MWD) consist of expressions such as bien des (‘a lot of”) and
tout le (“all the’), which display minimal variation in terms of inflection (e.g., la plupart de
vs. la plupart des ‘most of’). Numbers which act as determiners in the sentence (classées en
vingt-huit catégories ‘categorized in twenty-eight categories’) are also classified as MWD.
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Multiword conjunctions (MWC) are a fixed class:

(13) a. CC:parce que (‘because’)
b. ADV C: méme si (‘'even so’)
c.  VC:pourvu que (‘so long as’)
d. DN C: au moment ot (‘at the time when")
CL V A C: il est vrai que ('it’s true that’)
f.  ADV C ADV ADV C: tant et si bien que (‘to such an extent that’)

Multiword interjections (MWI) are a small category with expressions such as mille
sabords (‘blistering barnacles’) and au secours (‘help’).

Appendix B: Comparison to Prior FTB Pre-Processing
Our FTB pre-processing is automatic, unlike all previous methods.

ARUN-CONT and ARUN-EXP. (Arun and Keller 2005) Two versions of the full 20,000-
sentence treebank that differed principally in their treatment of MWESs: (1) CONT, in
which MWE tokens were grouped (en moyenne — en_moyenne); and (2) EXP, in which
MWEs were marked with a flat structure. For both representations, they also gave
results in which coordinated phrase structures were flattened. In the published exper-
iments, they mistakenly removed half of the corpus, believing that the multi-terminal
(per POS tag) annotations of MWEs were XML errors (Schluter and van Genabith 2007).

MFT. (Schluter and van Genabith 2007) Manual revision to 3,800 sentences. Major
changes included coordination raising, an expanded POS tag set, and the correction
of annotation errors. Like ARUN-CONT, MFT contains concatenated MWEs.

FTB-UC. (Candito and Crabbé 2009) A version of the functionally annotated section that
makes a distinction between MWEs that are “syntactically regular” and those that are
not. Syntactically regular MWEs were given internal structure, whereas all other MWEs
were grouped. For example, nouns followed by adjectives, such as loi agraire (‘land law”)
or Union monétaire et économique (‘monetary and economic Union’) were considered syn-
tactically regular. They are MWESs because the choice of adjective is arbitrary (loi agraire
and not *loi agricole, similarly to (‘coal black’) but not (*’crow black’), for example),
but their syntactic structure is not intrinsic to MWEs. In such cases, FTB-UC gives the
MWE a conventional analysis of an NP with internal structure. Such analysis is indeed
sufficient to recover the meaning of these semantically compositional MWEs that are
extremely productive. FTB-UC loses information about MWEs with non-compositional
semantics, however.

Almost all work on the FTB has followed ARUN-CONT and used gold MWE pre-
grouping. Candito, Crabbé, and Denis (2010) were the first to acknowledge and address
this issue, but they still used FTB-UC (with some pre-grouped MWEs). Because the
syntax and definition of MWE:s is a contentious issue, we take a more agnostic view—
which is consistent with that of the FIB annotators—and leave them ungrouped. This
permits a data-oriented approach to MWE identification that is more robust to changes
to the status of specific MWE instances.

222



Green, de Marneffe, and Manning Parsing Models for Identifying Multiword Expressions

Although our FTB basic parsing results are lower than those of Seddah (2010), the
experiments are not comparable: The data split and pre-processing were different, and
he grouped MWEs.

Appendix C: Annotation Consistency of Treebanks

Differences in annotation quality among corpora complicate cross-lingual experimental
comparisons. To control for this variable, we performed an annotation consistency
evaluation on the PTB, ATB, and FTB. The conventional wisdom has it that the PTB has
comparatively high inter-annotator agreement (IAA). In the initial release of the ATB,
IAA was inferior to other LDC treebanks, although in subsequent revisions, IAA was
quantifiably improved (Maamouri, Bies, and Kulick 2008). The FTB also had significant
annotation errors upon release (Arun and Keller 2005), but it, too, has been revised.

To quantify IAA, we extend the variation nucleus method of Dickinson (2005) to
compare annotation error rates. Let C be a set of tuples (s, [, i), where s is a substring at
corpus position 7 with label I. We consider all substrings in the corpus. If s is bracketed
at position i, then its label is its non-terminal category. Otherwise, s has label I = NIL. To
locate variation nuclei, define L, as the set of all labels associated with each unique s. If
|Ls| > 1, then s is a variation nucleus.?*

Variation nuclei can result from either annotation errors or linguistic ambiguity. Hu-
man evaluation is one way to distinguish between the two cases. Following Dickinson
(2005), we sampled 100 variation nuclei from each corpus and evaluated each sample
for the presence of an annotation error. To control for the number of corpus positions
included in each treebank sample, we used frequency-matched stratified sampling with
bin sizes of 2, 3, 4, 10, 50, and 500.

The human evaluators were a non-native, fluent Arabic speaker for the ATB (the
first author), a native French speaker for the FTB (the second author), and a native
English speaker for the WSJ (the third author).” Table C.1 shows the results of the
evaluation, which supports the anecdotal consistency ranking of the three treebanks.?®
The FTB averages more than one variation nucleus per sentence and has twice the token-
level error rate of the other two treebanks.

Appendix D: mwetoolkit Configuration
We configured mwetoolkit® with the four standard lexical features: the maximum
likelihood estimator, Dice’s coefficient, pointwise mutual information, and Student’s
t-score. We added the POS sequence for each n-gram as a single feature. We removed
the Web counts features since the parsers do not use auxiliary data.

Because MWE n-grams only account for a small fraction of the n-grams in the
corpus, we filtered the training and test sets by removing all n-grams that occurred
once. To further balance the proportion of MWEs, we trained on all valid MWEs
plus 10x randomly selected non-MWE n-grams. This proportion matches the fraction

24 Kulick, Bies, and Mott (2011) extended our method with TAGs to account for nested bracketing errors.
25 Unlike Dickinson (2005), we stripped traces and only considered POS tags when pre-terminals were the
only intervening nodes between the nucleus and its bracketing (e.g., unaries, base NPs). Because our

objective was to compare distributions of bracketing discrepancies, we did not prune the set of nuclei.
26 The total variation nuclei in each corpus were: 22,521 (WSJ), 15,629 (ATB), and 14,803 (FTB).
27 We re-implemented mwetoolkit in Java for compatibility with Weka and our pre-processing routines.
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Table C.1

Evaluation of 100 randomly sampled variation nuclei for training splits of the WS], ATB, and
FTB. Corpus positions indicates the number of corpus positions in the sample (a variation
nucleus by definition appears in at least two corpus positions). Nuclei per tree is the average
nuclei per syntactic tree in the corpus, a statistic that gives a rough estimate of variability across
the corpus. The type-level error rate indicates the number of variation nuclei for which at least
one error existed. The token-level error rate indicates the ratio of errors to corpus positions. We
computed 95% confidence intervals for the type-level error rate.

Corpus Nuclei Error % Type 95%
Positions PerTree Type Token Confidence Interval

PTB (2-21) 750 0.565 16.0% 4.10% [8.80%, 23.2%]
ATB (train) 658 0.830 26.0%  4.00% [17.4%, 34.6%]
FTB (train) 668 1.10 28.0% 9.13% [19.2%, 36.8%]

of MWE/non-MWE tokens in the FTB. As we generated a random training set, we
reported the average of three independent training runs.

We created feature vectors for the training n-grams and trained a binary SVM
classifier with Weka (Hall et al. 2009). Although mwetoolkit defaults to a linear kernel,
we achieved higher accuracy on the development set with an RBF kernel.

The FTB is sufficiently large for the corpus-based methods implemented in
mwetoolkit. Ramisch, Villavicencio, and Boitet (2010) experimented with the Genia
corpus, which contains 18k English sentences and 490k tokens, similar to the FTB. Their
test set had 895 sentences, fewer than ours. They reported 30.6% F1 for their task against
an Xtract baseline, which only obtained 7.3% F1. Their best result compares favorably

(in magnitude) to our mwetoolkit baselines for French and Arabic.
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