Knowledge Sources for Constituent Parsing
of German, a Morphologically Rich and
Less-Configurational Language

Alexander Fraser*
Institute for NLP, University of Stuttgart

Helmut Schmid™*
Institute for NLP, University of Stuttgart

Richérd Farkas'
Institute for NLP, University of Stuttgart

Renjing Wang?
Institute for NLP, University of Stuttgart

Hinrich Schiitze’
Institute for NLP, University of Stuttgart

We study constituent parsing of German, a morphologically rich and less-configurational
language. We use a probabilistic context-free grammar treebank grammar that has been adapted
to the morphologically rich properties of German by markovization and special features added
to its productions. We evaluate the impact of adding lexical knowledge. Then we examine both
monolingual and bilingual approaches to parse reranking. Our reranking parser is the new state
of the art in constituency parsing of the TIGER Treebank. We perform an analysis, concluding
with lessons learned, which apply to parsing other morphologically rich and less-configurational
languages.

* Institute for Natural Language Processing, University of Stuttgart, Pfaffenwaldring 5b, 70569 Stuttgart,
Germany. E-mail: fraser@ims.uni-stuttgart.de.
x* Institute for Natural Language Processing, University of Stuttgart, Pfaffenwaldring 5b, 70569 Stuttgart,
Germany. E-mail: schmid@ims.uni-stuttgart.de.
1 Institute for Natural Language Processing, University of Stuttgart, Pfaffenwaldring 5b, 70569 Stuttgart,
Germany. E-mail: farkas@ims.uni-stuttgart.de.
1 Institute for Natural Language Processing, University of Stuttgart, Pfaffenwaldring 5b, 70569 Stuttgart,
Germany.
§ Instituteyfor Natural Language Processing, University of Stuttgart, Pfaffenwaldring 5b, 70569 Stuttgart,
Germany.

Submission received: October 1, 2011; revised submission received: May 30, 2012; accepted for publication:
August 3, 2012

© 2013 Association for Computational Linguistics

Computational Linguistics Volume 39, Number 1

1. Introduction

A large part of the methodology for parsing in natural language processing has been
developed for English and a majority of publications on parsing are about parsing
of English. English is a strongly configurational language. Nearly all of the syntactic
information needed by any NLP application can be obtained by configurational analysis
(e.g., by having a correct constituent parse).

Many other languages of the world are fundamentally different from English in this
respect. At the other end of the configurational-nonconfigurational spectrum we find a
language like Hungarian that has very little fixed structure on the level of the sentence.
Leaving aside the issue of the internal structure of NPs, most sentence-level syntactic
information in Hungarian is conveyed by morphology, not by configuration.

In this paper, we address German, a third type of language that is intermediate
between English and Hungarian. German has strong configurational constraints (e.g.,
main clauses are verb-second) as well as rich derivational and inflectional morphology,
all of which must be modeled for high-quality parsing. German’s intermediate status
raises a number of interesting issues in parsing that are of particular prominence for a
mixed configurational/morphological language, but are—as we will argue—of general
relevance for morphologically rich languages. Partly this is the case because there are
few (if any) languages archetypical of being purely configurational and purely noncon-
figurational (e.g., morphology is also important for English and even Hungarian has
configurational constraints). For lack of a better term we refer to intermediate languages
as typified by German as MR&LC for morphologically rich and less-configurational.

Part of the motivation for this special issue is that most work on parsing to date
has been done on English, a morphologically simple language. As computational lin-
guistics broadens its focus beyond English it becomes important to take a more general
approach to parsing that can handle languages that are typologically very different from
English. Rich morphology (RM) is one very salient characteristic of a language that
affects the design of parsing methods. We argue that there are two other properties
of languages that are relevant in a discussion of parsing RM languages: syncretism
and configurationality. These two properties are correlated typologically with RM and
should therefore be taken into account when we address parsing RM languages.

We first define the three properties and explain their relevance for parsing. The
large number of languages for which this correlation holds can be ordered along a
single dimension that can be interpreted as degree of morphological complexity. We
give examples for a number of languages that are positioned at different points on this
scale. Finally, we argue that just as languages that are at the opposite end of the spectrum
from English (prototypical examples of morphological richness like Hungarian) require
parsing methods that can be quite different from those optimal for English, the same
is true for a language like German that is in the middle of the spectrum—and what is
required is in some respects different from what is optimal for one extreme (English) or
the other (Hungarian).

The three correlated properties are rich morphology, syncretism, and configura-
tionality. Morphological richness can be roughly measured by the number of different
morphological forms a word of a particular syntactic category can have; for example,

1 We note, however, that this relationship is not a language universal. It is instead a frequently observed
correlation; for Chinese, for instance, the correlation does not seem to hold as strongly.

58

Fraser et al. Knowledge Sources for Parsing German

a typical English noun has two forms (singular and plural), a typical German noun
has eight forms (singular and plural in four different cases), and a typical Hungarian
noun has several hundreds of forms. Syncretism refers to the fact that different mor-
phological forms have identical surface realization; for example, the form Mann (‘man’
in German) can be the nominative, dative, or accusative singular of Mann depending
on context. Configurationality refers to the degree to which the arrangement of words
and phrases of a particular syntactic function in a sentence is fixed. English is highly
configurational: it has limited flexibility in how the major phrases in a sentence (subject,
verb, direct object, indirect object, etc.) can be ordered. Hungarian and Latin are highly
flexible: Even though there are pragmatic constraints, in principle a large number of
possible orderings are grammatical. German is less configurational. It has some strict
constraints (verb second in main clauses, verb final in subordinate clauses), but also
some properties of a nonconfigurational language; for example, ordering of phrases
in the mittelfeld (the part of the main clause enclosed by the two parts of the verbal
complex) is very flexible.

It is obvious why configurationality and rich morphology are typologically (neg-
atively) correlated. Rich morphology specifies the syntactic role of a phrase in the
sentence, so fixing a position is not required, and many morphologically rich languages
therefore do not fix the position. Conversely, simple morphology gives little specific
information about the role of words and phrases in the sentence. One device often used
by morphologically simple languages to address this problem and reduce widespread
ambiguity is to fix the order of words and phrases in the sentence.

Syncretism has an effect that is similar to simplification of complex morphology.
Simple morphology is unspecific about grammatical function because it uses a small
number of morphological categories. Syncretism is unspecific about grammatical func-
tion because it suffers from a high degree of ambiguity. Even though the number of
different morphological categories is potentially large, syncretic forms conflate many of
these categories, so that these forms are much less helpful in determining grammatical
function than forms in a nonsyncretic language with the same number of categories.
Again, to counteract the communicative difficulties that lack of morphological speci-
ficity would create, stricter constraints on ordering and configuration are often used by
syncretic languages.

We have used English and Hungarian as examples for the extremes and German
for the middle of the spectrum. We now give examples of other languages and their
positions on the scale. Dutch is similar to German in that it also is verb second in main
clauses and verb final in subordinate clauses. The order of arguments in the mittelfeld is
much more restricted than in German, however. At the same time, Dutch morphology
has been much more simplified in the last centuries than German morphology. This
nicely confirms the correlation between RM and configurationality. Thus, Dutch is
positioned between English and German on the scale.

Classical Arabic is somewhat similar to German: The number of different morpho-
logical forms is roughly comparable to German and it allows a number of different
word orders. Modern Standard Arabic speakers rarely mark case, however, at least not
in spontaneous speech. At the same time, Modern Standard Arabic speakers use SVO
order much more frequently and consistently than is the case in Classical Arabic. Thus,
Classical Arabic is roughly at the same position as German on the scale whereas spoken
Modern Standard Arabic may be more comparable to Dutch.

Finally, Modern Greek is a language that is intermediate between German and
Hungarian. It has richer morphology than German, but it has a fair amount of syn-
cretism and therefore more morphological ambiguity than Hungarian. SVO is the

59

Computational Linguistics Volume 39, Number 1

predominant word order in modern Greek, but other word orders can be used. The
order within the noun phrase is more flexible than in German: Adjectives can precede
or follow the noun.

In the examples we have given, the amount of information conveyed by a mor-
phological form is negatively correlated with the amount of information conveyed by
configuration. If morphology conveys a lot of information (due to a large number of
distinctions and the lack of syncretism), then word order is freer and conveys less
information. If morphology conveys less information (due to fewer distinctions or more
syncretism), then configuration is fixed and provides more information to the speaker.
This suggests that RM and configuration are important variables that should be taken
into account in the design of parsing methods. In addition to looking at the extremes of
the spectrum that are exemplified by English and Hungarian, we should also investigate
the middle: morphologically (somewhat) rich languages that are less configurational. In
this article, we look at the example of German.

One key question for MR&LC parsing is which type of parsing formalism to adopt,
constituency or dependency. It is a widely held belief that dependency structures are
better suited to represent syntactic analyses for morphologically rich languages because
they allow non-projective structures (the equivalent of discontinuous constituents in
constituency parsing). As Tsarfaty et al. (2010) point out, however, this is not the same
as proving that dependency parsers function better than constituency parsers for pars-
ing morphologically rich languages. In fact, most state-of-the-art dependency parsers
(McDonald and Pereira 2006; Hall and Nivre 2008; Seeker et al. 2010a) generate purely
projective dependency structures that are optionally transformed into non-projective
structures in a post-processing step. Comparable post-processing techniques have been
used in English constituency parsing (Gabbard, Marcus, and Kulick 2006; Schmid 2006;
Cai, Chiang, and Goldberg 2011) to identify discontinuous constituents and might work
for other languages, as well.

The overview paper of the Parsing German Shared Task (Kiibler 2008) reports
higher accuracies for detecting grammatical functions with dependency parsers than
with constituent parsers, but the direct comparison is not fair as it required phrase
boundaries to be correct on the constituent side while the tokens were the unit of
evaluation on the dependency side.? How to carry out an absolutely fair comparison
of the two representations is still an open research question.’

Constituent parses often provide more information than dependency parses. An
example is the coordination ambiguity in old men and women versus old men and children.
The correct constituent parse for the first expression contains a coordination at the
noun level whereas the parse for the second expression coordinates at the level of
NPs. The dependency structures of both expressions, on the other hand, are usually
identical and thus unable to reflect the fact that old modifies women but not children. It is
possible, in principle, to encode the difference in dependency trees (cf. Rambow 2010),

2 This is due to how the evalb tool used to calculate PARSEVAL works. If a constituent is not perfectly
matched, the grammatical function is considered to be wrong, even if there was a partial match (at the
token level). This is not a problem with dependency-based evaluation. For further discussion of the
PARSEVAL metric and dependency-based evaluation see, for example, Rehbein and van Genabith (2007)
and Tsarfaty, Nivre, and Andersson (2012).

3 Two possible solutions are to use TedEval (Tsarfaty, Nivre, and Andersson 2012), or to conduct an analysis
of grammatical functions at the token level in a consistent fashion for both dependency and constituent
parsers. In our case, the latter would require a high quality conversion from the Tiger constituency
representation to a dependency representation, which we hope to implement in future work.

60

Fraser et al. Knowledge Sources for Parsing German

for example, by enriching the edge labels, but the constituent representation is simpler
for this phenomenon.

Finally, there are some applications that need constituent parses rather than depen-
dency parses. For instance, many hierarchical statistical machine translation systems
use constituency parses, requiring the output of a dependency parser to be transformed
into a constituent parse.* We conclude that there is no clear evidence for preferring
dependency parsing over constituency parsing in analyzing languages with RM and
instead argue that research in both frameworks is important.

We view the detailed description of a constituency parsing system for a mor-
phologically rich language, a system that addresses the major problems that arise in
constituency parsing for MR&LC, as one of our main contributions in this paper.

The first problem we address is the proliferation of phrase structure rules in
MR&LC languages. For example, there are a large number of possible orderings of the
phrases in the German mittelfeld, and many orderings are exceedingly rare. A standard
constituency parser cannot estimate probabilities for the corresponding rules reliably.

The solution we adopt here is markovization—complex rules are decomposed
into small unidirectional rules that can be modeled and estimated more reliably than
complex rules. Although markovization in itself is not new, we stress its importance for
MR&LC languages here and present a detailed, reproducible account of how we use it
for German. Markovization combines the best of both worlds for MR&LC languages:
Preferential configurational information can be formalized and exploited by the parser
without incurring too large of a performance penalty due to sparse data problems.

The second problem that needs to be addressed in parsing many MR&LC languages
is widespread syncretism. We mainly address syncretism by using a high performance
finite-state automata-based morphological analyzer. Such an analyzer is of obvious
importance for any morphologically rich language because the productivity of mor-
phologically rich languages significantly increases the unknown-word rate in new text
versus morphologically poor languages. So the parser cannot simply memorize the
grammatical properties of words in the Treebank used for training. Instead we incorpo-
rate a complex guesser into our parser that, based on the input from the morphological
analyzer, predicts the grammatical properties of new words and (equally important)
unobserved grammatical properties of known words. With prevailing syncretism, this
task is much more complex than in a language where case, gender, number, and so forth,
can be deterministically deduced from morphology.

The morphological analyzer is based on (i) a finite state formalization of German
morphology and (ii) a large lexicon of morphologically analyzed German words. We
refer to these two components together as lexical knowledge. We show that lexical
knowledge is beneficial for parsing performance for an MR&LC language like German.

In addition to lexical knowledge, there is a second important aspect of syncretism
that needs to be addressed in MR&LC languages. Syntactic disambiguation in these
languages must always involve both systems of grammatical encoding, morphology
and configuration, acting together. The most natural way of doing this in a language
like German is to perform this integration of the two knowledge sources directly as part
of parsing. We do this by annotating constituent labels with grammatical function where
appropriate. In contrast with syntactic parses of strongly configurational languages
like English, syntactic parses of German are not useful for most tasks without having

4 We do note, however, that there are a few translation systems which use a dependency representation
directly (e.g., Quirk, Menezes, and Cherry 2005; Shen, Xu, and Weischedel 2008; Tu et al. 2010).

61

Computational Linguistics Volume 39, Number 1

grammatical functions indicated. It is not even possible to access the basic subcatego-
rization of the verb (such as determining the subject) without grammatical functions.
We argue that MR&LC languages like German should always be evaluated on labels-
cum-grammatical-function.

Our last main contribution in this paper concerns the fact that we believe that
MR&LC languages give rise to more ambiguity than languages that are predominantly
configurational or morphological. As an example consider the German sentence “Die
[the] Katze [cat] jagt [hunts] die [the] Schlange [snake].” In German either the cat or the
snake can be the hunter. This type of ambiguity neither occurs in a strongly configu-
rational language like English (where configuration determines grammatical function)
nor in a morphologically rich language like Hungarian that has no or little syncretism
(where morphology determines grammatical function). Although morphology and
configuration in MR&LC languages often work hand in hand for complete disambigua-
tion, there are also many sentences where neither of the two provides the necessary
information for disambiguation. We believe that this distinguishing characteristic of
MR&LC languages makes it necessary to tap additional knowledge sources. In this
paper, we look at two such knowledge sources: monolingual reranking (which captures
global properties of well-formed parses for additional disambiguation) and bilingual
reranking (which exploits parallel text in a different language for disambiguation).

For monolingual reranking, we define a novel set of rich features based on sub-
categorization frames. We compare our compact feature set with a sparse feature set
designed for German previously by Versley and Rehbein (2009). We show that the
richer subcategorization-based framework for monolingual reranking is effective; it has
comparable performance to the sparse feature set—moreover, they complement each
other.

For bilingual reranking, we present our approach to bitext parsing, where a German
parse is found that minimizes syntactic divergence with an automatically generated
parse of its English translation. We pursue this approach for a number of reasons. First,
one limiting factor for syntactic approaches to statistical machine translation is parse
quality (Quirk and Corston-Oliver 2006). Improved parses of bitext should result in
improved machine translation. Second, as more and more texts are available in several
languages, it will be increasingly the case that a text to be parsed is itself part of a
bitext. Third, we hope that the improved parses of bitext can serve as higher quality
training data for improving monolingual parsing using a process similar to self-training
(McClosky, Charniak, and Johnson 2006a).

We show that the three different knowledge sources we use in this paper (lexical
knowledge, monolingual features, and bilingual features) are valuable separately. We
also show that the gain of the two sets of reranking features (monolingual and bilingual)
is additive, suggesting that they capture different types of information.

The resulting parser is currently the best constituent parser for German (with or
without bilingual features). In particular, we show that the baseline parser without
reranking is competitive with the previous state of the art (the Berkeley parser) and
that the re-ranking can add an important gain.

2. Previous Work
Constituent parsing for English is well studied. The best generative constituent parsers
are currently the Brown reranking parser (Charniak and Johnson 2005), the exten-

sion of this parser with self training by McClosky, Charniak, and Johnson (2006b),
and the parser of Petrov and Klein (2007), which is an unlexicalized probabilistic

62

Fraser et al. Knowledge Sources for Parsing German

context-free grammar (PCFG) parser with latent feature annotations. Charniak and
Johnson (2005) and Huang (2008) have introduced a significant improvement by
feature-rich discriminative reranking as well.

The number of treebank constituent parsers for German is smaller. Dubey and
Keller (2003) adapted Collins’s (1997) lexicalized parser to German. An unlexicalized
PCFG parser similar to our generative parser was presented by Schiehlen (2004). The
best constituent parser participating in the ACL-08 Workshop on Parsing German
(Kubler 2008) was the Berkeley parser (Petrov and Klein 2008). The Stanford parser
was also adapted to German (Rafferty and Manning 2008). German dependency parsers
have been developed by Menzel and Schroder (1998), Duchier and Debusmann (2001),
Hall and Nivre (2008), Henderson et al. (2008), and Seeker et al. (2010a), to name
a few.

There is also some previous work on German parse reranking. Forst (2007) pre-
sented a reranker for German LFG parsing, and Dreyer, Smith, and Smith (2006) applied
reranking to German dependency parsing. Versley and Rehbein (2009) developed a
reranking method for German constituent parsers. The work by Versley and Rehbein
and by Schiehlen (2004) is closest to ours. Like them, we rerank the unlexicalized BitPar
parser. We also refine treebank labels to increase parsing performance, but add more
information and achieve a larger improvement. We use the monolingual feature set of
Versley and Rehbein in our reranker, but add further monolingual features as well as
bilingual features.

3. Generative Parsing Framework

Our generative parser is an unlexicalized PCFG parser which is based on the BitPar
parser (Schmid 2004). BitPar uses a fast bitvector-based implementation of the well-
known Cocke-Younger-Kasami algorithm and stores the chart as a large bit vector.
This representation is memory efficient and allows full parsing (without search space
pruning) with large treebank grammars. BitPar is also quite fast because the basic
parsing operations are parallelized by means of (single-instruction) and-operations on
bitvectors. BitPar can either be used to compute the most likely parse (Viterbi parse), or
the full set of parses in the form of a parse forest, or the n-best parse trees.

3.1 Grammar

The grammar and lexicon used by our generative parser are extracted from the Tiger2
Treebank (Brants et al. 2002). Similar to Johnson (1998) and Klein and Manning (2003) we
improve the accuracy of the unlexicalized parser by refining the non-terminal symbols
of the grammar to encode relevant contextual information. This refinement weakens
the strong independence assumptions of PCFGs and improves parsing accuracy. The
extraction of the grammar and lexicon involves the following steps:

Discontinuous constituents are eliminated (Section 3.2).

2. Treebank annotations are transformed (Section 3.4) and augmented
(Section 3.5).

3. Grammar rules, lexical rules, and their frequencies are extracted from the
annotated parse trees.

4. The grammar is markovized (Section 3.6).

63

Computational Linguistics Volume 39, Number 1

S-TOP
PROPAV-OP-1 VMFIN-HD VP-0OC
Daraus kalnn VP—OC/ VAINF-HD
This-from can PROAVéP \}PP-HD wer,den
T-1 gefolgert be
concluded

Figure 1
Projectivized parse tree for the sentence: Daraus kann gefolgert werden [From this can be
concluded].

3.2 Raising for Non-Projectivity

The Tiger2 Treebank that we used in our experiments contains discontinuous con-
stituents. As in other work on German parsing using the Tiger2 Treebank (Dubey
and Keller 2003; Schiehlen 2004; Kiibler, Hinrichs, and Maier 2006), we eliminated
discontinuous constituents by raising those parts of the discontinuous constituent that
do not contain the head to the child position of an ancestor node of the discontinuous
constituent. Hsu (2010) compared three different Tiger2 conversion schemes and found
raising to be the most effective. The projective parse tree in Figure 1, for instance, is
obtained from a Tiger parse tree where the pronominal adverb Daraus was a dis-
continuous child of the lower VP-OC node.

The parse tree in Figure 1 shows a trace node and coreference indices (similar to
the Penn Treebank annotation style for discontinuous constituents). If slash features
are added to the nodes on the path between the PROAV node and its trace within the
VP, it is possible to restore discontinuous constituents (Schmid 2006). Due to sparse
data problems caused by the added slash features, however, the parsing accuracy
drops by 1.5% compared with the version without slash features (when evaluated on
projectivized parse trees). Traces are recognized with a precision of 53% and a recall of
33%. The correct antecedents are identified with a precision of 48% and a recall of 30%.
These figures indicate that the identification of discontinuous constituents in Tiger parse
trees is a harder task than in English Penn Treebank parses, considering the 84% F-score
for the recognition of empty constituents and the 77% F-score for the identification of
antecedents reported in Schmid (2006) for an analogous approach.

As the example in Figure 1 shows, the precise attachment point of constituents
is often not required: We can simply assume that all constituents appearing at the S
level are dependents of the main verb of the clause. Only for modifiers with scope
ambiguities (e.g., negation particles) is it relevant whether they are attached at the S
or VP level. These considerations suggest that it is better to recognize discontinuous
constituents in a post-processing step as in Johnson (2001), Campbell (2004), and Levy
and Manning (2004). In the rest of the paper, we will only work with parse trees from
which coreference indices and trace nodes have been removed.

3.3 Morphological Features and Grammatical Functions

The Tiger2 Treebank annotates non-terminals not only with syntactic categories but
also with grammatical function labels such as SB (subject), OA (accusative object), or

64

Fraser et al. Knowledge Sources for Parsing German

MO (modifier). These labels provide important information that is necessary in order to
derive a semantic representation from a parse. It is not possible to infer the grammatical
role of a constituent from its position in the parse tree alone (as can be done in English,
for instance). Case information is needed in addition in order to help determine the
correct grammatical role. The Tiger2 Treebank provides case, number, degree (positive,
comparative, superlative), and gender information at the part-of-speech (POS) level.

Our parser concatenates the grammatical function labels as well as the case infor-
mation of the POS tags to the base labels similarly to Dubey (2004) and Versley (2005).
Our earlier experiments showed that adding case information increases F-score by 2.1%
absolute. Further enriching the grammar with morphological features, however, hurts
performance. Adding number features decreased F-score by 0.5%. Adding number,
gender, and degree decreased F-score by 1.6%. When grammatical functions are taken
into account in the evaluation, the performance drops by 1.5% when number, gender,
and degree features are incorporated. It seems that the additional information supplied
by the agreement features is not useful enough to outweigh sparse data problems
caused by the more fine-grained label set. Therefore we only use case, but designing
a smoothing procedure allowing us to use number, gender, and degree is interesting
future work.

3.4 Tree Transformations

Similarly to Schiehlen (2004), we automatically augment the Tiger2 annotation with ad-
ditional feature annotations. Our feature annotation set is larger than that of Schiehlen.
In addition to making feature annotations, we also perform some tree transformations
that reduce the complexity of the grammar. In all evaluations, we use the original
(projectivized) Tiger parse trees as gold standard and convert the parse trees generated
by our parser to the same format by undoing the transformations and removing the
additional features. In the rest of this section, we explain the tree transformations that
we used. The following section describes the feature annotations.’

Unary branching rules. The Tiger Treebank avoids unary branching nodes. NPs
and other phrasal categories which dominate just a single node are usually omitted.
The sentence Sie zogern [They hesitate], for instance, is analyzed as (5-TOP (PPER-SB
Sie) (VVFIN-HD z6gern)) without an explicit NP or VP. The lack of unary branching
nodes increases the number of rules because now a rule S-TOP — PPER-SB VVFIN-HD
is needed in addition to the rule S-TOP — NP-SB VVFIN-HD, for instance.

In order to reduce sparse-data problems, we insert unary branching nodes and
transform this parse to (5-TOP (NP-SB (PPER-HD Sie)) (VVFIN-HD zogern)) by adding
an NP node with the grammatical function (GF) of the pronoun. The GF of the pronoun,
in turn, is replaced by HD (head). Such unary branching NPs are added on top of nouns
(NN), pronouns (PPER, PDS, PIS, PRELS), cardinals (CARD), and complex proper
names (PN) that are dominated by S, VP, TOP, or DL? nodes.” The transformation is
reversible, which allows the original annotation to be restored.

5 Descriptions of the different symbols used in the Tiger annotation scheme are available at
http://www.ims.uni-stuttgart.de/tcl/RESOURCES/CL.html.

6 DL is a discourse level constituent.

7 If a single proper name (NE) forms a noun phrase, we first add a PN node and then an NP node on top.
If a simple noun (NN) with a GF other than NK appears inside of an NP, PP, CNP, CO, or AP, we also add
an NP node on top of it. Similarly, we add a PN node on top of proper names (NE) in the same context.

65

Computational Linguistics Volume 39, Number 1

CPP-MO
KON-CD PP-CJ KON-CD PP-CJ

| /N l 7N\

weder APPR-AC NE-NK noch APPR-AC NE-NK

neither in Berlin nor in Frankfurt
in Berlin in Frankfurt
— CPP-MO
KON-CD/weder PP-MO KON-CD/noch PP-MO
| 7\ | 7\
weder APPR-AC/in NE-HD noch APPR-AC/in NE-HD
. | | |

neither in Berlin nor in Frankfurt
in Berlin in Frankfurt

Figure 2

Parse of the phrase weder in Berlin noch in Frankfurt [neither in Berlin nor in Frankfurt] before
and after selective lexicalization of prepositions and conjunctions. This example also shows the
replacement of the grammatical function features CJ and NK discussed in the previous section.
The modified parts are printed in boldface.

By adding a unary-branching NP-SB node, for instance, we introduce an additional
independence assumption, namely, we assume that the expansion of the subject NP is
independent of the other arguments and adjuncts of the verb (a plausible assumption
that is confirmed by a performance improvement).

Elimination of NK. Tiger normally uses the grammatical function HD to mark the
head of a phrase. In case of NPs and PPs, however, the GF of the head is NK (noun
kernel). The same GF is also assigned to the adjectives and determiners of the noun
phrase. We replace NK by HD in order to reduce the set of symbols.®

Elimination of CJ. Tiger annotates each conjunct in a coordination with the spe-
cial grammatical function label CJ. We replace CJ by the grammatical function of the
coordinated phrase. This transformation is also reversible.

3.5 Additional Feature Annotations

Selective lexicalization. We mark the POS tags of the frequent prepositions in [in], von
[from, of], auf [on], durch [through, by means of], unter [under], um [around, at] and
their variants regarding capitalization (e.g., Unter) and incorporation of articles (e.g.,
unters, unterm) with a feature which identifies the preposition. This can be seen as a
restricted form of lexicalization. In the same way, we also “lexicalize” the coordinating
conjunctions (KON-CD) sowohl [as well], als [as], weder [neither], noch [nor], entweder
[either], and oder [or] if preceded by entweder. Figure 2 shows an example.

Sentence punctuation. If a clause node (S) has a sibling node labeled with POS tag
“$.” that dominates a question mark or exclamation mark, then the clause node and the
POS tag are annotated with quest or excl, so the grammar models different clause types.

8 The original annotation can be restored: HD never occurs in NP or PP children in original Tiger parses.

66

Fraser et al. Knowledge Sources for Parsing German

/CS-RIC\
S-RC KON-CD S-RC/norel/nosubj
— N | /N
NP-SB/rel NP-OA VVFIN-HD und NP-OA VVFIN-HD
PRELS-HD-Nom NN-HD-ACC sagen and NN-HD-Acc meinen
die Surfen say Freiheit mean
who surfing freedom

Figure 3

Parse of the phrase die Surfen sagen und Freiheit meinen [who say surfing and mean freedom] before
and after annotation with relative clause features. This example also shows the nosubj feature,
which will be discussed later.

Adjunct attachment. Adjuncts often differ with respect to their preferred attach-
ment sites. Therefore, we annotate PPs and adverbials (AVP, ADV, ADJD) with one of
the features N, V, or 0 which indicate a nominal parent (NP or PP), a verbal parent
(VP, S), or anything else, respectively. In case of adverbial phrases (AVP), the label is
propagated to the head child.

Relative clause features. In many relative clauses (S-RC), the relative pronoun
(PRELS, PRELAT, PWAYV, PWS) is embedded inside of another constituent. In this case,
all nodes on the path between the pronoun and the clause node are marked with the
feature rel. Furthermore, we add a feature norel to relative clauses if no relative pronoun
is found. Figure 3 shows an example.

Wh features. Similar to the feature rel assigned to phrases that dominate a relative
pronoun, we use a feature wh which is assigned to all NPs and PPs which immediately
dominate a wh-pronoun (PWAT, PWS, PWAV). This feature better restricts the positions
where such NPs and PPs can occur.

Noun sequence feature. If two nouns occur together within a German NP (as in drei
Liter Milch [three liters (of) milk] or Ende Januar [end (of) January]), then the first noun
is usually a kind of measure noun. We mark it with the feature seq.

Proper name chunks. Some noun phrases such as Frankfurter Rundschau, Junge
Union, Die Zeit are used as proper names. In this case, the grammatical function of the
NP is PNC. In order to restrict the nouns and adjectives that can occur inside of such
proper name chunks, we mark their POS tags with the feature name.

Predicative APs. Complex adjectival phrases (AP) are either attributively used as
noun modifiers inside of an NP or PP, or predicatively elsewhere. In order to better
model the two types of APs, we mark APs that dominate a predicative adjective (ADJD)
with the feature pred.’

Nominal heads of APs. Sometimes the head of an AP is a noun as in (AP drei
Millionen) Mark [three million Marks] or ein (AP politisch Verfolgter) [a politically
persecuted-person]. We mark these APs with the feature nom.

Year numbers. Years such as 1998 can appear in places where other numbers cannot.
Therefore POS tags of numbers between 1900 and 2019 are marked with year.!°

Clause type feature for conjunctions. The type of a subordinate clause and the
subordinating conjunction are highly correlated. German object clauses (5-OC) usually

9 We also mark an AP parent of a node with the label AP-HD/pred in the same way.
10 For some texts, it might be advantageous to use a broader definition of year numbers.

67

Computational Linguistics Volume 39, Number 1

start with dass [that] or ob [whether]; modifier clauses (5-MO) often start with wenn
[if], weil [because], or als [when]. We mark subordinating conjunctions of argument
clauses (S-OC), modifier clauses (S-MO), subject clauses (S-SB), and dislocated clauses
(S-RE) with a feature (OC, MO, SB, or RE) identifying clause type. Without this feature,
argument clauses of nouns, for instance, are often misanalyzed as modifiers of the main
clause.

VP features. VPs that are headed by finite verbs, infinitives, past participles, imper-
atives, and zu infinitives are all used in different contexts. Therefore we mark object VPs
(VP-OC) with a corresponding feature. When parsing the sentence Alle Riaume miissen
mehrfach gesdubert und desinfiziert werden [all rooms must multiply cleaned and disin-
fected be; all rooms must be ...], this feature allows the parser to correctly coordinate the
two past participle VPs mehrfach gesiubert and desinfiziert instead of the past participle
VP mehrfach gesiubert and the infinitival VP desinfiziert werden.

Phrases without a head. Some phrases in the Tiger corpus lack a head. This is
frequent in coordinations. All phrases that do not have a child node with one of the
grammatical functions HD, PNC, AC, AVC, NMC, PH, PD, ADC, UC, or DH are marked
with the feature nohead.

Clauses without a subject. We also mark conjunct clauses with the feature nosubj
if they are neither headed by an imperative nor contain a child node with the gram-
matical function SB (subject) or EP (expletive). This is useful in order to correctly parse
coordinations where the subject is dropped in the second conjunct.

3.6 Markovization

The Tiger Treebank uses rather flat structures where nodes have up to 25 child nodes.
This causes sparse data problems because only some of the possible rules of that length
actually appear in the training corpus. The sparse data problem is solved by markoviza-
tion (Collins 1997; Klein and Manning 2003), which splits long rules into a set of shorter
rules. The shorter rules generate the child nodes of the original rule one by one. First,
the left siblings of the head child of the rule are generated from left to right, then the
right siblings are generated from right to left. Finally, the head is generated. Figure 4
shows the markovization of the rule NP — NM NN PP PP.

The auxiliary symbols that are used here encode information about the parent cat-
egory, the head child, and previously generated children. Because all auxiliary symbols
encode the head category, the head is already selected by the first rule, but only later
actually generated by the last rule.

NP

/

NM (L:NP[NN]NN|NM)

(M:NP[NNJ)

(R:NP|NNJPP|PP) PP
/
(R:NP[NN]NN|PP) PP
l
NN

Figure 4
Markovization of the rule NP — NM NN PP PP.

68

Fraser et al. Knowledge Sources for Parsing German

The general form of the auxiliary symbols is (direction:parent[headlnext|previous)
where direction is either L, M, or R, parent is the symbol on the left hand side of the
rule, head is the head on the right hand side of the rule, next is the symbol which will
be generated next, and previous is the symbol that was generated before. Auxiliaries
starting with L generate the children to the left of the head. Auxiliaries starting with
R similarly generate the children to the right of the head and the head itself. The
auxiliary starting with M is used to switch from generating left children to generating
right children. Each rule contains information about the parent, the head, and (usually)
three child symbols (which may include an imaginary boundary symbol). The first rule
encodes the trigram left-boundary NM NN. The second rule is an exception which only
encodes the bigram NM NN. The third rule encodes the trigram PP PP right-boundary.
The last rule is an exception, again, and only encodes NN PP. There is no rule which
covers the trigram consisting of the head and its two immediate neighbors.

Our markovization strategy only transforms rules that occur less than 10 times in
the training data. If one of the auxiliary symbols introduced by the markovization (such
as (L:NP[NN]NN—NM)) is used less than 20 times (the values of the two thresholds
were optimized on part of the development data) overall, it is replaced by a simpler
symbol (L:NP[NN]NN) that encodes less context. In this way, we switch from a trigram
model (where the next child depends on the two preceding children) to a bigram model
(where it only depends on the preceding child) in order to avoid sparse data problems.
The method is similar to the markovization strategy of Klein and Manning (2003) except
that they markovize all rules. We simulated their strategy by raising the rule frequency
threshold to a larger value, but obtained worse results. We also tried an alternative
markovization strategy that generates all children left to right (the auxiliary symbols
now lack the direction flag, and the rules cover all possible trigrams), but again obtained
worse results. A disadvantage of our markovization method are spurious ambiguities.
They arise because some of the rules which are not markovized are also covered by
markovization rules.

3.7 Dealing with Unknown Words and Unseen POS Tags

BitPar includes a sophisticated POS guesser that uses several strategies to deal with
unknown words and unseen POS tags of known words. Unknown words are divided
into eight classes!! based on regular expressions that are manually defined. These
classes distinguish between lower-case words, capitalized words, all upper-case words,
hyphenated words, numbers, and so forth. For each word class, BitPar builds a suffix
tree (Weischedel et al. 1993; Schmid 1995; Brants 2000) from the suffixes of all words in
the lexicon up to a length of 7. At each node of the suffix tree, it sums up the conditional
POS probabilities (given the word) over all known words with that suffix. By summing
POS probabilities rather than frequencies, all words have the same weight, which is
appropriate here because we need to model the POS probabilities of infrequent words.
BitPar computes POS probability estimates for each node using the sum of probabilities
as a pseudo-frequency for each tag. The estimates are recursively smoothed with the
Witten-Bell method using the smoothed POS probabilities of the parent node as a
backoff probability distribution.!? The suffix trees are pruned by recursively removing

11 We also experimented with more complex classifications, but they failed to improve the results.
12 The number of “observed” POS tags, which is needed by Witten-Bell smoothing, is defined as the
number of POS tags with a pseudo-frequency larger than 0.5.

69

Computational Linguistics Volume 39, Number 1

leaf nodes whose pseudo-frequency is below 5 or whose weighted information gain'®
is below a threshold of 1.

Whenever an unknown word is encountered during parsing, BitPar determines the
word class and obtains the tag probability distribution from the corresponding suffix
tree. BitPar assumes that function words are completely covered by the lexicon and
never guesses function word POS classes for unknown words.

BitPar uses information from the unknown word POS guesser and (if available)
information from an external lexicon (generated by a computational morphology, for
instance, as we will discuss in Section 5.1) in order to predict unobserved POS tags
for known words. First the external lexicon and the lexicon extracted from the training
corpus are merged. Then smoothed probabilities are estimated using Witten-Bell
smoothing with a backoff distribution. The backoff distribution is the average of:

(1) the probability distribution returned by the unknown word POS guesser
if at least one possible POS tag of the word according to the lexicon is an
open-class POS tag,

(2) the average POS probability distribution of all words with exactly the same
set of possible POS tags as the given word!* if at least one of the possible
tags is unseen, and

(3) the prior POS probability distribution if no other word in the lexicon has
the same set of possible POS tags and at least one of the word’s possible
POS tags is unseen.

4. Evaluation of the Generative Parser

As we present each knowledge source, we would like to evaluate it against manually
annotated Treebanks. Our first evaluation shows that our generative parser introduced
in the previous section is comparable with the Berkeley generative parser. Before we
present this comparison in Section 4.1 we discuss evaluating parse accuracy.

In our evaluations, we use the Tiger Treebank (Brants et al. 2002) and a small
Europarl Treebank (Padé and Lapata 2009). We take the first 40,474 sentences of the
Tiger Treebank as training data (Tiger train), the next 5,000 sentences as development
data (Tiger dev), and the last 5,000 sentences as test data (Tiger test). The Europarl
data consists of 662 sentences!® and are either completely used as test data and not di-
vided up or we carried out seven-fold cross-validation experiments with our reranking
models.

All parsers are evaluated on projectivized parse trees. This means that we apply
step 1 of the grammar extraction process described in Section 3.1 to the test parses
and use the result as the gold standard (except for the Pad6 set, which is already
projectivized). The test sentences are parsed and the resulting parse trees are converted

13 The weighted information gain is the difference between the entropy of the parent node and the entropy
of the current node, multiplied by the total frequency of the current node and divided by the number of
“observed” POS tags of the current node.

14 A similar pooling of lexicon entries was previously used in the POS tagger of Cutting et al. (1992).

15 We use only the sentences in this set which had a single sentence as a translation, so that they could
be used in bilingual reranking, which will be discussed later.

70

Fraser et al. Knowledge Sources for Parsing German

to the same format as the gold standard trees by undoing Steps 2, 3, and 4 of Section 3.1.
This conversion involves four steps:

1. Demarkovization removes all the auxiliary nodes introduced by
markovization and raises their children to the next non-auxiliary node.

The added unary-branching nodes are eliminated.

The original grammatical function labels NK inside of NPs and PPs,
and (] inside of coordinated phrases, are restored.

4, All feature annotations are deleted.

We use PARSEVAL scores (Black et al. 1991) and the standard evaluation tool evalb'®
to compare the converted parse trees with the gold standard parse trees using labeled
F-score. We report accuracies for all test sentences and not just sentences of length up to
40. We do not evaluate parsers with gold standard POS tags, but instead automatically
infer them. These considerations make our evaluation setting as close to the real-world
setting as possible.

We report results for evaluations with and without grammatical functions. We
report PARSEVAL scores with grammatical functions inside parentheses after the
results using only basic constituent categories. We believe that grammatical functions
are an important part of the syntactic analysis for any downstream applications in less-
configurational languages such as German because crucial distinctions (e.g., the distinc-
tion between subject and object) are not feasible without them. We should mention that
our results are not directly comparable to previously published results on the Tiger2
corpus (Kibler 2008; Versley and Rehbein 2009; Seeker et al. 2010b), because each of
the previous studies used different portions of the corpus and there are differences in
the evaluation metric as well. The transformed corpus (in our train, development, and
test split format) and the evaluation scripts we used are available,'” which we hope will
enable direct comparison with our results.

4.1 Comparison of BitPar and Berkeley

The best constituent parser participating in the Parsing German Shared Task (Kiibler
2008) was the Berkeley parser (Petrov and Klein 2008) and to the best of our knowledge
it has achieved the best published accuracy for German constituency parsing so far.
The Berkeley parser takes an automated approach, in which each constituent symbol is
split into subsymbols applying an expectation-maximization method. We compare our
manually enriched grammar to this automatic approach.

We trained the Berkeley parser on Tiger train using the basic constituent categories
concatenated to the grammatical function labels as starting symbols. We found that it
achieved the best PARSEVAL scores on Tiger dev after the fourth iteration. This model
was used for parsing Tiger dev, Tiger test, and the Europarl corpus.

BitPar achieved 82.51 (72.46), 76.67 (65.61), and 77.13 (66.06), and the Berkeley
parser achieved 82.76 (73.20), 76.37 (65.66), and 75.51 (63.3) on the three corpora,
respectively. In general, these results indicate that these two parsers are competitive.
On the other hand, the fact that the results of the Berkeley parser are much worse than

16 http://nlp.cs.nyu.edu/evalb/, 2008 version.
17 See http://www.ims.uni-stuttgart.de/tcl/RESOURCES/CL.html.

71

Computational Linguistics Volume 39, Number 1

BitPar on the out-of-domain Europarl corpus indicates that it overfits to the domain
of the training corpus (Tiger2). Following a reviewer suggestion, we looked at the
sentences containing many words not occurring in the training data, and observed that
our lexical resource is strongly helpful for these sentences. Another disadvantage of
the automatic approach of the Berkeley parser is that the resulting subsymbols are not
easily interpretable, which can hinder defining features for parse reranking using them.
Based on these considerations, we decided to use BitPar in our reranking experiments.
The combination of the two radically different approaches (linguistically motivated
grammar extensions and automatic symbol splitting) is a rather promising area of
research for improving parsing accuracy, which we plan to address in future work.

5. Impact of Our Lexical Resource
5.1 Integration of SMOR with BitPar

There are a large number of inflected word forms for many German lemmas. This causes
sparse data problems if some forms are not observed in the training data. BitPar applies
the heuristics described in Section 3.7 to obtain POS probabilities for unseen words.
Although these heuristics seem to work quite well, we expect better results if the parser
has access to information from a morphological analyzer.

We use the German finite-state morphology SMOR (Schmid, Fitschen, and Heid
2004) to provide sets of possible POS tags for all words. SMOR covers inflection, deriva-
tion, and compounding and achieves good coverage in combination with the stem
lexicon IMSLex (Lezius, Dipper, and Fitschen 2000). SMOR is integrated into the parser
in the following way. We create a combined word list from the training and testing
data'® and analyze it with SMOR. The SMOR analyses are then mapped to the POS
tag set used by the parser, and supplied to BitPar as an external lexicon (see Section 3.7).

Consider the example word erlischt [goes out], which did not appear in the train-
ing corpus. SMOR produces the analysis erloschen.V.3.5g.Pres.Ind, which is mapped
to VVFIN-HD and added to the lexicon. Using this entry, BitPar correctly parsed
the sentence Die Anzeige erlischt [The display goes out]. Without using SMOR, the
parser analysed erlischt as a past participle because scht is a frequent past participle
ending.

5.2 Effect on In-Domain and Out-of-Domain Parsing

In order to measure the effect of the integration of a German morphology on parsing
accuracy (see Section 5.1), we tested the BitPar parser on the Tiger data and on Europarl
data. The results are summarized in Table 1. They show that the morphology helps on
out-of-domain data (Europarl), but not so much on in-domain data (Tiger). The POS
tagging accuracy, however, also increases on Tiger data by 0.13%. When grammatical
functions are included in the evaluation, the performance improvement more than
doubles on Europarl data. As a result, we decided to use the finite-state morphology
in the rest of the experiments we conducted.

Table 1 also shows that the Tiger test data is harder to parse than the dev data. We
examined the two subcorpora and found that the test data contains longer sentences

18 Because we are only using the words here, and not their POS labels, this approach is methodologically
sound and could be applied to any unparsed data in the same way.

72

Fraser et al. Knowledge Sources for Parsing German

Table 1
Effect of using finite-state morphology on parsing accuracy. The values in parentheses are
labeled F-scores from the evaluation with grammatical functions.

morphology Tiger dev Tiger test Europarl

without 82.51 (72.46) 76.67 (65.61) 76.81 (65.31)
with 82.42 (72.36) 76.84 (65.91) 77.13 (66.06)
difference -0.09 (-0.10) +0.17 (+0.30) +0.32 (+0.75)

(18.4 vs. 15.3 words on average) and that the ratio of unknown words is higher (10.0%
vs. 7.6%).

6. Parse Reranking

The most successful supervised phrase-structure parsers are feature-rich discriminative
parsers that heavily depend on an underlying PCFG grammar (Charniak and Johnson
2005; Huang 2008). These approaches consist of two stages. At the first stage they apply
a PCFG grammar to extract possible parses. The full set of possible parses cannot be
iterated through in practice, and is usually pruned as a consequence. The n-best list
parsers keep just the 50-100 best parses according to the PCFG. Other methods remove
nodes and edges from the packed parse forest whose posterior probability is under a
pre-defined threshold (Charniak and Johnson 2005).

The task of the second stage is to select the best parse from the set of possible
parses (i.e., rerank this set). These methods use a large feature set (usually a few
million features) (Collins 2000; Charniak and Johnson 2005). The n-best list approaches
can straightforwardly use local and non-local features as well because they decide at
the sentence-level (Charniak and Johnson 2005). Involving non-local features is more
complicated in the forest-based approaches. The conditional random field methods
usually use only local features (Yusuke and Jun’ichi 2002; Finkel, Kleeman, and
Manning 2008). Huang (2008) introduced a beam-search and average perceptron-based
procedure incorporating non-local features in a forest-based approach. His empirical
results show only a minor improvement from incorporating non-local features,
however.

In this study, we experiment with n-best list reranking using a maximum entropy
machine learning model for (re)ranking along with local and non-local features. Our
reranking framework follows Charniak and Johnson (2005). At the first-stage of parsing,
we extract the 100 best parses for a sentence according to BitPar’s probability model.
At parsing time, a weight vector w is given for the feature vectors (which numerically
represent one possible parse) and we select the parse with the highest inner product
of these two vectors. The goal of training is to adjust w. In the maximum entropy
framework, this is achieved by solving the optimization problem of maximizing the
posterior probability of the oracle parse—the parse with the highest F-score.!” Our
method aims to select the oracle, as the gold standard parse is often not present in
the 100-best parses.”’ Our preliminary experiments showed that parse candidates close

19 Ties are broken using the PCFG probabilities of the parses.
20 The oracle F-score (i.e., the upper limit of 100-best reranking on the Tiger development corpus) is 90.17.

73

Computational Linguistics Volume 39, Number 1

to the oracle confuse training. Hence during training, we removed all parses whose
F-score is closer than 1.0 to the score of the oracle.”!

As we discussed in Section 1, the parsing output of morphologically rich languages
is useful only when it is additionally annotated with grammatical functions. The oracle
parses often change if the grammatical function labels are also taken into consideration
at the PARSEVAL score calculation. Hence slightly different objective functions are used
in the two cases. We will report results achieved by reranking models where the oracle
selection for training agrees with the evaluation metric utilized—that is, we trained
different models (which differ in the oracle selection) for the basic constituent label
evaluation and for the evaluation on grammatical functions.

During training we followed an eight-fold cross validation technique for candidate
extraction (Collins 2000). Here, one-eighth of the training corpus was parsed with a
PCFG extracted from seven-eighths of the data set. This provides realistic training
examples for the reranker as these parses were not seen during grammar extraction. We
used the ranking MaxEnt implementation of MALLET (McCallum 2002) with default
parameters.

7. Monolingual Reranking
7.1 Subcategorization-Based Monolingual Reranking Features

We introduce here several novel subcategorization-based features for monolingual
reranking. For this, we first describe our algorithm for extracting subcategorization
(subcat) information. We use our enriched version of the Tiger2 training set. In order
to extract verbal subcat frames we find all nodes labeled with the category S (clause)
or VP-MO (modifying VP) and extract their arguments. Arguments* are nodes of the
categories shown in Table 2. The arguments of nouns are obtained by looking for NN
nodes which are either dominated by an NP or a PP, and which take a following node
of category PP, VP-OC, or S-OC as argument.

The feature functions we present are mostly lexicalized. This means we need access
to the head words of the arguments. The argument heads are extracted as follows: As
NP head we take the last node whose function label is either HD, NK, or PH. If this node
is of category NP or PN, we recursively select the head of that constituent. Similarly, the
head of an AP is the last node with functional label HD. If it is an AP, the head is
searched inside of it. In the case of PPs, we extract two heads, namely, the preposition
(or postposition) as well as the nominal head of the PP, which is found using similar
rules as for NPs. We also extract the case of the nominal head.

The extraction of verbal heads is somewhat more complicated. In order to obtain
the correct verbal head of a clause irrespective of the verb position (verb-first, verb-
second, verb-final), we extract all verbs that are dominated by the clause and a possibly
empty sequence of VP-OC or VP-PD (statal passive) nodes and an optional VZ-HD
node. Then we take the first non-finite verb, or alternatively the first finite verb if all
verbs were finite. In order to avoid sparse data problems caused by the many different
inflections of German verbs, we lemmatize the verbs.

21 In Fraser, Wang, and Schiitze (2009) we used Minimum Error Rate Training. Once we made this change
to maximum entropy the results on small feature sets became similar (details omitted).

22 An exception to this is that if a PP argument dominates a node of category PROAV-PH, it is considered
a PROAV-PH argument. An example is the sentence Er [he] wartet [waits] (PP-OP (PROAV-PH darauf
[for this]), (S-RE dass [that] sie [she] kommt [comes])).

74

Fraser et al. Knowledge Sources for Parsing German

Table 2
Arguments used in extracted subcategorization frames.

NP-SB, PN-SB, CNP-SB, S-SB, VP-SB subjects

NP-OA, PN-OA, CNP-OA direct objects

NP-DA, PN-DA, CNP-DA indirect objects

PRF-OA reflexive direct objects

PRF-DA reflexive indirect objects

NP-PD, CNP-PD predicative NPs

ADJD-PD, AP-PD, CAP-PD predicative adjectives

S-0OC, CS-0OC argument clauses

PP-OP, CPP-OP PP arguments

VP-OC/zu infinitival complement clauses

PROAV-OP pronominal adverbs serving as PP proxies such as
daraus [out of this]

NP-EP expletive subjects

VP-RE, NP-RE VP /NP appearing in expletive constructions

In the case of coordinated phrases, we take the head of the first conjunct. Arguments
are sorted to put them in a well-defined order. An example is that given the correct
parse of the sentence Statt [instead of] Details [details] zu [to] nennen [name], hat [has]
er [he] unverdrossen [assiduously] die [the] “Erfolgsformel” [formula of success] wiederholt
[repeated], meaning “instead of naming the details, he assiduously repeated the formula
of success,” we extract the two subcat frames:

VP-MO OB]J:Details VZ-HD:zu:nennen
S-TOP VP-MO SUBJ:er OBJ:Erfolgsformel VVPP-HD:wiederholt

We can now describe our features. The features focus on subcat frames taken from
Snodes (VP-MO is treated as S), and on attachment of prepositions and conjunctions to
nouns. We define conditional probability and mutual information (MI) features.

The two conditional probability features are ProbPrepAttach and ProbAdverb-
Attach, which calculate the probability for each preposition or adverb to be attached
to its governor, given the label of the governor. We estimate this from the training
data as follows, for the example of the PP feature. In the feature scoring, we give
each preposition attachment a score which is the negative logl0 of the probabil-
ity p(lex_prep|label_governor) = f(lex_prep, label_governor)/f (label_governor) (with a
cutoff of 5).

For all of our other monolingual features, we use (negative) pointwise mutual
information: —log19(p(a, b)/p(a)p(b)) (here we use cutoffs of 5 and —5).

MI_NounP and MI_NounConj give an assessment of a preposition or a conjunction
being attached to a noun (given the lexicalized preposition and the lexicalized noun).

For the MI_VSubcat feature, we use as a the frame (without lexicalization), and as
b the head verb. p(a) is estimated as the relative frequency of this frame over all frames
extracted from Tiger2 train. MI_VSimpleSubcat is a simpler version of MI_VSubcat.
PP is excluded from frames because PP is often an adjunct rather than an argument.

For the MI_VArg feature, we use as a the argument function and the head word
of the argument (e.g., OBJ:Buch, which is “book” used as an object). As b we again
use the head verb. The estimate of p(a) is frequency(OBJ:Buch)/(total number of
extracted frames).”®> In addition, this feature is refined into individual features for

23 We make the assumption that every frame has an object, but that this object can be NULL.

75

Computational Linguistics Volume 39, Number 1

different kinds of arguments: MI_-VSubj, MI_VObj, MI_VIobj, MI_-VPP, MI_VPRF,
MI_VS_OC, MI_VVP, and MI_VerbPROAV. As an example, the MI of “lesen, OBJ:Buch”
(reading, object:Book) would be used for the MI_VArg features and for the MI_VObj
feature. For functions such as MI_VPP which are headed by both a function word (here,
a preposition) and a content word, only the function word is used (and no case).

The last MI feature is MI_VParticle. Some German verbs contain a separable parti-
cle, which can also be analyzed as an adverb but will then have a different meaning. For
the sentence “Und [and] Frau [Mrs.] Kiinast [(proper name)] bringt [brings] das [that] auch
[also] nicht [not] riiber [across],” if “riiber” is analyzed as an adverb, the verb means to
carry/take/bring over [to another physical location], but if it is viewed as a particle, the
sentence means Frau Kiinast is not able to explain this. The feature MI_VParticle helps
with this kind of disambiguation.

7.2 The Versley and Rehbein Feature Set

We also carried out experiments with the feature set of Versley and Rehbein (2009),
which is specially designed for German. It consists of features constructed from the
lexicalized parse tree along with features based on external statistical information.

The features here are local in the sense that their values can be computed at the
constituent in question, its daughters, and its spanning words. All features except
the external statistical information are binary and indicate that a lexicalized pattern is
present in the parse. They were originally designed for forest-based reranking (Versley
and Rehbein 2009). Following Charniak and Johnson (2005) we sum up these local
feature values in the parse tree. Thus our versions count the number of times that a
particular pattern occurs in the entire parse tree.

The patterns used can be further subcategorized into three groups. The wordform-
based patterns are token-POS (e.g., one pattern is “lesen-VVINF”) and the word class
of the token in question (word class comes from an automatic clustering of words based
on contextual features). The constituent-based patterns are the size of the constituent,
the constituent label, and the right-hand side of the derivational rule applied at the node
in question. The last and biggest group of the pattern features is formed by the bilexical
dependencies. They are based on the head word of the constituent node in question
and its daughters. Versley and Rehbein (2009) have also introduced features that exploit
statistical information gathered from an external data set and aim to resolve PP attach-
ment ambiguity. Mutual information values were gathered on the association between
nouns and immediately following prepositions, as well as between prepositions and
closely following verbs on the DE-WaC corpus (Baroni and Kilgarriff 2006). These
feature values were then used at NP—PP and VP—PP daughter attachments.

A total of 2.7 million features fired in the Tiger train. We ignored features firing
in less than five sentences for computational efficiency, resulting in 117,000 extremely
sparse features.

7.3 Monolingual Reranking Experiments

We rerank 100-best lists from BitPar (Schmid 2004), which uses the grammar extraction
procedure and lexical resources introduced in Section 3. In each of the experiments we
extracted the grammar from the Tiger train and used it to obtain the 100-best parses for
the sentences of the evaluation corpus.

We trained reranking models on the Tiger train as described in Section 6 using our
subcategorization-based features, the Versley(09 feature set, and the union of these two

76

Fraser et al. Knowledge Sources for Parsing German

Table 3
The PARSEVAL score of monolingual features to rerank the parses of Europarl (seven-way
cross-validation on 662 sentences) and Tiger2 (development and test sets).

Tiger dev Tiger test Europarl CROSS Europarl IN

Baseline 82.42 (72.36) 76.84 (65.91) 77.13 (66.06)
subcat 83.19 (73.63) 77.65(67.21) 77.23(66.13) 77.73 (66.95)
Versley09 83.56 (73.89) 78.57 (68.42) 77.82(66.87) 77.62 (66.05)

subcat+Versley09 ~ 84.19 (74.96) 78.86 (69.04) 77.76 (66.84) 77.93 (66.75)

sets. We evaluated the models on Tiger dev, Tiger test, and Europarl. As the domains
of Tiger and Europarl are quite different, besides this cross-domain parser evaluation
(CROSS) we carried out an in-domain (IN) evaluation as well. In the latter we followed
the seven-fold cross-validation approach, that is, the reranking models were trained on
six-sevenths of Europarl. The results are presented in Table 3.

The results presented in Table 3 show that the reranking models achieve an im-
provement over the baseline parser using both our and the Versley09 feature sets. The
Versley09 feature set achieved better results than our monolingual features when a
training dataset with sufficient size is given (Tiger). On the other hand using our 16
rich features (compared with 117,000 sparse features) is more suitable for the settings
where only a limited amount of training instances are available (the training sets consist
of 567 sentences of Europarl in seven-fold cross-validation). The reranking models using
the union of the feature sets obtain close to the sum of the improvements of the two in-
dividual feature sets. The subcategorization features model rich non-local information,
and the fine-grained features capture local distinctions well and the features based on
the Web corpus access additional knowledge.

We performed an experiment adding one feature at a time, and found that the
most effective features were ProbAdverbAttach, MI_VPP, MI_VPRF, MI_VSubj, and
MI_VArg. After this the variation caused by numeric instability was too high to see a
consistent incremental gain from the rest of the features. We conclude that these features
can be robustly estimated and have more discriminative power than the others, but we
emphasize that we used all features in our experiments.

Figure 5 shows a parse tree produced by the BitPar parser in which the noun phrase
diese Finanzierung is incorrectly classified as an accusative object. The monolingual
subcategorization features MI_VSubcat, MI_VSimpleSubcat, and MI_VArg enable the
reranker to correctly analyze the noun phrase as a subject and to move it from the VP
level to the S level.

/ S-TOP
PWAV-MO VMFIN-HD VP-OC
Woher soll NP-OA VVINF-HD

N\ |

where-from should ppAT-HD NN-HD kommen

diese Finanzierung come

this financing

Figure 5
Erroneous parse produced by BitPar that is corrected by monolingual features.

77

Computational Linguistics Volume 39, Number 1

8. Bilingual Reranking

We now present our bilingual reranking framework. This follows our previous work
(Fraser, Wang, and Schiitze 2009), which defined feature functions for reranking
English parses, but now we will use these same feature functions (and three additional
feature functions introduced to capture phenomena higher in the syntactic tree) to
rerank German parses. The intuition for using this type of bitext projection feature is
that ambiguous structures in one language often correspond to unambiguous structures
in another. Our feature functions are functions on the hypothesized English parse ¢,
the German parse g, and the word alignment a, and they assign a score (varying
between 0 and infinity) that measures syntactic divergence. The alignment of a sentence
pair is a function that, for each English word, returns a set of German words with
which the English word is aligned. Feature function values are calculated either by
taking the negative log of a probability, or by using a heuristic function which scales
similarly.**

The bilingual feature functions we define are functions that measure differ-
ent types of syntactic divergence between an English parse and a German parse.
Charniak and Johnson (2005) defined the state of the art in discriminative n-best
constituency parsing of English syntax (without the use of self-training). The n-best
output of their generative parser is reranked discriminatively by a reranker. We call
this CJRERANK. We will use an array of feature functions measuring the syntactic
divergence of candidate German parses with the projection of the English parse
obtained from CJRERANK.

In our experiments we use the English text of the parallel Treebank extracted from
the Europarl corpus and annotated by Padé and Lapata (2009). There are 662 German
sentences that are aligned to single English sentences; this is the set that we use. Due to
the limited number of trees, we perform cross-validation to measure performance.

The basic idea behind our feature functions is that any constituent in a sentence
should play approximately the same syntactic role and have a similar span as the corre-
sponding constituent in a translation. If there is an obvious disagreement, it is probably
caused by wrong attachment or other syntactic mistakes in parsing. Sometimes in
translation the syntactic role of a given semantic constituent changes; we assume that
our model penalizes all hypothesized parses equally in this case.

To determine which features to describe here we conducted a greedy feature addi-
tion experiment (adding one feature at a time), on top of our best monolingual system
(combining both subcat and Versley09 feature sets). All bilingual experiments use all of
the features (not just the features we describe here). Definitions are available.?

BitParLogProb (the only monolingual feature used in the bilingual-only experi-
ment) is the negative log probability assigned by BitPar to the German parse.

8.1 Count Feature Functions

Count feature functions count projection constraint violations.
Feature CrdBin counts binary events involving the heads of coordinated phrases. If
we have a coordination where the English CC is aligned only with a German KON, and

24 A probability of 1 is a feature value of 0, whereas a low probability is a feature value which is > 0.
25 See http://www.ims.uni-stuttgart.de/tcl/RESOURCES/CL.html.

78

Fraser et al. Knowledge Sources for Parsing German

Table 4
Other projection features selected; see the previously mentioned Web page? for precise
definitions.

POSParentPrjWordPerG2E Computes the span difference between all the parent constituents
of POS tags in a German parse and their respective coverage
in the corresponding English parse, measured using percentage
coverage of the sentence in words. The feature value is the sum
of all the differences. The projection direction is from German to
English.

AbovePOSPrjPer Projection direction is from English to German, and measured in
percentage sentence coverage using characters, not words. The
feature value is calculated over all constituents above the POS
level in the English tree.

AbovePOSPrjWord Calculates a length-based difference using words.

POSPar2Prj Only applies when the POS tag’s parent has two children (the
POS tag has only one sibling). Projects from English to German
and calculates a length-based difference in characters.

POSPar2PrjPer Calculates a percentage-based difference based on characters.
POSPar2PrjG2E Like POSPar2Prj except projects from German to English.
POSPar2PrjWordG2E Like POSPar2PrjG2E except uses word-based differences.

both have two siblings, then the value contributed to CrdBin is 1 (indicating a constraint
violation) unless the head of the English left conjunct is aligned with the head of the
German left conjunct and likewise the right conjuncts are aligned.

Feature Q simply captures a mismatch between questions and statements. If a
German sentence is parsed as a question but the parallel English sentence is not, or
vice versa, the feature value is 1; otherwise the value is 0.

Feature S-OC considers that a clausal object (OC) in a German parse should be
projected to a simple declarative clause in English. This feature counts violations.

EngPPinSVP checks whether a PP inside of a S or VP in English attaches to the
same (projected) constituent in German. If an English PP follows immediately a VP or
a single verb, and the whole constituent is labeled “S” or “VP,” then the PP should be
identified as governed by the VP. In this case the corresponding German PP should
attach as well to the German VP to which the English VP is projected (attachment in
German can be to the left or to the right). If the governor in German does not turn out to
be a VP or have a tag starting with “V,” a value of 1 will be added to the feature for this
German parse.

EngLeftSVP checks whether the left sibling of S or VP in English attaches to the
same (projected) constituent in German (where attachment can be left or right). This
feature counts violations.

Span Projection Feature Functions. Span projection features calculate an absolute or
percentage difference between a constituent’s span and the span of its projection. Span
size is measured in characters or words. To project a constituent in a parse, we use the
word alignment to project all word positions covered by the constituent and then look
for the smallest covering constituent in the parse of the parallel sentence.
PPParentPrjWord checks the correctness of PP attachment. It projects all the parents
of PP constituents in an English parse to German, and sums all the span differences. It is
measured in words. In addition to PPParentPrjWord we implement two bonus features,
NonPPWord and NonPPPer. The former simply calculates the number of words that

79

Computational Linguistics Volume 39, Number 1

do not belong to PP phrases in the sentence, and the latter computes the non-PP
proportion in a character-based fashion. These can be thought of as tunable parameters
which adjust PPParentPrjWord to not disfavor large PPs. The other selected projection
features are described in Table 4.

Probabilistic Feature Functions. We use Europarl (Koehn 2005), from which we
extract a parallel corpus of approximately 1.22 million sentence pairs, to estimate
the probabilistic feature functions described in this section.

We describe the feature PTag, despite the fact that it was not selected by the feature
analysis, because several variations (described next) were selected. PTag measures
tagging inconsistency based on estimating the probability for each English word that
it has a particular POS tag, given the aligned German word’s POS tag. To avoid noisy
feature values due to outliers and parse errors, we bound the value of PTag at 5.6 We
use relative frequency to estimate this feature. When an English word is aligned with
two words, estimation is more complex. We heuristically give each English and German
pair one count. The value calculated by the feature function is the geometric mean® of
the pairwise probabilities.

The feature PTagEParent measures tagging inconsistency based on estimating the
probability that the parent of the English word at position 7 has a particular tag, given
the aligned German word’s POS label. PTagBiGLeft measures tagging inconsistency
based on estimating the probability for each English word that it has a particular POS
tag, given the aligned German word’s label and the word to the left of the aligned
German word’s label. PTagBiGParent measures tagging inconsistency based on esti-
mating the probability for each English word that it has a particular POS tag, given the
aligned German word’s label and the German word’s parent’s label.

8.2 Bilingual Reranking Experiments

We performed experiments looking at bilingual reranking performance. To train the
parameters of the probabilistic feature functions, we use 1-best parses of the large
Europarl parallel corpus (from CJRERANK and BitPar). We work on the same 100-best
list (of the German sentences in the small Pad6 set) as was used in the previous section.
We parse the English sentences of the small Europarl set with CJRERANK; this parse is
used as our bilingual knowledge source. Finally we rerank using the bilingual features
(results in the first row of Table 5).

We then combine the monolingual features with the bilingual features. We rerank
using both the monolingual and the bilingual features together, and the results are
presented in Table 5. The bilingual feature-based reranker achieved 1 percentage point
improvement over the baseline. This advantage was just slightly decreased when mono-
lingual features are also present. This indicates again that the monolingual and bilingual
features can capture different linguistic phenomena and their information content is
rather different. As in the Europarl IN setting, using the large sparse Versley(09 feature
set the reranker could not learn a meaningful model from a moderate-sized training
data set.

26 Throughout this paper, assume log(0) = —oc.
27 Each English word has the same weight regardless of whether it was aligned with one or with more
German words.

80

Fraser et al. Knowledge Sources for Parsing German

Table 5

PARSEVAL scores of bi+monolingual features to rerank the parses of Europarl (seven-way
cross-validation) and the added value of bilingual features over the results achieved by the
corresponding monolingual feature set.

Mono features without bilingual =~ with bilingual added value
NONE 77.13 (66.06) 78.10 (67.12) +0.97 (+1.06)
subcat 77.73 (66.95) 78.54 (67.95) +0.78 (+1.00)
Versley09 77.62 (66.05) 77.71 (66.06) +0.09 (+0.01)
subcat+Versley(09 77.93 (66.75) 78.70 (67.45) +0.78 (+0.70)

The parse tree in Figure 6 demonstrates the value of bilingual features. It was
produced by the monolingual reranker and it incorrectly combines the two adverbs aber
and ebenso into an adverbial phrase and places this under the VP. The bilingual reranker
instead attaches the two adverbs separately at the S level. The attachment to the S node
indicates that the two adverbs modify the modal verb kann and not the full verb sagen.
This is triggered by the feature POSPar2Pr;j.

8.3 Previous Work on Bitext Parsing

Bitext parsing was also addressed by Burkett and Klein (2008). In that work, they use
feature functions defined on triples of (English parse tree, Chinese parse tree, alignment)
which are combined in a log-linear model, much as we do. In later work (Burkett,
Blitzer, and Klein 2010), they developed a unified joint model for solving the same
problem using a weakly synchronized grammar. To train these models they use a small
parallel Treebank that contains gold standard trees for parallel sentences in Chinese
and English, whereas we only require gold standard trees for the language we are
reranking. Another important difference is that Burkett and Klein (2008) use a large
number of automatically generated features (defined in terms of feature generation
templates) whereas we use a small number of carefully designed features that we found
by linguistic analysis of parallel corpora. Burkett, Blitzer, and Klein (2010) use a subset
of the features of Burkett and Klein (2008) for synchronization, along with monolin-
gual parsing and alignment based features. Finally, self-training (McClosky, Charniak,
and Johnson 2006b) is another differentiator of our work. We use probabilities esti-
mated from aligned English CJRERANK parses and German BitPar parses of the large
Europarl corpus in our bilingual feature functions. These feature functions are used to

S-TOP

PIS-SB VMFIN-HD \ VP-0C
Man kann AVP-MO VVINF-HD / \ S-0C
one can ADV-MO ADV-HD sagen ! KOUS—CP{R—SQ ADJD-PD VAFIN-HD
aber ebenso say dass sie anspruchsvoll sind
but just-as-well that they demanding are

Figure 6
Erroneous parse produced by the reranker using only monolingual features, which is corrected
by bilingual features. The sentence means One can, however, just as well say that they are demanding.

81

Computational Linguistics Volume 39, Number 1

improve ranking of German BitPar parses in the held-out test sets, which is a form of
self-training.

Two other interesting studies in this area are those of Fossum and Knight (2008)
and of Huang, Jiang, and Liu (2009). They improve English prepositional phrase at-
tachment using features from a Chinese sentence. Unlike our approach, however, they
do not require a Chinese syntactic parse as the word order in Chinese is sufficient to
unambiguously determine the correct attachment point of the prepositional phrase in
the English sentence without using a Chinese syntactic parse.

We know of no other work that has investigated to what extent monolingual and
bilingual features in parse reranking are complementary. In particular, the work on bi-
text parsing by Burkett and Klein (2008) does not address the question as to whether the
effect of monolingual and bilingual features in parse reranking is (partially) additive.

We demonstrate bilingual improvement for a strong parser of German. Previously,
we showed bilingual improvement for parsing English with an unlexicalized parser
(Fraser, Wang, and Schiitze 2009), using 34 of the 37 bilingual feature functions we use
in this work.

9. Conclusion

In this paper, we have focused on MR&LC languages like German—languages that
are morphologically rich, but also have a strong configurational component. We have
argued that constituency parsing is, perhaps contrary to conventional wisdom, an ap-
propriate parsing formalism for MR&LC because constituents capture configurational
constraints in a transparent way and because for many applications constituency pars-
ing is preferable to dependency parsing. Our detailed description of a constituency
parsing system for a morphologically rich language, a system that addresses the major
problems that arise in constituency parsing for MR&LC, is one main contribution of this
paper. Two of these problems are rule proliferation and syncretism. We have addressed
rule proliferation by markovization and syncretism by (i) deploying a high performance
finite-state-based morphological analyzer that is based on rich lexical knowledge and
(ii) encoding grammatical functions directly as part of the phrase labels. This direct
encoding allows us to directly combine morphological and configurational informa-
tion in parsing and arrive at a maximally disambiguated parse. We argued that this
is the right setup for MR&LC languages because applications must have access to
grammatical functions.

A large part of this paper was concerned with making available and evaluating
additional knowledge sources for improved parsing of the MR&LC language German.
Our motivation was that (as we argued) MR&LC languages have in general higher am-
biguity than purely configurational and purely morphological languages, in particular
with respect to grammatical functions. Apart from the lexical knowledge embedded
in the morphological analyzer, we presented work on two other knowledge sources to
address this type of additional ambiguity: monolingual reranking (which looks at global
sentence-wide constraints for disambiguation) and bitext reranking (which exploits
parallel text for disambiguation). We were able to improve the performance of a strong
baseline parser using these three knowledge sources and we showed that they are
largely complementary: Performance improvements were additive when we used them
together. The resulting parser is currently the best constituent parser for German (with
or without bilingual features).

New languages and even new domains can require new treebanks. To create such
a treebank for a MR&LC language, we would first annotate a small number of gold

82

Fraser et al. Knowledge Sources for Parsing German

standard trees, using parallel text with English or another language if such text is
available. Next, we would consider how to quickly differentiate constituents of the same
type using constituent labels plus grammatical functions, as we outlined in Section 3.
Following this, we would use BitPar to build a parser in the same way as we presented
here, and to determine the optimal level of markovization, which we assume would be
very high with a small number of gold standard training trees. Next, as more trees are
annotated in an active learning framework, we would begin to develop morphological
analysis. We would implement the bilingual framework following this (if we have
access to bitext). Then we would implement basic subcategorization extraction and add
monolingual features. Finally, as more gold standard trees are annotated, the reranking
framework should be constantly retrained. In particular, we expect that the effect of the
knowledge sources we have presented will be much stronger when starting with less
training data.

Our work in this paper will be of use to developers of German syntactic parsers
as we have state-of-the-art performance using linguistically motivated features that are
easy to understand. We also hope that our work can serve as a cookbook of ideas to try

for others working on parsers for other morphologically rich languages.

Acknowledgments

We would like to thank Sandra Kiibler and
Yannick Versley. We gratefully acknowledge
Deutsche Forschungsgemeinschaft (DFG)
for funding this work (grants SCHU 2246/
6-1 Morphosyntax for MT and SFB 732

D4 Modular lexicalization of PCFGs). This
work was supported in part by the IST
Programme of the European Community,
under the PASCAL2 Network of Excellence,
IST-2007-216886. This publication only
reflects the authors’” views.

References

Baroni, Marco and Adam Kilgarriff. 2006.
Large linguistically processed Web
corpora for multiple languages.

In EACL: Posters & Demonstrations,
pages 87-90, Trento.

Black, E., S. Abney, S. Flickenger,

C. Gdaniec, C. Grishman, P. Harrison,
D. Hindle, R. Ingria, E. Jelinek,

J. Klavans, M. Liberman, M. Marcus,
S. Roukos, B. Santorini, and

T. Strzalkowski. 1991. Procedure for
quantitatively comparing the syntactic
coverage of English grammars. In
Proceedings of the Workshop on Speech
and Natural Language, HLT "91,

pages 306-311, Pacific Grove, CA.

Brants, Sabine, Stefanie Dipper, Silvia
Hansen, Wolfgang Lezius, and George
Smith. 2002. The TIGER Treebank.

In Proceedings of the Workshop on
Treebanks and Linguistic Theories,
pages 2441, Sozopol.

Brants, Thorsten. 2000. Tn'T—a statistical
part-of-speech tagger. In ANLP,
pages 224-231, Seattle, WA.

Burkett, David, John Blitzer, and Dan Klein.
2010. Joint parsing and alignment
with weakly synchronized grammars.

In HLT-NAACL, pages 127-135,
Los Angeles, CA.

Burkett, David and Dan Klein. 2008. Two
languages are better than one (for syntactic
parsing). In EMINLP, pages 877-886,
Honolulu, HI.

Cai, Shu, David Chiang, and Yoav Goldberg.
2011. Language-independent parsing with
empty elements. In ACL, pages 212-216,
Portland, OR.

Campbell, Richard. 2004. Using linguistic
principles to recover empty categories.

In ACL, pages 645-652, Barcelona.

Charniak, Eugene and Mark Johnson. 2005.
Coarse-to-fine n-best parsing and MaxEnt
discriminative reranking. In ACL,
pages 173-180, Ann Arbor, MI.

Collins, Michael. 1997. Three generative,
lexicalized models for statistical parsing.
In ACL, pages 16-23, Madrid.

Collins, Michael. 2000. Discriminative
reranking for natural language parsing.
In ICML, pages 25-70, Stanford, CA.

Cutting, Doug, Julian Kupiec, Jan Pedersen,
and Penelope Sibun. 1992. A practical
part-of-speech tagger. In ANLP,
pages 133-140, Trento.

Dreyer, Markus, David A. Smith, and
Noah A. Smith. 2006. Vine parsing and
minimum risk reranking for speed and
precision. In CoNLL, pages 201-205,

New York, NY.

83

Computational Linguistics

Dubey, Amit. 2004. Statistical Parsing for
German: Modeling Syntactic Properties
and Annotation Differences. Ph.D. thesis,
Saarland University.

Dubey, Amit and Frank Keller. 2003.
Probabilistic parsing for German using
sister-head dependencies. In ACL,
pages 96-103, Sapporo.

Duchier, Denys and Ralph Debusmann.
2001. Topological dependency trees:

a constraint-based account of linear
precedence. In ACL, pages 180-187,
Toulouse.

Finkel, Jenny Rose, Alex Kleeman, and
Christopher D. Manning. 2008. Efficient,
feature-based, conditional random
field parsing. In ACL, pages 959967,
Columbus, OH.

Forst, Martin. 2007. Filling statistics
with linguistics—property design
for the disambiguation of German
LFG parses. In Proceedings of the ACL
Workshop on Deep Linguistic Processing,
pages 17-24, Prague.

Fossum, Victoria and Kevin Knight. 2008.
Using bilingual Chinese-English word
alignments to resolve PP-attachment
ambiguity in English. In AMTA,
pages 48-53, Honolulu, HI.

Fraser, Alexander, Renjing Wang,
and Hinrich Schiitze. 2009. Rich
bitext projection features for parse
reranking. In EACL, pages 282-290,
Athens.

Gabbard, Ryan, Mitchell Marcus, and Seth
Kulick. 2006. Fully parsing the Penn
Treebank. In HLT-NAACL, pages 184-191,
Morristown, NJ.

Hall, Johan and Joakim Nivre. 2008.

A dependency-driven parser for

German dependency and constituency
representations. In Proceedings of the
Workshop on Parsing German, pages 47-54,
Columbus, OH.

Henderson, James, Paola Merlo, Gabriele
Musillo, and Ivan Titov. 2008. A latent
variable model of synchronous parsing
for syntactic and semantic dependencies.
In CoNLL, pages 178-182, Manchester.

Hsu, Yu-Yin. 2010. Comparing conversions
of discontinuity in PCFG parsing. In TLT,
pages 103-113, Tartu.

Huang, Liang. 2008. Forest reranking:
Discriminative parsing with non-local
features. In ACL, pages 586-594,
Columbus, OH.

Huang, Liang, Wenbin Jiang, and
Qun Liu. 2009. Bilingually constrained
(monolingual) shift-reduce parsing.

84

Volume 39, Number 1

In EMNLP, pages 1,222-1,231,
Singapore.

Johnson, Mark. 1998. PCFG models
of linguistic tree representations.
Computational Linguistics, 24(4):613-632.

Johnson, Mark. 2001. A simple pattern-
matching algorithm for recovering empty
nodes and their antecedents. In ACL,
pages 136-143, Philadelphia, PA.

Klein, Dan and Christopher D. Manning.
2003. Accurate unlexicalized parsing.

In ACL, pages 423430, Sapporo.

Koehn, Philipp. 2005. Europarl: a parallel
corpus for statistical machine translation.
In MT Summit X, pages 79-86, Phuket.

Kiibler, Sandra. 2008. The PaGe 2008 shared
task on parsing German. In Proceedings
of the Workshop on Parsing German,
pages 55-63, Columbus, OH.

Kiibler, Sandra, Erhard W. Hinrichs, and
Wolfgang Maier. 2006. Is it really that
difficult to parse German? In EMNLP,
pages 111-119, Sydney.

Levy, Roger and Christopher D. Manning.
2004. Deep dependencies from context-free
statistical parsers: Correcting the surface
dependency approximation. In ACL,
pages 327-334, Barcelona.

Lezius, Wolfgang, Stefanie Dipper, and Arne
Fitschen. 2000. IMSLex—representing
morphological and syntactical information
in a relational database. In EURALEX,
pages 133-139, Stuttgart.

McCallum, Andrew Kachites. 2002. Mallet:
A machine learning for language toolkit.
http://mallet.cs.umass.edu.

McClosky, David, Eugene Charniak,
and Mark Johnson. 2006a. Effective
self-training for parsing. In HLT-NAACL,
pages 152-159, Morristown, NJ.

McClosky, David, Eugene Charniak,
and Mark Johnson. 2006b. Reranking
and self-training for parser adaptation.
In COLING-ACL, pages 337-344,

Sydney.

McDonald, Ryan and Fernando Pereira.
2006. Online learning of approximate
dependency parsing algorithms.

In EACL, pages 81-88, Trento.

Menzel, Wolfgang and Ingo Schroder.

1998. Decision procedures for dependency
parsing using graded constraints.

In COLING-ACL Workshop on Processing

of Dependency-Based Grammars,

pages 78-87, Montreal.

Pado, Sebastian and Mirella Lapata. 2009.
Cross-lingual annotation projection of
semantic roles. Journal of Artificial
Intelligence Research, 36:307-340.

Fraser et al.

Petrov, Slav and Dan Klein. 2007. Improved
inference for unlexicalized parsing.

In HLT-NAACL, pages 404411,
Rochester, NY.

Petrov, Slav and Dan Klein. 2008. Parsing
German with latent variable grammars.
In Proceedings of the Workshop on Parsing
German, pages 33-39, Columbus, OH.

Quirk, Chris and Simon Corston-Oliver.
2006. The impact of parse quality on
syntactically-informed statistical
machine translation. In EMNLP,
pages 62-69, Sydney.

Quirk, Chris, Arul Menezes, and
Colin Cherry. 2005. Dependency treelet
translation: Syntactically informed
phrasal SMT. In ACL, pages 271-279,
Oxford.

Rafferty, Anna and Christopher D. Manning.
2008. Parsing three German Treebanks:
Lexicalized and unlexicalized baselines.
In Proceedings of the Workshop on Parsing
German, pages 40—46, Columbus, OH.

Rambow, Owen. 2010. The simple truth
about dependency and phrase structure
representations: an opinion piece.

In HLT-NAACL, pages 337-340,
Los Angeles, CA.

Rehbein, Ines and Josef van Genabith.
2007. Evaluating evaluation measures.
In NODALIDA, pages 372-379, Tartu.

Schiehlen, Michael. 2004. Annotation
strategies for probabilistic parsing in
German. In COLING, pages 390-396,
Geneva.

Schmid, Helmut. 1995. Improvements in
part-of-speech tagging with an application
to German. In Proceedings of the ACL
SIGDAT-Workshop, pages 47-50, Dublin.

Schmid, Helmut. 2004. Efficient parsing
of highly ambiguous context-free
grammars with bit vectors. In COLING,
pages 162-168, Geneva.

Schmid, Helmut. 2006. Trace prediction
and recovery with unlexicalized PCFGs
and slash features. In COLING-ACL,
pages 177-184, Sydney:.

Schmid, Helmut, Arne Fitschen, and
Ulrich Heid. 2004. SMOR: A German
computational morphology covering
derivation, composition and inflection.
In LREC, pages 1,263-1,266, Lisbon.

Knowledge Sources for Parsing German

Seeker, Wolfgang, Bernd Bohnet, Lilja
Qvrelid, and Jonas Kuhn. 2010a.
Informed ways of improving data-driven
dependency parsing for German. In
COLING: Posters, pages 1,122-1,130,
Beijing.

Seeker, Wolfgang, Ines Rehbein, Jonas Kuhn,
and Josef Van Genabith. 2010b. Hard
constraints for grammatical function
labelling. In ACL, pages 1,087-1,097,
Uppsala.

Shen, Libin, Jinxi Xu, and Ralph Weischedel.
2008. A new string-to-dependency
machine translation algorithm with a
target dependency language model. In
ACL-HLT, pages 577-585, Columbus, OH.

Tsarfaty, Reut, Joakim Nivre, and Evelina
Andersson. 2012. Cross-framework
evaluation for statistical parsing.

In EACL, pages 44-54, Avignon.

Tsarfaty, Reut, Djamé Seddah, Yoav
Goldberg, Sandra Kuebler, Yannick
Versley, Marie Candito, Jennifer Foster,
Ines Rehbein, and Lamia Tounsi. 2010.
Statistical parsing of morphologically
rich languages (SPMRL) what, how and
whither. In Proceedings of the NAACL HLT
2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 1-12,
Los Angeles, CA.

Tu, Zhaopeng, Yang Liu, Young-Sook
Hwang, Qun Liu, and Shouxun Lin. 2010.
Dependency forest for statistical machine
translation. In COLING, pages 1,092-1,100,
Beijing.

Versley, Yannick. 2005. Parser evaluation
across text types. In Fourth Workshop on
Treebanks and Linguistic Theories (TLT),
pages 209-220, Barcelona.

Versley, Yannick and Ines Rehbein. 2009.
Scalable discriminative parsing for
German. In IWPT, pages 134-137, Paris.

Weischedel, Ralph, Marie Meteer, Richard
Schwartz, Lance Ramshaw, and Jeff
Palmucci. 1993. Coping with ambiguity
and unknown words through probabilistic
models. Computational Linguistics,
19(2):359-382.

Yusuke, Miyao and Tsujii Jun’ichi. 2002.
Maximum entropy estimation for
feature forests. In HLT, pages 292-297,
San Diego, CA.

85

