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Probabilistic grammars are generative statistical models that are useful for compositional and
sequential structures. They are used ubiquitously in computational linguistics. We present a
framework, reminiscent of structural risk minimization, for empirical risk minimization of prob-
abilistic grammars using the log-loss. We derive sample complexity bounds in this framework
that apply both to the supervised setting and the unsupervised setting. By making assumptions
about the underlying distribution that are appropriate for natural language scenarios, we are able
to derive distribution-dependent sample complexity bounds for probabilistic grammars. We also
give simple algorithms for carrying out empirical risk minimization using this framework in both
the supervised and unsupervised settings. In the unsupervised case, we show that the problem of
minimizing empirical risk is NP-hard. We therefore suggest an approximate algorithm, similar
to expectation-maximization, to minimize the empirical risk.

1. Introduction

Learning from data is central to contemporary computational linguistics. It is in com-
mon in such learning to estimate a model in a parametric family using the maximum
likelihood principle. This principle applies in the supervised case (i.e., using anno-
tated data) as well as semisupervised and unsupervised settings (i.e., using unan-
notated data). Probabilistic grammars constitute a range of such parametric families
we can estimate (e.g., hidden Markov models, probabilistic context-free grammars).
These parametric families are used in diverse NLP problems ranging from syntactic
and morphological processing to applications like information extraction, question
answering, and machine translation.

Estimation of probabilistic grammars, in many cases, indeed starts with the prin-
ciple of maximum likelihood estimation (MLE). In the supervised case, and with
traditional parametrizations based on multinomial distributions, MLE amounts to
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normalization of rule frequencies as they are observed in data. In the unsupervised case,
on the other hand, algorithms such as expectation-maximization are available. MLE is
attractive because it offers statistical consistency if some conditions are met (i.e., if the
data are distributed according to a distribution in the family, then we will discover the
correct parameters if sufficient data is available). In addition, under some conditions it
is also an unbiased estimator.

An issue that has been far less explored in the computational linguistics literature
is the sample complexity of MLE. Here, we are interested in quantifying the number of
samples required to accurately learn a probabilistic grammar either in a supervised
or in an unsupervised way. If bounds on the requisite number of samples (known as
“sample complexity bounds”) are sufficiently tight, then they may offer guidance to
learner performance, given various amounts of data and a wide range of parametric
families. Being able to reason analytically about the amount of data to annotate, and
the relative gains in moving to a more restricted parametric family, could offer practical
advantages to language engineers.

We note that grammar learning has been studied in formal settings as a problem of
grammatical inference—learning the structure of a grammar or an automaton (Angluin
1987; Clark and Thollard 2004; de la Higuera 2005; Clark, Eyraud, and Habrard 2008,
among others). Our setting in this article is different. We assume that we have a fixed
grammar, and our goal is to estimate its parameters. This approach has shown great
empirical success, both in the supervised (Collins 2003; Charniak and Johnson 2005)
and the unsupervised (Carroll and Charniak 1992; Pereira and Schabes 1992; Klein and
Manning 2004; Cohen and Smith 2010a) settings. There has also been some discus-
sion of sample complexity bounds for statistical parsing models, in a distribution-free
setting (Collins 2004). The distribution-free setting, however, is not ideal for analysis
of natural language, as it has to account for pathological cases of distributions that
generate data.

We develop a framework for deriving sample complexity bounds using the max-
imum likelihood principle for probabilistic grammars in a distribution-dependent
setting. Distribution dependency is introduced here by making empirically justified
assumptions about the distributions that generate the data. Our framework uses and
significantly extends ideas that have been introduced for deriving sample complexity
bounds for probabilistic graphical models (Dasgupta 1997). Maximum likelihood esti-
mation is put in the empirical risk minimization framework (Vapnik 1998) with the loss
function being the log-loss. Following that, we develop a set of learning theoretic tools
to explore rates of estimation convergence for probabilistic grammars. We also develop
algorithms for performing empirical risk minimization.

Much research has been devoted to the problem of learning finite state automata
(which can be thought of as a class of grammars) in the Probably Approximately Correct
setting, leading to the conclusion that it is a very hard problem (Kearns and Valiant 1989;
Pitt 1989; Terwijn 2002). Typically, the setting in these cases is different from our setting:
Error is measured as the probability mass of strings that are not identified correctly by
the learned finite state automaton, instead of measuring KL divergence between the
automaton and the true distribution. In addition, in many cases, there is also a focus on
the distribution-free setting. To the best of our knowledge, it is still an open problem
whether finite state automata are learnable in the distribution-dependent setting when
measuring the error as the fraction of misidentified strings. Other work (Ron 1995; Ron,
Singer, and Tishby 1998; Clark and Thollard 2004; Palmer and Goldberg 2007) also gives
treatment to probabilistic automata with an error measure which is more suitable for
the probabilistic setting, such as Kullback-Lielder (KL) divergence or variation distance.
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These also focus on learning the structure of finite state machines. As mentioned earlier,
in our setting we assume that the grammar is fixed, and that our goal is to estimate its
parameters.

We note an important connection to an earlier study about the learnability of
probabilistic automata and hidden Markov models by Abe and Warmuth (1992). In
that study, the authors provided positive results for the sample complexity for learning
probabilistic automata—they showed that a polynomial sample is sufficient for MLE.
We demonstrate positive results for the more general class of probabilistic grammars
which goes beyond probabilistic automata. Abe and Warmuth also showed that the
problem of finding or even approximating the maximum likelihood solution for a two-
state probabilistic automaton with an alphabet of an arbitrary size is hard. Even though
these results extend to probabilistic grammars to some extent, we provide a novel proof
that illustrates the NP-hardness of identifying the maximum likelihood solution for
probabilistic grammars in the specific framework of “proper approximations” that we
define in this article. Whereas Abe and Warmuth show that the problem of maximum
likelihood maximization for two-state HMMs is not approximable within a certain
factor in time polynomial in the alphabet and the length of the observed sequence, we
show that there is no polynomial algorithm (in the length of the observed strings) that
identifies the maximum likelihood estimator in our framework. In our reduction, from
3-SAT to the problem of maximum likelihood estimation, the alphabet used is binary
and the grammar size is proportional to the length of the formula. In Abe andWarmuth,
the alphabet size varies, and the number of states is two.

This article proceeds as follows. In Section 2 we review the background necessary
from Vapnik’s (1988) empirical risk minimization framework. This framework is re-
duced to maximum likelihood estimation when a specific loss function is used: the log-
loss.1 There are some shortcomings in using the empirical risk minimization framework
in its simplest form. In its simplest form, the ERM framework is distribution-free, which
means that we make no assumptions about the distribution that generated the data.
Naively attempting to apply the ERM framework to probabilistic grammars in the
distribution-free setting does not lead to the desired sample complexity bounds. The
reason for this is that the log-loss diverges whenever small probabilities are allocated in
the learned hypothesis to structures or strings that have a rather large probability in the
probability distribution that generates the data. With a distribution-free assumption,
therefore, we would have to give treatment to distributions that are unlikely to be
true for natural language data (e.g., where some extremely long sentences are very
probable).

To correct for this, we move to an analysis in a distribution-dependent setting, by
presenting a set of assumptions about the distribution that generates the data. In Sec-
tion 3 we discuss probabilistic grammars in a general way and introduce assumptions
about the true distribution that are reasonable when our data come from natural lan-
guage examples. It is important to note that this distribution need not be a probabilistic
grammar.

The next stepwe take, in Section 4, is approximating the set of probabilistic grammars
over which we maximize likelihood. This is again required in order to overcome the
divergence of the log-loss for probabilities that are very small. Our approximations are

1 It is important to remember that minimizing the log-loss does not equate to minimizing the error of a
linguistic analyzer or natural language processing application. In this article we focus on the log-loss
case because we believe that probabilistic models of language phenomena have inherent usefulness
as explanatory tools in computational linguistics, aside from their use in systems.
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based on bounded approximations that have been used for deriving sample complexity
bounds for graphical models in a distribution-free setting (Dasgupta 1997).

Our approximations have two important properties: They are, by themselves, prob-
abilistic grammars from the family we are interested in estimating, and they become a
tighter approximation around the family of probabilistic grammars we are interested in
estimating as more samples are available.

Moving to the distribution-dependent setting and defining proper approximations
enables us to derive sample complexity bounds. In Section 5 we present the sample
complexity results for both the supervised and unsupervised cases. A question that
lingers at this point is whether it is computationally feasible to maximize likelihood
in our framework even when given enough samples.

In Section 6, we describe algorithms we use to estimate probabilistic grammars
in our framework, when given access to the required number of samples. We show
that in the supervised case, we can indeed maximize likelihood in our approximation
framework using a simple algorithm. For the unsupervised case, however, we show that
maximizing likelihood is NP-hard. This fact is related to a notion known in the learning
theory literature as inherent unpredictability (Kearns and Vazirani 1994): Accurate
learning is computationally hard evenwith enough samples. To overcome this difficulty,
we adapt the expectation-maximization algorithm (Dempster, Laird, and Rubin 1977)
to approximately maximize likelihood (or minimize log-loss) in the unsupervised case
with proper approximations.

In Section 7 we discuss some related ideas. These include the failure of an alter-
native kind of distributional assumption and connections to regularization by maxi-
mum a posteriori estimation with Dirichlet priors. Longer proofs are included in the
appendices. A table of notation that is used throughout is included as Table D.1 in
Appendix D.

This article builds on two earlier papers. In Cohen and Smith (2010b) we presented
the main sample complexity results described here; the present article includes signifi-
cant extensions, a deeper analysis of our distributional assumptions, and a discussion of
variants of these assumptions, as well as related work, such as that about the Tsybakov
noise condition. In Cohen and Smith (2010c) we proved NP-hardness for unsupervised
parameter estimation of probalistic context-free grammars (PCFGs) (without approxi-
mate families). The present article uses a similar type of proof to achieve results adapted
to empirical risk minimization in our approximation framework.

2. Empirical Risk Minimization and Maximum Likelihood Estimation

We begin by introducing some notation. We seek to construct a predictive model that
maps inputs from space X to outputs from space Z. In this work, X is a set of strings
using some alphabet Σ (X ⊆ Σ∗), and Z is a set of derivations allowed by a grammar
(e.g., a context-free grammar). We assume the existence of an unknown joint probability
distribution p(x, z) over X× Z. (For the most part, we will be discussing discrete input
and output spaces. This means that p will denote a probability mass function.) We are
interested in estimating the distribution p from examples, either in a supervised setting,
where we are provided with examples of the form (x, z) ∈ X× Z, or in the unsupervised
setting, where we are provided only with examples of the form x ∈ X. We first consider
the supervised setting and return to the unsupervised setting in Section 5. We will use
q to denote the estimated distribution.
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In order to estimate p as accurately as possible using q(x, z), we are interested in
minimizing the log-loss, that is, in finding qopt, from a fixed family of distributions Q

(also called “the concept space”), such that

qopt = argmin
q∈Q

Ep
[
− log q

]
= argmin

q∈Q

−
∑
x,z

p(x, z) log q(x, z) (1)

Note that if p ∈ Q, then this quantity achieves theminimumwhen qopt = p, in which case
the value of the log-loss is the entropy of p. Indeed, more generally, this optimization is
equivalent to finding q such that it minimizes the KL divergence from p to q.

Because p is unknown, we cannot hope to minimize the log-loss directly. Given a
set of examples (x1, z1), . . . , (xn, zn), however, there is a natural candidate, the empirical
distribution p̃n, for use in Equation (1) instead of p, defined as:

p̃n(x, z) = n−1
n∑
i=1

I {(x, z) = (xi, zi)}

where I {(x, z) = (xi, zi)} is 1 if (x, z) = (xi, zi) and 0 otherwise.2 We then set up the
problem as the problem of empirical risk minimization (ERM), that is, trying to find q
such that

q∗ = argmin
q∈Q

Ep̃n

[
− log q

]
(2)

= argmin
q∈Q

−n−1
n∑
i=1

log q(xi, zi)

= argmax
q∈Q

n−1
n∑
i=1

log q(xi, zi) (3)

Equation (3) immediately shows that minimizing empirical risk using the log-loss is
equivalent to the maximizing likelihood, which is a common statistical principle used
for estimating a probabilistic grammar in computational linguistics (Charniak 1993;
Manning and Schütze 1999).3

As mentioned earlier, our goal is to estimate the probability distribution p while
quantifying how accurate our estimate is. One way to quantify the estimation accuracy
is by bounding the excess risk, which is defined as

Ep(q;Q) = Ep(q) � Ep
[
− log q

]
−min

q′∈Q
Ep
[
− log q′

]
(4)

We are interested in bounding the excess risk for q∗, Ep(q
∗). The excess risk is

reduced to KL divergence between p and q if p ∈ Q, because in this case the quantity
minq′∈Q E

[
− log q′

]
is minimized with q′ = p, and equals the entropy of p. In a typical

2 We note that p̃n itself is a random variable, because it depends on the sample drawn from p.
3 We note that being able to attain the minimum through an hypothesis q∗ is not necessarily possible in
the general case. In our instantiations of ERM for probabilistic grammars, however, the minimum can be
attained. In fact, in the unsupervised case the minimum can be attained by more than a single hypothesis.
In these cases, q∗ is arbitrarily chosen to be one of these minimizers.
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case, where we do not necessarily have p ∈ Q, then the excess risk of q is bounded from
above by the KL divergence between p and q.

We can bound the excess risk by showing the double-sided convergence of the
empirical process Rn(Q), defined as follows:

Rn(Q) � sup
q∈Q

∣∣Ep̃n [− log q
]
− Ep

[
− log q

]∣∣→ 0 (5)

as n→∞. For any ε > 0, if, for large enough n it holds that

sup
q∈Q

∣∣Ep̃n [− log q
]
− Ep

[
− log q

]∣∣ < ε (6)

(with high probability), then we can “sandwich” the following quantities:

Ep
[
− log qopt

]
≤ Ep

[
− log q∗

]
(7)

≤ Ep̃n

[
− log q∗

]
+ ε

≤ Ep̃n

[
− log qopt

]
+ ε

≤ Ep
[
− log qopt

]
+ 2ε (8)

where the inequalities come from the fact that qopt minimizes the expected risk
Ep
[
− log q

]
for q ∈ Q, and q∗ minimizes the empirical risk Ep̃n

[
− log q

]
for q ∈ Q. The

consequence of Equations (7) and (8) is that the expected risk of q∗ is at most 2ε away
from the expected risk of qopt, and as a result, we find the excess risk Ep(q

∗), for large
enough n, is smaller than 2ε. Intuitively, this means that, under a large sample, q∗ does
not give much worse results than qopt under the criterion of the log-loss.

Unfortunately, the regularity conditions which are required for the convergence of
Rn(Q) do not hold because the log-loss can be unbounded. This means that a modifi-
cation is required for the empirical process in a way that will actually guarantee some
kind of convergence. We give a treatment to this in the next section.

We note that all discussion of convergence in this section has been about conver-
gence in probability. For example, we want Equation (6) to hold with high probability—
for most samples of size n. We will make this notion more rigorous in Section 2.2.

2.1 Empirical Risk Minimization and Structural Risk Minimization Methods

It has been noted in the literature (Vapnik 1998; Koltchinskii 2006) that often the class Q
is too complex for empirical risk minimization using a fixed number of data points.
It is therefore desirable in these cases to create a family of subclasses {Qα | α ∈ A}
that have increasing complexity. The more data we have, the more complex our Qα
can be for empirical risk minimization. Structural risk minimization (Vapnik 1998) and
the method of sieves (Grenander 1981) are examples of methods that adopt such an
approach. Structural risk minimization, for example, can be represented in many cases
as a penalization of the empirical risk method, using a regularization term.

In our case, the level of “complexity” is related to allocation of small probabilities to
derivations in the grammar by a distribution q ∈ Q. The basic problem is this: Whenever
we have a derivation with a small probability, the log-loss becomes very large (in
absolute value), and this makes it hard to show the convergence of the empirical process
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Rn(Q). Because grammars can define probability distributions over infinitely many
discrete outcomes, probabilities can be arbitrarily small and log-loss can be arbitrarily
large.

To solve this issuewith the complexity ofQ, we define in Section 4 a series of approx-
imations {Qn | n ∈ N} for probabilistic grammars such that

⋃
n Qn = Q. Our framework

for empirical riskminimization is then set up tominimize the empirical risk with respect
to Qn, where n is the number of samples we draw for the learner:

q∗n = argmin
q∈Qn

Ep̃n

[
− log q

]
(9)

We are then interested in the convergence of the empirical process

Rn(Qn) = sup
q∈Qn

∣∣Ep̃n [− log q
]
− Ep

[
− log q

]∣∣ (10)

In Section 4 we show that the minimizer q∗n is an asymptotic empirical risk minimizer
(in our specific framework), which means that Ep

[
− log q∗n

]
→ Ep

[
− log q∗

]
. Because

we have
⋃
n Qn = Q, the implication of having asymptotic empirical risk minimization

is that we have Ep(q
∗
n ;Qn)→ Ep(q

∗;Q).

2.2 Sample Complexity Bounds

Knowing that we are interested in the convergence of Rn(Qn) = supq∈Qn
|Ep̃n

[
− log q

]
−

Ep
[
− log q

]
|, a natural question to ask is: “At what rate does this empirical process

converge?”
Because the quantity Rn(Qn) is a random variable, we need to give a probabilistic

treatment to its convergence. More specifically, we ask the question that is typically
asked when learnability is considered (Vapnik 1998): “How many samples n are re-
quired so that with probability 1− δ we have Rn(Qn) < ε?” Bounds on this number
of samples are also called “sample complexity bounds,” and in a distribution-free
setting they are described as a function N(ε, δ,Q), independent of the distribution p that
generates the data.

A complete distribution-free setting is not appropriate for analyzing natural lan-
guage. This setting poses technical difficulties with the convergence ofRn(Qn) and needs
to take into account pathological cases that can be ruled out in natural language data.
Instead, we will make assumptions about p, parametrize these assumptions in several
ways, and then calculate sample complexity bounds of the form N(ε, δ,Q, p), where the
dependence on the distribution is expressed as dependence on the parameters in the
assumptions about p.

The learning setting, then, can be described as follows. The user decides on a level
of accuracy (ε) which the learning algorithm has to reach with confidence (1− δ). Then,
N(ε, δ,Q, p) samples are drawn from p and presented to the learning algorithm. The
learning algorithm then returns an hypothesis according to Equation (9).

3. Probabilistic Grammars

We begin this section by discussing the family of probabilistic grammars. A probabilistic
grammar defines a probability distribution over a certain kind of structured object (a
derivation of the underlying symbolic grammar) explained step-by-step as a stochastic
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process. Hidden Markov models (HMMs), for example, can be understood as a random
walk through a probabilistic finite-state network, with an output symbol sampled at
each state. PCFGs generate phrase-structure trees by recursively rewriting nonterminal
symbols as sequences of “child” symbols (each itself either a nonterminal symbol or a
terminal symbol analogous to the emissions of an HMM).

Each step or emission of an HMM and each rewriting operation of a PCFG is
conditionally independent of the others given a single structural element (one HMM
or PCFG state); this Markov property permits efficient inference over derivations given
a string.

In general, a probabilistic grammar 〈G,θ〉 defines the joint probability of a string x
and a grammatical derivation z:

q(x, z | θ,G) =
K∏
k=1

Nk∏
i=1

θ
ψk,i(x,z)
k,i = exp

K∑
k=1

Nk∑
i=1

ψk,i(x, z) logθk,i (11)

where ψk,i is a function that “counts” the number of times the kth distribution’s
ith event occurs in the derivation. The parameters θ are a collection of K multi-
nomials 〈θ1, . . . ,θK〉, the kth of which includes Nk competing events. If we let θk =
〈θk,1, . . . ,θk,Nk

〉, each θk,i is a probability, such that

∀k,∀i, θk,i ≥ 0

∀k,
Nk∑
i=1

θk,i = 1

We denote by ΘG this parameter space for θ. The grammar G dictates the support
of q in Equation (11). As is often the case in probabilistic modeling, there are differ-
ent ways to carve up the random variables. We can think of x and z as correlated
structure variables (often x is known if z is known), or the derivation event counts
ψ(x, z) = 〈ψk,i(x, z)〉1≤k≤K,1≤i≤Nk

as an integer-vector random variable. In this article,
we assume that x is always a deterministic function of z, so we use the distribution
p(z) interchangeably with p(x, z).

Note that there may be many derivations z for a given string x—perhaps even
infinitely many in some kinds of grammars. For HMMs, there are three kinds of multi-
nomials: a starting state multinomial, a transitionmultinomial per state and an emission
multinomial per state. In that case K = 2s+ 1, where s is the number of states. The value
of Nk depends on whether the kth multinomial is the starting state multinomial (in
which case Nk = s), transition multinomial (Nk = s), or emission multinomial (Nk = t,
with t being the number of symbols in the HMM). For PCFGs, each multinomial
among the K multinomials corresponds to a set of Nk context-free rules headed by
the same nonterminal. The parameter θk,i is then the probability of the ith rule for the
kth nonterminal.

We assume that G denotes a fixed grammar, such as a context-free or regular gram-
mar. We let N =

∑K
k=1Nk denote the total number of derivation event types. We use

D(G) to denote the set of all possible derivations of G. We define Dx(G) = {z ∈ D(G) |
yield(z) = x}. We use deg(G) to denote the “degree” of G, i.e., deg(G) = maxk Nk. We
let |x| denote the length of the string x, and |z| =

∑K
k=1

∑Nk
i=1ψk,i(z) denote the “length”

(number of event tokens) of the derivation z.
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Going back to the notation in Section 2, Q would be a collection of probabilistic
grammars, parametrized by θ, and q would be a specific probabilistic grammar with
a specific θ. We therefore treat the problem of ERM with probabilistic grammars as the
problem of parameter estimation—identifying θ from complete data or incomplete data
(strings x are visible but the derivations z are not). We can also view parameter esti-
mation as the identification of a hypothesis from the concept space Q = H(G) = {hθ(z) |
θ ∈ ΘG} (where hθ is a distribution of the form of Equation [11]) or, equivalently, from
negated log-concept space F(G) = {− log hθ(z) | θ ∈ ΘG}. For simplicity of notation, we
assume that there is a fixed grammar G and use H to refer to H(G) and F to refer
to F(G).

3.1 Distributional Assumptions about Language

In this section, we describe a parametrization of assumptions we make about the dis-
tribution p(x, z), the distribution that generates derivations from D(G) (note that p does
not have to be a probabilistic grammar). We first describe empirical evidence about the
decay of the frequency of long strings x.

Figure 1 shows the frequency of sentence length for treebanks in various lan-
guages.4 The trend in the plots clearly shows that in the extended tail of the curve, all
languages have an exponential decay of probabilities as a function of sentence length. To
test this, we performed a simple regression of frequencies using an exponential curve.
We estimated each curve for each language using a curve of the form f (l; c,α) = clα.
This estimation was done by minimizing squared error between the frequency ver-
sus sentence length curve and the approximate version of this curve. The data points
used for the approximation are (li, pi), where li denotes sentence length and pi denotes
frequency, selected from the extended tail of the distribution. Extended tail here refers
to all points with length longer than l1, where l1 is the length with the highest frequency
in the treebank. The goal of focusing on the tail is to avoid approximating the head
of the curve, which is actually a monotonically increasing function. We plotted the
approximate curve together with a length versus frequency curve for new syntactic
data. It can be seen (Figure 1) that the approximation is rather accurate in these corpora.

As a consequence of this observation, we make a few assumptions about G and
p(x, z):

� Derivation length proportional to sentence length: There is an α ≥ 1 such
that, for all z, |z| ≤ α|yield(z)|. Further, |z| ≥ |x|. (This prohibits unary
cycles.)

� Exponential decay of derivations: There is a constant r < 1 and a constant
L ≥ 0 such that p(z) ≤ Lr|z|. Note that the assumption here is about the
frequency of length of separate derivations, and not the aggregated
frequency of all sentences of a certain length (cf. the discussion above
referring to Figure 1).

4 Treebanks offer samples of cleanly segmented sentences. It is important to note that the distributions
estimated may not generalize well to samples from other domains in these languages. Our argument
is that the family of the estimated curve is reasonable, not that we can correctly estimate the curve’s
parameters.
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Figure 1
A plot of the tail of frequency vs. sentence length in treebanks for English, German, Bulgarian,
Turkish, Spanish, and Chinese. Red lines denote data from the treebank, blue lines denote an
approximation which uses an exponential function of the form f (l; c,α) = clα (the blue line uses
data which is different from the data used to estimate the curve parameters, c and α). The
parameters (c,α) are (0.19, 0.92) for English, (0.06, 0.94) for German, (0.26, 0.89) for Bulgarian,
(0.26, 0.83) for Turkish, (0.11, 0.93) for Spanish, and (0.03, 0.97) for Chinese. Squared errors are
0.0005, 0.0003, 0.0007, 0.0003, 0.001, and 0.002 for English, German, Bulgarian, Turkish, Spanish,
and Chinese, respectively.

� Exponential decay of strings: Let Λ(k) = |{z ∈ D(G) | |z| = k}| be the
number derivations of length k in G. We assume that Λ(k) is an increasing
function, and complete it such that it is defined over positive numbers by
taking Λ(t) � Λ(�t�). Taking r as before, we assume there exists a constant
q < 1, such that Λ2(k)rk ≤ qk (and as a consequence, Λ(k)rk ≤ qk). This
implies that the number of derivations of length kmay be exponentially
large (e.g., as with many PCFGs), but is bounded by (q/r)k.
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� Bounded expectations of rules: There is a B <∞ such that Ep
[
ψk,i(z)

]
≤ B

for all k and i.

These assumptions must hold for any pwhose support consists of a finite set. These
assumptions also hold in many cases when p itself is a probabilistic grammar. Also, we
note that the last requirement of bounded expectations is optional, and it can be inferred
from the rest of the requirements: B = L/(1− q)2. We make this requirement explicit for
simplicity of notation later. We denote the family of distributions that satisfy all of these
requirements by P(α,L, r, q,B,G).

There are other cases in the literature of language learning where additional as-
sumptions are made on the learned family of models in order to obtain positive learn-
ability results. For example, Clark and Thollard (2004) put a bound on the expected
length of strings generated from any state of probabilistic finite state automata, which
resembles the exponential decay of strings we have for p in this article.

An immediate consequence of these assumptions is that the entropy of p is finite
and bounded by a quantity that depends on L, r and q.5 Bounding entropy of labels
(derivations) given inputs (sentences) is a common way to quantify the noise in a
distribution. Here, both the sentential entropy (Hs(p) = −

∑
x p(x) log p(x)) is bounded

as well as the derivational entropy (Hd(p) = −
∑

x,z p(x, z) log p(x, z)). This is stated in the
following result.

Proposition 1
Let p ∈ P(α,L, r, q,B,G) be a distribution. Then, we have

Hs(p) ≤ Hd(p) ≤ − log L+
L log r
(1− q)2

log 1
r +
�(1+ log L)/ log 1

r �
e Λ

(⌈
1+ log L
log 1

r

⌉)

Proof
First note that Hs(p) ≤ Hd(p) holds by the data processing inequality (Cover and
Thomas 1991) because the sentential probability distribution p(x) is a coarser version
of the derivational probability distribution p(x, z). Now, consider p(x, z). For simplicity
of notation, we use p(z) instead of p(x, z). The yield of z, x, is a function of z, and therefore
can be omitted from the distribution. It holds that

Hd(p) = −
∑
z

p(z) log p(z)

= −
∑
z∈Z1

p(z) log p(z)−
∑
z∈Z2

p(z) log p(z)

= Hd(p,Z1)+Hd(p,Z2)

where Z1 = {z | p(z) > 1/e} and Z2 = {z | p(z) ≤ 1/e}. Note that the function −α logα
reaches its maximum for α = 1/e. We therefore have

Hd(p,Z1) ≤
|Z1|
e

5 For simplicity and consistency with the log-loss, we measure entropy in nats, which means we use the
natural logarithm when computing entropy.
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We give a bound on |Z1|, the number of “high probability” derivations. Because we have
p(x, z) ≤ Lr|z|, we can find the maximum length of a derivation that has a probability of
more than 1/e (and hence, it may appear in Z1) by solving 1/e ≤ Lr|z| for |z|, which leads

to |z| ≤ log(1/eL)/ log r. Therefore, there are at most
∑�(1+logL)/ log 1

r �
k=1 Λ(k) derivations in

|Z1| and therefore we have

|Z1| ≤
⌈
(1+ log L)/ log 1

r

⌉
Λ
(⌈

(1+ logL)/ log 1
r

⌉)

Hd(p,Z1) ≤

⌈
(1+ log L)/ log 1

r
⌉

e Λ
(⌈

(1+ logL)/ log 1
r

⌉)
(12)

where we use the monotonicity of Λ. Consider Hd(p,Z2) (the “low probability” deriva-
tions). We have:

Hd(p,Z2) ≤ −
∑
z∈Z2

Lr|z| log
(
Lr|z|

)

≤ − log L−
(
L log r

)∑
z∈Z2

|z|r|z|

≤ − log L−
(
L log r

) ∞∑
k=1

Λ(k)krk

≤ − log L−
(
L log r

) ∞∑
k=1

kqk (13)

= − log L+
L log r
(1− q)2

log 1
q (14)

where Equation (13) holds from the assumptions about p. Putting Equation (12) and
Equation (14) together, we obtain the result. �

We note that another common way to quantify the noise in a distribution is through
the notion of Tsybakov noise (Tsybakov 2004; Koltchinskii 2006). We discuss this further
in Section 7.1, where we show that Tsybakov noise is too permissive, and probabilistic
grammars do not satisfy its conditions.

3.2 Limiting the Degree of the Grammar

When approximating a family of probabilistic grammars, it is much more convenient
when the degree of the grammar is limited. In this article, we limit the degree of the
grammar by making the assumption that all Nk ≤ 2. This assumption may seem, at first
glance, somewhat restrictive, but we show next that for PCFGs (and as a consequence,
other formalisms), this assumption does not limit the total generative capacity that we
can have across all context-free grammars.

We first show that any context-free grammar with arbitrary degree can be mapped
to a corresponding grammar with all Nk ≤ 2 that generates derivations equivalent to
derivations in the original grammar. Such a grammar is also called a “covering gram-
mar” (Nijholt 1980; Leermakers 1989). Let G be a CFG. Let A be the kth nonterminal.
Consider the rules A→ αi for i ≤ Nk where A appears on the left side. For each rule
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Figure 2
Example of a context-free grammar and its equivalent binarized form.

A→ αi, i < Nk, we create a new nonterminal in G′ such that Ai has two rewrite rules:
Ai → αi and Ai → Ai+1. In addition, we create rules A→ A1 and ANk

→ αNk
. Figure 2

demonstrates an example of this transformation on a small context-free grammar.
It is easy to verify that the resulting grammar G′ has an equivalent capacity to

the original CFG, G. A simple transformation that converts each derivation in the
new grammar to a derivation in the old grammar would involve collapsing any path
of nonterminals added to G′ (i.e., all Ai for nonterminal A) so that we end up with
nonterminals from the original grammar only. Similarly, any derivation in G can be
converted to a derivation in G′ by adding new nonterminals through unary application
of rules of the form Ai → Ai+1. Given a derivation z in G, we denote by ΥG
→G′ (z) the
corresponding derivation in G′ after adding the new non-terminals Ai to z. Throughout
this article, we will refer to the normalized form of G′ as a “binary normal form.”6

Note that K′, the number of multinomials in the binary normal form, is a func-
tion of both the number of nonterminals in the original grammar and the number of
rules in that grammar. More specifically, we have that K′ =

∑K
k=1Nk + K. To make the

equivalence complete, we need to show that any probabilistic context-free grammar can
be translated to a PCFG with maxk Nk ≤ 2 such that the two PCFGs induce the same
equivalent distributions over derivations.

Utility Lemma 1
Let ai ∈ [0, 1], i ∈ {1, . . . ,N} such that

∑
i ai = 1. Define b1 = a1, c1 = 1− a1, bi =( ai

ai−1

)(bi−1
ci−1

)
, and ci = 1− bi for i ≥ 2. Then ai =


i−1∏

j=1

cj


 bi.

See Appendix A for the proof of Utility Lemma 1.

Theorem 1
Let 〈G,θ〉 be a probabilistic context-free grammar. Let G′ be the binarizing transforma-
tion of G as defined earlier. Then, there exists θ′ for G′ such that for any z ∈ D(G) we
have p(z | θ,G) = p(ΥG 
→G′ (z) | θ′,G′).

6 We note that this notion of binarization is different from previous types of binarization appearing in
computational linguistics for grammars. Typically in previous work about binarized grammars such as
CFGs, the grammars are constrained to have at most two nonterminals in the right side in Chomsky
normal form. Another form of binarization for linear context-free rewriting systems is restriction of the
fan-out of the rules to two (Gómez-Rodrı́guez and Satta 2009; Gildea 2010). We, however, limit the
number of rules for each nonterminal (or more generally, the number of elements in each multinomial).
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Proof
For the grammar G, index the set {1, ...,K} with nonterminals ranging from A1 to AK.
DefineG′ as before.We need to define θ′. Index themultinomials inG′ by (k, i), each hav-
ing two events. Let µ(k,i),1 = θk,i, µ(k,i),2 = 1− θk,i for i = 1 and set µk,i,1 = θk,i/µ(k,i−1),2,
and µ(k,i−1),2 = 1− µ(k,i−1),2.
〈G′,µ〉 is a weighted context-free grammar such that the µ(k,i),1 corresponds to the

ith event in the k multinomial of the original grammar. Let z be a derivation in G and
z′ = ΥG 
→G′ (z). Then, from Utility Lemma 1 and the construction of g′, we have that:

p(z | θ,G) =
K∏
k=1

Nk∏
i=1

θ
ψk,i(z)
k,i

=
K∏
k=1

Nk∏
i=1

ψk,i(z)∏
l=1

θk,i

=
K∏
k=1

Nk∏
i=1

ψk,i(z)∏
l=1


i−1∏

j=1

µ(k,j),2


µ(k,i),1

=
K∏
k=1

Nk∏
i=1


i−1∏

j=1

µ
ψk,i(z)
(k,j),2


µψk,i(z)

(k,i),1

=
K∏
k=1

Nk∏
j=1

2∏
i=1

µ
ψk,j(z

′ )
(k,j),i

= p(z′ | µ,G′)

From Chi (1999), we know that the weighted grammar 〈G′,µ〉 can be converted to
a probabilistic context-free grammar 〈G′,θ′〉, through a construction of θ′ based on µ,
such that p(z′ | µ,G′) = p(z′ | θ′,G′). �

The proof for Theorem 1 gives a construction the parameters θ′ ofG′ such that 〈G,θ〉
is equivalent to 〈G′,θ′〉. The construction of θ′ can also be reversed: Given θ′ for G′, we
can construct θ for G so that again we have equivalence between 〈G,θ〉 and 〈G′,θ′〉.

In this section, we focused on presenting parametrized, empirically justified distri-
butional assumptions about language data that will make the analysis in later sections
moremanageable.We showed that these assumptions bound the amount of entropy as a
function of the assumption parameters. We also made an assumption about the structure
of the grammar family, and showed that it entails no loss of generality for CFGs. Many
other formalisms can follow similar arguments to show that the structural assumption
is justified for them as well.

4. Proper Approximations

In order to follow the empirical risk minimization described in Section 2.1, we have
to define a series of approximations for F, which we denote by the log-concept spaces
F1,F2, . . . . We also have to replace two-sided uniform convergence (Equation [6]) with
convergence on the sequence of concept spaces we defined (Equation [10]). The concept
spaces in the sequence vary as a function of the number of samples we have. We next
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construct the sequence of concept spaces, and in Section 5 we return to the learning
model. Our approximations are based on the concept of bounded approximations (Abe,
Takeuchi, and Warmuth 1991; Dasgupta 1997), which were originally designed for
graphical models.7 A bounded approximation is a subset of a concept space which is
controlled by a parameter that determines its tightness. Here we use this idea to define
a series of subsets of the original concept space F as approximations, while having two
asymptotic properties that control the series’ tightness.

Let Fm (for m ∈ {1, 2, . . .}) be a sequence of concept spaces. We consider three
properties of elements of this sequence, which should hold for m >M for a fixedM.

The first is containment in F:

Fm ⊆ F

The second property is boundedness:

∃Km ≥ 0,∀f ∈ Fm, E
[
| f | × I {| f | ≥ Km}

]
≤ εbound(m)

where εbound is a non-increasing function such that εbound(m) −→
m→∞

0. This states that

the expected values of functions from Fm on values larger than some Km is small.
This is required to obtain uniform convergence results in the revised empirical risk
minimization model from Section 2.1. Note that Km can grow arbitrarily large.

The third property is tightness:

∃Cm ∈ F→ Fm, p


⋃

f∈F

{z | Cm( f )(z)− f (z) ≥ εtail(m)}


 ≤ εtail(m)

where εtail is a non-increasing function such that εtail(m) −→
m→∞

0, and Cm denotes an

operator that maps functions in F to Fm. This ensures that our approximation actually
converges to the original concept space F. We will show in Section 4.3 that this is
actually a well-motivated characterization of convergence for probabilistic grammars
in the supervised setting.

We say that the sequence Fm properly approximates F if there exist εtail(m), εbound(m),
and Cm such that, for all m larger than some M, containment, boundedness, and tight-
ness all hold.

In a good approximation, Km would increase at a fast rate as a function of m and
εtail(m) and εbound(m) decrease quickly as a function ofm. As wewill see in Section 5, we
cannot have an arbitrarily fast convergence rate (by, for example, taking a subsequence
of Fm), because the size of Km has a great effect on the number of samples required to
obtain accurate estimation.

7 There are other ways to manage the unboundedness of KL divergence in the language learning literature.
Clark and Thollard (2004), for example, decompose the KL divergence between probabilistic finite-state
automata into several terms according to a decomposition of Carrasco (1997) and then bound each term
separately.
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Table 1
Example of a PCFG where there is more than a single way to approximate it by truncation with
γ = 0.1, because it has more than two rules. Any value of η ∈ [0,γ] will lead to a different
approximation.

Rule θ General η = 0 η = 0.01 η = 0.005

S→ NP VP 0.09 0.01 0.1 0.1 0.1
S→ NP 0.11 0.11− η 0.11 0.1 0.105
S→ VP 0.8 0.8− γ+ η 0.79 0.8 0.795

4.1 Constructing Proper Approximations for Probabilistic Grammars

Wenow focus on constructing proper approximations for probabilistic grammarswhose
degree is limited to 2. Proper approximations could, in principle, be used with losses
other than the log-loss, though their main use is for unbounded losses. Starting from
this point in the article, we focus on using such proper approximations with the
log-loss.

We construct Fm. For each f ∈ F we define a transformation T( f,γ) that shifts every
binomial parameter θk = 〈θk,1,θk,2〉 in the probabilistic grammar by at most γ:

〈θk,1,θk,2〉 ←



〈γ, 1− γ〉 if θk,1 < γ
〈1− γ, γ〉 if θk,1 > 1− γ
〈θk,1, θk,2〉 otherwise

Note that T( f,γ) ∈ F for any γ ≤ 1/2. Fix a constant s > 1.8 We denote by T(θ,γ) the
same transformation on θ (which outputs the new shifted parameters) and we denote
by ΘG(γ) = Θ(γ) the set {T(θ,γ) | θ ∈ ΘG}. For each m ∈ N, define Fm = {T( f,m−s) |
f ∈ F}.

When considering our approach to approximate a probabilistic grammar by in-
creasing its parameter probabilities to be over a certain threshold, it becomes clear
why we are required to limit the grammar to have only two rules and why we are
required to use the normal from Section 3.2 with grammars of degree 2. Consider the
PCFG rules in Table 1. There are different ways to move probability mass to the rule
with small probability. This leads to a problem with identifability of the approximation:
How does one decide how to reallocate probability to the small probability rules? By
binarizing the grammar in advance, we arrive at a single way to reallocate mass when
required (i.e., move mass from the high-probability rule to the low-probability rule).
This leads to a simpler proof for sample complexity bounds and a single bound (rather
than different bounds depending on different smoothing operators). We note, however,
that the choices made in binarizing the grammar imply a particular way of smoothing
the probability across the original rules.

We now describe how this construction of approximations satisfies the proper-
ties mentioned in Section 4, specifically, the boundedness property and the tightness
property.

8 By varying swe get a family of approximations. The larger s is, the tighter the approximation is. Also,
the larger s is, as we see later, the looser our sample complexity bound will be.

494



Cohen and Smith Empirical Risk Minimization for Probabilistic Grammars

Proposition 2
Let p ∈ P(α,L, r, q,B,G) and let Fm be as defined earlier. There exists a constant β =

β(L, q, p,N) > 0 such that Fm has the boundedness property with Km = sN log3m and
εbound(m) = m−β logm.

See Appendix A for the proof of Proposition 2.

Next, Fm is tight with respect to F with εtail(m) =
N log2m
ms − 1

.

Proposition 3
Let p ∈ P(α,L, r, q,B,G) and let Fm as defined earlier. There exists anM such that for any
m >Mwe have

p


 ⋃

f∈F

{z | Cm( f )(z)− f (z) ≥ εtail(m)}


 ≤ εtail(m)

for εtail(m) =
N log2m
ms − 1

and Cm( f ) = T( f,m−s).

See Appendix A for the proof of Proposition 3.

We now have proper approximations for probabilistic grammars. These approx-
imations are defined as a series of probabilistic grammars, related to the family of
probabilistic grammars we are interested in estimating. They consist of three prop-
erties: containment (they are a subset of the family of probabilistic grammars we
are interested in estimating), boundedness (their log-loss does not diverge to infinity
quickly), and they are tight (there is a small probability mass at which they are not tight
approximations).

4.2 Coupling Bounded Approximations with Number of Samples

At this point, the number of samples n is decoupled from the bounded approximation
(Fm) that we choose for grammar estimation. To couple between these two, we need
to define m as a function of the number of samples, m(n). As mentioned earlier, there
is a clear trade-off between choosing a fast rate for m(n) (such as m(n) = nk for some
k > 1) and a slower rate (such as m(n) = logn). The faster the rate is, the tighter the
family of approximations that we use for n samples. If the rate is too fast, however,
then Km grows quickly as well. In that case, because our sample complexity bounds are
increasing functions of such Km, the bounds will degrade.

To balance the trade-off, we choose m(n) = n. As we see later, this gives sample
complexity bounds which are asymptotically interesting for both the supervised and
unsupervised case.
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4.3 Asymptotic Empirical Risk Minimization

It would be compelling to determine whether the empirical risk minimizer over Fn is
an asymptotic empirical risk minimizer. This would mean that the risk of the empirical
risk minimizer over Fn converges to the risk of the maximum likelihood estimate. As a
conclusion to this section about proper approximations, we motivate the three re-
quirements that we posed on proper approximations by showing that this is indeed
true. We now unify n, the number of samples, and m, the index of the approxima-
tion of the concept space F. Let f ∗n be the minimizer of the empirical risk over F,
( f ∗n = argminf∈F Ep̃n

[
f
]
) and let gn be the minimizer of the empirical risk over Fn

(gn = argminf∈Fn
Ep̃n

[
f
]
).

Let D = {z1, ..., zn} be a sample from p(z). The operator (gn =) argminf∈Fn
Ep̃n [ f ] is

an asymptotic empirical risk minimizer if E
[
Ep̃n

[
gn
]
− Ep̃n [ f

∗
n ]
]
→ 0 as n→∞ (Shalev-

Shwartz et al. 2009). Then, we have the following

Lemma 1
Denote by Zε,n the set

⋃
f∈F{z | Cn( f )(z)− f (z) ≥ ε}. Denote by Aε,n the event “one of

zi ∈ D is in Zε,n.” If Fn properly approximates F, then:

E

[
Ep̃n

[
gn
]
− Ep̃n

[
f ∗n
] ]

(15)

≤
∣∣∣E[Ep̃n [Cn( f ∗n )] | Aε,n]∣∣∣ p(Aε,n)+ ∣∣∣E[Ep̃n [ f ∗n ] | Aε,n]∣∣∣ p(Aε,n)+ εtail(n)

where the expectations are taken with respect to the data set D.

See Appendix A for the proof of Lemma 1.

Proposition 4
Let D = {z1, ..., zn} be a sample of derivations from G. Then gn = argminf∈Fn

Ep̃n

[
f
]
is

an asymptotic empirical risk minimizer.

Proof
Let f0 ∈ F be the concept that puts uniform weights over θ, namely, θk = 〈 12 ,

1
2 〉 for all k.

Note that

|E
[
Ep̃n

[
f ∗n
]
| Aε,n

]
|p(Aε,n)

≤ |E
[
Ep̃n

[
f0
]
| Aε,n

]
|p(Aε,n) =

log 2
n
∑n

l=1

∑
k,i E[ψk,i(zl) | Aε,n]p(Aε,n)
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Let Aj,ε,n for j ∈ {1, . . . ,n} be the event “zj ∈ Zε,n”. Then Aε,n =
⋃
j Aj,ε,n. We have

that

E[ψk,i(zl) | Aε,n]p(Aε,n) ≤
∑
j

∑
zl

p(zl,Aj,ε,n)|zl|

≤
∑
j �=l

∑
zl

p(zl)p(Aj,ε,n)|zl|+
∑
zl

p(zl,Al,ε,n)|zl| (16)

≤


∑

j �=l

p(Aj,ε,n)


B+ E[ψk,i(z) | z ∈ Zε,n]p(z ∈ Zε,n)

≤ (n− 1)Bp(z ∈ Zε,n)+ E[ψk,i(z) | z ∈ Zε,n]p(z ∈ Zε,n)

where Equation (16) comes from zl being independent. Also, B is the constant from
Section 3.1. Therefore, we have:

1
n

n∑
l=1

∑
k,i

E[ψk,i(zl) | Aε,n]p(Aε,n)

≤
∑
k,i

(
E[ψk,i(z) | z ∈ Zε,n]p(z ∈ Zε,n)+ (n− 1)Bp(z ∈ Zε,n)

)

From the construction of our proper approximations (Proposition 3), we know that only
derivations of length log2 n or greater can be in Zε,n. Therefore

E[ψk,i | Zε,n]p(Zε,n) ≤
∑

z:|z|>log2 n

p(z)ψk,i(z) ≤
∞∑

l>log2 n

LΛ(l)rll ≤ κqlog
2 n = o(1)

where κ > 0 is a constant. Similarly, we have p(z ∈ Zε,n) = o(n−1). This means that
|E[Ep̃n[− log−f ∗n ] | Aε,n]|p(Aε,n) −→n→∞

0. In addition, it can be shown that |E[Ep̃n[Cn( f
∗
n ) |

Aε,n]|p(Aε,n) −→n→∞
0 using the same proof technique we used here, while relying on the

fact that Cn( f
∗
n ) ∈ Fn, and therefore Cn( f

∗
n )(z) ≤ sN|z| log n. �

5. Sample Complexity Bounds

Equipped with the framework of proper approximations as described previously, we
now give our main sample complexity results for probabilistic grammars. These results
hinge on the convergence of supf∈Fn

|Ep̃n
[
f
]
− Ep

[
f
]
|. Indeed, proper approximations

replace the use of F in these convergence results. The rate of this convergence can be
fast, if the covering numbers for Fn do not grow too fast.

5.1 Covering Numbers and Bounds on Covering Numbers

We next give a brief overview of covering numbers. A cover provides a way to reduce
a class of functions to a much smaller (finite, in fact) representative class such that each
function in the original class is represented using a function in the smaller class. Let G
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be a class of functions. Let d(f, g) be a distance measure between two functions f, g from
G. An ε-cover is a subset of G, denoted by G′, such that for every f ∈ G there exists an
f ′ ∈ G′ such that d( f, f ′) < ε. The covering number N(ε,G, d) is the size of the smallest
ε-cover of G for the distance measure d.

We are interested in a specific distancemeasure which is dependent on the empirical
distribution p̃n that describes the data z1, ..., zn. Let f, g ∈ G. We will use

dp̃n ( f, g) = Ep̃n

[
| f − g|

]
=
∑

z∈D(G)
| f (z)− g(z)| p̃n(z)

= 1
n
∑n

i=1
| f (zi)− g(zi)|

Instead of using N(ε,G, dp̃n ) directly, we bound this quantity with N(ε,G) = supp̃n
N(ε,G, dp̃n ), where we consider all possible samples (yielding p̃n). The following is the
key result regarding the connection between covering numbers and the double-sided
convergence of the empirical process supf∈Fn

|Ep̃n
[
f
]
− Ep

[
f
]
| as n→∞. This result

is a general-purpose result that has been used frequently to prove the convergence of
empirical processes of the type we discuss in this article.

Lemma 2
Let Fn be a permissible class9 of functions such that for every f ∈ Fn we have E[| f | ×
I {| f | ≤ Kn}] ≤ εbound(n). Let Ftruncated,n = {f × I {f ≤ Kn} | f ∈ Fm}, namely, the set of
functions from Fn after being truncated by Kn. Then for ε > 0 we have

p

(
sup
f∈Fn

|Ep̃n
[
f
]
− Ep

[
f
]
| > 2ε

)
≤ 8N(ε/8,Ftruncated,n) exp

(
− 1
128

nε2/K2
n

)
+ εbound(n)/ε

provided n ≥ K2
n/4ε

2 and εbound(n) < ε.

See Pollard (1984; Chapter 2, pages 30–31) for the proof of Lemma 2. See also Ap-
pendix A.

Covering numbers are rather complex combinatorial quantities which are hard
to compute directly. Fortunately, they can be bounded using the pseudo-dimension
(Anthony and Bartlett 1999), a generalization of the Vapnik-Chervonenkis (VC)
dimension for real functions. In the case of our “binomialized” probabilistic grammars,
the pseudo-dimension of Fn is bounded by N, because we have Fn ⊆ F, and the
functions in F are linear with N parameters. Hence, Ftruncated,n also has pseudo-
dimension that is at most N. We then have the following.

9 The “permissible class” requirement is a mild regularity condition regarding measurability that holds for
proper approximations. We refer the reader to Pollard (1984) for more details.
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Lemma 3
(From Pollard [1984] and Haussler [1992].) Let Fn be the proper approximations for
probabilistic grammars, for any 0 < ε < Kn we have:

N(ε,Ftruncated,n) < 2

(
2eKn
ε log

2eKn
ε

)N

5.2 Supervised Case

We turn to give an analysis for the supervised case. This analysis is mostly described as a
preparation for the unsupervised case. In general, the families of probabilistic grammars
we give a treatment to are parametric families, and the maximum likelihood estimator
for these families is a consistent estimator in the supervised case. In the unsupervised
case, however, lack of identifiability prevents us from getting these traditional consis-
tency results. Also, the traditional results about the consistency of MLE are based on the
assumption that the sample is generated from the parametric family we are trying to
estimate. This is not the case in our analysis, where the distribution that generates the
data does not have to be a probabilistic grammar.

Lemmas 2 and 3 can be combined to get the following sample complexity result.

Theorem 2
LetG be a grammar. Let p ∈ P(α,L, r, q,B,G) (Section 3.1). Let Fn be a proper approxima-
tion for the corresponding family of probabilistic grammars. Let z1, . . . , zn be a sample
of derivations. Then there exists a constant β(L, q, p,N) and constantM such that for any
0 < δ < 1 and 0 < ε < Kn and any n >M and if

n ≥ max

{
128K2

n

ε2

(
2N log(16eKn/ε)+ log 32

δ

)
,
log 4/δ+ log 1/ε
β(L, q, p,N)

}

then we have

P

(
sup
f∈Fn

|Ep̃n
[
f
]
− Ep

[
f
]
| ≤ 2ε

)
≥ 1− δ

where Kn = sN log3 n.

Proof Sketch
β(L, q, p,N) is the constant from Proposition 2. The main idea in the proof is to solve for
n in the following two inequalities (based on Equation [17] [see the following]) while
relying on Lemma 3:

8N(ε/8,Ftruncated,n) exp
(
− 1
128

nε2/K2
n

)
≤ δ/2

εbound(n)/ε ≤ δ/2

�
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Theorem 2 gives little intuition about the number of samples required for accurate
estimation of a grammar because it considers the “additive” setting: The empirical risk
is within ε from the expected risk. More specifically, it is not clear how we should pick
ε for the log-loss, because the log-loss can obtain arbitrary values.

We turn now to converting the additive bound in Theorem 2 to a multiplicative
bound. Multiplicative bounds can be more informative than additive bounds when the
range of the values that the log-loss can obtain is not known a priori. It is important
to note that the two views are equivalent (i.e., it is possible to convert a multiplicative
bound to an additive bound and vice versa). Let ρ ∈ (0, 1) and choose ε = ρKn. Then,
substituting this ε in Theorem 2, we get that if

n ≥ max

{
128
ρ2

(
2N log 16e

ρ + log 32
δ

)
,
log 4/δ+ log 1/ρ
β(L, q, p,N)

}
then, with probability 1− δ,

sup
f∈Fn

∣∣∣∣∣1− Ep̃n

[
f
]

Ep
[
f
]
∣∣∣∣∣ ≤ ρ× 2sN log3(n)

H(p)
(17)

where H(p) is the Shannon entropy of p. This stems from the fact that Ep
[
f
]
≥ H(p) for

any f . This means that if we are interested in computing a sample complexity bound
such that the ratio between the empirical risk and the expected risk (for log-loss) is
close to 1 with high probability, we need to pick up ρ such that the righthand side of
Equation (17) is smaller than the desired accuracy level (between 0 and 1). Note that
Equation (17) is an oracle inequality—it requires knowing the entropy of p or some
upper bound on it.

5.3 Unsupervised Case

In the unsupervised setting, we have n yields of derivations from the grammar, x1, ..., xn,
and our goal again is to identify grammar parameters θ from these yields. Our concept
classes are now the sets of log marginalized distributions from Fn. For each fθ ∈ Fn, we
define f ′

θ
as

f ′θ(x) = − log
∑

z∈Dx(G)

exp(−fθ(z)) = − log
∑

z∈Dx(G)

exp


 K∑

k=1

Nk∑
i=1

ψi,k(z)θi,k




We denote the set of { f ′
θ
} by F′

n. Analogously, we define F′. Note that we also need to
define the operator C′

n( f
′) as a first step towards defining F′

n as proper approximations
(for F′) in the unsupervised setting. Let f ′ ∈ F′. Let f be the concept in F such that
f ′(x) =

∑
z f (x, z). Then we define C′

n( f
′)(x) =

∑
z Cn( f )(x, z).

It does not immediately follow that F′
n is a proper approximation for F′. It is not

hard to show that the boundedness property is satisfied with the same Kn and the same
form of εbound(n) as in Proposition 2 (we would have ε′bound(m) = m−β′ logm for some
β′(L, q, p,N) = β′ > 0). This relies on the property of bounded derivation length of p (see
Appendix A, Proposition 7). The following result shows that we have tightness as well.
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Utility Lemma 2
For ai, bi ≥ 0, if − log

∑
i ai + log

∑
i bi ≥ ε then there exists an i such that − log ai +

log bi ≥ ε.

Proposition 5
There exists anM such that for any n >Mwe have

p


 ⋃

f ′∈F′

{x | C′
n(f

′)(x)− f ′(x) ≥ εtail(n)}


 ≤ εtail(n)

for εtail(n) =
N log2 n
ns − 1

and the operator C′
n( f ) as defined earlier.

Proof Sketch
From Utility Lemma 2 we have

p


 ⋃

f ′∈F′

{x | C′
n( f

′)(x)− f ′(x) ≥ εtail(n)}


 ≤ p


 ⋃

f∈F

{x | ∃zCn( f )(z)− f (z) ≥ εtail(n)}




Define X(n) to be all x such that there exists a z with yield(z) = x and |z| ≥ log2 n.
From the proof of Proposition 3 and the requirements on p, we know that there exists
an α ≥ 1 such that

p
(⋃

f∈F{x | ∃z s.t.Cn( f )(z)− f (z) ≥ εtail(n)}
)
≤

∑
x∈X(n)

p(x)

≤
∑

x:|x|≥log2 n/α

p(x) ≤
∞∑

k=�log2 n/α�

LΛ(k)rk ≤ εtail(n)

where the last inequality happens for some n larger than a fixedM. �
Computing either the covering number or the pseudo-dimension of F′

n is a hard
task, because the function in the classes includes the “log-sum-exp.” Dasgupta (1997)
overcomes this problem for Bayesian networks with fixed structure by giving a bound
on the covering number for (his respective) F′ which depends on the covering number
of F.

Unfortunately, we cannot fully adopt this approach, because the derivations of
a probabilistic grammar can be arbitrarily large. Instead, we present the following
proposition, which is based on the “Hidden Variable Rule” from Dasgupta (1997). This
proposition shows that the covering number of F′ (or more accurately, its bounded
approximations) can be bounded in terms of the covering number of the bounded
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approximations of F, and the constants which control the underlying distribution p
mentioned in Section 3.

Utility Lemma 3
For any two positive-valued sequences (a1, . . . , an) and (b1, . . . , bn) we have that∑

i | log ai/bi| ≥ | log (
∑

ai/
∑

bi) |.

Proposition 6 (Hidden Variable Rule for Probabilistic Grammars)

Let m =

log
4Kn

ε(1− q)

log 1
q

. Then, N(ε,F′
truncated,n) ≤ N

(
ε

2Λ(m)
,Ftruncated,n

)
.

Proof
Let Z(m) = {z | |z| ≤ m} be the subset of derivations of length shorter than m. Consider
f, f0 ∈ Ftruncated,n. Let f

′ and f ′0 be the corresponding functions in F′
truncated,n. Then, for any

distribution p,

dp( f ′, f ′0) =
∑
x

| f ′(x)− f ′0(x)| p(x) ≤
∑
x

∑
z

| f (x, z)− f0(x, z)| p(x)

=
∑
x

∑
z∈Z(m)

| f (x, z)− f0(x, z)| p(x)+
∑
x

∑
z/∈Z(m)

| f (x, z)− f0(x, z)| p(x)

≤
∑
x

∑
z∈Z(m)

| f (x, z)− f0(x, z)| p(x)+
∑
x

∑
z/∈Z(m)

2Knp(x) (18)

≤
∑
x

∑
z∈Z(m)

| f (x, z)− f0(x, z)| p(x)+ 2Kn
∑

x : |x|≥m

|Dx(G)|p(x)

≤
∑
x

∑
z∈Z(m)

| f (x, z)− f0(x, z)| p(x)+ 2Kn

∞∑
k=m

Λ2(k)rk

≤ dp
′
( f, f0)|Z(m)|+ 2Kn

qm

1− q

where p′(x, z) is a probability distribution that uniformly divides the probability mass
p(x) across all derivations for the specific x, that is:

p′(x, z) =
p(x)
|Dx(G)|

The inequality in Equation (18) stems from Utility Lemma 3.
Set m to be the quantity that appears in the proposition to get the necessary result

( f ′ and f are arbitrary functions in F′
truncated,n and Ftruncated,n respectively. Then consider

f ′0 and f0 to be functions from the respective covers.). �
For the unsupervised case, then, we get the following sample complexity result.
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Theorem 3
Let G be a grammar. Let F′

n be a proper approximation for the corresponding family of
probabilistic grammars. Let p(x, z) be a distribution over derivations which satisfies the
requirements in Section 3.1. Let x1, . . . , xn be a sample of strings from p(x). Then there
exists a constant β′(L, q, p,N) and constant M such that for any 0 < δ < 1, 0 < ε < Kn,
any n >M, and if

n ≥ max

{
128K2

n

ε2

(
2N log

(
32eKnΛ(m)

ε

)
+ log 32

δ

)
,
log 4/δ+ log 1/ε
β′(L, q, p,N)

}
(19)

where m =

log
4Kn

ε(1− q)

log 1
q

, we have that

p

(
sup
f∈F′

n

|Ep̃n
[
f
]
− Ep

[
f
]
| ≤ 2ε

)
≥ 1− δ

where Kn = sN log3 n.
Theorem 3 states that the number of samples we require in order to accurately esti-

mate a probabilistic grammar from unparsed strings depends on the level of ambiguity
in the grammar, represented as Λ(m). We note that this dependence is polynomial, and
we consider this a positive result for unsupervised learning of grammars. More specif-
ically, if Λ is an exponential function (such as the case with PCFGs), when compared to
the supervised learning, there is an extra multiplicative factor in the sample complexity
in the unsupervised setting that behaves like O(log log

Kn
ε ).

We note that the following Equation (20) can again be reduced to a multiplicative
case, similarly to the way we described it for the supervised case. Setting ε = ρKn (ρ ∈
(0, 1)), we get the following requirement on n:

n ≥ max

{
128
ρ2

(
2N log

(
32e× t(ρ)

ρ

)
+ log 32

δ

)
,
log 4/δ+ log 1/ε
β′(L, q, p,N)

}
(20)

where t(ρ) =
log 4

ρ(1− q)

log 1
q

.

6. Algorithms for Empirical Risk Minimization

We turn now to describing algorithms and their properties for minimizing empirical
risk using the framework described in Section 4.

6.1 Supervised Case

ERM with proper approximations leads to simple algorithms for estimating the proba-
bilities of a probabilistic grammar in the supervised setting. Given an ε > 0 and a δ > 0,
we draw n examples according to Theorem 2. We then set γ = n−s. To minimize the
log-loss with respect to these n examples, we use the proper approximation Fn.
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Note that the value of the empirical log-loss for a probabilistic grammar param-
etrized by θ is

Ep̃n

[
− log h(x, z | θ)

]
= −

∑
x,z

p̃n(x, z) log h(x, z | θ)

= −
∑
x,z

p̃n(x, z)
K∑
k=1

Nk∑
i=1

ψk,i(x, z) log(θk,i)

= −
K∑
k=1

Nk∑
i=1

log(θk,i)Ep̃n
[
ψk,i
]

Because we make the assumption that deg(G) ≤ 2 (Section 3.2), we have

Ep̃n

[
− log h(x, z | θ)

]
= −

K∑
k=1

(
log(θk,1)Ep̃n

[
ψk,1

]
+ log(1− θk,1)Ep̃n

[
ψk,2

])
(21)

To minimize the log-loss with respect to Fn, we need to minimize Equation (21) under
the constraint that γ ≤ θk,i ≤ 1− γ and θk1 + θk,2 = 1. It can be shown that the solution
for this optimization problem is

θk,i = min


1− γ,max


γ,


 n∑

j=1

ψ̂j,k,i


/


 n∑

j=1

2∑
i′=1

ψ̂j,k,i′






 (22)

where ψ̂j,k,i is the number of times that ψk,i fires in Example j. (We include a full
derivation of this result in Appendix B.) The interpretation of Equation (22) is simple:
We count the number of times a rule appears in the samples and then normalize this
value by the total number of times rules associated with the same multinomial appear
in the samples. This frequency count is the maximum likelihood solution with respect
to the full hypothesis class H (Corazza and Satta 2006; see Appendix B). Because we
constrain ourselves to obtain a value away from 0 or 1 by a margin of γ, we need to
truncate this solution, as done in Equation (22).

This truncation to amargin γ can be thought of as a smoothing factor that enables us
to compute sample complexity bounds. We explore this connection to smoothing with
a Dirichlet prior in a Maximum a posteriori (MAP) Bayesian setting in Section 7.2.

6.2 Unsupervised Case

Similarly to the supervised case, minimizing the empirical log-loss in the unsupervised
setting requires minimizing (with respect to θ) the following:

Ep̃n

[
− log h(x | θ)

]
= −

∑
x

p̃n(x) log
∑
z

h(x, z | θ) (23)

with the constraint that γ ≤ θk,i ≤ 1− γ (i.e., θ ∈ Θ(γ)) where γ = n−s. This is done
after drawing n examples according to Theorem 3.

504



Cohen and Smith Empirical Risk Minimization for Probabilistic Grammars

6.2.1 Hardness of ERM with Proper Approximations. It turns out that minimizing Equa-
tion (23) under the specified constraints is actually an NP-hard problem when G is a
PCFG. This result follows using a similar proof to the one in Cohen and Smith (2010c)
for the hardness of Viterbi training and maximizing log-likelihood for PCFGs. We turn
to giving the full derivation of this hardness result for PCFGs and the modification
required for adapting the results from Cohen and Smith to the case of having an
arbitrary γmargin constraint.

In order to show an NP-hardness result, we need to “convert” the problem of the
maximization of Equation (23) to a decision problem. We do so by stating the following
decision problem.

Problem 1 (Unsupervised Minimization of the Log-Loss with Margin)
Input: A binarized context-free grammar G, a set of sentences x1, . . . , xn, a value γ ∈
[0, 12 ), and a value α ∈ [0, 1].
Output: 1 if there exists θ ∈ Θ(γ) (and hence, h ∈ H(G)) such that

−
∑
x

p̃n(x) log
∑
z

h(x, z | θ) ≤ − log(α) (24)

and 0 otherwise.
We will show the hardness result both when γ is not restricted at all as well as when

we allow γ > 0. The proof of the hardness result is achieved by reducing the problem
3-SAT (Sipser 2006), known to be NP-complete, to Problem 1. The problem 3-SAT is
defined as follows:

Problem 2 (3-SAT)
Input: A formula φ =

∧m
i=1 (ai ∨ bi ∨ ci) in conjunctive normal form, such that each

clause has three literals.
Output: 1 if there is a satisfying assignment for φ, and 0 otherwise.

Given an instance of the 3-SAT problem, the reduction will, in polynomial time,
create a grammar and a single string such that solving Problem 1 for this grammar and
string will yield a solution for the instance of the 3-SAT problem.

Let φ =
∧m
i=1 (ai ∨ bi ∨ ci) be an instance of the 3-SAT problem, where ai, bi, and

ci are literals over the set of variables {Y1, . . . ,YN} (a literal refers to a variable Yj or
its negation, Ȳj). Let Cj be the jth clause in φ, such that Cj = aj ∨ bj ∨ cj. We define the
following CFG Gφ and string to parse sφ:

1. The terminals of Gφ are the binary digits Σ = {0, 1}.

2. We create N nonterminals VYr , r ∈ {1, . . . ,N} and rules VYr → 0 and
VYr → 1.

3. We create N nonterminals VȲr , r ∈ {1, . . . ,N} and rules VȲr → 0 and
VȲr → 1.

4. We create UYr,1 → VYrVȲr and UYr,0 → VȲrVYr .

5. We create the rule S1 → A1. For each j ∈ {2, . . . ,m}, we create a rule
Sj → Sj−1Aj where Sj is a new nonterminal indexed by φj �

∧j
i=1 Ci

and Aj is also a new nonterminal indexed by j ∈ {1, . . . ,m}.
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6. Let Cj = aj ∨ bj ∨ cj be clause j in φ. Let Y(aj) be the variable that aj
mentions. Let (y1, y2, y3) be a satisfying assignment for Cj where yk ∈ {0, 1}
and is the value of Y(aj), Y(bj), and Y(cj), respectively, for k ∈ {1, 2, 3}. For
each such clause-satisfying assignment, we add the rule

Aj → UY(aj ),y1UY(bj ),y2UY(cj ),y3

For each Aj, we would have at most seven rules of this form, because one
rule will be logically inconsistent with aj ∨ bj ∨ cj.

7. The grammar’s start symbol is Sn.

8. The string to parse is sφ = (10)3m, that is, 3m consecutive occurrences of
the string 10.

A parse of the string sφ using Gφ will be used to get an assignment by setting
Yr = 0 if the rule VYr → 0 or VȲr → 1 is used in the derivation of the parse tree, and 1
otherwise. Notice that at this point we do not exclude “contradictions” that come from
the parse tree, such as VY3

→ 0 used in the tree together with VY3
→ 1 or VȲ3

→ 0. To
maintain the restriction on the degree of grammars, we convertGφ to the binary normal
form described in Section 3.2. The following lemma gives a condition under which the
assignment is consistent (so that contradictions do not occur in the parse tree).

Lemma 4
Let φ be an instance of the 3-SAT problem, and let Gφ be a probabilistic CFG based on
the given grammar with weights θφ. If the (multiplicative) weight of the Viterbi parse
(i.e., the highest scoring parse according to the PCFG) of sφ is 1, then the assignment
extracted from the parse tree is consistent.

Proof
Because the probability of the Viterbi parse is 1, all rules of the form {VYr ,VȲr} → {0, 1}
which appear in the parse tree have probability 1 as well. There are two possible types
of inconsistencies. We show that neither exists in the Viterbi parse:

1. For any r, an appearance of both rules of the form VYr → 0 and VYr → 1
cannot occur because all rules that appear in the Viterbi parse tree have
probability 1.

2. For any r, an appearance of rules of the form VYr → 1 and VȲr → 1 cannot
occur, because whenever we have an appearance of the rule VYr → 0, we
have an adjacent appearance of the rule VȲr → 1 (because we parse
substrings of the form 10), and then we again use the fact that all rules in
the parse tree have probability 1. The case of VYr → 0 and VȲr → 0 is
handled analogously.

Thus, both possible inconsistencies are ruled out, resulting in a consistent assignment.
�
Figure 3 gives an example of an application of the reduction.
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Figure 3
An example of a Viterbi parse tree which represents a satisfying assignment for
φ = (Y1 ∨ Y2 ∨ Ȳ4) ∧ (Ȳ1 ∨ Ȳ2 ∨ Y3). In θφ, all rules appearing in the parse tree have
probability 1. The extracted assignment would be Y1 = 0,Y2 = 1,Y3 = 1,Y4 = 0.
Note that there is no usage of two different rules for a single nonterminal.

Lemma 5
Define φ and Gφ as before. There exists θφ such that the Viterbi parse of sφ is 1 if and
only if φ is satisfiable. Moreover, the satisfying assignment is the one extracted from the
parse tree with weight 1 of sφ under θφ.

Proof
(=⇒) Assume that there is a satisfying assignment. Each clause Cj = aj ∨ bj ∨ cj is sat-
isfied using a tuple (y1, y2, y3), which assigns values for Y(aj), Y(bj), and Y(cj). This
assignment corresponds to the following rule:

Aj → UY(aj ),y1UY(bj ),y2UY(cj ),y3

Set its probability to 1, and set all other rules of Aj to 0. In addition, for each r, if
Yr = y, set the probabilities of the rules VYr → y and VȲr → 1− y to 1 and VȲr → y and
VYr → 1− y to 0. The rest of the weights for Sj → Sj−1Aj are set to 1. This assignment of
rule probabilities results in a Viterbi parse of weight 1.

(⇐=) Assume that the Viterbi parse has probability 1. From Lemma 4, we know that we
can extract a consistent assignment from the Viterbi parse. In addition, for each clause
Cj we have a rule

Aj → UY(aj ),y1UY(bj ),y2UY(cj ),y3

that is assigned probability 1, for some (y1, y2, y3). One can verify that (y1, y2, y3) are
the values of the assignment for the corresponding variables in clause Cj, and that
they satisfy this clause. This means that each clause is satisfied by the assignment we
extracted. �

We are now ready to prove the following result.

Theorem 4
Problem 1 is NP-hard when either requiring γ > 0 or when fixing γ = 0.
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Proof
We first describe the reduction for the case of γ = 0. In Problem 1, set γ = 0, α = 1,
G = Gφ, γ = 0, and x1 = sφ. If φ is satisfiable, then the left side of Equation (24) can get
value 0, by setting the rule probabilities according to Lemma 5, hence we would return
1 as the result of running Problem 1.

If φ is unsatisfiable, then we would still get value 0 only if L(G) = {sφ}. If Gφ gen-
erates a single derivation for (10)3m, then we actually do have a satisfying assignment
from Lemma 4. Otherwise (more than a single derivation), the optimal θ would have
to give fractional probabilities to rules of the form VYr → {0, 1} (or VȲr → {0, 1}). In
that case, it is no longer true that (10)3m is the only generated sentence, and this is a
contradiction to getting value 0 for Problem 1.

We next show that Problem 1 is NP-hard even if we require γ > 0. Let γ < 1
20m .

Set α = γ, and the rest of the inputs to Problem 1 the same as before. Assume that φ
is satisfiable. Let θ be the rule probabilities from Equation (5) after being shifted with a
margin of γ. Then, because there is a derivation that uses only rules that have probability
1− γ, we have

h(x1 | T(θ,γ),Gφ) =
∑
z

p(x1, z | T(θ,γ),Gφ)

≥ (1− γ)10m

> α

because the size of the parse tree for (10)3m is at most 10m (using the binarized Gφ)
and assuming α = γ < (1− γ)10m. This inequality indeed holds whenever γ < 1

20m .
Therefore, we have − log h(x1 | θ) > − logα. Problem 1 would return 0 in this case.

Now, assume that φ is not satisfiable. That means that any parse tree for the string
(10)3m would have to contain two different rules headed by the same non-terminal. This
means that

h(x1 | T(θ,γ),Gφ) =
∑
z

p(x1, z | T(θ,γ),Gφ)

≤ γ

and therefore − log h(x1 | T(θ,γ)) ≤ − logα, and Problem 1 would return 1. �

6.2.2 An Expectation-Maximization Algorithm. Instead of solving the optimization prob-
lem implied by Equation (21), we propose a rather simple modification to the
expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) to ap-
proximate the optimal solution—this algorithm finds a local maximum for the max-
imum likelihood problem using proper approximations. The modified algorithm is
given in Algorithm 1.

The modification from the usual expectation-maximization algorithm is done in the
M-step: Instead of using the expected value of the sufficient statistics by counting and
normalizing, we truncate the values by γ. It can be shown that if θ(0) ∈ Θ(γ), then the
likelihood is guaranteed to increase (and hence, the log-loss is guaranteed to decrease)
after each iteration of the algorithm.
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Algorithm 1: Expectation-Maximization Algorithmwith Proper Approximations.

Input: grammar G in binary normal form, initial parameters θ(0), ε > 0, δ > 0,
s > 1

Output: learned parameters θ
draw x = 〈x1, ..., xn〉 from p following Theorem 3; t← 1 ;
γ← n−s;
repeat

// E
θ
(t−1)

[
ψk,i(z) | xj

]
denotes the expected counts of event i in multinomial k

under the distribution p̃n(x)p(z | x,θ
(t−1))

Compute for each training example j ∈ {1, . . . ,n}, for each event i ∈ {1, 2} in each
multinomial k ∈ {1, . . . ,K}: ψ̂j,k,i ← E

θ
(t−1)

[
ψk,i(z) | xj

]
;

Set θ(t)i,k = min{1− γ,max{γ,
(∑n

j=1 ψ̂j,k,i

)
/

(∑n
j=1

∑2
i′=1 ψ̂j,k,i′

)
}};

t← t+ 1;
until convergence;

return θ(t)

The reason for this likelihood increase stems from the fact that the M-step solves
the optimization problem of minimizing the log-loss (with respect to θ ∈ Θ(γ)) when
the posterior calculate at the E-step as the base distribution is used. This means that the
M-step minimizes (in iteration t): Er

[
− log h(x, z | θ(t) )

]
where the expectation is taken

with respect to the distribution r(x, z) = p̃n(x)p(z | x,θ
(t−1)). With this notion in mind,

the likelihood increase after each iteration follows from principles similar to those
described in Bishop (2006) for the EM algorithm.

7. Discussion

Our framework can be specialized to improve the two main criteria which have a trade-
off: the tightness of the proper approximation and the sample complexity. For example,
we can improve the tightness of our proper approximations by taking a subsequence
of Fn. This will make the sample complexity bound degrade, however, because Kn will
grow faster. Table 2 shows the trade-offs between parameters in our model and the
effectiveness of learning.

We note that the sample complexity bounds that we give in this article give
insight about the asymptotic behavior of grammar estimation, but are not necessarily

Table 2
Trade-off between quantities in our learning model and effectiveness of different criteria. Kn is
the constant that satisfies the boundedness property (Theorems 2 and 3) and s is a fixed constant
larger than 1 (Section 4.1).

criterion as Kn increases . . . as s increases . . .

tightness of proper approximation improves improves
sample complexity bound degrades degrades
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sufficiently tight to be used in practice. It still remains an open problem to obtain
sample complexity bounds which are sufficiently tight in this respect. For a discussion
about the connection of grammar learning in theory and practice, we refer the reader
to Clark and Lappin (2010).

It is also important to note that MLE is not the only option for estimating finite
state probabilistic grammars. There has been some recent advances in learning finite
state models (HMMs and finite state transducers) by using spectral analysis of matrices
which consist of quantities estimated from observations only (Hsu, Kakade, and Zhang
2009; Balle, Quattoni, and Carreras 2011), based on the observable operator models of
Jaeger (1999). These algorithms are not prone to local minima, and converge to the
correct model as the number of samples increases, but require some assumptions about
the underlying model that generates the data.

7.1 Tsybakov Noise

In this article, we chose to introduce assumptions about distributions that generate
natural language data. The choice of these assumptions was motivated by observations
about properties shared among treebanks. The main consequence of making these
assumptions is bounding the amount of noise in the distribution (i.e., the amount of
variation in probabilities across labels given a fixed input).

There are other ways to restrict the noise in a distribution. One condition for such
noise restriction, which has received considerable recent attention in the statistical liter-
ature, is the Tsybakov noise condition (Tsybakov 2004; Koltchinskii 2006). Showing that
a distribution satisfies the Tsybakov noise condition enables the use of techniques (e.g.,
from Koltchinskii 2006) for deriving distribution-dependent sample complexity bounds
that depend on the parameters of the noise. It is therefore of interest to see whether
Tsybakov noise holds under the assumptions presented in Section 3.1. We show that
this is not the case, and that Tsybakov noise is too permissive. In fact, we show that p
can be a probabilistic grammar itself (and hence, satisfy the assumptions in Section 3.1),
and still not satisfy the Tsybakov noise conditions.

Tsybakov noise was originally introduced for classification problems (Tsybakov
2004), and was later extended to more general settings, such as the one we are facing in
this article (Koltchinskii 2006). We now explain the definition of Tsybakov noise in our
context.

Let C > 0 and κ ≥ 1. We say that a distribution p(x, z) satisfies the (C,κ) Tsybakov
noise condition if for any ε > 0 and h, g ∈ H such that h, g ∈ {h′ | Ep(h′,H) ≤ ε}, we
have

dist(g, h) �

√√√√Ep

[(
log g
log h

)2
]
≤ Cε1/κ (25)

This interpretation of Tsybakov noise implies that the diameter of the set of functions
from the concept class that has small excess risk should shrink to 0 at the rate in
Equation (25). Distribution-dependent bounds from Koltchinskii (2006) are monotone
with respect to the diameter of this set of functions, and therefore demonstrating that it
goes to 0 enables sharper derivations of sample complexity bounds.
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We turn now to illustrating that the Tsybakov condition does not hold for proba-
bilistic grammars in most cases. Let G be a probabilistic grammar. Define A = AG(θ) as
a matrix such that

(AG(θ))(k,i),(k′,i′ ) �
E
[
ψk,i ×ψk′,i′

]
E[ψk,i]E[ψk′,i′ ]

Theorem 5
Let G be a grammar with K ≥ 2 and degree 2. Assume that p is 〈G,θ∗〉 for some θ∗, such
that θ∗1,1 = θ

∗
2,1 = µ and that c1 ≤ c2. If AG(θ

∗) is positive definite, then p does not satisfy
the Tsybakov noise condition for any (C,κ), where C > 0 and κ ≥ 1.
See Appendix C for the proof of Theorem 5.

In Appendix C we show that AG(θ) is positive semi-definite for any choice of θ.
The main intuition behind the proof is that given a probabilistic grammar p, we can
construct an hypothesis h such that the KL divergence between p and h is small, but
dist(p, h) is lower-bounded and is not close to 0.

We conclude that probabilistic grammars, as generative distributions of data, do
not generally satisfy the Tsybakov noise condition. This motivates an alternative choice
of assumptions that could lead to better understanding of rates of convergences and
bounds on the excess risk. Section 3.1 states such assumptions which were also justified
empirically.

7.2 Comparison to Dirichlet Maximum A Posteriori Solutions

The transformation T(θ,γ) from Section 4.1 can be thought of as a smoother for the
probabilities θ: It ensures that the probability of each rule is at least γ (and as a result,
the probabilities of all rules cannot exceed 1− γ). Adding pseudo-counts to frequency
counts is also a common way to smooth probabilities in models based on multinomial
distributions, including probabilistic grammars (Manning and Schütze 1999). These
pseudo-counts can be framed as a maximum a posteriori (MAP) alternative to the
maximum likelihood problem, with the choice of Bayesian prior over the parameters in
the form of a Dirichlet distribution. In comparison to our framework, with (symmetric)
Dirichlet smoothing, instead of truncating the probabilities with a margin γ we would
set the probability of each rule (in the supervised setting) to

θ̂k,i =

∑n
j=1 ψ̂j,k,i + α− 1∑n

j=1 ψ̂j,k,1 +
∑n

j=1 ψ̂j,k,2 + 2(α− 1)
(26)

for i = 1, 2, where ψ̂k,i are the counts in the data of event i in multinomial k for Example j.
Dirichlet smoothing can be formulated as the result of adding a symmetric Dirichlet
prior over the parameters θk,i with hyperparameter α. Then Equation (26) is the mode
of the posterior after observing ψ̂k,i appearances of event i in multinomial k.

The effect of Dirichlet smoothing becomes weaker as we have more samples,
because the frequency counts ψ̂j,k,i become dominant in both the numerator and the
denominator when there are more data. In this sense, the prior’s effect on learning
diminishes as we use more data. A similar effect occurs in our framework: γ = n−s

where n is the number of samples—the more samples we have, the more we trust the

511



Computational Linguistics Volume 38, Number 3

counts in the data to be reliable. There is a subtle difference, however. With the Dirichlet
MAP solution, the smoothing is less dominant only if the counts of the features are large,
regardless of the number of samples we have. With our framework, smoothing depends
only on the number of samples we have. These two scenarios are related, of course: The
more samples we have, the more likely it is that the counts of the events will grow large.

7.3 Other Derivations of Sample Complexity Bounds

In this section, we discuss other possible solutions to the problem of deriving sample
complexity bounds for probabilistic grammars.

7.3.1 Using Talagrand’s Inequality. Our bounds are based on VC theory together with
classical results for empirical processes (Pollard 1984). There have been some recent
developments to the derivation of rates of convergence in statistical learning theory
(Massart 2000; Bartlett, Bousquet, and Mendelson 2005; Koltchinskii 2006), most
prominently through the use of Talagrand’s inequality (Talagrand 1994), which is a
concentration of measure inequality, in the spirit of Lemma 2.

The bounds achieved with Talagrand’s inequality are also distribution-dependent,
and are based on the diameter of the ε-minimal set—the set of hypotheses which have
an excess risk smaller than ε. We saw in Section 7.1 that the diameter of the ε-minimal
set does not follow the Tsybakov noise condition, but it is perhaps possible to find
meaningful bounds for it, in which case we may be able to get tighter bounds using
Talagrand’s inequality. We note that it may be possible to obtain data-dependent bounds
for the diameter of the ε-minimal set, following Koltchinskii (2006), by calculating the
diameter of the ε-minimal set using p̃n.

7.3.2 Simpler Bounds for the Supervised Case.As noted in Section 6.1, minimizing empirical
risk with the log-loss leads to a simple frequency count for calculating the estimated
parameters of the grammar. In Corazza and Satta (2006), it has been also noted that to
minimize the non-empirical risk, it is necessary to set the parameters of the grammar to
the normalized expected count of the features.

This means that we can get bounds on the deviation of a certain parameter from
the optimal parameter by applying modifications to rather simple inequalities such
as Hoeffding’s inequality, which determines the probability of the average of a set of
i.i.d. random variables deviating from its mean. The modification would require us
to split the event space into two cases: one in which the count of some features is
larger than some fixed value (which will happen with small probability because of the
bounded expectation of features), and one in which they are all smaller than that fixed
value. Handling these two cases separately is necessary because Hoeffding’s inequality
requires that the count of the rules is bounded.

The bound on the deviation from the mean of the parameters (the true probability)
can potentially lead to a bound on the excess risk in the supervised case. This formula-
tion of the problem would not generalize to the unsupervised case, however, where the
empirical risk minimization does not amount to simple frequency count.

7.4 Open Problems

We conclude the discussion with some directions for further exploration and future
work.
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7.4.1 Sample Complexity Bounds with Semi-Supervised Learning. Our bounds focus on the
supervised case and the unsupervised case. There is a trivial extension to the semi-
supervised case. Consider the objective function to be the sum of the likelihood for the
labeled data together with the marginalized likelihood of the unlabeled data (this sum
could be a weighted sum). Then, use the sample complexity bounds for each summand
to derive a sample complexity bound on this sum.

It would be more interesting to extend our results to frameworks such as the one
described by Balcan and Blum (2010). In that case, our discussion of sample complexity
would attempt to identify how unannotated data can reduce the space of candidate
probabilistic grammars to a smaller set, after which we can use the annotated data
to estimate the final grammar. This reduction of the space is accomplished through a
notion of compatibility, a type of fitness that the learner believes the estimated grammar
should have given the distribution that generates the data. The key challenge in the
case of probabilistic grammars would be to properly define this compatibility notion
such that it fits the log-loss. If this is achieved, then similar machinery to that described
in this paper (with proper approximations) can be followed to derive semi-supervised
sample complexity bounds for probabilistic grammars.

7.4.2 Sharper Bounds for the Pseudo-Dimension of Probabilistic Grammars. The pseudo-
dimension of a probabilistic grammar with the log-loss is bounded by the number of
parameters in the grammar, because the logarithm of a distribution generated by a
probabilistic grammar is a linear function. Typically the set of counts for the feature
vectors of a probabilistic grammar resides in a subspace of a dimension which is smaller
than the full dimension specified by the number of parameters, however. The reason for
this is that there are usually relationships (which are often linear) between the elements
in the feature counts. For example, with HMMs, the total feature count for emissions
should equal the total feature count for transitions. With PCFGs, the total number of
times that nonterminal rules fire equals the total number of times that features with
that nonerminal in the right-hand side fired, again reducing the pseudo-dimension. An
open problem that remains is characterization of the exact value pseudo-dimension for
a given grammar, determined by consideration of various properties of that grammar.
We conjecture, however, that a lower bound on the pseudo-dimension would be rather
close to the full dimension of the grammar (the number of parameters).

It is interesting to note that there has been some work to identify the VC dimension
and pseudo-dimension for certain types of grammars. Bane, Riggle, and Sonderegger
(2010), for example, calculated the VC dimension for constraint-based grammars.
Ishigami and Tani (1993, 1997) computed the VC dimension for finite state automata
with various properties.

7.5 Conclusion

We presented a framework for performing empirical risk minimization for probabilis-
tic grammars, in which sample complexity bounds, for the supervised case and the
unsupervised case, can be derived. Our framework is based on the idea of bounded
approximations used in the past to derive sample complexity bounds for graphical
models.

Our framework required assumptions about the probability distribution that gener-
ates sentences or derivations in the language of the given grammar. These assumptions
were tested using corpora, and found to fit the data well.
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We also discussed algorithms that can be used for minimizing empirical risk in
our framework, given enough samples. We showed that directly trying to minimize
empirical risk in the unsupervised case is NP-hard, and suggested an approximation
based on an expectation-maximization algorithm.

Appendix A. Proofs

We include in this appendix proofs for several results in the article.

Utility Lemma 1
Let ai ∈ [0, 1], i ∈ {1, . . . ,N} such that

∑
i ai = 1. Define b1 = a1, c1 = 1− a1, bi =( ai

ai−1

)(bi−1
ci−1

)
, and ci = 1− bi for i ≥ 2. Then ai =


i−1∏

j=1

cj


 bi.

Proof
Proof by induction on i ∈ {1, . . . ,N}. Clearly, the statement holds for i = 1. Assume it
holds for arbitrary i < N. Then:

ai+1 =
(ai
ai

)
ai+1 =




i−1∏

j=1

cj


 bi


 ai+1

ai
=




i−1∏

j=1

cj


 bi


 cibi+1

bi

=


 i∏

j=1

cj


 bi+1

and this completes the proof. �

Lemma 1
Denote by Zε,n the set

⋃
f∈F{z | Cn( f )(z)− f (z) ≥ ε}. Denote by Aε,n the event “one of

zi ∈ D is in Zε,n.” If Fn properly approximates F, then:

E

[
Ep̃n

[
gn
]
− Ep̃n

[
f ∗n
] ]

(A.1)

≤
∣∣∣E[Ep̃n [Cn( f ∗n )] | Aε,n]∣∣∣ p(Aε,n)+ ∣∣∣E[Ep̃n [ f ∗n ] | Aε,n]∣∣∣ p(Aε,n)+ εtail(n)

where the expectations are taken with respect to the data set D.

Proof
Consider the following:

E

[
Ep̃n

[
gn
]
− Ep̃n

[
f ∗n
] ]

= E

[
Ep̃n

[
gn
]
− Ep̃n

[
Cn( f

∗
n )
]
+ Ep̃n

[
Cn( f

∗
n )
]
− Ep̃n

[
f ∗n
] ]

= E

[
Ep̃n

[
gn
]
− Ep̃n

[
Cn( f

∗
n )
] ]

+ E

[
Ep̃n

[
Cn( f

∗
n )
]
− Ep̃n

[
f ∗n
] ]
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Note first that E
[
Ep̃n

[
gn
]
− Ep̃n

[
Cn( f

∗
n )
]]
≤ 0, by the definition of gn as the mini-

mizer of the empirical risk. We next bound E
[
Ep̃n

[
Cn( f

∗
n )
]
− Ep̃n

[
f ∗n
]]
. We know from

the requirement of proper approximation that we have

E

[
Ep̃n

[
Cn( f

∗
n )
]
− Ep̃n

[
f ∗n
] ]

= E

[
Ep̃n

[
Cn( f

∗
n )
]
− Ep̃n

[
f ∗n
]
| Aε,n

]
p(Aε,n)

+ E

[
Ep̃n

[
Cn( f

∗
n )
]
− Ep̃n

[
f ∗n
]
| ¬Aε,n

]
(1− p(Aε,n))

≤ |E
[
Ep̃n

[
Cn( f

∗
n )
]
| Aε,n

]
|p(Aε,n)+ |E

[
Ep̃n

[
f ∗n
]
| Aε,n

]
|p(Aε,n)+ εtail(n)

and that equals the right side of Equation (Appendix A.1). �

Proposition 2
Let p ∈ P(α,L, r, q,B,G) and let Fm be as defined earlier. There exists a constant β =

β(L, q, p,N) > 0 such that Fm has the boundedness property with Km = sN log3m and
εbound(m) = m−β logm.

Proof
Let f ∈ Fm. Let Z(m) = {z | |z| ≤ log2m}. Then, for all z ∈ Z(m) we have | f (z)| =
−
∑

i,kψ(k, i) logθk,i ≤
∑

i,kψ(k, i)(p logm) ≤ sN log3m = Km, where the first inequality

follows from f ∈ Fm (θk,i ≥ m−s) and the second from |z| ≤ log2m. In addition, from the
requirements on p we have

E

[
| f | × I {| f | ≥ Km}

]
≤
(
sN log3m

)
×


 ∑

k>log2m

LΛ(k)rkk


 ≤ (κ log3m)× (qlog2m)

for κ = sNL
(1− q)2

. Finally, for β(L, q, p,N) � logκ+ 1+ log 1
q = β > 0 and if m > 1 then(

κ log3m
)(

qlog
2m
)
≤ m−β logm. �

Utility Lemma 4
(From [Dasgupta 1997].) Let a ∈ [0, 1] and let b = a if a ∈ [γ, 1− γ], b = γ if a ≤ γ,
and b = 1− γ if a ≥ 1− γ. Then for any ε ≤ 1/2 such that γ ≤ ε/(1+ ε) we have
log a/b ≤ ε.

Proposition 3
Let p ∈ P(α,L, r, q,B,G) and let Fm as defined earlier. There exists anM such that for any
m >Mwe have

p


 ⋃

f∈F

{z | Cm( f )(z)− f (z) ≥ εtail(m)}


 ≤ εtail(m)

for εtail(m) =
N log2m
ms − 1

and Cm( f ) = T( f,m−s).
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Proof
Let Z(m) be the set of derivations of size bigger than log2m. Let f ∈ F. Define f ′ =
T(f,m−s). For any z /∈ Z(m) we have that

f ′(z)− f (z) = −
K∑
k=1

(
φk,1(z) logθk,1 + φk,2(z) logθk,2 − φk,1(z) logθ

′
k,1 − φk,1(z) logθ

′
k,2

)

≤
K∑
k=1

log2m
(
max{0, log(θ′k,1/θk,1)}+max{0, log(θ′k,2/θk,2)}

)
(A.2)

Without loss of generality, assume εtail(n)/N log2m ≤ 1/2. Let γ =
εtail(m)/N log2m

1+ εtail(m)/N log2m
=

1/ms. From Utility Lemma 4 we have that log(θ′k,i/θk,i) ≤ εtail(m)/N logm. Plug this
into Equation A.2 (N = 2K) to get that for all z /∈ Z(m) we have f ′(z)− f (z) ≤ εtail(m).
It remains to show that the measure p(Z(m)) ≤ εtail(m). Note that

∑
z∈Z(m) p(z) ≤∑

k>log2m LΛ(k)r
k ≤ L

∑
k>log2m q

k = Lqlog
2m/(1− q) < εtail(m) for m >M where M is

fixed. �

Proposition 7
There exists a β′(L, p, q,N) > 0 such that F′

m has the boundedness property with Km =

sN log3m and εbound(m) = m−β′ logm.

Proof
From the requirement of p, we know that for any x we have a z such that yield(z) = x
and |z| ≤ α|x|. Therefore, if we let X(m) = {x | |x| ≤ log2m/α}, then we have for any
f ∈ F′

m and x ∈ X(m) that f (x) ≤ sN log3m = Km (similarly to the proof of Proposition 2).
Denote by f1(x, z) the function in Fm such that f (x) = − log

∑
z exp(−f1(x, z)).

In addition, from the requirements on p and the definition of Km we have

E

[
| f | × I {| f | ≥ Km}

]
=
∑
x

p(x)f (x)I { f ≥ Km}

=
∑

x:|x|>log2m/α

p(x)f (x)

≤
∑

x:|x|>log2m/α

p(x)f1(x, z(x))
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where z(x) is some derivation for x. We have

∑
x:|x|>log2m/α

p(x)f1(x, z(x)) ≤
∑

x:|x|≥log2m/α

∑
z∈Dx(G)

p(x, z)f1(x, z(x))

≤ sN logm
∑

x:|x|>log2m/α

∑
z

p(x, z)|z(x)|

≤ sN logm
∑

k>log2m

Λ(k)rkk

≤ sN logm
∑

k>log2m

qkk ≤ κ logmqlog
2m

for some constant κ > 0. Finally, for some β′(L, p, q,N) = β′ > 0 and some constant M,

if m >M then κ logm
(
qlog

2m
)
≤ m−β′ logm. �

Utility Lemma 2
For ai, bi ≥ 0, if − log

∑
i ai + log

∑
i bi ≥ ε then there exists an i such that − log ai +

log bi ≥ ε.

Proof
Assume − log ai + log bi < ε for all i. Then, bi/ai < eε, therefore

∑
i bi/

∑
i ai < eε, there-

fore − log
∑

i ai + log
∑

i bi < ε which is a contradiction to − log
∑

i ai + log
∑

i bi ≥ ε.
�

The next lemma is the main concentation of measure result that we use. Its proof
requires some simple modification to the proof given for Theorem 24 in Pollard (1984,
pages 30–31).

Lemma 2
Let Fn be a permissible class of functions such that for every f ∈ Fn we have E[| f | ×
I {| f | ≤ Kn}] ≤ εbound(n). Let Ftruncated,n = { f × I { f ≤ Kn} | f ∈ Fm}, that is, the set of
functions from Fn after being truncated by Kn. Then for ε > 0 we have

p

(
sup
f∈Fn

|Ep̃n
[
f
]
− Ep

[
f
]
| > 2ε

)
≤ 8N(ε/8,Ftruncated,n) exp

(
− 1
128

nε2/K2
n

)
+ εbound(n)/ε

provided n ≥ K2
n/4ε

2 and εbound(n) < ε.

Proof
First note that

sup
f∈Fn

|Ep̃n
[
f
]
− Ep

[
f
]
| ≤ sup

f∈Fn

|Ep̃n
[
f I {| f | ≤ Kn}

]
− Ep

[
f I {| f | ≤ Kn}

]
|

+ sup
f∈Fn

Ep̃n

[
| f |I {| f | ≤ Kn}

]
+ sup

f∈Fn

Ep
[
| f |I {| f | ≤ Kn}

]
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We have supf∈Fn
Ep
[
| f |I {| f | ≤ Kn}

]
≤ εbound(n) < ε, and also, from Markov in-

equality, we have

P(sup
f∈Fn

Ep̃n

[
| f |I {| f | ≤ Kn}

]
> ε) ≤ εbound(n)/ε

At this point, we can follow the proof of Theorem 24 in Pollard (1984), and its
extension on pages 30–31 to get Lemma 2, using the shifted set of functions Ftruncated,n.
�

Appendix B. Minimizing Log-Loss for Probabilistic Grammars

Central to our algorithms for minimizing the log-loss (both in the supervised case and
the unsupervised case) is a convex optimization problem of the form

min
θ

K∑
k=1

ck,1 logθk,1 + ck,2 logθk,2

such that ∀k ∈ {1, . . . ,K} :

θk,1 + θk,2 = 1

γ ≤ θk,1 ≤ 1− γ

γ ≤ θk,2 ≤ 1− γ

for constants ck,i which depend on p̃n or some other intermediate distribution in the
case of the expectation-maximization algorithm and γ which is a margin determined
by the number of samples. This minimization problem can be decomposed into several
optimization problems, one for each k, each having the following form:

max
β

c1β1 + c2β2 (B.1)

such that exp(β1)+ exp(β2) = 1 (B.2)

γ ≤ β1 ≤ 1− γ (B.3)

γ ≤ β2 ≤ 1− γ (B.4)

where ci ≥ 0 and 1/2 > γ ≥ 0. Ignore for a moment the constraints γ ≤ βi ≤ 1− γ. In
that case, this can be thought of as a regular maximum likelihood estimation problem,
so βi = ci/(c1 + c2). We give a derivation of this result in this simple case for completion.
We use Lagranian multipliers to solve this problem. Let F(β1,β2) = c1β1 + c2β2. Define
the Lagrangian:

g(λ) = inf
β
L(λ,β)

= inf
β
c1β1 + c2β2 + λ(exp(β1)+ exp(β2)− 1)
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Taking the derivative of the term we minimize in the Lagrangian, we have

∂L
∂βi

= ci + λ exp(βi)

Setting the derivatives to 0 for minimization, we have

g(λ) = c1 log(−c1/λ)+ c2 log(−c2/λ)+ λ(−c1/λ− c2/λ− 1) (B.5)

g(λ) is the objective function of the dual problem of Equation (B.1)–Equation (B.2).
We would like to minimize Equation (B.5) with respect to λ. The derivative of g(λ) is

∂g
∂λ

= −c1/λ− c2/λ− 1

hence when equating the derivative of g(λ) to 0, we get λ = −(c1 + c2), and therefore
the solution is β∗

i = log (ci/(c1 + c2)). We need to verify that the solution to the dual
problem indeed gets the optimal value for the primal. Because the primal problem is
convex, it is sufficient to verify that the Karush-Kuhn-Tucker (KKT) conditions hold
(Boyd and Vandenberghe 2004). Indeed, we have

∂F
∂βi

(β∗)+ λ ∂h
∂βi

(β∗) = ci − (c1 + c2)×
ci

c1 + c2

= 0

where h(β) � exp(β)+ exp(β)− 1 stands for the equality constraint. The rest of the
KKT conditions trivially hold, therefore β∗ is the optimal solution for Equations (B.1)–
(B.2).

Note that if 1− γ < ci/(c1 + c2) < γ, then this is the solution even when again
adding the constraints in Equation (B.3) and (B.4). When c1/(c1 + c2) < γ, then the
solution is β∗

1 = γ and β∗
2 = 1− γ. Similarly, when c2/(c1 + c2) < γ then the solution is

β∗
2 = γ and β∗

1 = 1− γ. We describe why this is true for the first case. The second case
follows very similarly. Assume c1/(c1 + c2) < γ. We want to show that for any choice of
β ∈ [0, 1] such that β > γwe have

c1 logγ+ c2 log(1− γ) ≥ c1 logβ+ c2 log(1− β)

Divide both sides of the inequality by c1 + c2 and we get that we need to show that

c1
c1 + c2

log(γ/β)+
c2

c1 + c2
log

(
1− γ
1− β

)
≥ 0

Becausewehaveβ > γ, andwealsohave c1/(c1 + c2) < γ, it is sufficient to show that

γ log(γ/β)+ (1− γ) log
(
1− γ
1− β

)
≥ 0 (B.6)

Equation (B.6) is precisely the definition of the KL divergence between the distribu-
tion of a coinwith probability γ of heads and the distribution of a coinwith probabilityβ
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of heads, and therefore the right side in Equation (B.6) is positive, and we get what
we need.

Appendix C. Counterexample to Tsybakov Noise (Proofs)

Lemma 6
A = AG(θ) is positive semi-definite for any probabilistic grammar 〈G,θ〉.

Proof
Let dk,i be a collection of constants. Define the random variable:

R(z) =
∑
i,k

dk,i
E
[
ψk,i
]ψk,i(z)

We have that

E
[
R2
]
=
∑
i,i′

∑
k,k′

A(k,i),(k′,i′ )dk,idk′,i′

which is always larger or equal to 0. Therefore, A is positive semi-definite. �

Lemma 7
Let 0 < µ < 1/2, c1, c2 ≥ 0. Let κ,C > 0. Also, assume that c1 ≤ c2. For any ε > 0, define:

a = µ

(
exp

(
Cε1/κ + ε/2

c1

))
= α1µ

b = µ

(
exp

(
−Cε1/κ + ε/2

c2

))
= α2µ

t(ε) = c1

(
1− µ
1− a

)
+ c2

(
1− µ
1− b

)
− (c1 + c2) exp(ε/2)

Then, for small enough ε, we have t(ε) ≤ 0.

Proof
We have that t(ε) ≤ 0 if

ac2 + bc1 ≥ −
(c1 + c2)(1− a)(1− b)

1− µ exp(ε/2)+ c1 + c2

= (c1 + c2)

(
1−

(1− a)(1− b)
(1− µ) exp(−ε/2)

)
(C.1)

First, show that

(1− a)(1− b)
(1− µ) exp(−ε/2)

≥ 1− µ (C.2)
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which happens if (after substituting a = α1µ, b = α2µ)

µ ≤ (α1 + α2 − 2)/(1− α1α2)

Note we have α1α2 > 1 because c1 ≤ c2. In addition, we have α1 + α2 − 2 ≥ 0 for small
enough ε (can be shown by taking the derivative, with respect to ε ofα1 + α2 − 2, which
is always positive for small enough ε, and in addition, noticing that the value of α1 +
α2 − 2 is 0 when ε = 0.) Therefore, Equation (C.2) is true.

Substituting Equation (C.2) in Equation (C.1), we have that t(ε) ≤ 0 if

ac2 + bc1 ≥ (c1 + c2)µ

which is equivalent to

c2α1 + c1α2 ≥ c1 + c2 (C.3)

Taking again the derivative of the left side of Equation (C.3), we have that it is an
increasing function of ε (if c1 ≤ c2), and in addition at ε = 0 it obtains the value c1 + c2.
Therefore, Equation (C.3) holds, and therefore t(ε) ≤ 0 for small enough ε. �

Theorem 5
Let G be a grammar with K ≥ 2 and degree 2. Assume that p is 〈G,θ∗〉 for some θ∗, such
that θ∗1,1 = θ

∗
2,1 = µ and that c1 ≤ c2. If AG(θ

∗) is positive definite, then p does not satisfy
the Tsybakov noise condition for any (C,κ), where C > 0 and κ ≥ 1.

Proof
Define λ to be the eigenvalue of AG(θ) with the smallest value (λ is positive). Also,
define v(θ) to be a vector indexed by k, i such that

vk,i(θ) = E
[
ψk,i
]
log

θ∗k,i

θk,i
.

Simple algebra shows that for any h ∈ H(G) (and the fact that p ∈ H(G)), we have

Ep(h) = DKL(p‖h) =
K∑
k=1

(
Ep
[
ψk,1

]
log

θ∗k,1

θk,1
+ Ep

[
ψk,1

]
log

(
1− θ∗k,1
1− θk,1

))

For a C > 0 and κ ≥ 1, define α = Cε1/κ. Let ε < α. First, we construct an h such
that DKL(p‖h) < ε+ ε/2 but dist(p, h) > Cε1/κ as ε→ 0. The construction follows.
Parametrize h by θ such that θ is identical to θ∗ except for k = 1, 2, in which case we
have

θ1,1 = θ
∗
1,1

(
exp

(
α+ ε/2

c1

))
= µ

(
exp

(
α+ ε/2

c1

))
(C.4)

θ2,1 = θ
∗
2,1

(
exp

(
−α+ ε/2

c2

))
= µ

(
exp

(
−α+ ε/2

c2

))
(C.5)
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Note that µ ≤ θ1,1 ≤ 1/2 and θ2,1 < µ. Then, we have that

DKL(p‖h) =
K∑
k=1

(
Ep
[
ψk,1

]
log

θ∗k,1

θk,1
+ Ep

[
ψk,1

]
log

(
1− θ∗k,1
1− θk,1

))

= ε+ c1 log
1− θ∗k,1
1− θ1,1

+ c2 log
1− θ∗k,2
1− θ2,1

= ε+ c1 log
1− µ
1− θ1,1

+ c2 log
1− µ
1− θ2,1

We also have

c1 log
1− µ
1− θ1,1

+ c2 log
1− µ
1− θ2,1

≤ 0 (C.6)

if

c1 ×
1− µ
1− θ1,1

+ c2 ×
1− µ
1− θ2,1

≤ c1 + c2 (C.7)

(This can be shown by dividing Equation [C.6] by c1 + c2 and then using the concavity of
the logarithm function.) From Lemma 7, we have that Equation (C.7) holds. Therefore,

DKL(p‖h) ≤ 2ε

Now, consider the following, which can be shown through algebraic manipulation:

dist(p, h) = E

[(
log

p
h

)2]
=
∑
k,k′

∑
i,i′

E
[
ψk,i ×ψk′,i′

](
log

θ∗k,i

θk,i

)(
log

θ∗k′,i′

θk′,i′

)

Then, additional algebraic simplification shows that

E

[(
log

p
h

)2]
= v(θ)Av(θ)�

A fact from linear algebra states that

v(θ)Av(θ)� ≥ λ||v(θ)||22

where λ is the smallest eigenvalue in A. From the construction of θ and Equation (C.4)–
(C.5), we have that ||v(θ)||22 > α

2. Therefore,

E

[(
log

p
h

)2]
≥ λα2

which means dist(p, h) ≥
√
λCε1/κ. Therefore, p does not satisfy the Tsybakov noise

condition with parameters (D,κ) for any D > 0. �
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Appendix D. Notation

Table D.1 gives a table of notation for symbols used throughout this article.

Table 1
Table of notation symbols used in this article.

Symbol Description 1st Mention

E
R
M

X Instance space (natural language sentences) Sec. 2
Z Output space (grammar derivations) Sec. 2
p Distribution generating the data Sec. 2
Q Concept space, a family of distributions Sec. 2
q An estimated distribution Sec. 2
qopt Risk minimizer Eq. 1
n Number of available samples Sec. 2
p̃n Empirical distribution Sec. 2
q∗ Empirical risk minimizer Eq. 2
Ep(q;Q) Excess risk Eq. 4
Rn(Q) Empirical process for the log-loss Eq. 5

G
ra
m
m
ar
s

G Grammar (for example, CFG rules) Sec. 3
θ Probabilistic grammar parameters Sec. 3
K Number of multinomials in the probabilistic grammar Eq. 11
Nk Size of the kth multinomial of the probabilistic grammar Eq. 11
N

∑K
k=1Nk Sec. 3

x Sentence in the language of the grammar Sec. 3
z Derivation in the grammar Sec. 3
ψk,i(x, z) Count of the ith event firing in the kth multinomial in x and z Eq. 11
ΘG Parameter space for a given probabilistic grammar G Eq. 11
θ Parameters for a probabilistic grammar Eq. 11
deg(G) The degree of G, maxk Nk Sec. 3
Dx(G) The set of derivations for string x Sec. 3
H,H(G) Concept space, a set of probabilistic grammars Sec. 3
F,F(G) Negated log-concept space, {− log h | h ∈ H(G)} Sec. 3
L Constant determining distributional assumption Sec. 3.1
q Constant determining distributional assumption Sec. 3.1
r Constant determining distributional assumption Sec. 3.1

P
ro
p
er

A
p
p
ro
xi
m
at
io
n
s

Fn Element n in a proper approximation (contained in F) Sec. 4
εtail(n) Convergence rate for the boundedness property Sec. 4
εbound(n) Convergence rate for the tightness property Sec. 4
Cn( f ) A map for f ∈ F to f ′ ∈ Fn Sec. 4
T(θ,γ) Parameters θwith shifted probabilities Sec. 4.1
T( f,γ) f ∈ F with shifted probabilities Sec. 4.1
ΘG(γ) Set of parameters {T(θ,γ) | θ ∈ ΘG} for a given G Sec. 4.1
s A constant larger than 1 on which boundedness property

depends
Sec. 4.1

β(L, q, p,N) A constant on which sample complexity depends for the su-
pervised case

Prop. 2

F′
n Element n in a proper approximation (contained in F) Sec. 4

C′
n( f ) A map for f ∈ F to f ′ ∈ Fn Sec. 4
ε′tail(n) Convergence rate for the soundness property Sec. 4
ε′bound(n) Convergence rate for the tightness property Sec. 4
β′(L, q, p,N) A constant on which sample complexity depends for the

unsupervised case
Sec. 5.3
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