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This article describes the resource- and system-building efforts of an 8-week Johns Hopkins
University Human Language Technology Center of Excellence Summer Camp for Applied Lan-
guage Exploration (SCALE-2009) on Semantically Informed Machine Translation (SIMT). We
describe a new modality/negation (MN) annotation scheme, the creation of a (publicly available)
MN lexicon, and two automated MN taggers that we built using the annotation scheme and
lexicon. Our annotation scheme isolates three components of modality and negation: a trigger
(a word that conveys modality or negation), a target (an action associated with modality or
negation), and a holder (an experiencer of modality). We describe how our MN lexicon was
semi-automatically produced and we demonstrate that a structure-based MN tagger results in
precision around 86% (depending on genre) for tagging of a standard LDC data set.

We apply our MN annotation scheme to statistical machine translation using a syntactic
framework that supports the inclusion of semantic annotations. Syntactic tags enriched with
semantic annotations are assigned to parse trees in the target-language training texts through
a process of tree grafting. Although the focus of our work is modality and negation, the tree
grafting procedure is general and supports other types of semantic information. We exploit this
capability by including named entities, produced by a pre-existing tagger, in addition to the MN
elements produced by the taggers described here. The resulting system significantly outperformed
a linguistically naive baseline model (Hiero), and reached the highest scores yet reported on the
NIST 2009 Urdu–English test set. This finding supports the hypothesis that both syntactic and
semantic information can improve translation quality.

1. Introduction

This article describes the resource- and system-building efforts of an 8-week Johns
Hopkins Human Language Technology Center of Excellence Summer Camp for Ap-
plied Language Exploration (SCALE-2009) on Semantically InformedMachine Translation
(SIMT) (Baker et al. 2010a, 2010b, 2010c, 2010d). Specifically, we describe our modal-
ity/negation (MN) annotation scheme, a (publicly available) MN lexicon, and two
automated MN taggers that were built using the lexicon and annotation scheme.

Our annotation scheme isolates three components of modality and negation: a
trigger (a word that conveys modality or negation), a target (an action associated with
modality or negation), and a holder (an experiencer of modality). Two examples of MN
tagging are shown in Figure 1.

Note that modality and negation are unified into single MN tags (e.g., the “Able”
modality tag is combined with “NOT” to form the “NOTAble” tag) and also that

Figure 1
Modality/negation tagging examples.
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MN tags occur in pairs of triggers (e.g., TrigAble and TrigNegation) and targets (e.g.,
TargNOTAble).

We apply our modality and negation mechanism to the problem of Urdu–English
machine translation using a technique that we call tree grafting. This technique incorpo-
rates syntactic labels and semantic annotations in a unified and coherent framework for
implementing semantically informed machine translation. Our framework is not lim-
ited to the semantic annotations produced by the MN taggers that are the subject of this
article and we exploit this capability to additionally include named-entity annotations
produced by a pre-existing tagger. By augmenting hierarchical phrase-based translation
rules with syntactic labels that were extracted from a parsed parallel corpus, and further
augmenting the parse trees with markers for modality, negation, and entities (through
the tree grafting process), we produced a better model for translating Urdu and English.
The resulting system significantly outperformed the linguistically naive baseline Hiero
model, and reached the highest scores yet reported on the NIST 2009 Urdu–English
translation task.

We note that although our largest gains were from syntactic enrichments to the
model, smaller (but significant) gains were achieved by injecting semantic knowledge
into the syntactic paradigm. Verbal semantics (modality and negation) contributed
slightly more gains than nominal semantics (named entities) and their combined gains
were the sum of their individual contributions.

Of course, the limited semantic types we explored (modality, negation, and en-
tities) are only a small piece of the much larger semantic space, but demonstrating
success on these semantic aspects of language, the combination of which has been
unexplored by the statistical machine translation community, bodes well for (larger)
improvements based on the incorporation of other semantic aspects (e.g., relations and
temporal knowledge). Moreover, we believe this syntactic framework to be well suited
for further exploration of the impact of many different types of semantics on the quality
of machine-translation (MT) output. Indeed, it would not have been possible to initiate
the current study without the foundational work that gave rise to a syntactic paradigm
that could support these semantic enrichments.

In the SIMT paradigm, semantic elements (e.g., modality/negation) are identified
in the English portion of a parallel training corpus and projected to the source language
(in our case, Urdu) during a process of syntactic alignment. These semantic elements are
subsequently used in the translation rules that are extracted from the parallel corpus.
The goal of adding them to the translation rules is to constrain the space of possible
translations to more grammatical and more semantically coherent output. We explored
whether including such semantic elements could improve translation output in the face
of sparse training data and few source language annotations. Results were encouraging.
Translation quality, as measured by the Bleu metric (Papineni et al. 2002), improved
when the training process for the Joshua machine translation system (Li et al. 2009)
used in the SCALE workshop included MN annotation.

We were particularly interested in identifying modalities and negation because
they can be used to characterize events in a variety of automated analytic processes.
Modalities and negation can distinguish realized events from unrealized events, beliefs
from certainties, and can distinguish positive and negative instances of entities and
events. For example, the correct identification and retention of negation in a particular
language—such as a single instance of the word “not”—is very important for a correct
representation of events and likewise for translation.

The next two sections examine related work and the motivation behind the SIMT
approach. Section 4 defines the theoretical framework for ourMN lexicon and automatic
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MN taggers. Section 5 presents the MN annotation scheme used by our human annota-
tors and describes the creation of a MN lexicon based on this scheme. Section 6 presents
two types of MN taggers—one that is string-based and one that is structure-based—
and evaluates the effectiveness of the structure-based tagger. Section 7 then presents
implementation details of the semantically informed syntactic system and describes
the results of its application. Finally, Section 8 presents conclusions and future work.

2. Related Work

The development of annotation schemes has become an area of computational lin-
guistics development in its own right, often separate from machine learning applica-
tions. Many projects began as strictly linguistic projects that were later adapted for
computational linguistics. When an annotation scheme is consistent and well devel-
oped, its subsequent application to NLP systems is most effective. For example, the
syntactic annotation of parse trees in the Penn Treebank (Marcus, Marcinkiewicz, and
Santorini 1993) had a tremendous effect on parsing and onNatural Language Processing
in general.

In the case of semantic annotations, each tends to have its unique area of focus.
Although the labeling conventions may differ, a layer of modality annotation over
verb role annotation, for example, can have a complementary effect of providing more
information, rather than being viewed as a competing scheme. We review some of the
major semantic annotation efforts here.

Propbank (Palmer, Gildea, and Kingsbury 2005) is a set of annotations of predicate–
argument structure over parse trees. First annotated as an overlay to the Penn
Treebank, Propbank annotation now exists for other corpora. Propbank annotation aims
to answer the question Who did what to whom? for individual predicates. It is tightly
coupled with the behavior of individual verbs. FrameNet (Baker, Fillmore, and Lowe
1998), a frame-based lexical database that associates each word in the database with
a semantic frame and semantic roles, is also associated with annotations at the lexical
level.WordNet (Fellbaum 1998) is a verywidely used online lexical taxonomywhich has
been developed in numerous languages.WordNet nouns, verbs, adjectives, and adverbs
are organized into synonym sets. PropBank, FrameNet, and WordNet cover the word
senses and argument-taking properties of many modal predicates.

The Prague Dependency Treebank (Hajič et al. 2001; Böhmová, Cinková, and
Hajičová 2005) (PDT) is a multi-level system of annotation for texts in Czech and other
languages, with its roots in the Prague school of linguistics. Besides a morphological
layer and an analytical layer, there is a Tectogrammatical layer. The Tectogrammatical
layer includes functional relationships, dependency relations, and co-reference. The
PDT also integrates propositional and extra-propositional meanings in a single anno-
tation framework.

The Penn Discourse Treebank (PDTB) (Webber et al. 2003; Prasad et al. 2008)
annotates discourse connectives and their arguments over a portion of the Penn
Treebank. Within this framework, senses are annotated for the discourse connectives
in a hierarchical scheme. Relevant to the current work, one type of tag in the scheme is
the Conditional tag, which includes hypothetical, general, unreal present, unreal past,
factual present, and factual past arguments.

The PDTB work is related to that of Wiebe, Wilson, and Cardie (2005) for estab-
lishing the importance of attributing a belief or assertion expressed in text to its agent
(equivalent to the notion of holder in our scheme). The annotation scheme is designed to
capture the expression of opinions and emotions. In the PDTB, each discourse relation
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and its two arguments are annotated for attribution. The attribute features are the
Source or agent, the Type (assertion propositions, belief propositions, facts, and eventu-
alities), scopal polarity, and determinacy. Scopal polarity is annotated on relations and
their arguments to identify cases when verbs of attribution are negated on the surface
but the negation takes scope over the embedded clause. An example is the sentence
“Having the dividend increases is a supportive element in the market outlook but I don’t
think it’s a main consideration.” Here, the second argument (the clause following but) is
annotated with a “Neg” marker, meaning “I think it’s not a main consideration.”

Wilson, Wiebe, and Hoffman (2009) describe the importance of correctly inter-
preting polarity in the context of sentiment analysis, which is the task of identifying
positive and negative opinions, emotions, and evaluations. The authors have estab-
lished a set of features to distinguish between positive and negative polarity and discuss
the importance of correctly analyzing the scope of the negation and the modality (e.g.,
whether the proposition is asserted to be real or not real).

A major annotation effort for temporal and event expressions is the TimeML spec-
ification language, which has been developed in the context of reasoning for question
answering (Saurı́, Verhagen, and Pustejovsky 2006). TimeML, which includes modality
annotation on events, is the basis for creating the TimeBank and FactBank corpora
(Pustejovsky et al. 2006; Saurı́ and Pustejovsky 2009). In FactBank, event mentions are
marked with their degree of factuality.

Recent work incorporating modality annotation includes work on detecting cer-
tainty and uncertainty. Rubin (2007) describes a scheme for five levels of certainty,
referred to as Epistemic modality, in news texts. Annotators identify explicit certainty
markers and also take into account Perspective, Focus, and Time. Focus separates
certainty into facts and opinions, to include attitudes. In our scheme, Focus would be
covered by want and belief modality. Also, separating focus and uncertainty can allow
the annotation of both on one trigger word. Prabhakaran, Rambow, and Diab (2010)
describe a scheme for automatic committed belief tagging. Committed belief indicates
the writer believes the proposition. The authors use a previously annotated corpus of
committed belief, non-committed belief, and not applicable (Diab et al. 2009), and derive
features for machine learning from parse trees. The authors desire to combine their
work with FactBank annotation.

The CoNLL-2010 shared task (Farkas et al. 2010) was about the detection of cues
for uncertainty and their scope. The task was described as “hedge detection,” that is,
finding statements which do not or cannot be backed up with facts. Auxiliary verbs
such as may, might, can, and so forth, are one type of hedge cue. The training data for
the shared task included the BioScope corpus (Szarvas et al. 2008), which is manually
annotated with negation and speculation cues and their scope, and paragraphs from
Wikipedia possibly containing hedge information. Our scheme also identifies cues in
the form of triggers, but our desired outcome is to cover the full range of modalities
and not just certainty and uncertainty. To identify scope, we use syntactic parse trees,
as was allowed in the CoNLL task.

The textual entailment literature includes modality annotation schemes. Identifying
modalities is important to determine whether a text entails a hypothesis. Bar-Haim et al.
(2007) include polarity based rules and negation and modality annotation rules. The
polarity rules are based on an independent polarity lexicon (Nairn, Condorovdi, and
Karttunen 2006). The annotation rules for negation andmodality of predicates are based
on identifying modal verbs, as well as conditional sentences and modal adverbials.
The authors read the modality off parse trees directly using simple structural rules for
modifiers.
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Earlier work describing the difficulty of correctly translating modality using ma-
chine translation includes Sigurd and Gawrónska (1994) andMurata et al. (2005). Sigurd
and Gawrónska (1994) write about rule based frameworks and how using alternate
grammatical constructions such as the passive can improve the rendering of the modal
in the target language. Murata et al. (2005) analyze the translation of Japanese into
English by several systems, showing they often render the present incorrectly as the
progressive. The authors trained a support vector machine to specifically handle modal
constructions, whereas our modal annotation approach is a part of a full translation
system.

We now consider other literature, relating to tree-grafting and machine translation.
Our tree-grafting approach builds on a technique used for tree augmentation in Miller
et al. (2000), where parse-tree nodes are augmented with semantic categories. In that
earlier work, tree nodes were augmented with relations, whereas we augmented tree
nodes with modality and negation. The parser is subsequently retrained for both
semantic and syntactic processing. The semantic annotations were done manually by
students who were provided a set of guidelines and then merged with the syntactic
trees automatically. In our work we tagged our corpus with entities, modality, and
negation automatically and then grafted them onto the syntactic trees automatically,
for the purpose of training a statistical machine translation system. An added benefit of
the extracted translation rules is that they are capable of producing semantically tagged
Urdu parses, despite the fact that the training data were processed by only an English
parser and tagger.

Related work in syntax-based MT includes that of Huang and Knight (2006), where
a series of syntax rules are applied to a source language string to produce a target
language phrase structure tree. The Penn English Treebank (Marcus, Marcinkiewicz,
and Santorini 1993) is used as the source for the syntactic labels and syntax trees are
relabeled to improve translation quality. In this work, node-internal and node-external
information is used to relabel nodes, similar to earlier work where structural context
was used to relabel nodes in the parsing domain (Klein and Manning 2003). Klein
and Manning’s methods include lexicalizing determiners and percent markers, making
more fine-grained verb phrase (VP) categories, and marking the properties of sister
nodes on nodes. All of these labels are derivable from the trees themselves and not
from an auxiliary source. Wang et al. (2010) use this type of node splitting in machine
translation and report a small increase in BLEU score.

We use the methods described in Zollmann and Venugopal (2006) and Venugopal,
Zollmann, and Vogel (2007) to induce synchronous grammar rules, a process which
requires phrase alignments and syntactic parse trees. Venugopal, Zollmann, and Vogel
(2007) use generic non-terminal category symbols, as in Chiang (2005), as well as gram-
matical categories from the Stanford parser (Klein and Manning 2003). Their method
for rule induction generalizes to any set of non-terminals. We further refine this process
by adding semantic notations onto the syntactic non-terminals produced by a Penn
Treebank trained parser, thus making the categories more informative.

In the parsing domain, the work of Petrov and Klein (2007) is related to the current
work. In their work, rule splitting and rule merging are applied to refine parse trees
during machine learning. Hierarchical splitting leads to the creation of learned cate-
gories that have linguistic relevance, such as a breakdown of a determiner category into
two subcategories of determiners by number, that is, this and that group together as do
some and these. We augment parse trees by category insertion in cases where a semantic
category is inserted as a node in a parse tree, after the English side of the corpus has
been parsed by a statistical parser.
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3. SIMTMotivation

As in many of the frameworks described herein, the aim of the SIMT effort was to
provide a generalized framework for representing structured semantic information,
such as modality and negation. Unlike many of the previous semantic annotation efforts
(where the emphasis tends to be on English), however, our approach is designed to
be directly integrated into a translation engine, with the goal of translating highly
divergent language pairs, such as Urdu and English. As such, our choice of annotation
scheme—illustrated in the trigger-target example shown in Figure 1—was based on a
simplified structural representation that is general enough to accommodate divergent
modality/negation phenomena, easy for language experts to follow, and straightfor-
ward to integrate into a tree-grafting mechanism for MT. Our objective is to investigate
whether incorporating this sort of information into machine translation systems could
produce better translations, particularly in settings where only small parallel corpora
are available.

It is informative to look at an example translation to understand the challenges of
translating important semantic elements when working with a low-resource language
pair. Figure 2 shows an example taken from the 2008 NIST Urdu–English translation
task, and illustrates the translation quality of a state-of-the-art Urdu–English system
(prior to the SIMT effort). The small amount of training data for this language pair (see

Figure 2
An example of Urdu–English translation. Shown are an Urdu source document, a reference
translation produced by a professional human translator, and MT output from a phrase-based
model (Moses) without linguistic information, which is representative of state-of-the-art MT
quality before the SIMT effort.
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Table 1
The size of the various data sets used for the experiments in this article including the training,
development (dev), incremental test set (devtest), and blind test set (test). The dev/devtest was a
split of the NIST08 Urdu–English test set, and the blind test set was NIST09.

Urdu English

set lines tokens types tokens types

training 202k 1.7M 56k 1.7M 51k
dev 981 21k 4k 19k 4k
devtest 883 22k 4k 19–20k 4k
test 1,792 42k 6k 38–41k 5k

Table 1) results in significantly degraded translation quality compared, for example, to
an Arabic–English system that has more than 100 times the amount of training data.

The output in Figure 2 was produced using Moses (Koehn et al. 2007), a state-of-
the-art phrase-based MT system that by default does not incorporate any linguistic
information (e.g., syntax or morphology or transliteration knowledge). As a result,
words that were not directly observed in the bilingual training data were untranslatable.
Names, in particular, are problematic. For example, the lack of translation for Nagaland
and Nagas induces multiple omissions throughout the translated text, thus producing
several instances where the holder of a claim (or belief ) is missing. This is because out-of-
vocabulary words are deleted from the Moses output.

We use syntactic and semantic tags as higher-order symbols inside the translation
rules used by the translation models. Generic symbols in translation rules (i.e., the
non-terminal symbol “X”) were replaced with structured information at multiple levels
of abstraction, using a tree-grafting approach that we describe subsequently. Figure 3

Figure 3
The evolution of a semantically informed approach to our synchronous context-free grammars.
At the start of the 8 weeks the decoder used translation rules with a single generic non-terminal
symbol. Later syntactic categories were used, and by the end of the workshop the translation
rules included semantic elements such as modalities and negation, as well as named entities.
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illustrates the evolution of the translation rules that we used, first replacing “X” with
grammatical categories and then with categories corresponding to semantic units.

The semantic units that we examined in this effort weremodalities and negation (in-
dications that a statement represents something that has/hasn’t taken place or is/isn’t
a belief or an intention) and named entities (such as people or organizations). Other
semantic units, such as relations between entities and events, were not part of this effort
but we believe they could be similarly incorporated into the framework. We chose to
examine semantic units that canonically exhibit two different syntactic types: verbal, in
the case of modality and negation, and nominal, in the case of named entities.

Although used in this effort, named entities were not the focus of our research
efforts in SIMT. Rather, we focused on the development of an annotation scheme
for modality and negation and its use in MT, while relying on a pre-existing hidden
Markov model (HMM)-based tagger derived from Identifinder (Bikel, Schwartz, and
Weischedel 1999) to produce entity tags. Thus, the remainder of this article will focus
on our MN annotation scheme, two MN taggers produced by the effort, and on the
integration of semantics in the SIMT paradigm.

4. Modality and Negation

Modality is an extra-propositional component of meaning. In John may go to NY, the
basic proposition is John go to NY and the word may indicates modality and is called the
trigger in our work. van der Auwera and Amman (2005) define core cases of modality:
John must go to NY (epistemic necessity), John might go to NY (epistemic possibility),
John has to leave NY now (deontic necessity), and John may leave NY now (deontic pos-
sibility). Larreya (2009) defines the core cases slightly differently as root and epistemic.
Root modality in Larreya’s taxonomy includes physical modality (He had to stop. The
road was blocked) and deontic modality (You have to stop). Epistemic modality includes
problematic modality (You must be tired) and implicative modality (You have to be mad to
do that). Many semanticists (Kratzer 1991, von Fintel and Iatridou 2006) define modality
as quantification over possible worlds. John might leave NY means that there exist some
possible worlds in which John leaves NY. Another view of modality relates more to a
speaker’s attitude toward a proposition (McShane, Nirenburg, and Zacharski).

We incorporate negation as an inextricably intertwined component of modality,
using the term “modality/negation (MN)” to refer to our resources (lexicons) and
processes (taggers). We adopt the view that modality includes several types of attitudes
that a speaker might have (or not have) toward an event or state. From the point of
view of the reader or listener, modality might indicate factivity, evidentiality, or senti-
ment. Factivity is related to whether an event, state, or proposition happened or didn’t
happen. It distinguishes things that happened from things that are desired, planned,
or probable. Evidentiality deals with the source of information and may provide clues
to the reliability of the information. Did the speaker have first-hand knowledge of
what he or she is reporting, or was it hearsay or inferred from indirect evidence?
Sentiment deals with a speaker’s positive or negative feelings toward an event, state,
or proposition.

Our project was limited to modal words and phrases—and their negations—that
are related to factivity. Beyond the core cases of modality, however, we include some
aspects of speaker attitude such as intent and desire. We included these because they
are often not separable from the core cases of modality. For example, He had to go may
include the ideas that someone wanted him to go, that he might not have wanted to go,
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that at some point after coercion he intended to go, and that at some point he was able
to go (Larreya 2009).

Our focus was on the eight modalities in Figure 4, where P is a proposition (the
target of the triggering modality) and H is the holder (experiencer or cognizer of the
modality). Some of the eight factivity-related modalities may overlap with sentiment
or evidentiality. For example, want indicates that the proposition it scopes over may
not be a fact (it may just be desired), but it also expresses positive sentiment toward
the proposition it scopes over. We assume that sentiment and evidentiality are covered
under separate coding schemes, and that words like want would have two tags, one for
sentiment and one for factivity.

5. The Modality/Negation Annotation Scheme

The challenge of creating an MN annotation scheme was to deal with the complex
scoping ofmodalities with each other andwith negation, while at the same time creating
a simplified operational procedure that could be followed by language experts without
special training. Here we describe our MN annotation framework, including a set
of linguistic simplifications, and then we present our methodology for creation of a
publicly available MN lexicon. The modality annotation scheme is fully documented in
a set of guidelines that were written with English example sentences (Baker et al. 2010c).
The guidelines can be used to derive hand-tagged evaluation data for English and they
also include a section that contains a set of Urdu trigger-word examples.

During the SCALE workshop, some Urdu speakers used the guidelines to annotate
a small corpus of Urdu by hand, which we reserved for future work. The Urdu corpus
could be useful as an evaluation corpus for automatically tagged Urdu, such as one
derived from rule projection in the Urdu–English MT system, a method we describe
further in Section 7. Also, although we did not annotate a very large Urdu corpus, more
data could be manually annotated to train an automatic Urdu tagger in the future.

5.1 Anatomy of Modality/Negation in Sentences

In sentences that express modality, we identify three components: a trigger, a target, and
a holder. The trigger is the word or string of words that expresses modality or negation.
The target is the event, state, or relation over which the modality scopes. The holder is

Figure 4
Eight modalities used for tagging. H = the holder of the modality; P = the proposition over
which the modality has scope.
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the experiencer or cognizer of themodality. The trigger can be a word such as should, try,
able, likely, or want. It can also be a negative element such as not or n’t. Often, modality
or negation is expressed without a lexical trigger. For a typical declarative sentence
(e.g., John went to NY), the default modality is strong belief when no lexical trigger is
present. Modality can also be expressed constructionally. For example, Requirement can
be expressed in Urdu with a dative subject and infinitive verb followed by a verb that
means to happen or befall.

5.2 Linguistic Simplifications for Efficient Operationalization

Six linguistic simplifications were made for the sake of efficient operationalization of
the annotation task. The first linguistic simplification deals with the scope of modality
and negation. The first given sentence indicates scope of modality over negation. The
second sentence indicates scope of negation over modality:

� He tried not to criticize the president.

� He didn’t try to criticize the president.

The interaction of modality with negation is complex, but was operationalized eas-
ily in the menu of 13 choices shown in Figure 5. First consider the case where negation
scopes over modality. Four of the 13 choices are composites of negation scoping over
modality. For example, the annotators can choose try or not try as two separate modali-
ties. Five modalities (Require, Permit, Want, Firmly Believe, and Believe) do not have a
negated form. For three of these modalities (Want, Firmly Believe, and Believe), this is
because they are often transparent to negation. For example, I do not believe that he left NY
sometimes means the same as I believe he didn’t leave NY. Merging the two is obviously
a simplification, but it saves the annotators from having to make a difficult decision.

Figure 5
Thirteen menu choices for Modality/Negation annotation. H = the holder of the modality;
P = the proposition over which the modality has scope.
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The second linguistic simplification is related to a duality in meaning between
require and permit. Not requiring P to be true is similar in meaning to permitting P to
be false. Thus, annotators were instructed to label not require P to be true as Permit P to be
false. Conversely, not Permit P to be truewas labeled as Require P to be false.

After the annotator chooses the modality, the scoping of modality over negation
takes place as a second decision. For example, for the sentence John tried not to go to NY,
the annotator first identifies go as the target of a modality and then chooses try as the
modality. Finally, the annotator chooses false as the polarity of the target.

The third simplification relates to entailments between modalities. Many words
have complex meanings that include components of more than one modality. For ex-
ample, if one managed to do something, one tried to do it and one probably wanted to
do it. Thus, annotators were provided a specificity-ordered modality list as in Figure 5,
andwere asked to choose the first applicable modality. We note that this list corresponds
to two independent “entailment groupings,” ordered by specificity:

� {requires→ permits}
� {succeeds→ tries→ intends→ is able→ wants}

Inside the entailment groupings, the ordering corresponds to an entailment relation:
For example, succeeds can only occur if tries has occurred. Also, the {requires → . . . }
entailment grouping is taken to be more specific than (ordered before) the {succeeds →
. . . } entailment grouping. Moreover, both entailment groupings are taken to be more
specific than believes, which is not in an entailment relation with any of the other
modalities.

The fourth simplification, already mentioned, is that sentences without an overt
trigger word are tagged as firmly believes. This heuristic works reasonably well for the
types of documents we were working with, although one could imagine genres such
as fiction in which many sentences take place in an alternate possible world (imagined,
conditional, or counterfactual) without explicit marking.

The fifth linguistic simplification is that we did not require annotators to mark
nested modalities. For a sentence like He might be able to go to NY the target word go
is marked as ability, but might is not annotated for Belief modality. This decision was
based on time limits on the annotation task; there was not enough time for annotators
to deal with syntactic scoping of modalities over other modalities.

Finally, we did not mark the holder H because of the short time frame for workshop
preparation. We felt that identifying the triggers and targets would be most beneficial
in the context of machine translation.

5.3 The English Modality/Negation Lexicon

Using the given framework, we created an MN lexicon that was incorporated into an
MN tagging scheme to be described in Section 6. Entries in the MN lexicon consist of:
(1) A string of one or more words: for example, should or have need of . (2) A part of
speech for each word: The part of speech helps us avoid irrelevant homophones such as
the noun can. (3) An MN designator: one of the 13 modality/negation cases described
previously. (4) A head word (or trigger): the primary phrasal constituent to cover
cases where an entry is a multi-word unit (e.g., the word hope in hope for). (5) One or
more subcategorization codes derived from the Longman Dictionary of Contemporary
English (LDOCE).
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We produced the full English MN lexicon semi-automatically. First, we gathered a
small seed list of MN trigger words and phrases from our modality annotation manual
(Baker et al. 2010c). Then, we expanded this small list of MN trigger words by running
an on-line search for each of the words, specifically targeting free on-line thesauri (e.g.,
thesaurus.com), to find both synonymous and antonymous words. From these we
manually selected the words we thought triggered modality (or their corresponding
negative variants) and filtered out words that we thought didn’t trigger modality. The
resulting list of MN trigger words and phrases contained about 150 lemmas.

We note that most intransitive (LDOCE) codes were not applicable to modality/
negation constructions. For example, hunger (in the Want modality class) has a modal
reading of “desire” when combined with the preposition for (as in she hungered for a
promotion), but we do not consider it to be modal when it is used in the somewhat
archaic sentence He hungered, meaning that he did not have enough to eat. Thus the
LDOCE code I associated with the verb hungerwas hand-changed to I-FOR. There were
43 such cases. Once the LDOCE codes were hand-verified (and modified accordingly),
the mapping to subcategorization codes was applied.

The MN lexicon is publicly available at http://www.umiacs.umd.edu/∼bonnie/

ModalityLexicon.txt. An example of an entry is given in Figure 6, for the verb need.

6. Automatic Modality/Negation Annotation

An MN tagger produces text or structured text in which modality or negation triggers
and/or targets are identified. Automatic identification of the holders of modalities was
beyond the scope of our project because the holder is often not explicitly stated in the
sentence in which the trigger and target occur. This section describes two types of MN
taggers—one that is string-based and one that is structure-based.

6.1 The String-Based English Modality/Negation Tagger

The string-based tagger operates on text that has been tagged with parts of speech
by a Collins-style statistical parser (Miller et al. 1998). The tagger marks spans of
words/phrases that exactly match MN trigger words in the MN lexicon described
previously, and that exactly match the same parts of speech. This tagger identifies the
target of each modality/negation using the heuristic of tagging the next non-auxiliary
verb to the right of the trigger. Spans of words can be tagged multiple times with
different types of triggers and targets.

Figure 6
Modality lexicon entry for need.
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We found the string-based MN tagger to produce output that matched about 80%
of the sentence-level tags produced by our structure-based tagger, the results of which
are described next. Although string-based tagging is fast and reasonably accurate in
practice, we opted to focus on the indepth analysis of modality/negation of our SIMT
results using the more accurate structure-based tagger.

6.2 The Structure-Based English Modality/Negation Tagger

The structure-based MN tagger operates on text that has been parsed (Miller et al.
1998). We used a version of the parser that produces flattened trees. In particular, the
flattener deletes VP nodes that are immediately dominated by VP or S and noun phrase
(NP) nodes that are immediately dominated by PP or NP. The parsed sentences are
processed by TSurgeon rules. Each TSurgeon rule consists of a pattern and an action.
The pattern matches part of a parse tree and the action alters the parse tree. More
specifically, the pattern finds an MN trigger word and its target and the action inserts
tags such as TrigRequire and TargRequire for triggers and targets for the modality
Require. Figure 7 shows output from the structure-based MN tagger. (Note that the
sentence is disfluent: Pakistan which could not reach semi-final, in a match against South
African team for the fifth position Pakistan defeated South Africa by 41 runs.) The example
shows that could is a trigger for the Ability modality and not is a trigger for negation.
Reach is a target for both Ability and Negation, which means that it is in the category of
“H is not able [to make P true/false]” in our coding scheme. Reach is also a trigger for
the Succeed modality and semi-final is its target.

The TSurgeon patterns are automatically generated from the verb class codes in
the MN lexicon along with a set of 15 templates. Each template covers one situation
such as the following: the target is the subject of the trigger; the target is the direct
object of the trigger; the target heads an infinitival complement of the trigger; the target
is a noun modified by an adjectival trigger, and so on. The verb class codes indicate

Figure 7
Sample output from the structure-based MN tagger.
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which templates are applicable for each trigger word. For example, a trigger verb in the
transitive class may use two target templates, one in which the trigger is in active voice
and the target is a direct object (need tents) and one in which the trigger is in passive
voice and the target is a subject (tents are needed).

In developing the TSurgeon rules, we first conducted a corpus analysis for 40 of the
most common trigger words in order to identify and debug the most broadly applicable
templates. We then used LDOCE to assign verb classes to the remaining verbal triggers
in the MN lexicon, and we associated one or more debugged templates with each verb
class. In this way, the initial corpus work on a limited number of trigger words was
generalized to a longer list of trigger words. Because the TSurgeon patterns are tailored
to the flattened structures produced by our parser, it is not easily ported to new parser
outputs. The MN lexicon itself is portable, however. Switching parsers would entail
writing new TSurgeon templates, but the trigger words in the MN lexicon would still
be automatically assigned to templates based on their verb classes.

The following example shows an example of a TSurgeon pattern–action pair for a
sentence like They were required to provide tents. The pattern–action pair is intended to
be used after a pre-processing stage in which labels such as “VoicePassive” and “AUX”
have been assigned. “VoicePassive” is inserted by a pre-processing TSurgeon pattern
because, in some cases, the target of a passive modality trigger word is in a different
location from the target of the corresponding active modality trigger word. “AUX” is
inserted during pre-processing to distinguish auxiliary uses of have and be from their
uses as main verbs. The pattern portion of the pattern–action pair matches a node with
label VB that is not already tagged as a trigger and that is passive and dominates the
string “required”. The VB node is also a sister to an S node, and the S node dominates a
VB that is not an auxiliary (provide in this case). The action portion of the pattern–action
pair inserts the string “TargReq” as the second daughter of the second VB and inserts
the string “TrigReq” as the second daughter of the first VB.

VB=trigger !< /^Trig/ < VoicePassive < required $..
(S < (VB=target !< AUX))

insert (TargReq) >2 target
insert (TrigReq) >2 trigger

Verb-specific patterns such as this one were generalized in order to gain coverage of
the whole modality lexicon. The specific lexical item, required, was replaced with a vari-
able, as were the labels “TrigReq” and “TargReq.” The pattern was then given a name,
V3-passive-basic, where V3 is a verb class tag from LDOCE (described in Section 5.3)
for verbs that take infinitive complements. We then looked up the LDOCE verb class
labels for all of the verbs in the modality lexicon. Using this information, we could then
generate a set of new, verb-specific patterns for each V3 verb in the modality lexicon.

6.3 Evaluating the Effectiveness of Structure-Based MN Tagging

We performed amanual inspection of the structure-based tagging output. We calculated
precision by examining 229 instances of modality triggers that were tagged by our
tagger from the English side of the NIST 09 MTEval training sentences. We analyzed
precision in two steps, first checking for the correct syntactic position of the target and
then checking the semantic correctness of the trigger and target. For 192 of the 229
triggers (around 84%), the targets were tagged in the correct syntactic location.

For example, for the sentence A solution must be found to this problem shown in
Figure 8, the word must is a modality trigger word, and the correct target is the first
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Figure 8
Example of embedded target head found inside VP must be found.

non-auxiliary verb heading a verb phrase that is contained in the syntactic complement
of must. The syntactic complement of must is the verb phrase be found to this problem.
The syntactic head of that verb phrase, be, is skipped because it is an auxiliary verb. The
correct (embedded) target found is the head of the syntactic complement of be.

The 192 modality instances with structurally correct targets do not all have seman-
tically correct tags. In this example, must is tagged as TrigBelief, where the correct tag
would be TrigRequire. Also, because theMN lexiconwas usedwithout respect to word
sense, words were sometimes erroneously identified as triggers. This includes non-
modal uses of work (work with refugees), reach (reach a destination), and attack (attack
a physical object), in constrast to modal uses of these words: work for peace (effort), reach
a goal (succeed), and attack a problem (effort). Fully correct tagging of modality would
need to include word sense disambiguation.

For 37 of the 229 triggers we examined, a target was not tagged in the correct syn-
tactic position. In 12 of 37 incorrectly tagged instances the targets are inside compound
nouns or coordinate structures (NP or VP), which are not yet handled by the modality
tagger. The remaining 25 of the 37 incorrectly tagged instances had targets that were lost
because the tagger does not yet handle all cases of nested modalities. Nested modalities
occur in sentences like They did not want to succeed in winning where the target words
want and succeed are also modality trigger words. Proper treatment of nested modalities
requires consideration of scope and compositional semantics.

Nesting was treated in two steps. First, the modality tagger marked each word as a
trigger and/or target. In They did not want to succeed in winning, not is marked as a trigger
for negation, want is marked as a target of negation and a trigger of wanting, succeed is
marked as a trigger of succeeding and a target of wanting, and win is marked as a target
of succeeding. The second step in the treatment of nested modalities occurs during tree
grafting, where the meanings of the nested modalities are composed. The tree grafting
program correctly composes some cases of nested modalities. For example, the tag
TrigAble composed with TrigNegation results in the target tag TargNOTAble, as shown
in Figure 9. In other cases, where compositional semantics are not yet accommodated,
the tree grafting program removed target labels from the trees, and those cases were
counted as incorrect for the purpose of this evaluation.

Figure 9
Example of modality composed with negation: TrigAble and TrigNegation combine to form
NOTAble.
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In the 229 instances that we examined, there were 14 in which a light verb or noun
was the correct syntactic target, but not the correct semantic target. Decision would be
a better target than taken in The decision should be taken on delayed cases on the basis of
merit.We counted sentences with semantically light targets as correct in our evaluation
because our goal was to identify the syntactic head of the target. The semantics of the
target is a general issue, and we often find lexico-syntactic fluff between the trigger and
the most semantically salient target in sentences likeWe succeeded in our goal of winning
the war where “success in war” is the salient meaning.

With respect to recall, the tagger primarily missed special forms of negation in
noun phrases and prepositional phrases: There was no place to seek shelter; The buildings
should be reconstructed, not with RCC, but with the wood and steel sheets. More complex
constructional and phrasal triggers were also missed: President Pervaiz Musharraf has said
that he will not rest unless the process of rehabilitation is completed. Finally, we discovered
some omissions from our MN lexicon: It is not possible in the middle of winter to re-open
the roads. Further annotation experiments are planned, which will be analyzed to close
such gaps and update the lexicon as appropriate.

Providing a quantitative measure of recall was beyond the scope of this project.
At best we could count instances of sentences containing trigger words that were not
tagged. We are also aware of many cases of modality that were not covered such as
the modal uses of the future tense auxiliary will as in That’ll be John (conjecture), I’ll do
the dishes (volition), He won’t do it (non-volition), and It will accommodate five (ability)
(Larreya 2009). Because of the complexity and subtlety of modality and negation, how-
ever, it would be impractical to count every clause (such as the not rest unless clause
above) that had a nuance of non-factivity.

7. Semantically Informed Syntactic MT

This section describes the incorporation of our structured-based MN tagging into an
Urdu–English machine-translation system using tree grafting for combining syntactic
symbols with semantic categories (e.g., modality/negation). We note that a de facto
Urdu MN tagger resulted from identifying the English MN trigger and target words in
a parallel English–Urdu corpus, and then projecting the trigger and target labels to the
corresponding words in Urdu syntax trees.

7.1 Refinement of Translation Grammars with Semantic Categories

We used synchronous context-free grammars (SCFGs) as the underlying formalism
for our statistical models of translation. SCFGs provide a convenient and theoretically
grounded way of incorporating linguistic information into statistical models of transla-
tion, by specifying grammar rules with syntactic non-terminals in the source and target
languages. We refine the set of non-terminal symbols so that they not only include
syntactic categories, but also semantic categories.

Chiang (2005) re-popularized the use of SCFGs for machine translation, with the
introduction of his hierarchical phrase-based machine translation system, Hiero. Hiero
uses grammars with a single non-terminal symbol “X” rather than using linguistically
informed non-terminal symbols. When moving to linguistic grammars, we use Syntax
Augmented Machine Translation (SAMT) developed by Venugopal, Zollmann, and
Vogel (2007). In SAMT the “X” symbols in translation grammars are replaced with
nonterminal categories derived from parse trees that label the English side of the
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Figure 10
A sentence on the English side of the bilingual parallel training corpus is parsed with a
syntactic parser, and also tagged with our modality tagger. The tags are then grafted onto
the syntactic parse tree to form new categories like VP-TargNOTAble and VP-TargRequire.
Grafting happens prior to extracting translation rules, which happens normally except for
the use of the augmented trees.

Urdu–English parallel corpus.1 We refine the syntactic categories by combining them
with semantic categories. Recall that this progression was illustrated in Figure 3.

We extracted SCFG grammar rules containing modality, negation, and named enti-
ties using an extraction procedure that requires parse trees for one side of the parallel
corpus. Although it is assumed that these trees are labeled and bracketed in a syntac-
tically motivated fashion, the framework places no specific requirement on the label
inventory. We take advantage of this characteristic by providing the rule extraction
algorithm with augmented parse trees containing syntactic labels that have semantic
annotations grafted onto them so that they additionally express semantic information.

Our strategy for producing semantically grafted parse trees involves three steps:

1. The English sentences in the parallel training data are parsed with a
syntactic parser. In our work, we used the lexicalized probabilistic context
free grammar parser provided by Basis Technology Corporation.

2. The English sentences are MN-tagged by the system described herein and
named-entity-tagged by the Phoenix tagger (Richman and Schone 2008).

3. The modality/negation and entity markers are grafted onto the syntactic
parse trees using a tree-grafting procedure. The grafting procedure was
implemented as part of the SIMT effort. Details are further spelled out in
Section 7.2.

Figure 10 illustrates how modality tags are grafted onto a parse tree. Note that
although we focus the discussion here on the modality and negation, our framework
is general and we were able to incorporate other semantic elements (specifically, named
entities) into the SIMT effort.

Once the semantically grafted trees have been produced for the parallel corpus, the
trees are presented, along with word alignments (produced by the Berkeley aligner),
to the rule extraction software to extract synchronous grammar rules that are both

1 For non-constituent phrases, composite CCG-style categories are used (Steedman 1999).
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syntactically and semantically informed. These grammar rules are used by the decoder
to produce translations. In our experiments, we used the Joshua decoder (Li et al. 2009),
the SAMT grammar extraction software (Venugopal and Zollmann 2009), and special
purpose-built tree-grafting software.

Figure 11 shows example semantic rules that are used by the decoder. The verb
phrase rules are augmented with modality and negation, taken from the semantic
categories listed in Table 2. Because these get marked on the Urdu source as well as
the English translation, semantically enriched grammars also act as very simple named
entity or MN taggers for Urdu. Only entities, modality, and negation that occurred in
the parallel training corpus are marked in the output, however.

7.2 Tree-Grafting Algorithm

The overall scheme of our tree-grafting algorithm is to match semantic tags to syntactic
categories. There are two inputs to the process. Each is derived from a common text
file of sentences. The first input is a list of standoff annotations for the semantically
tagged word sequences in the input sentences, indexed by sentence number. The second
is a list of parse trees for the sentences in Penn Treebank format, indexed by sentence
number.

Table 2 lists the modality/negation types that were produced by the MN tagger. For
example, the sentence The students are able to swim is tagged as The students are 〈TrigAble〉
to 〈TargAble swim〉. The distinction between “Negation” and “NOT” corresponds to the
difference between negation that is inherently expressed in the triggering lexical item
and negation that is expressed explicitly as a separate lexical item. Thus, I achieved
my goal is tagged “Succeed” and I did not achieve my goal is tagged as “NOTSucceed,”

Figure 11
Example translation rules with tags for modality, negation, and entities combined with
syntactic categories.
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Table 2
Modality tags with their negated versions. Note that Require and Permit are in a dual relation,
and thus RequireNegation is represented as NOTPermit and PermitNegation is represented
as NOTRequire.

Require NOTRequire
Permit NOTPermit
Succeed NOTSucceed
SucceedNegation NOTSucceedNegation
Effort NOTEffort
EffortNegation NOTEffortNegation
Intend NOTIntend
IntendNegation NOTIntendNegation
Able NOTAble
AbleNegation NOTAbleNegation
Want NOTWant
WantNegation NOTWantNegation
Belief NOTBelief
BeliefNegation NOTBeliefNegation
Firm Belief NOTFirm Belief
Firm BeliefNegation NOTFirm BeliefNegation
Negation

but I failed to win is tagged as “SucceedNegation,” and I did not fail to win is tagged as
“NOTSucceedNegation.”

The tree-grafting algorithm proceeds as follows. For each tagged sentence, we
iterate over the list of semantic tags. For each semantic tag, there is an associated word
or sequence of words. For example, the modality tag TargAble may tag the word swim.

For each semantically tagged word, we find the parent node in the correspond-
ing syntactic parse tree that dominates that word. For a word sequence, we find and
compare the parent nodes for all of the words. Each node in the syntax tree has a
category label. The following tests are then made and tree grafts applied:

� If there is a single node in the parse tree that dominates all and only the
words with the semantic tag, graft the name of the semantic tag onto
the highest corresponding syntactic constituent in the tree. For example,
in Figure 10, which shows the grafting process for modality tagging,
the semantic tag TargNOTAble that “hand over” receives is grafted onto
the VB node that dominates all and only the words “hand over.” Then the
semantic tag TargNOTAble is passed up the tree to the VP node, which is
the highest corresponding syntactic constituent.

� If the semantic tag corresponds to words that are adjacent daughters in
a syntactic constituent, but less than the full constituent, insert a node
dominating those words into the parse tree, as a daughter of the original
syntactic constituent. The name of the semantic tag is grafted onto the new
node and becomes its category label. This is a case of tree augmentation by
node insertion.

� If a syntactic constituent selected for grafting has already been labeled
with a semantic tag, overlay the previous tag with the current tag. We
chose to tag in this manner simply because our system was not set up to
handle the grafting of multiple tags onto a single constituent. An example
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of this occurs in the sentence “The Muslims had obtained Pakistan.” If the
NP node dominating Pakistan is grafted with a named entity tag such as
NP-GPE, we overlay this with the NP-TargSucceed tag in a modality
tagging scheme.

� In the case of a word sequence, if the words covered by the semantic tag
fall across two different syntactic constituents, do nothing. This is a case of
crossing brackets.

Our tree-grafting procedure was simplified to accept a single semantic tag per
syntactic tree node as the final result. The algorithm keeps the last tag seen as the tag of
precedence. In practice, we established a precedence ordering for modality/negation
tags over named entity tags by grafting named entity tags first and modality/negation
second. Our intuition was that, in case of a tie, finer-grained verbal categories would be
more helpful to parsing than finer-grained nominal categories.2 In cases where a word
was tagged both as a MN target and a MN trigger, we gave precedence to the target tag.
This is because, although MN targets vary, MN triggers are generally identifiable with
lexical items. Finally, we used the simplified specificity ordering of MN tags described
in Section 5.2 to ensure precedence of more specific tags over more general ones. Table 2
lists the modality/negation types from highest (Require modality) to lowest (Negation)
precedence.3

7.3 SIMT Results

We evaluated our tree grafting approach by performing a series of translation experi-
ments. Each version of our translation systemwas trained on the same bilingual training
data. The bilingual parallel corpus that we used was distributed as part of the 2008
NIST Open Machine Translation Evaluation Workshop.4 The training set contained
88,108 Urdu–English sentence pairs, and a bilingual dictionary with 113,911 entries.
For our development and test sets, we split the NIST MT-08 test set into two portions
(with each document going into either test or dev, and preserving the genre split).
Our test set contained 883 Urdu sentences, each with four translations into English,
and our dev set contained 981 Urdu sentences, each with four reference translations.
To extract a syntactically informed translation model, we parsed the English side of
the training corpus using a Penn Treebank–trained parser (Miller et al. 1998). For the
experiments that involved grafting named entities onto the parse trees, we tagged
the English side of the training corpus with the Phoenix tagger (Richman and Schone
2008). We word-aligned the parallel corpus with the Berkeley aligner. All models used a
5-gram language model trained on the English Gigaword corpus (v5) using the SRILM
toolkit with modified KN smoothing. The Hiero translation grammar was extracted
using the Joshua toolkit (Li et al. 2009). The other translation grammars were extracted
using the SAMT toolkit (Venugopal and Zollmann 2009).

2 In testing we found that grafting named entities first and MN last yielded a slightly higher BLEU score
than the reverse order.

3 Future work could include exploring additional methods of resolving tag conflicts or combining tag
types on single nodes, for example, by inserting multiple intermediate nodes (effectively using unary
rewrite rules) or by stringing tag names together.

4 http://www.itl.nist.gov/iad/mig/tests/mt/2008/doc/.
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Figure 12
Results for a range of experiments conducted during the SIMT effort show the score for our
top-performing baseline systems derived from a hierarchical phrase-based model (Hiero).
Substantial improvements obtained when syntax was introduced along with feature functions
(FFs) and further improvements resulted from the addition of semantic elements. The scores
are lowercased BLEU calculated on the held-out devtest set. NE = named entities.

Figure 12 gives the results for a number of experiments conducted during the SIMT
effort.5 The experiments are broken into three groups: baselines, syntax, and semantics.
To contextualize our results we experimented with a number of different baselines
that were composed from two different approaches to statistical machine translation—
phrase-based and hierarchical phrase-based SMT—along with different combinations
of language model sizes and word aligners. Our best-performing baseline was a Hiero
model. The Bleu score for this baseline on the development set was 22.9 Bleu points.

After experimenting with syntactically motivated grammar rules, we conducted
experiments on the effects of incorporating semantic elements (e.g., named entities and
modality/negation) into the translation grammars. In our devtest set our taggers tagged
on average 3.5 named entities per sentence and 0.35 MN markers per sentence. These
were included by grafting modality, negation, and named-entity markers onto the parse
trees. Individually, each of these made modest improvements over the syntactically
informed system alone. Grafting named entities onto the parse trees improved the Bleu
score by 0.2 points. Modality/negation improved it by 0.3 points. Doing both simulta-
neously had an additive effect and resulted in a 0.5 Bleu score improvement over syntax
alone. This improvement was the largest improvement that we got from anything other
than the move from linguistically naive models to syntactically informed models.

We used bootstrap resampling to test whether the differences in Bleu scores were
statistically significant (Koehn 2004). All of the results were a significant improvement
over Hiero (at p ≤ 0.01). The difference between the syntactic system and the syntactic
system with named entities is not significant (p = 0.38). The differences between the

5 These experiments were conducted on the devtest set, containing 883 Urdu sentences (21,623 Urdu
words) and four reference translations per sentence. The BLEU score for these experiments is measured
on uncased output.
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syntactic system and the syntactic system with MN, and between the syntactic system
and the syntactic system with both MN and named entities were both significant at
(p ≤ 0.05).

Figure 13 shows example output from the final SIMT system in comparison to
the pre-SIMT results and the translation produced by a human (reference). An error
analysis of this example output illustrates that SIMT enhancements have resulted in the
elimination of misleading translation output in several cases:

1. pre-SIMT: China had the experience of Pakistan’s first nuclear bomb.
SIMT: China has the first nuclear bomb test.
reference: China has conducted the experiment of Pakistan’s first nuclear bomb.

2. pre-SIMT: the nuclear bomb in 1998 that Pakistan may experience
SIMT: the experience of the atom bomb Pakistan in May 1998
reference: the atom bomb, whose experiment was done in 1998
by Pakistan

3. pre-SIMT: He said that it is also present proof of that Dr. Abdul Qadeer
Khan after the Chinese design
SIMT: He said that there is evidence that Dr. Abdul Qadeer Khan has
also used the Chinese design
reference: He said that the proof to this also exists in that Dr. Abdul
Qadeer Khan used the Chinese design

The article in question pertains to claims by Thomas Reid that China allowed Pakistan
to detonate a nuclear weapon at its test site. In the first example, however, the reader is
potentially misled by the pre-SIMT output to believe that Pakistan launched a nuclear
bomb on China. The SIMT output leaves out the mention of Pakistan, but correctly con-
veys the firm belief that the bomb event is a test (closely resembling the term experiment
in the human reference), not a true bombing event. This is clearly an improvement over
the misleading pre-SIMT output.

In the second example, the pre-SIMT output misleads the reader to believe that
Pakistan is (or will be) attacked, through the use of the phrase may experience, where
may is poorly placed. (We note here that this is a date translation error, i.e., the month
of May should be next to the year 1998, further adding to the potential for confusion.)
Unfortunately, the SIMT output also uses the term experience (rather than experiment,
which is in the human reference), but in this case the month is correctly positioned in
the output, thus eliminating the potential for confusionwith respect to themodality. The
lack of a modal appropriately neutralizes the statement so that it refers to an abstract
event associated with the atom bomb, rather than an attack on the country.

In the third example, where the Chinese design used by Dr. Abdul Qandeer Khan is
argued to be proof of the nuclear testing relationship between Pakistan and China, the
first pre-SIMT output potentially leads the reader to believe that Dr. Abdul Qadeer is
after the Chinese design (not that he actually used it), whereas the SIMT output conveys
the firm belief that the Chinese design has been used by Dr. Abdul Qadeer. This output
very closely matches the human reference.

Note that even in the title of the article, the SIMT system produces much more
coherent English output than that of the linguistically naive system. The figure also
shows improvements due to transliteration, which are described in Irvine et al. (2010).
The scores reported in Figure 12 do not include transliteration improvements.
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Figure 13
An example of the improvements to Urdu–English translation before and after the SIMT effort.
Output is from the baseline Hiero model, which does not use linguistic information, and from
the final model, which incorporates syntactic and semantic information.
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8. Conclusions and Future Work

We developed a modality/negation lexicon and a set of automatic MN taggers, one of
which—the structure-based tagger—results in 86% precision for tagging of a standard
LDC data set. The MN tagger has been used to improve machine translation output
by imposing semantic constraints on possible translations in the face of sparse training
data. The tagger is also an important component of a language-understanding module
for a related project.

We have described a technique for translation that shows particular promise
for low-resource languages. We have integrated linguistic knowledge into statistical
machine translation in a unified and coherent framework. We demonstrated that
augmenting hierarchical phrase-based translation rules with semantic labels (through
“grafting”) resulted in a 0.5 Bleu score improvement over syntax alone.

Although our largest gains were from syntactic enrichments to the Hiero model,
demonstrating success on the integration of semantic aspects of language bodes well
for additional improvements based on the incorporation of other semantic aspects. For
example, we hypothesize that incorporating relations and temporal knowledge into
the translation rules would further improve translation quality. The syntactic grafting
framework is well-suited to support the exploration of the impact of many different
types of semantics on MT quality, though in this article we focused on exploring the
impact of modality and negation.

An important future study is one that focuses on demonstrating whether further
improvements in modality/negation identification are likely to lead to further gains in
translation performance. Such a study would benefit from the inclusion of a more de-
tailed manual evaluation to determine if modality and negation is adequately conveyed
in the downstream translations. This work would be additionally enhanced through
experimentation on other language pair(s) and larger corpora.

The work presented here represents the first small steps toward a full integration
of MT and semantics. Efforts underway in DARPA’s GALE program demonstrated the
potential for combining MT and semantics (termed distillation) to answer the informa-
tion needs of monolingual speakers using multilingual sources. Proper recognition of
modalities and negation is crucial for handling those information needs effectively.
In previous work, however, semantic processing proceeded largely independently of
the MT system, operating only on the translated output. Our approach is significantly
different in that it combines syntax, semantics, and MT into a single model, offering
the potential advantages of joint modeling and joint decision-making. It would be
interesting to explore whether the integration of MT with syntax and semantics can be
extended to provide a single-model solution for tasks such as cross-language informa-
tion extraction and question answering, and to evaluate our integrated approach (e.g.,
using GALE distillation metrics).
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