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This article investigates the effects of different degrees of contextual granularity on language
model performance. It presents a new language model that combines clustering and half-
contextualization, a novel representation of contexts. Half-contextualization is based on the half-
context hypothesis that states that the distributional characteristics of a word or bigram are best
represented by treating its context distribution to the left and right separately and that only direc-
tionally relevant distributional information should be used. Clustering is achieved using a new
clustering algorithm for class-based language models that compares favorably to the exchange
algorithm. When interpolated with a Kneser-Ney model, half-context models are shown to have
better perplexity than commonly used interpolated n-gram models and traditional class-based
approaches. A novel, fine-grained, context-specific analysis highlights those contexts in which
the model performs well and those which are better treated by existing non-class-based models.

1. Introduction

Stochastic language models are a crucial component of many speech and language
technology applications. The key problem encountered by these models is that sparse
data make the accurate estimation of the probability of novel and rare word sequences
difficult.

In order to address this, language model researchers have developed a number of
strategies. Of particular interest in this article are the following four:

1. Context length. Careful selection of the length of the history or context
that is the basis for predicting the next word.

2. Interpolation. Models typically interpolate several predictions, for
example, predictions that are based on several different context lengths.

3. Classes. In a class-based model, prediction is (partially) based on classes
that the n-grams involved are members of.

4. Similarity. Similarity models smooth predictions with predictions for
similar entities.
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The language models that are most commonly used today, in particular the modified
Kneser-Ney (KN) model (Chen and Goodman 1998), are based on the first two strate-
gies, context length and interpolation—that is, they interpolate distributions of different
history lengths. We will call such models history-length interpolated models. The set
of contexts that history-length-interpolated models base their prediction on is limited
to those whose history is identical for the history length considered. For example, the
length-2 component of the model will compute the probability of P(w3|w1w2) based on
contexts in the training corpus with identical history w1w2.

Class-based and similarity-based models consider a wider range of contexts. Their
estimates rely on contexts in the training data that are similar to (or in the same class
as) the new sequence whose probability is to be estimated. Thus, for example, in
attempting to estimate a probability for the bigram black cloud, unseen in training, the
transition probability associated with the class to which black belongs being followed
by the class to which cloud belongs can be used. The intuition is that although black cloud
might not have been seen in training, the class sequence containing related bigrams
like gray cloud, or black mist, or gray mist, that is, combinations of other members of the
two classes seen in training, can offer a reasonable estimate. In principle, this type of
generalization is more powerful than history-length interpolation and has been, and
continues to be, used to good effect in a variety of domains. However, the model must
be a good model of the distribution of sequences of strings; if its assumptions are too
unrealistic or approximate, then class-based generalization will perform worse than
history-length interpolation.

Although there has been much work on class-based and similarity-based language
models in recent years, no such model has been widely adopted as superior to history-
length-interpolated models. We believe one reason for this is that the granularity of
context that is optimal for generalization has not been investigated sufficiently. Conse-
quently, in this article, we present the following contributions:

� We demonstrate that class-based models can be made more effective.
In particular, we put forward the half-context hypothesis as a
general principle on the basis of which to construct class-based
language models.

� We argue for the novel, beneficial use of a mixed n-gram class of both
bigrams and unigrams instead of a class of unigrams alone.

� We specify a discounting method which facilitates better treatment of
rare events.

� We deploy a new clustering algorithm for class-based language models
that is more efficient than the exchange algorithm.

� We perform a systematic investigation, including significance testing,
of half-context versus whole-context class-based models which
demonstrates the utility of a half-context approach.

� We carry out a novel fine-grained context-specific experimental validation
of a half-context model that performs better than a traditional class-based
model, and, when interpolated, improves on a modified KN trigram
model. This new fine-grained analysis distinguishes those contexts best
suited to history-length interpolation and those most appropriate for
class-based generalization.
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These contributions, particularly our analyses, offer a richer understanding of the rel-
ative characteristics of history-length interpolation and class-based generalization and
should lead to more powerful language models that combine class-based and history-
length generalization mechanisms.

The remainder of the article is organized as follows. Section 2 defines half-context
representation and puts forward the half-context hypothesis. Section 3 develops a half-
context language model in the context of a specific subset of related prior work on
language modeling. Additional related work is discussed in a subsequent subsection.
Parameter estimation is described in Section 4. A variety of models and interpolations
are evaluated, and fine-grained results, significance tests, and context-specific analyses
are discussed in Section 5. Conclusions and opportunities for future work are presented
in Section 6.

2. Half Contexts

The representation employed in this article builds on a specification used in our earlier
work (Schütze 1993, 1995; Schütze and Walsh 2008), motivated by Exemplar Theory
(Hintzman 1986; Nosofsky 1986; Pierrehumbert 2001), where rich exemplar represen-
tations facilitated the acquisition of local grammatical knowledge and outperformed
a categorical representation in the same task. Specifically, each word was represented
in terms of its immediate left and right neighborhood context. These neighborhoods
were treated separately for two reasons: (1) separate treatment of left-neighbor infor-
mation and right-neighbor information resulted in reduced complexity in the model
and better generalization, and (2) right and left context behavior can differ consider-
ably, for example, him and her would have very similar left contexts but could have
significantly differing right contexts (e.g., compare the life in her garden vs. the life in him
garden).

These representations of left and right context distributions of a given word were
known as half-words but can in fact be viewed as a word-level instantiation of a
broader representational formalism which we term half-contextualization. Accord-
ing to this schema a given unit (word, n-gram, class, etc.) is represented in terms
of half-context (HC) distributions over its immediate left and right neighborhoods.
Hence, for example, at the bigram level, each bigram type is specified by two distri-
butions, namely a left HC distribution Pl and right HC distribution Pr that capture
the bigram’s behavior to the immediate left/right. For example, given walk home early
twice, and drive home early once, then the left HC distribution of the bigram home
early, denoted Pl

home early, is Pl
home early(walk) = 2/3 and Pl

home early(drive) = 1/3, and 0 for all
other words. These HC distributions underpin the HC language models presented in
Section 3.

In order to determine the extent of the particular merits of considering words
as possessing two separate directional behaviors, in the experiments that follow we
compare our HC language model against a whole-context (WC) model where a
given word’s WC distribution is a single distribution which combines the word’s
left and right HC distributions. For a clear statement of the contrast HC vs. WC,
we define inward and outward distributions. For the estimation of P(wn+1|w1,n)
based on a training set S, the inward distributions IWwn+1|w1,n

consist of the set
of right contexts of w1,n and left contexts of wn+1 in S; the outward distributions
OWwn+1|w1,n

consist of the set of left contexts of w1,n and right contexts of wn+1
in S.
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We can then state our underlying hypothesis that HC-based classes are better for
language modeling than WC-based classes as follows.

Half-Context Hypothesis. A distributional language model should base its estimate of
P(wn+1|w1,n) on contexts v1,nvn+1 whose inward distributions IWvn+1|v1,n

are similar to
IWwn+1|w1,n

. Similarity of the outward distributions OWwn+1|w1,n
and OWvn+1|v1,n

should
not be employed as a criterion for using or not using training set contexts v1,nvn+1 for
the estimation of P(wn+1|w1,n).

An example for the intuition behind the HC hypothesis is the him/her example given
earlier. When estimating P(him|Mary helped), a context like Mary helped her should also
be considered as evidence because even though the right contexts of him and her in
the corpus are dissimilar, their left contexts are similar. The HC hypothesis states that
we should only worry about similarity of the “relevant side” of the n-grams involved,
that is we should only consider inward distributional information. Most clustering algo-
rithms used for class-based language models, notably the exchange algorithm (Brown
et al. 1992; Kneser and Ney 1993; Martin, Liermann, and Ney 1998), are “whole-context”
clustering algorithms that violate the hypothesis.

The HC hypothesis provides an alternative basis for designing class-based language
models. In general, in designing a language model only information sources that are
relevant for the task to be solved should be included. Adding additional complexity or
nonrelevant additional features increases the variance of predictions without improving
their accuracy. We can view this as a type of bias–variance tradeoff. Half-context models
are simpler and have less variance because they only use one half of the available
context information, the half that is actually useful for prediction. The experimental
results that we report later in this article confirm this by demonstrating that half-context
models perform significantly better than whole-context models.

A consequence of only using inward distributions in accordance with the half-
context hypothesis is that we need two different types of classes: one set of classes for
the predictors and another set of classes for the predictees. The reason is that we use two
distinct and unrelated representations, left-context distributions to induce classes of pre-
dictees and right-context distributions to induce classes of predictors. In other words,
half-context models are inherently asymmetric, reflecting the fact that language models
are inherently asymmetric: The role of the predictor and the predicted are different.
This asymmetry shows up in word-based models to a limited extent: In most models
the unit of prediction is a word; predictors include n-grams of any size in principle,
not just words. However, in a class-based model the asymmetry between predictor
and predicted is more important: There is no justification for the premise (made, for
example, in the Brown model) that the classes that are optimal for predictors are also
the classes that are optimal for predictees. This observation has also been made by Gao
et al. (2002), albeit without explicit reference to half contexts. We view our approach
as better motivated since the asymmetry of our model is not posited, but follows from
an analysis of the information sources needed for probabilistic inference in language
modeling.

Linguistic theory also provides evidence for half-context models. In many theories,
there is a single formal concept that can be instantiated either by arguments of
prepositions or by arguments of transitive verbs. For example, there are few if any
syntactic differences between the arguments that can appear after a preposition
like by and after a transitive verb like brought. Thus, the predicting histories by and
brought should be treated alike in a class-based model. But that is not possible in a
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whole-context model. We can interpret this as a syntactic justification for half-context
models. Referring back to our earlier allusion to the bias–variance tradeoff, if we had
unlimited data, then estimating separate distributions for by and brought would be un-
problematic; but because training sets are not unlimited, we can improve generalization
by assigning the two linguistically identical contexts to the same right-context class.

Finally, efficiency is also a strong argument for half-context models. Time of clus-
tering and storage requirements are cut in half by omitting those parts of the context
that are nonrelevant. The time complexity of many clustering algorithms depends on
the number of different types of features that occur in a particular cluster as opposed
to the number of tokens. The number of feature types occurring in a cluster is reduced
substantially in half-context models.

It is of course possible to find cases where the outward distributions are helpful for
accurate estimation. Consider estimating P(is|strilp), where strilp is a word that occurred
once in the training set. Suppose for the sake of argument that is after nouns is more
likely than is after adjectives (because phrases like yellow is the new black are infrequent).
If strilp occurred in the context a very strilp car, then it is likely to be an adjective and
P(is|strilp) is low. If strilp occurred in the context the strilp car, then it could also be a
noun (as in the bakery car or the wedding ring) and P(is|strilp) should be estimated to be
higher. In this case, it is the outward distribution of strilp that helps us to arrive at an
accurate estimate. However, our hypothesis is not that there are no such cases; rather,
we believe that as a generalization mechanism, only inward distributional information
is useful in improving performance. This is borne out by the experiments reported
herein.

In the future, there may be non-distributional models that use more complex infer-
ences for language modeling. Parsing-based language models (e.g., Hall and Johnson
2003) are a first step in this direction. The hypothesis would probably not apply to such
non-distributional models.

3. Half-Context Language Model

3.1 Half-Contextualization

Our starting point is the model by Brown et al. (1992). It models the probability of class
c2 following class c1 where c2 emits (e in the diagram) the member word w2 and w1
belongs to (∈, a deterministic process) class c1:

w1

c1 c2

w2

∈

seq

e

This model has been frequently investigated and discussed. Recent examples include
its successful application in word co-occurrence and sentence retrieval investigations
(Momtazi and Klakow 2009; Momtazi, Khudanpur, and Klakow 2010), and polarity
classification of movie reviews (Wiegand and Klakow 2008).
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The key concept introduced in this article is that of a half-context class. Class-based
language models can be half-contextualized by replacing classes that model right and left
contexts simultaneously by right half-context classes cr

1 and left half-context classes cl
2.

Words are assigned to HC classes and these HC classes then generate words:

w1

cr
1 cl

2

w2

∈

seq

e

3.2 Mixed n-gram Classes

A second modification of the Brown model we propose is motivated by the fact that
trigram models perform better than bigram models because a sequence of two words
significantly limits the possible ways of continuing. For this reason, we condition the
sequential continuation on a mixed n-gram class of both bigrams and unigrams instead
of on a class of unigrams alone. The resulting model, the HC model, is depicted in
Figure 1. We show the bigram w1w2 as the member of the class cr

12, but cr
12 can also be

the class of w2 if w1w2 was not frequent enough to be included in the clustering (criteria
for inclusion are discussed in Section 4).

To summarize, the generative process shown in Figure 1 is that the right-context
class cr

12 to which the bigram w1w2 belongs generates a unigram left-context class cl
3

which generates w3. As will become apparent from the description of parameter esti-
mation and the clustering algorithm in Section 4, the HC classes in the model are based

Figure 1
The half-context language model.
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on inward (IW) distributions only. The corresponding outward (OW) distributions are
not taken into account in accordance with the HC hypothesis.

In addition to the novel use of half-contexts it is important to note that the right HC
classes employed are mixed classes of unigrams and bigrams rather than of unigrams
only. To our knowledge this represents the first such usage and can be motivated by the
fact that frequent bigrams in language often behave similarly whereas the constituent
unigrams do not. For example, the right HCs of the bigrams University of and based in
are similar because both are often followed by locations; but the right HCs of of and in
are much more diffuse and there are many prepositional objects that occur more often
with of than with in (e.g., names of people) and others that occur more often with in
than with of (e.g., response).

3.3 Discounting

In initial experiments, we found that it was difficult to achieve an improvement using
class-based generalization because for many contexts history-length interpolation is the
better strategy for estimation. For a high-frequency event, it can be best to base estimates
on instances of this event with identical history only—instead of smoothing them with
other contexts that are in the same class.

Consider the unigram Hong. In 3,998 out of 4,045 cases in the training set part of
our corpus of Wall Street Journal (WSJ) articles (consisting of 40 million words), it is
followed by Kong. In this case, redistributing probability mass to other members of the
class that Kong is a member of will decrease the estimate for P(Kong|Hong) (an estimate
that should be close to 3,998/4,045) and decrease the model’s performance. On the other
hand, we have H(P(w|Mr.)) ≈ 11.9 in our WSJ training set. Any of a large number of
first and last names can occur after Mr. and a language model should reallocate some
probability mass from names that did occur in this environment in the training set to
those names that did not.

To treat these two different cases correctly, we use a variant of absolute discounting
(Ney, Essen, and Kneser 1994). Following the notation of Chen and Goodman (1998),
we first define the number N1+(w1,n•) of distinct words that can occur after an n-gram
in the training set:

N1+(w1,n•) = |{w|C(w1,nw) > 0}|

where C(w1,n) is the frequency of w1,n in the training set.
We then define the exemplar-theoretic (ET) language model as follows:

PET(wn+1|w1,n) = D
N1+(w1,n•)

C(w1,n) PHC(wn+1|w1,n)

+
max(0, C(w1,nwn+1) − D)

C(w1,n) (1)

The discount D is a parameter of the model that controls how much of each count is
redistributed to the class-based model. In a way that is similar to other discounting
methods, this formalization satisfies the two desiderata stated earlier: The estimates
of high-frequency events are, in relative terms, much less affected than those of low-
frequency events.
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PET is the exemplar-theoretic model we will evaluate in the experiments described
below. We use an analogous model for WC distributions. In that case, PHC is simply
replaced by PWC in Equation (1).

To summarize, the innovations of our exemplar-theoretic model are (1) the use of
HC classes instead of WC classes, (2) the use of mixed classes of unigrams and bigrams
(instead of classes of unigrams), and (3) the use of absolute discounting to concentrate
the effect of class-based generalization on rare hard-to-estimate events while leaving
robust estimates based on frequent events largely unchanged.

3.4 Additional Related Work

In addition to the motivating articles discussed earlier, other relevant work includes the
randomization techniques applied by Emami and Jelinek (2005) to class-based n-gram
language models. Half-context clusters are not at odds with a randomized approach as
they could easily be implemented in such a fashion.

Other related research includes the “mixed” model employed by Uszkoreit and
Brants (2008), in which a word bigram (as opposed to a class of bigrams) proba-
bilistically generates a class. They use, in our terminology, whole-context classes. The
experiments reported subsequently suggest that HC classes are preferable to WC classes
in the Brown-type set-up (classes generating classes); we plan to investigate whether
this is also true in a mixed model in future work.

Bassiou and Kotropoulos (2011) investigate two word-clustering techniques that
operate on long-distance bigram probabilities (of varying distances) within a context
and on interpolated long-distance bigram probabilities, both with a view to captur-
ing long-distance dependencies. Evaluation of both clustering techniques—hierarchical
clustering exploiting Mahalanobis distances to form compact clusters and Probabilistic
Latent Semantic Analysis—demonstrates that the use of long distance bigrams or their
interpolated varieties yield more compact and meaningful (in the case of interpolated
long distance bigrams) word clusters than the use of the traditional bigram (and bi-
grams which employ trigger pairs over various histories). This research demonstrates
an interesting avenue for contemporary models of word clustering and it would be no
doubt interesting to see how such clustering strategies might contribute to half-context
clustering, how their clusters would compare to those produced via bisecting k-means
(though we cluster bigrams also), as proffered here, and indeed how long distance
bigrams could be half-contextualized; these questions, however, are beyond the scope
of the current article which seeks primarily to investigate the potential merits of half-
contextualization.

Related work by Justo and Torres (2009) explores the use of language models that
employ classes containing phrases. They describe their models as two-level because
specific language models act within the classes. Their first approach takes into account
the probabilities between words which constitute the different phrases of a given class,
that is, phrases are sequences of unconnected words and words are considered the
basic lexical unit, and their second approach considers phrases to be indivisible lexical
units. The first model is also interpolated with a standard word-based language model,
and the second model is interpolated with a standard phrase-based model. Word-
error-rate analyses in an ASR system indicate that these models are better than their
traditional counterparts. These results provide useful motivation for extending class-
based language models from classes of isolated words to classes of longer sequences,
such as the classes of bigrams employed in the half-context model. Their research
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does not, however, consider the different directional behaviors of words or bigrams
as we do.

Zitouni and Zhou (2007, 2008) propose linearly interpolated hierarchical language
models (and a back-off variety [Zitouni 2007]) where each vocabulary item constitutes
a leaf node in a word-tree, words are clustered into classes, and, in a recursive process,
classes are clustered into more general classes until the root is reached. The tree root
is a class containing all vocabulary items. In attempting to estimate the likelihood of
an n-gram event they linearly interpolate over different language models, each one
of which is trained on one level of the tree. In this way they seek to strike a balance
between specificity and generalization. In constructing the class hierarchy, words are
represented by their probability given their left and right neighboring words over a
vocabulary (equivalent to the whole-context representation discussed in this article) and
similarity between words is established using the Kullback-Leibler distortion measure.
Words occurring frequently in similar contexts should be clustered together with a view
to finding a set of clusters that minimizes global discriminative information (see also
Bai et al. 1998). The clustering algorithm is based on k-means. The use of a hierarchical
tree, and interpolating over it, represents an interesting approach not at odds with our
research (i.e., that is, half-context classes could form nodes in the tree), although our
approach differs in the separate treatment of word contexts, the use of bigrams as class
members, and in the clustering methodology.

Additional related work includes research by Bahrani et al. (2008), who build
class-based models using the k-means algorithm and words represented in terms of
vectors where each vector element corresponds to the number of times the word
had a particular part of speech tag given a tagged corpus. This approach would
typically yield much shorter feature vectors than approaches (including our own)
which have vectors matching the vocabulary size, thus leading to lower time com-
plexity. They do not, however, avail of classes of bigrams as we do, nor look at di-
rectional behavior of words (though half-contextualization using part of speech tags
would be an interesting extension of both our model and theirs). Abdoos and Naeini
(2008) use a clustering ensemble approach to categorize words, although it is unclear
from their evaluation how such an approach compares, in terms of performance, to
others in the literature. Gao et al. (2002) propose an asymmetric clustering model
(ACM) grounded upon the apt observation that different clusters for predicted and
conditional words should be employed, a view shared here. Their research does not
present an explicit treatment of half-contextualization, however, nor considers half-
contextualization and the significance of inward distributional information as insights
which meet language modeling needs. Furthermore, our evaluation also differs in
that it involves comparison against a whole-context model and a modified KN tri-
gram model, rather than a simple word trigram model. Our use of a mixed n-gram
class of both bigrams and unigrams also represents a marked difference between
approaches.

With regard to context direction Essen and Steinbiss (1992) also look at left and right
contexts similarly to our approach. However, they do not compare half-context with
whole-context approaches and they pursue a less efficient similarity-based approach in
contrast to the class-based approach proposed here.

Finally, Dagan, Lee, and Pereira’s (1999) similarity-based language model uses a
similar word to the observed word as the conditioning context used to generate the next
word in the sequence. Again, no comparison to whole-context approaches is made. A
similarity-based approach is also difficult to use for large corpora as it would necessitate
the calculation of similarity of every word to every other word in the corpus. Similarities
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can be computed more efficiently for a subset of words on a smaller corpus, but then
many of the rare events that class and similarity based methods are most beneficial
for will not be covered. Our analyses in Section 5.2 and Section 5.3 demonstrate that
half-context modeling is most beneficial for rare events. Similar concerns apply to other
similarity-based models, such as those proposed by Bengio et al. (2003) and Schwenk
and Koehn (2008).

4. Parameter Estimation

In this section we describe how the parameters of the model in Figure 1 are estimated.
These parameters belong to two broad categories, namely, those which model the HC
distributions (Pr and Pl) and are used in the construction of clusters, and those which
capture emission probabilities Pe and sequence probabilities Pseq that are used when the
model is applied. Estimates were calculated on the basis of the training set part of a
corpus of WSJ articles, 1987–1989, consisting of almost 50 million words, which will be
described in more detail subsequently.

4.1 Clustering of HC Distributions

In the clustering, n-grams are represented as HC distributions. These distributions are
estimated using maximum likelihood as follows:

Pr
w1w2

(w3) = C(w1w2w3)∑
w C(w1w2w)

Pr
w2

(w3) = C(w2w3)∑
w C(w2w)

Pr
UNK(w3) = C(w3)∑

w C(w)

Pl
w3

(w2) = C(w2w3)∑
w C(ww3)

Pl
UNK(w2) = C(w2)∑

w C(w)

Only a subset of items is clustered. When clustering unigrams we include all 54,243
unigrams that occur more than 10 times in the corpus as well as the unknown word
UNK. For mixed clusterings of unigrams and bigrams we include all 378,109 unigrams
and bigrams that occur more than 10 times and the unknown word UNK (thus, the
unigram set is a subset of the mixed set). We call these sets Suni and Smixed and they are
used for all HC and WC models herein, including the Brown model.

We employ bisecting k-means (Steinbach, Karypis, and Kumar 2000) to cluster HC
distributions. The distance measure employed is Euclidean distance because the formal
properties of k-means, including convergence, only apply to Euclidean spaces. Bisecting
k-means is applied to a small random sample of the set of items: k-means first splits this
random sample in two, then the largest existing cluster is split and so on until k = 512
(or k = 1,024, depending on the experiment) clusters have been found. The size of the
random sample is then doubled, items in the enlarged sample are assigned to cluster
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centroids, and centroids are recomputed. The size of the sample is doubled again and
so on until all items have been assigned.

Incremental doubling of the sample has the advantage that several iterations of
reassignment and recomputation of centroids are performed (thus producing centroids
that are good representatives of the overall distribution of items); and that at the same
time the total number of assignments that needs to be computed is bounded by 2M
where M is the number of items. Computing the assignments is responsible for almost
all the computation time of k-means and more than 90% of the time needed to estimate
the parameters of the exemplar-theoretic model.

We do not investigate the effect of the number of clusters k on the performance of
class models in this article. As the default we chose k = 1,024, similar to Brown et al.’s
experiments. Note that we have 512 left HC clusters and 512 right HC clusters, a total
of 1,024 in the experiments with k = 512. We also experiment with 2 × 1,024 clusters
because one could also argue that this is the setting that is most comparable to Brown
et al. We choose the powers of 2, k = 512 and k = 1,024 (instead of 500 and 1,000), for
optimal compression and compact storage.

Two examples of half-context clusters (one left HC cluster and one right HC cluster)
and their sizes are given in Table 1. The three most frequent words in the left HC cluster
have similar left contexts (dominated by forms of to be) and different right contexts
(large variety of part of speech forms). The three most frequent bigrams in the right HC
cluster have similar right contexts (dominated by gerunds) and dissimilar left contexts
(again a large variety of possibilities). In traditional whole-context clusters one would
need to split the two clusters at least in two. For example, the right HC cluster in Table 1
would have to be split into one subcluster containing without-first/of-improperly and
one subcluster containing pain-and. However, this presents two distinct disadvantages:
(1) The extra clusters would require the estimation of more parameters, each based
on fewer data points and hence less reliable, and (2) The left-context generalization,
whereby of-improperly and pain-and have similar right contexts, would be lost.

Once clusters and cluster memberships have been computed, we need to determine
the relevant right HC cluster cr

12 and left HC cluster cl
3 when computing the probability

P(w3|w1w2) according to the model in Figure 1. We do this as follows:

1. If w1w2 ∈ Smixed, we use the right HC cluster that Pr
w1w2

was assigned to.

2. Otherwise, if w2 ∈ Smixed, we use the right HC cluster that Pr
w2

was
assigned to.

3. Otherwise, we use the right HC cluster that Pr
UNK was assigned to.

4. If w3 ∈ Suni, we use the left HC cluster that Pl
w3

was assigned to.

5. Otherwise, we use the left HC cluster that Pl
UNK was assigned to.

Table 1
Examples of half-context clusters.

most frequent n-grams in cluster size

left HC cluster unlikely, unclear, happening 753
right HC cluster pain-and, without-first, of-improperly 248
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4.2 Emission and Sequence Probabilities

Emission probabilities need only be estimated for left HC clusters in the exemplar-
theoretic model. They are estimated by maximum likelihood:

Pe(w|c) = C(w)∑
w′∈c C(w′)

Cluster sequence probabilities are additively smoothed:

Pseq(cl|cr) = C(crcl) + λ

C(cr) + Bλ

where λ = 0.1, B ∈ {512, 1,024} is the number of HC clusters, C(crcl) is the number of
trigrams w1w2w3 occurring in the training set, where w1w2 was assigned to cr and w3 to
cl, and C(cr) is the number of bigrams w′

1w′
2 occurring in the training set, where w′

1w′
2

was assigned to cr.
WC clusters are generated by representing an n-gram as the concatenation of

two HC distributions, its left HC distribution and its right HC distribution. Clus-
tering, membership assignment, and probability estimation are the same in all other
respects.

5. Experiments and Analysis

A corpus of WSJ articles, 1987–1989, consisting of almost 50 million words, was ran-
domly split into training set (80%), validation set (10%), and test set (10%).

Unigrams, bigrams, and trigrams and their counts were extracted from training,
validation, and test sets. A modified KN model (Chen and Goodman 1998), termed
P(KN), was estimated on the training set count files and applied to the test set using
srilm, the SRI language modeling toolkit (Stolcke 2002). The same count files were the
input to the HC and exemplar-theoretic model estimation and application procedure.
Vocabulary size was the same for both KN and exemplar-theoretic models: 256,874 (the
256,873 words occurring in the training set and the unknown word). A total of 70.8%
of tokens w3 in the test set occur in a context w1w2w3 occurring in the training set; for
22.2% of tokens only w2w3 occurs in the training set; and for 6.7% only w3 occurs in
the training set. The out-of-vocabulary rate is 0.27%. All validation and test set words
that do not occur in the training set are mapped to the special unknown token UNK.
In all interpolation experiments, the weight of the P(KN) model is 1 − α and the weight
of the model with which P(KN) is interpolated is α. The validation set was employed to
determine the optimum interpolation weight α and discount D for each case.

Total processing time for estimating the HC clusters for Suni and Smixed (lines 13 and
15 in Table 4, subsequently) was less than 3.5 hours on an Opteron 8214 processor.

In evaluating our model it seems appropriate to compare its performance against
other class-based models. Consequently, the SRI toolkit was also used to construct
a class bigram language model, following the incremental version of the algorithm
proposed by Brown et al. (1992), which we simply term the P(Brown) model. A total of
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Table 2
Perplexity results for interpolation of P(Brown) with a bigram model P(KN). α = 0 corresponds to
P(KN) alone, α = 1 corresponds to P(Brown) alone.

perplexity

α validation test

0.000 164.52 164.80
0.025 164.08
0.050 164.03 164.33
0.075 164.15
0.100 164.40
0.200 166.25
1.000 245.14 245.45

Table 3
Models used in our experiments.

P(KN) modified Kneser-Ney model
P(ET-Brown) exemplar-theoretic Brown model
P(Half) exemplar-theoretic Half-Context model (Equation 1)
P(Whole) whole-context analogue of Equation 1
P(KN-Brown) interpolation of P(KN) with P(ET-Brown)
P(KN-Half) interpolation of P(KN) with P(Half)
P(KN-Whole) interpolation of P(KN) with P(Whole)

1,024 classes (the same number of classes as the combined left and right context clusters
in the 2 × 512 HC model) were derived from the training data.1

Table 2 presents results for the interpolation of P(Brown) with a bigram model P(KN)
when applied to the validation set over a number of interpolation weights, followed by
results from the test data using the optimum weight for the P(Brown) model (α = 0.05)
found during the validation phase.

It is clear from Table 2 that although interpolating a traditional class-based model
with a KN bigram model does offer some benefit, this benefit is slight (perplexity =
164.80 for P(KN) alone, versus 164.33 using the optimum interpolation weight on the test
set). It is also clear that the traditional class-based model operating by itself (α = 1.0,
perplexity = 245.45) performs poorly relative to P(KN).

Of course the SRI class-based model employs whole-context classes, not half-
context distributions which consider behavior to the left and right separately.

The following models, detailed in Table 3, were used in our experiments: modified
Kneser-Ney (P(KN)); exemplar-theoretic half-context (P(Half)); exemplar-theoretic whole-
context (P(Whole)); exemplar-theoretic Brown (P(ET-Brown)); and P(KN-Half), P(KN-Whole), and
P(KN-Brown), the interpolations of Kneser-Ney with exemplar-theoretic half-context,
whole-context, and Brown, respectively.2 Perplexity results, for each of these models,
from the validation and test sets, are presented in Table 4. Order-2 in Table 4 implies

1 Here we approximate Brown et al. (1992) who used 1,000 classes. As our classes are also being used to
investigate language model compression in other work, we prefer to use powers of 2.

2 Test set perplexities for Kneser-Ney in Table 2 (164.80) and Table 4 (165.13, line 1) differ slightly because
of different handling of beginning and end of sentence symbols in the two experiments.
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Table 4
Perplexity results for Kneser-Ney, exemplar-theoretic Brown, exemplar-theoretic half-context,
exemplar-theoretic whole-context, and interpolations.

perplexity

D α validation test order/model number of classes

1 164.83 165.13 2 P(KN)

2 .8 1.0 191.71 192.24 2 P(ET-Brown) 512
3 1.0 1.0 171.17 171.58 2 P(Half) 512
4 1.0 1.0 170.81 171.21 2 P(Whole) 512
5 .8 1.0 171.16 171.57 2 P(Half) 1,024
6 .8 1.0 170.75 171.19 2 P(Whole) 1,024

7 .4 .2 163.97 164.28 2 P(KN-Brown) 512
8 .9 .5 161.51 161.82 2 P(KN-Half) 512
9 .7 .4 161.83 162.13 2 P(KN-Whole) 512

10 .6 .5 161.37 161.67 2 P(KN-Half) 1,024
11 .6 .5 161.53 161.83 2 P(KN-Whole) 1,024

12 94.67 94.94 3 P(KN)

13 .8 1.0 105.31 105.65 3 P(Half) 512
14 .8 1.0 107.99 108.33 3 P(Whole) 512

15 .5 .4 88.91 89.15 3 P(KN-Half) 512
16 .5 .4 89.39 89.63 3 P(KN-Whole) 512

that only unigrams are clustered in the exemplar-theoretic models and the Kneser-Ney
model is a bigram model. As for order-3, this implies that both unigrams and bigrams
are clustered together in the exemplar-theoretic models and that the Kneser-Ney model
is a trigram model.

For lines 7–11 and 15–16, the parameters α and D that were optimal on the valida-
tion set are given. For lines 2–6 and 13–14, the optimal value of D on the validation set
for α = 1 (that is, 0 weight for the P(KN) model) was chosen.

The α parameter on lines 8–11 and 15–16 indicates that half- and whole-context
models are as valuable, or nearly so, as the KN models: The interpolation weight of
half/whole-context models is either 0.4 or 0.5. In contrast, the Brown class model (line 7)
receives a lower weight of 0.2, indicating that it is less valuable in the interpolation
with KN.

The discount parameter D determines the influence of class-based generalization
in the overall model. Again, the Brown model receives the smallest weight (line 7). For
both D and α, the lowest half/whole-context model values are those for the KN order-3
interpolations on lines 15–16: D = .5,α = .4 (value of α tied with KN order-2 interpo-
lation on line 9). This may be a reflection of the fact that class-based generalization is
contributing more to better performance in order-2 models because order-2 models have
a much lower baseline performance.

For order-2 the differences between HC and WC models are small (lines 3 vs. 4, 5
vs. 6, 8 vs. 9, 10 vs. 11). For order-3, exemplar-theoretic half-context is clearly better than
exemplar-theoretic whole-context (lines 13 vs. 14), although that difference is reduced in
the two interpolated models P(KN-Half) and P(KN-Whole) (lines 15 vs. 16). On this evidence
it would appear that the combination of left and right context information into a single
context distribution (i.e., a whole-context approach) is redundant, if not harmful. This
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is evidence for the half-context hypothesis put forward at the beginning of the article:
Outward distributions, present in WC representations but absent in HC representations,
do not seem to be helpful in class-based generalization, and are perhaps even harmful
in order-3.

One reason why HC models perform better for order-3 than WC models could be
that unigrams and bigrams are clustered together for the order-3 models. Although
it makes sense to treat, say, the right contexts of from Mark and Martin as similar, the
distributional patterns of the two n-grams are very different if the left context is also
taken into account, which is the case for WC models.

We could attempt to extend the exchange algorithm that has most often been used
for class-based language modeling to half-context clustering. This is beyond the scope
of this article, however. Instead, we compare the order-2 WC experiments directly with
the Brown classes. We do this to make sure that our good results for HC models are not
due to the fact that we use a weak WC baseline. As we will argue now, our WC baseline
is at least as good or even better than Brown clustering.

There are two set-ups that can be argued to be directly comparable to the Brown
experiments reported here: either 512 left HC classes and 512 right HC classes (lines
2–4, 7–9, and 13–16); or 1,024 left HC classes and 1,024 right HC classes (lines 5–6 and
10–11). In the Brown experiments (lines 2 and 7), Equation (1) is used in the same way
as in the HC/WC experiments except that class membership is based on the classes
induced by srilm (corresponding to the experiments in Table 2). The comparisons on
lines 2 vs. 4 and 6 and 7 vs. 9 and 11 clearly show that the quality of bisecting k-means
whole-context clustering is comparable to, if not better than, Brown-type whole-context
clustering. That is, keeping the representation constant in both cases (i.e., whole-context)
enables us to see the algorithmic benefits of bisecting k-means as it appears to offer more
useful clusters than those produced by the exchange algorithm.

Finally, although the exemplar-theoretic models are clearly outperformed by the
P(KN) model (lines 1 vs. 3–6, 12 vs. 13–14), it is important to note that the combination of
the P(KN) model and the exemplar-theoretic models outperforms the stand-alone P(KN)
model (lines 1 vs. 8–11, 12 vs. 15 and 16). This is strong evidence that a combined class-
based and history-length-interpolated model is superior to history-length interpolation
by itself.

5.1 Establishing Significance

Although the perplexity results documented here provide tangible support in favor
of the half-context hypothesis, it would nevertheless be desirable to establish if the
perplexity scores are indicative of improvements that are statistically significant. To this
end, the following significance test was performed. The test set has a length of 2,800,613
words. These 2,800,613 positions are divided into 47 bins, corresponding to the part-of-
speech of the word at that position that is most frequent in the training set.3 This was
based on a tagging of the training set with TreeTagger (Schmid 1994). One additional bin

3 We initially performed this test by assigning word types randomly to bins. We found that this “random”
version of the test was unrealistically sensitive (all differences were highly significant) because
differences in perplexity were highly correlated across bins. For example, if a model has a beneficial effect
on names only and names are randomly distributed across bins, then perplexity will be better for every
bin, which we would then interpret as significance. To reduce correlation across bins, we then defined
bins on the basis of part of speech. As a result all names (or rather words whose dominant part of speech
is a proper noun) will be in one bin that is not correlated with all other bins.
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contains all positions with a number of rare tags (e.g., FW, ‘foreign word’) and unknown
words. Two models are then compared by computing perplexity separately for each bin,
counting the number of bins where the first model performs better than the second, and
testing the significance of this count using the exact binomial test. This significance test
is not very sensitive in some cases because the positive effect of class generalization can
be concentrated on a few parts of speech. To the extent that half-context and whole-
context classes approximate part-of-speech information, this makes it more difficult to
show significance because a number of bins may not be affected by the model. However,
as we will see subsequently the test is sufficiently sensitive for the key results of the
article.

A number of noteworthy points can be made on the basis of the results of these
significance tests. As all models of order-3 significantly (and unsurprisingly) outper-
form those of order-2, both order types are considered separately in the discussion that
follows. All significant results are with respect to p = 0.05.

With regard to the uninterpolated order-2 models (Table 4 models 1–6), the exper-
iments indicate no significant improvement between models, with the exception that
all models (P(KN), P(Half), and P(Whole) 512 classes, and P(Half) and P(Whole) 1,024 classes)
are significantly better than P(ET-Brown). Although such a result sheds no light on the
veracity of the half-context hypothesis, it nevertheless demonstrates that our exemplar-
theoretic models are competitive at order-2 and are superior to P(ET-Brown). Concern-
ing the interpolated order-2 models (Table 4 models 7–11), a similar story presents
itself, that is, there is no significant difference between the interpolated models with
the exception that all interpolated models (P(KN-Half) and P(KN-Whole) 512 classes, and
P(KN-Half) and P(KN-Whole) 1,024 classes) improve significantly on P(KN-Brown). It should
be noted, however, that the better performance of the five order-2 class-based models
(lines 7–11), including P(KN-Brown), compared to P(KN), is statistically significant; this is
in keeping with previous findings in the literature and demonstrates that class-based
generalization can complement history-length modeling.

As for the order-3 models (Table 4 models 12–16), here the significance results
demonstrate that half-contextualization yields statistically significant improvements
over whole-context models. Specifically, P(Half) significantly outperforms P(Whole), and
P(KN-Half) significantly outperforms P(KN-Whole). In addition, although P(KN) demonstrates
superior performance to P(Whole) and P(Half), interpolation with either of our exemplar-
theoretic models yields significantly better performance over P(KN) alone. That is, both
P(KN-Whole) and P(KN-Half) significantly improve on P(KN).

Overall, these significance results indicate the potential merits of our models. All
four exemplar-theoretic models outperform the Brown varieties and the models offer
significant improvements versus P(KN) when interpolated at orders 2 and 3. Indeed,
P(KN-Half) significantly beats every other model. Crucially, however, in our view, are the
results of order-3 which demonstrate the significant benefits of half-contextualization as
these lend considerable corroborative weight to our half-context hypothesis.

5.2 Context-Specific Analysis

In order to better understand the relative strengths and weaknesses of the P(KN-Half),
P(KN-Whole), and P(KN) models, Table 5 illustrates their performance in fine-grained
context-specific detail. P(KN-Half), P(KN-Whole), and P(KN) in Table 5 correspond to lines 15
(order-3 P(KN-Half)), 16 (order-3 P(KN-Whole)), and 12 (order-3 P(KN)) in Table 4, respectively.

The table is a stratification into 17 strata of the positions w3, occurring in context
w1w2w3, in the validation set according to length |h| of history used by the half-context
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Table 5
Context-specific analysis of model performance. |h| is the length of the history used by P(KN-Half)
and P(KN-Whole) for prediction. f3 is the training set frequency of w3. f1,3 is the training set
frequency of w1w2w3. The number of tokens and types of w1w2w3 for the validation set are also
provided. KN-Half corresponds to line 15 in Table 4 (the interpolation of Kneser-Ney and
exemplar-theoretic half-context); KN-Whole to line 16 (the interpolation of Kneser-Ney and
exemplar-theoretic whole-context); and KN corresponds to line 12 (the order-3 P(KN) model); .
L(KN-Half) is the log likelihood of P(KN-Half) on the validation set. Δ(KN-Whole) and Δ(KN) are the
differences in log likelihood of these models from L(KN-Half) on the validation set. The l value
gives average per-position log likelihood on the validation set and δ values per position
differences. The three largest absolute differences in each delta column are in bold.

tokens

types

L
(K

N
-H

alf)

Δ
(K

N
-W

hole)

Δ
(K

N
)

l(K
N

-H
alf)

δ
(K

N
-W

hole)

δ
(K

N
)

|h| f3 f1,3

1 0 ≥0 ≥0 62,810 61,453 −151,604 −4 1,545 −2.41 −0.00 0.02

2 1 0–9 0 10,529 10,482 −54,333 −17 −1,770 −5.16 −0.00 −0.17
3 1 1–9 ≥1 1,249 1,132 −2,837 0 −114 −2.27 0.00 −0.09
4 1 ≥10 0 673,816 666,307 −1,626,791 −114 24,439 −2.41 −0.00 0.04
5 1 ≥10 1 115,562 109,492 −170,263 139 10,378 −1.47 0.00 0.09
6 1 ≥10 2 48,165 43,296 −34,540 31 −2,385 −0.72 0.00 −0.05
7 1 ≥10 3–4 42,903 35,839 −21,703 18 −3,474 −0.51 0.00 −0.08
8 1 ≥10 5–9 33,199 23,429 −9,045 8 −3,123 −0.27 0.00 −0.09
9 1 ≥10 ≥10 1,967 1,153 −282 0 −158 −0.14 0.00 −0.08

10 2 0–9 0 33,410 33,076 −191,114 816 −5,866 −5.72 0.02 −0.18
11 2 1–9 ≥1 9,278 8,310 −42,757 1 4,479 −4.61 0.00 0.48
12 2 ≥10 0 718,269 702,377 −2,891,127 5266 −72,624 −4.03 0.01 −0.10
13 2 ≥10 1 259,856 241,428 −724,464 1324 109,446 −2.79 0.01 0.42
14 2 ≥10 2 161,628 141,797 −383,855 717 22,986 −2.37 0.00 0.14
15 2 ≥10 3–4 214,073 173,784 −447,205 693 19,603 −2.09 0.00 0.09
16 2 ≥10 5–9 308,716 211,119 −553,419 745 13,821 −1.79 0.00 0.04
17 2 ≥10 ≥10 2,407,403 337,259 −2,639,923 2179 21,844 −1.10 0.00 0.01

and whole-context models (0, 1, or 2), frequency f3 of w3 in the training set, and fre-
quency f1,3 of w1w2w3 in the training set. Each line gives statistics for one stratum. We
explain the statistics for the example of stratum 13. This stratum contains all positions
w3 in the validation set that satisfy the following three conditions: w1w2 is a bigram that
half- and whole-context models use for class-based prediction (|h| = 2); w3’s frequency
in the training set is at least 10; and the trigram w1w2w3 occurred exactly once in the
training set. There are 259,856 validation set positions in this stratum, corresponding
to 241,428 different trigram types w1w2w3. The log likelihood of this subset of the
validation set for P(KN-Half) is −724,464. This log likelihood of −724,464 is better by 1,324
than that of P(KN-Whole) and better by 109,446 that that of P(KN). The per-position (average)
log likelihood of P(KN-Half) is −2.79. This per-position log likelihood is better by 0.01 than
that of P(KN-Whole) and better by 0.42 that that of P(KN).

The 17 strata were chosen so as to get good resolution on the contexts that distin-
guish the models. These are the contexts that contain a history that is used by the class
models (lines 4–9 and 12–17). The other five strata (1, 2, 3, 10, 11) are comparatively
small and have a small impact on overall difference in log likelihood. The KN model
interpolates predictions for histories of different lengths. In general, this will include the
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history that the class-based models use, but also include other lengths. For example, in
cases where the class-based model is using a length-2 history, the KN model interpolates
length-2, length-1, and length-0 histories.

We first compare P(KN-Half) and P(KN). In general, P(KN-Half) performs better than P(KN)
if a history of length 2 is available for prediction and the predictee w3 occurred at least
once in the identical context in the training set (lines 11, 13–17, Δ(KN) is positive for these
strata). Stratum 11 contains a small number of positions and consequently contributes
little to Δ(KN), but the per position difference is the largest of any stratum (0.48). In
contrast, the per-position difference for stratum 17 is small, but the overall contribution
to Δ(KN) is still noticeable since this stratum is the largest. The overall contribution of all
length-2 history strata to Δ(KN) is 113,689 (the sum of rows 10–17 of the corresponding
column) and is thus responsible for the majority of the perplexity improvement due to
half-context modeling.

The two strata 10 and 12 are exceptions. Per-position decrease in performance is
large for half-context modeling and the overall impact is also large for stratum 12. In
these two cases, P(KN) backs off to context length 1 for prediction. Recall that, in contrast,
P(KN-Half) uses only one context length for prediction, the longest that is available. So on
line 12, P(KN-Half) underpredicts the next word w3 using a bigram w1w2 because w3 did
not occur in that position in the training set ( f1,3 = 0). P(KN) can also use the unigram
w2 for prediction and computes better estimates in cases where w2w3 occurred in the
training set. We are planning to address this problem in future work on the half-context
model.

A similar problem for P(KN-Half) can be observed on lines 6–9. In these cases, P(KN) can
use both the unigram w2 and the bigram w1w2 for prediction. Note that the values for f1,3
indicate that the trigram w1w2w3 occurred at least twice in the training set. P(KN-Half) only
uses the unigram w2 because the bigram w1w2 was not frequent enough to be included
in the model as a bigram. The results on lines 6–9 suggest that further improvements of
P(KN-Half) are possible by interpolating predictions of histories of different lengths.

Large improvements are realized by P(KN-Half) in strata 4 and 5. For these two strata,
the trigram w1w2w3 has frequency 0 or 1 and therefore the length-2 component of P(KN)
does not predict w3 well. P(KN-Half) achieves good predictions because the single word
w2 used for prediction occurred frequently ( f3 ≥ 10) and its class therefore is likely to
reflect the distributional properties of w2 well.

In summary, P(KN-Half) is the overall superior model because it successfully employs
class-based generalization for rare events. However, for a number of strata (6–9, 10, 12)
P(KN-Half) only uses one context for prediction, which in many cases is an inferior choice
compared to the predicting contexts used by P(KN). As a result, the averages in these
strata are negative. We plan to address this problem in future work (see Section 6).

Turning to the differences between P(KN-Half) and P(KN-Whole), we see that these dif-
ferences are quite small—some positive, some negative—for length-1 histories (strata 2–
9). Only for length-2 histories do we find larger differences: strata 12, 13, and 17 for
total differences on the validation set and strata 10, 12, and 13 for average differences.
Length-2 differences are consistently positive for P(KN-Half) although some of the differ-
ences are small.

The better relative performance of P(KN-Half) for length-2 histories can be explained
by the fact that the difference between half-context and whole-context models increases
as the size of n-grams being clustered grows. For unigrams, there is significant cor-
relation between left and right half-contexts: If two words have the same type of
right context, then they often also have the same type of left context. For bigrams,
this correlation is smaller. As an illustration consider the bigram underwriter was.
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It occurs four times in the validation set, followed by the words Dillon, Hambrecht,
Merrill, and Nesbitt, none of which occur in this context in the training set. For all four
words log[P(KN-Half)(w3|underwriter was)/P(KN-Whole)(w3|underwriter was)] ≈ 2, that is,
P(KN-Half) has a large advantage compared to P(KN-Whole). The reason is that underwriter
was is in the same right half-context bigram class as many bigrams that are followed
by Dillon, Hambrecht, Merrill, or Nesbitt in the training set. Examples of such bigrams
include banking at, bonds via, firm of, sold through, and strategist at. These bigrams have
similar right contexts, but dissimilar left contexts. As a result, the whole-context model
groups underwriter was with other bigrams that do not support good generalization.
The pattern of consistent improvements of P(KN-Half) compared to P(KN-Whole) for bigrams
(lines 11–17) indicates that half-context clustering is able to capture useful generaliza-
tion for language modeling that whole-context clustering cannot capture.

For unigrams, there are many cases that show the same effect. For example, the
unigram persuades is followed by them in the validation set, again a context unseen in
the training set. The half-context model groups persuades with n-grams like They told,
and prevented, and both of —dissimilar on the left, but similar on the right—that support
a high estimate for P(KN-Half)(them|persuade). The class of persuade of the whole-context
model is more diffuse, generally containing n-grams that are followed by a noun phrase,
but in contexts like act until, admit that, clearance by that make a following them less likely.

However, there are also unigrams where class membership in the whole-context
model leads to better generalization than class memberships in the half-context model
because the whole-context model can exploit the correlation of left and right contexts.
For example, the whole-context model assigns the unigram 367,000 to a class that con-
sists almost exclusively of numbers whereas the half-context model assigns it to a class
that is more mixed. Because 367,000 occurs in only 11 distinct contexts in the training
set, its syntactic behavior can be better characterized if both left and right contexts are
exploited.

In summary, half-context and whole-context models perform similarly on average
for length-1 histories although there are large differences between the two models for
individual 1-word histories. For length-2 histories, the half-context model is superior
due to its ability to group histories according to the relevant half-context only—the right
half-context—in accordance with the half-context hypothesis.

5.3 Objective Function of n-gram Clustering

As we argued in Section 3.3 when introducing the exemplar-theoretic model, class-
based generalization is most useful for unseen and for infrequent events. This basic
insight motivates two differences between our class-based model and previous work.

First, the discounting mechanism defined in Equation (1) varies the weight that
class-based generalization is given: Weights for unseen and infrequent events are higher
than weights for frequent events. As a result, the model’s estimates are close to maxi-
mum likelihood estimates for frequent events because the maximum likelihood estima-
tor is appropriate in these cases. In contrast, the model’s estimate of the probability of
a word occurring in an unattested context is closer to the estimate of the class-based
model.

Using class-based generalization only for rare events also has implications for the
objective function of clustering. Most previous work has employed objective functions
that optimize a quantity on the entire training set. For example, Brown et al. (1992)
maximize mutual information and Gao et al. (2002) minimize perplexity on the entire
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training set. In contrast, the objective function of our clustering is similarity of half-
contexts to cluster centroids or, more precisely, minimizing the residual sum of squares
of differences between half-context vectors and cluster centroids. This criterion is much
less sensitive to frequency than previously used criteria. In the extreme case, it may be
optimal on the global criteria to put a very frequent idiosyncratic word in its own class.
This is so because even slightly better improvements of the class model for a frequent
word will affect many positions in the training set and have a large cumulative effect.

Our objective function is not influenced by frequency because vectors are normal-
ized. In principle, the gain from finding an appropriate cluster for a rare word is as
large as the gain from finding an appropriate cluster for a frequent word. In particular,
frequent idiosyncratic words have no advantage compared to infrequent idiosyncratic
words and very frequent idiosyncratic words are less likely to be assigned to singleton
clusters or small clusters dominated by them. This clustering set-up may not be optimal
for achieving good results with a cluster-only language model, that is, a model that does
not contain a “lexical” component similar to the maximum likelihood estimates in our
exemplar-theoretic model. But if we acknowledge that class-based generalization is not
useful or is even harmful for frequent events, then this should not be our goal.

In summary, we attribute part of the success of our half-context models to the fact
that both the design of the discounting mechanism and the k-means objective function
target a different subspace of the space of all events: those that are unseen or infrequent.

5.4 Efficient Clustering

The focus of this article is the comparison of HC and WC classes and our investigations
into the context-specific characteristics of history-length interpolation and class-based
generalization. However, we also want to point out that the clustering algorithm we
are using is very efficient, thus removing a potential obstacle to the widespread use
of class-based language models. In total, the clustering algorithm requires fewer than
two assignments per item on average (see Section 4.1). A single assignment requires
computing the distance between an HC distribution and each of k centroids. The time
necessary for computing one distance is a function of the number of nonzero entries
in the distribution.4 The total number of nonzero entries for any given bigram is the
number of distinct trigrams in which it occurs. Thus, the total number of operations
for performing all assignments necessary for the clustering of the bigrams is less than
b times the number of distinct trigrams in the corpus where b is a small constant. This
number scales linearly with the number of distinct trigrams, which in turn scales sub-
linearly with the length of the training corpus. Thus, although the estimation procedure
is expensive compared to standard trigram models like KN, it has desirable properties
compared to other clustering algorithms, in particular the exchange algorithm. Even
though there exist fast implementations for the exchange algorithm (Martin, Liermann,
and Ney 1998; Uszkoreit and Brants 2008), it has worse than linear complexity.

6. Conclusions and Future Work

In this article we introduced a new representational formalism for language modeling
known as half-contextualization. Half-contextualization employs only inward contextual

4 This only holds for the dot product, not for the Euclidean distance, but the latter can be computed from
the former as

∑
(xi − yi )2 =

∑
x2

i +
∑

y2
i − 2

∑
xiyi if sums of squares are precomputed and cached.
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information in estimation and prediction—where we defined the inward distributions
as the conditioning context’s right-context distribution and the predicted word’s left-
context distribution. Our hypothesis was that only inward context is helpful for accurate
prediction.

The experimental results and statistical analyses herein indicate that this hypothesis
is correct and that the use of outward directed information is not only redundant but
also, in the case of order-3, damaging. We believe this is a particularly noteworthy
discovery as it is essentially tantamount to requiring only half of the available dis-
tributional information in order to achieve an equivalent, and often better, result.
Furthermore, from the outset we argued that the lack of adoption of class- and
similarity-based approaches was, in part, because the granularity of contexts best suited
for generalization and history-length interpolation have yet to be established; the novel
context-specific analysis we presented here, which goes beyond traditional perplex-
ity comparisons between models, illustrates the specific context scenarios where half-
contextualization is particularly beneficial.

The HC hypothesis is at first counter-intuitive: Standard language models treat
words as atomic units that are best characterized by taking into account all information
available about them in the training set, including what we call outward context. The
model we have proposed uses different parts of the available contextual information for
different inference tasks. While it may seem surprising that contextual information can
be redundant or harmful for class-based generalization, we have argued that direction-
ally nonrelevant information for a particular inference task can be noisy and misleading.

In addition to half-contextualization, we introduced three other innovations for
class-based language models. First, we defined classes as mixed classes of bigrams and
unigrams and argued that this flexible granularity gives rise to better classes. Second,
we successfully employed a discounting method which focuses the impact of general-
ization onto rare events while leaving frequent events to better-suited history-length in-
terpolation. This addresses the problem that class-based generalization is often harmful
for high frequency events that are best estimated by maximum likelihood on identical
contexts. Third, we presented a new clustering algorithm for class-based language mod-
els that has linear time complexity and is more efficient than the exchange algorithm.

With regard to the future development of our exemplar-theoretic model, one obvi-
ous avenue, given our analyses, is to incorporate the ability to interpolate distributions
of different-length conditioning contexts into the model. By incorporating such an inter-
polation mechanism, we anticipate an amelioration in performance further supporting
the use of half-context in language models. However, crucially, the primary endeavor in
this article is not simply to promote the merits of half-contextualization, nor to establish
how to build a better exemplar-theoretic model, but rather to develop and promote a
deeper understanding of the relationship between history-length interpolation, class-
based generalization, and context, in order to construct and combine language models,
of varying varieties, in a more targeted fashion.
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