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This article presents our work on constructing a corpus of news articles in which events
are annotated for estimated bounds on their duration, and automatically learning from this
corpus. We describe the annotation guidelines, the event classes we categorized to reduce gross
discrepancies in inter-annotator judgments, and our use of normal distributions to model vague
and implicit temporal information and to measure inter-annotator agreement for these event
duration distributions. We then show that machine learning techniques applied to this data can
produce coarse-grained event duration information automatically, considerably outperforming a
baseline and approaching human performance. The methods described here should be applicable
to other kinds of vague but substantive information in texts.

1. Introduction
Consider the sentence from a news article:
George W. Bush met with Viadimir Putin in Moscow.

How long did the meeting last? Our first inclination is to say we have no idea. But in
fact we do have some idea. We know the meeting lasted more than ten seconds and
less than one year. As we guess narrower and narrower bounds, our chances of being
correct go down, but if we are correct, the utility of the information goes up. Just how
accurately can we make duration judgments like this? How much agreement can we
expect among people? Will it be possible to extract this kind of information from text
automatically?
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Sometimes we are explicitly told the duration of events, as in “a five-day meeting”
and “I have lived here for three years.” But more often, such phrases are missing, and
present-day natural language applications simply have to proceed without them.

There has been a great deal of work on formalizing temporal information (Allen
1984; Moens and Steedman 1988; Zhou and Fikes 2002; Han and Lavie 2004; Hobbs and
Pan 2004) and on temporal anchoring and event ordering in text (Hitzeman, Moens, and
Grover 1995; Mani and Wilson 2000; Filatova and Hovy 2001; Boguraev and Ando 2005;
Mani et al. 2006; Lapata and Lascarides 2006). The uncertainty of temporal durations
has been recognized as one of the most significant issues for temporal reasoning (Allen
and Ferguson 1994). Chittaro and Montanari (2000) point out by way of example that
we have to know how long a battery remains charged to decide when to replace it or to
predict the effects of actions which refer to the battery charge as a precondition.

Yet to our knowledge, there has been no serious published empirical effort to model
and learn the vague and implicit duration information in natural language, and to
perform reasoning over this information. Cyc has some fuzzy duration information,
although it is not generally available; Rieger (1974) discusses the issue for less than a
page; there has been work in fuzzy logic on representing and reasoning with imprecise
durations (Godo and Vila 1995; Fortemps 1997). But none of these efforts make an
attempt to collect human judgments on such durations or to extract them automatically
from text.

Nevertheless, people have little trouble exploiting temporal information implicitly
encoded in the descriptions of events, relying on their knowledge of the range of usual
durations of types of events. This hitherto largely unexploited information is part of our
commonsense knowledge. We can estimate roughly how long events of different types
last and roughly how long situations of various sorts persist. We know that government
policies typically last somewhere between one and ten years, and weather conditions
fairly reliably persist between three hours and one day. We are often able to decide
whether two events overlap or are in sequence by accessing this information. We know
that if a war started yesterday, we can be pretty sure it is still going on today. If a
hurricane started last year, we can be sure it is over by now.

This article describes an exploration into how this information can be captured
automatically. Our results can have a significant impact on computational linguistics
applications like event anchoring and ordering in text (Mani and Schiffman 2007), event
coreference (Bejan and Harabagiu 2010), question answering (Tao et al. 2010; Harabagiu
and Bejan 2005), and other intelligent systems that would benefit from such temporal
commonsense knowledge, for example, temporal reasoning (Zhou and Hripcsak 2007).

Our goal is to be able to extract this implicit event duration information from
text automatically, and to that end we first annotated the events in news articles with
bounds on their durations. The corpus that we have annotated currently contains all
48 non-Wall-Street-Journal (non-WS]J) news articles (2,132 event instances), as well as
10 WSJ articles (156 event instances), from the TimeBank corpus annotated in TimeML
(Pustejovsky et al. 2003). The non-WSJ articles (mainly political and disaster news)
include both print and broadcast news that are from a variety of news sources, such
as ABC, AP, CNN, and VOA. All the annotated data have already been integrated into
the TimeBank corpus.

This article is organized as follows. In Section 2 we describe our annotation guide-
lines, including the annotation strategy and assumptions, and the representative event

1 The annotated data are available at http://www.isi.edu/~hobbs/EventDuration/annotations.
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classes we have categorized to minimize discrepant judgments between annotators. The
method for measuring inter-annotator agreement when the judgments are intervals on
a scale is described in Section 3. We will discuss how to integrate our event duration
annotations to TimeML in Section 4. In Section 5 we show that machine learning tech-
niques applied to the annotated data considerably outperform a baseline and approach
human performance.

2. Annotation Guidelines and Event Classes

Every event to be annotated was already identified in the TimeBank corpus. In our
project, annotators were asked to provide lower and upper bounds on the duration
of the event, and a judgment of level of confidence in those estimates on a scale from 1
to 10. An interface was built to facilitate the annotation. Graphical output is displayed
to enable us to visualize quickly the level of agreement among different annotators for
each event. For example, Figure 1 shows the output of the annotations (three annotators)
for the “finished” event in the sentence:

After the victim, Linda Sanders, 35, had finished her cleaning and was waiting for her clothes
to dry, ...

Figure 1 shows that the first annotator believed that the event lasts for minutes whereas
the second annotator believed it could only last for several seconds. The third annotated
the event as ranging from a few seconds to a few minutes. The confidence level of the
annotators is generally subjective but as all three were higher than 5, it shows reasonable
confidence. A logarithmic scale is used for the output (see Section 3.1 for details).

2.1 Annotation Instructions

Annotators were asked to make their judgments as intended readers of the article, using
whatever world knowledge was relevant to an understanding of the article. They were
asked to identify upper and lower bounds that would include 80% of the possible cases.
For example, rainstorms of 10 seconds or of 40 days and 40 nights might occur, but they
are clearly anomalous and should be excluded. There are two strategies for considering
the range of possibilities:

1.  Pick the most probable scenario, and annotate its upper and lower bounds.

Event "finished":
s mi hr
| === - |mmmmmm e | ===mmmmmm
==== 12 1 mi,. 5 mi, 8]
e — 2: [1 s, 10 s, 6]
e T T TP T T 3% Ib s, 10 mi, 8]

Figure 1
Example annotation output by three annotators.
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2. Pick the set of probable scenarios, and annotate the bounds of their upper
and lower bounds.

We deemed the second to be the preferred strategy.

The judgments were to be made in context. First of all, information in the syntactic
environment needed to be considered before annotating. For example, there is a differ-
ence in the duration of the watching events in the phrases watch a movie and watch a
bird fly.

Moreover, the events needed to be annotated in light of the information provided
by the entire article. This meant annotators were to read the entire article before starting
to annotate. One may learn in the last paragraph, for example, that the demonstration
event mentioned in the first paragraph lasted for three days, and that information was
to be used for annotation.

However, they were not to use knowledge of the future when annotating a historical
article. For example, an article from the fall of 1990 may talk about the coming war
against Iraq. Today we know exactly how long that lasted. But annotators were asked
to try to put themselves in the shoes of the 1990 readers of that article, and make
their judgments accordingly. This was because we wanted people’s estimates of typical
durations of events, rather than the exact durations.

Annotation could be made easier and more consistent if coreferential and nearcorefer-
ential descriptions of events were identified initially. Annotators were asked to give the
same duration ranges for such cases. For example, in the sentence during the demonstra-
tion, people chanted antigovernment slogans, annotators were to give the same durations
for the “demonstration” and “chanted” events.

2.2 Analysis

When the articles were completely annotated by the three annotators, the results were
analyzed and the differences were reconciled. Differences in annotation could be due to
the differences in interpretations of the event; we found that the vast majority of radi-
cally different judgments could be categorized into a relatively small number of classes,
however. Some of these correspond to aspectual features of events, which have been
investigated intensively (e.g., Vendler 1967; Dowty, 1979; Moens and Steedman 1988;
Passonneau 1988; Giorgi and Pianesi 1997; Madden and Zwaan 2003; Smith 2005). We
then developed guidelines to make annotators aware of these cases and to guide them in
making the judgments (see the next section). There is a residual of gross discrepancies in
annotators’ judgments that result from differences of opinion, for example, about how
long a government policy is typically in effect. But the number of these discrepancies
was surprisingly small.

These guidelines were then used in the annotation of a test set. It was shown that
the agreement in the test set was greater than the agreement obtained when anno-
tations were performed without the guidelines. (See Section 3.3 for the experimental
results.)

2.3 Event Classes

Action vs. State: Actions involve change, such as those described by words like speaking,
gave, and skyrocketed. States involve things staying the same, such as being dead, being dry,
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and being at peace. When we have an event in the passive tense, sometimes there is an
ambiguity about whether the event is a state or an action. For example, in

Three people were injured in the attack.

does the word “injured” describe an action or a state? This matters because they will
have different durations. The state begins with the action and lasts until the victim is
healed. In the sentence,

Farkas was ordered home and retired.

although retired usually indicates a state, it looks here more like the action by his
company of retiring Farkas.

There are some general diagnostic tests to distinguish actions and states (Vendler
1967; Dowty 1979); for example, action verbs are fine in the progressive form but
progressives of stative verbs are usually odd. Another test can be applied to this specific
case: Imagine someone says the sentence after the action has ended but the state is still
persisting. Would they use the past or present tense? In the “injured” example, it is clear
we would say “Three people were injured in the attack,” whereas we would say “Three
people are injured from the attack.” Similarly, we would say “Farkas was retired” rather
than “Farkas is retired.”

Our annotation interface handles events of this type by allowing the annotators to
specify which interpretation they are giving. If the annotator feels it’s too ambiguous to
distinguish, annotations can be given for both interpretations.

Aspectual Events: Some events are aspects of larger events, such as their start or
finish. Although they may seem instantaneous, we believe they should be considered
to happen across some interval (i.e., the first or last sub-event of the larger event). For
example, in

After the victim, Linda Sanders, 35, had finished her cleaning and was waiting for her clothes
to dry,...

the “finished” event should be considered as the last sub-event of the larger event (the
“cleaning” event), because it actually involves opening the door of the washer, taking
out the clothes, closing the door, and so on. All this takes time. This interpretation will
also give us more information on typical durations than if we simply assume such
events are instantaneous.

In the following example:

General Abacha’s supporters began a two-day rally in the capital.

the gathering of people marks the “beginning” of the rally, and it generally takes time
for a crowd of people to get together to start a rally.

Reporting Events: These are everywhere in the news. They can be direct quotes,
taking exactly as long as the sentence takes to read, or they can be summarizations of
long press conferences. We need to distinguish different cases:

*  Quoted Report: This is when the reported content is quoted. The duration

of the event should be the actual duration of the utterance of the quoted
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content. The duration can easily be verified by saying the sentence out
loud and timing it. For example, in

“It looks as though they panicked,” a detective said of the robbers.

the saying probably took between 1 and 3 seconds; it’s very unlikely it
took more than 10 seconds.

*  Unquoted Report: When the reporting description occurs without quotes,
the report could be as short as the duration of the actual utterance of the
reported content (lower bound), and as long as the duration of a briefing
or press conference (upper bound).

If the sentence is very short, then it’s likely that it is one complete sentence from
the speaker’s remarks, and a short duration should be given; if it is a long, complex
sentence, then it’s more likely to be a summary of a long discussion or press conference,
and a longer duration should be given. For example, consider

The police said it did not appear that anyone else was injured.

A Brooklyn woman who was watching her clothes dry in a laundromat was killed Thursday
evening when two would-be robbers emptied their pistols into the store, the police said.

If the first sentence were quoted text, it would be very much the same. Hence
the duration of the “said” event should be short. In the second sentence everything
that the spokesperson (here the police) has said is compiled into a single sentence
by the reporter, and it is unlikely that the spokesperson said only a single sentence
with all this information. Thus, it is reasonable to give longer duration to this
“said” event.

Multiple Events: Many occurrences of verbs and other event descriptors refer to
multiple events, especially, but not exclusively, if the subject or object of the verb is
plural. For example, in

Iraq has destroyed its long-range missiles.

both single (i.e., destroyed one missile) and aggregate (i.e., destroyed all missiles)
events happened. This was a significant source in disagreements in our first round of
annotation. Because both judgments provide useful information, our current annotation
interface allows the annotator to specify the event as multiple, and give durations for
both the single and aggregate events.

In the following example:

Seventy-five million copies of the rifle have been built since it entered production in
February 1947.

“built” and “production” are both multiple events. The annotators were asked to
give durations for both the single (i.e., built/produce one rifle) and aggregate (i.e.,
built/produce 75 million copies of the rifle) events.
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Events Involving Negation: Negated events didn’t happen, so it may seem strange to
specify their duration. But whenever negation is used, there is a certain class of events
whose occurrence is being denied. Annotators should consider this class, and make a
judgment about the likely duration of the events in it. In addition, there is the interval
during which the nonoccurrence of the events holds. For example, in

He was willing to withdraw troops in exchange for quarantees that Israel would not be
attacked.

there is the typical amount of time of “being attacked,” namely, the duration of a single
attack, and a longer period of time of “not being attacked.” The first is probably from
seconds to minutes and the second from months to years. Similarly to multiple events,
annotators were asked to give durations for both the event negated and the negation of
that event.

Appearance Events. Verbs like “seem” and “appear” usually indicate appearance
events. The duration of this kind of event depends on the duration of the validity or
availability of the evidence that causes one to have some impression at the time. Such
an event begins when enough evidence has accumulated for one to make that guess or
judgment, and it ends when either the evidence is contradicted or certainty is achieved.
For example, in

It appears that the destruction of this city in 2700 B.C. was related to the eruption of the
volcano.

the “appears” event lasts from when the archaeologist discovers enough evidence to
make the conjecture until the time the conjecture is refuted or confirmed.

Positive Infinite Durations: These are states which continue essentially forever once
they begin, for example,

He is dead.

Here the state continues for an infinite amount of time, and we allow this as a possible
annotation.

3. Inter-Annotator Agreement

Although the graphical output of the annotations enables us to visualize quickly the
level of agreement among different annotators for each event, a quantitative measure-
ment of the agreement is needed.

The kappa statistic (Krippendorff 1980; Siegel and Castellan 1988; Carletta 1996; Di
Eugenio and Glass 2004), which factors out the agreement that is expected by chance,
has become the de facto standard to assess inter-annotator agreement. It is computed as
follows:

_ P(4) - P(E)
K= T PE) M
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P(A) is the observed agreement among the annotators, and P(E) is the expected agree-
ment, which is the probability that the annotators agree by chance.

In order to compute the kappa statistic for our task, we have to compute P(A) and
P(E) first. But those computations are not straightforward.

P(A): What should count as agreement among annotators for our task?
P(E): What is the probability that the annotators agree by chance for our task?
3.1 What Should Count as Agreement?

Determining what should count as agreement is not only important for assessing inter-
annotator agreement, but is also crucial for later evaluation of machine learning ex-
periments. For example, for a given event with a known gold-standard duration range
from 1 hour to 4 hours, if a machine learning program outputs a duration of 3 hours
to 5 hours, how should we evaluate this result?

We first need to decide what scale is most appropriate. One possibility is just to
convert all the temporal units to seconds. However, this would not correctly capture our
intuitions about the relative relations between duration ranges. For example, the differ-
ence between 1 second and 20 seconds is significant, whereas the difference between
1 year 1 second and 1 year 20 seconds is negligible. Consider the range from 1 year
to 5 years and the range from 1 second to 5 seconds. The distance between 1 year and
5 years in seconds would be much larger than that between 1 second and 5 seconds, but
intuitively, they represent the same level of uncertainty. In order to handle this problem,
we use a logarithmic scale for our data. After first converting from temporal units to
seconds, we then take the natural logarithms of these values. This use of a logarithmic
scale also conforms to the idea of the importance of half orders of magnitude (HOM)
(Hobbs 2000; Hobbs and Kreinovich 2001), which has been shown to have utility in
commonsense reasoning and in several very different linguistic contexts.

In the literature on the kappa statistic, most authors address only category data
(either in nominal scales or ordinal scales); some can handle more general data, such as
data in interval scales or ratio scales (Krippendorff 1980; Carletta 1996). However, none
of the techniques directly apply to our data, which involves a range of durations from a
lower bound to an upper bound.

In fact, what coders annotate for a given event is not just a range, but a duration
distribution for the event, where the area between the lower bound and the upper bound
covers about 80% of the entire distribution area. It is natural to assume that the most
likely duration in such a distribution is the mean or average duration, and that the
distribution flattens out toward the upper and lower bounds. Thus, we use the normal
or Gaussian distribution to model the distribution of possible durations.

In order to determine a normal distribution, we need to know two parameters:
the mean and the standard deviation. For our duration distributions with given lower
and upper bounds, the mean is the average of the bounds. Under the assumption
that the area between lower and upper bounds covers 80% of the entire distribution
area, the lower and upper bounds are each 1.28 standard deviations from the mean.
Then the standard deviation can be computed using either the upper bound (Xypper) or
the lower bound (Xj;,.;) as follows:

X“PP”’ + Xlower

Xupper =1 Xjppper — 14

=728 T 128

, where L =
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With this data model, the agreement between two annotations can be defined as
the overlapping area between two normal distributions.? The agreement among many
annotations is the average overlap of all the pairwise overlapping areas. For example,
for a given event, suppose the two annotations are:

1.  Lower: 10 minutes; upper: 30 minutes

2. Lower: 10 minutes; upper 2 hours
After converting to seconds and to the natural logarithmic scale, they become:

1.  Lower: 6.39692; upper: 7.49554
2. Lower: 6.39692; upper: 8.88184

We then compute their means and standard deviations:

1. Wy =6.94623; 0y = 0.42861
2. W, =7.63938; 0, = 0.96945

The distributions and their overlap are then as in Figure 2. The overlap or agreement
(P(A)) is 0.508706.

3.2 Expected Agreement

What is the probability that the annotators agree by chance for our task? The first
quick response to this question may be 0, if we consider all the possible durations from
1 second to 1,000 years or even positive infinity.

However, not all the durations are equally possible. As in Krippendorff (1980) and
Siegel and Castellan (1988), we assume there exists one global distribution for our
task (i.e., the duration ranges for all the events), and “chance” annotations would be
consistent with this distribution. Thus, the baseline will be an annotator who knows the
global distribution and annotates in accordance with it, but does not read the specific
article being annotated. Therefore, we must compute the global distribution of the
durations, in particular, of their means and their widths. This will be of interest not
only in determining expected agreement, but also in terms of what it says about the
genre of news articles and about fuzzy judgments in general.

We first compute the distribution of the means of all the annotated durations. Its
histogram is shown in Figure 3, where the horizontal axis represents the mean values in
the natural logarithmic scale and the vertical axis represents the number of annotated
durations with that mean.

There are two peaks in this distribution. One is from 5 to 7 in the natural logarithmic
scale, which corresponds to about 1.5 minutes to 30 minutes. The other is from 14 to 17
in the natural logarithmic scale, which corresponds to about 8 days to 6 months. One
could speculate that this bimodal distribution is because daily newspapers report short
events that happened the day before and place them in the context of larger trends. The
lowest point between the two peaks occurs at 11, which roughly corresponds to one day.

2 This idea is due to Hoa Trang Dang.
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Random variable - x

Figure 2
Overlap of judgments of [10 minutes, 30 minutes] and [10 minutes, 2 hours].

We also compute the distribution of the widths (i.e., Xpper — Xiower) Of all the
annotated durations, and its histogram is shown in Figure 4, where the horizontal axis
represents the width in the natural logarithmic scale and the vertical axis represents the
number of annotated durations with that width.

The peak of this distribution occurs at 2.5 in the natural logarithmic scale. This
shows that for annotated durations, the most likely uncertainty factor from a mean or
average duration is 3.5:

X

upper | 1.25
= = =35 3
[ Xlower ( )
because
X
10g(Xupper) — log(w) = log(—3f—) = 2.5/2 = 1.25 4)

This is the half orders of magnitude factor that Hobbs and Kreinovich (2001) argue gives
the optimal granularity; making something three to four times bigger changes the way
we interact with it.

Because the global distribution is determined by these mean and width distribu-
tions, we can then compute the expected agreement, that is, the probability that the
annotators agree by chance, where the chance is based on this global distribution. Two
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approaches were used to approximate this probability, both of which use a normal
distribution to approximate the global distribution.

The first approach is to compute a fixed global normal distribution with the mean
as the mean of the mean distribution and the standard deviation as the mean standard
deviation (this can be straightforwardly computed from the width distribution). We
then compute the expected agreement by averaging all the agreement scores (overlaps)
between this fixed distribution and each of the annotated duration distributions.

The second approach is to generate 1,000 normal distributions whose means are
randomly generated from the mean distribution and standard deviations are randomly
computed from the width distribution. We then compute the expected agreement by
averaging all the agreement scores (overlaps) between these 1,000 random distributions.

In a sense, both of these capture the way an annotator might annotate if he or she
did not read the article but only guessed on the basis of the global distribution. As it
turns out, the results of the two approaches of computing the expected agreement are
very close; they differ by less than 0.01: P(E); = 0.1439, P(E), = 0.1530. We will use the
results of the second approach as the baseline in the next section.

3.3 Inter-Annotator Agreement Experiments

In order to see how effective our guidelines are, we conducted experiments to compare
the inter-annotator agreement before and after annotators read the guidelines.

The data for the evaluation was split into two sets. The first set contained 13 articles
(521 events, 1,563 annotated durations) which were all political and disaster news
stories from ABC, APW, CNN, PRI, and VOA. The annotators annotated independently

180 T T T T T T
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20+

=5 10 15 30
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Figure 3
Distribution of means of annotated durations.
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Figure 4
Distribution of widths of annotated durations.

before reading the guidelines. The annotators were only given short instructions on what
to annotate and one sample article with annotations. The second set (test set) contained
5 articles (125 events, 375 annotated durations) that were also political and disaster
news stories from the same news sources. The annotators annotated independently after
reading the guidelines.

The comparison is shown in Figure 5. Agreement is measured by the area of overlap
in two distributions and is thus a number between 0 and 1. The graphs show the answer
to the question “If we set the threshold for agreement at x, counting everything above
x as agreement, what is the percentage y of inter-annotator agreement?” The horizontal
axis represents the overlap thresholds, and the vertical axis represents the agreement
percentage, that is, the percentage of annotated durations that agree for given overlap
thresholds. There are three lines in the graph. The top one (with circles) represents
the after-guidelines agreement; the middle one (with triangles) represents the before-
guidelines agreement; and the lowest one (with squares) represents the expected or
baseline agreement. This graph shows that, for example, if we define agreement to be
a 10% overlap or better (an overlap threshold of 0.1), we can get 0.8 agreement after
reading the guidelines, 0.72 agreement before reading the guidelines, and 0.36 expected
agreement with only the knowledge of the global distribution. From this graph, we can
see that our guidelines are indeed effective in improving the inter-annotator agreement.

Table 1 shows more detailed experimental results. For each overlap threshold, it
shows the expected or baseline agreement, the before-guidelines agreement, and the
after-guidelines agreement, as well as the kappa statistic computed from the after-
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guidelines agreement (P(A)) and the expected or baseline agreement (P(E)). The agree-
ment actually gets marginally worse when the agreement criteria is very stringent (i.e.,
overlap > 0.9), which indicates there really is no consensus at that level of agreement.
The overall agreement is relatively low. Thus in this article, we mainly focus on learn-
ing coarse-grained event durations with much higher inter-annotator agreement. See
Sections 5.2 and 5.3 for more details.

Table 1

Inter-annotator agreement with different overlap thresholds.
Overlap Expected BeforeG. AfterG. Kappa
Threshold Agreement Agreement Agreement (AfterG. A.)
0.1 0.36 0.72 0.80 0.69
0.2 0.28 0.59 0.70 0.58
0.3 0.22 0.52 0.67 0.58
0.4 0.17 0.43 0.58 0.49
0.5 0.12 0.31 0.45 0.38
0.6 0.08 0.22 0.35 0.29
0.7 0.05 0.15 0.23 0.19
0.8 0.02 0.10 0.10 0.08
0.9 0.01 0.07 0.04 0.03
1.0 0.00 0.05 0.03 0.03
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4. Extending TimeML with Estimated Event Durations

This section describes the event classes in TimeML and how we can integrate our
annotations of estimated event durations with them. This can enrich the expressiveness
of TimeML, and provide natural language applications that use TimeML with this
additional implicit event duration information for temporal reasoning.

4.1 TimeML and Its Event Classes

TimeML (Pustejovsky et al. 2003) is a rich specification language for event and tem-
poral expressions in natural language text. Unlike most previous attempts at event
and temporal specification, TimeML separates the representation of event and temporal
expressions from the anchoring or ordering dependencies that may exist in a given text.

TimeML includes four major data structures: EVENT, TIMEX3, SIGNAL, and
LINK. EVENT is a cover term for situations that happen or occur, and also those
predicates describing states or circumstances in which something obtains or holds true.
TIMEX3, which extends TIMEX2 (Ferro 2001), is used to mark up explicit temporal
expressions, such as time, dates, and durations. SIGNAL is used to annotate sections
of text, typically function words that indicate how temporal objects are related to each
other (e.g., “when”, “during”, “before”). The set of LINK tags encode various relations
that exist between the temporal elements of a document, including three subtypes:
TLINK (temporal links), SLINK (subordination links), and ALINK (aspectual links).

Our event duration annotations can be integrated into the EVENT tag. In TimeML
each event belongs to one of the seven event classes, namely, reporting, perception,
aspectual, I-action, I-state, state, and occurrence. The TimeML annotation guidelines3
give detailed descriptions for each of the classes:

Reporting. This class describes the action of a person or an organization declaring
something, narrating an event, informing about an event, and so forth (e.g., say, report,
tell, explain, state).

Perception. This class includes events involving the physical perception of another
event (e.g., see, watch, view, hear).

Aspectual. This class focuses on different facets of event history, that is, initiation,
reinitiation, termination, culmination, continuation (e.g., begin, stop, finish, continue).

I-Action. An I-Action is an Intensional Action. It introduces an event argument (which
must be in the text explicitly) describing an intensional action or situation which does
not necessarily actually happen but may be only desired or possible (e.g., attempt, try,
promise).

I-State. This class of events is similar to the previous class. It includes states that refer
to alternative possible worlds (e.g., believe, intend, want).

State. This class describes circumstances in which something obtains or holds true (e.g.,
on board, kidnapped, peace).

3 http://www.timeml.org/site/publications/timeMLdocs/annguide_1.2.pdf.

740



Pan, Mulkar-Mehta, and Hobbs Annotating and Learning Event Durations in Text

Occurrence. This class includes all the many other kinds of events describing something
that happens or occurs in the world (e.g., die, crash, build, sell).

4.2 Integrating Event Duration Annotations

Our event duration annotations can be integrated into TimeML by adding two more
attributes to the EVENT tag for the lower bound and upper bound duration annotations
(e.g., “lowerBoundDuration” and “upperBoundDuration” attributes).

To minimize changes to the existing TimeML specifications caused by the inte-
gration, we can try to share as much as possible our event classes as described in
Section 2.3 with the existing ones in TimeML.

We can see that four event classes are shared with very similar definitions: report-
ing, aspectual, state, and action/occurrence. For the other three event classes that only
belong to TimeML (perception, I-action, I-state), the I-action and perception classes can
be treated as special subclasses of the action/occurrence class, and the I-state class as a
special subclass of the state class.

There are still three classes that only belong to the event duration annotations (i.e.,
multiple, negation, and positive infinite), however. The positive infinite class can be
treated as a special subclass of the state class with a special duration annotation for
positive infinity.

Each multiple event has two annotations, one for single events and the other for
aggregate events. Because the single event is usually more likely to be encountered in
multiple documents, and thus the duration of the single event is usually more likely
to be shared and re-used, to simplify the specification we can take only the duration
annotation of the single events for the multiple event class, and the single event can
be assigned with one of the seven TimeML event classes. For example, the “destroyed”
event in the earlier example is assigned with the occurrence class in TimeBank.

The events involving negation can be simplified similarly. Because the event
negated is usually more likely to be encountered in multiple documents, we can take
only the duration annotation of the negated event for this class.

4.3 Annotation Consistency Evaluation

After the two corpora are integrated, it would be useful to evaluate how consistent
the temporal relationship annotations are originally in TimeBank and in the newly
integrated event duration annotations. Because not all the events in TimeBank are
anchored exactly on a time line, for this consistency evaluation we have only evaluated
the “includes” / “ is included” TLINK relationship: If event A includes event B, the
duration of event A should be no shorter than the duration of event B. Because the
event duration annotation is a range, there are three possible relationships between
the two duration annotations for event A [a1,4,] and event B [by, b, ]:

1.  Astrictly includes B if a1 > b, (strictly compatible)
2. Apossibly includes B if a; < by, but ay > by(softly compatible)
3.  Adoesn’tinclude B if a, < b;(incompatible)

We call the case (i) strictly compatible, (ii) softly compatible, and (iii) incompatible.
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For this consistency evaluation, one article was randomly picked from each news
source, and for each “include” TLINK relationship in the article, one of the three
compatibility labels is assigned based on their definitions. The result shows that out
of a total of 116 “include” relationships, 59.5% are strictly compatible, 19.8% are softly
compatible, and 20.7% are incompatible. We can merge the first two categories as
compatible, which accounts for 79.3%.

Most of the incompatible cases are due to different event interpretations and guide-
lines for the two corpora. For example, TimeBank bounds most of the I-State events to
the article time, whereas our annotations usually give them a much longer duration—
for example, the event “appear” in “Everyone appears to believe that somehow Cuba is
going to change,” and the event “hope” in “The quarantine hopes to staunch the flow of
Iragi oil.”

Aspectual events are another class of events that cause many incompatible cases,
including those where multiple interpretations are possible, for example, in “This is
quite an extraordinary story unfolding here,” the event “unfolding” can be interpreted
as either the start of the unfolding (TimeBank), or the entire process of the unfolding
(duration annotation); Sometimes even when both corpora agree on the interpretation
of the event, they may not agree on its duration, for example, in “But with the task-
force investigation just getting under way, officials have been careful not to draw any firm
conclusions,” it is clear that the “getting” event is the start of the investigation, but should
it last momentarily (TimeBank) or for a couple of weeks (duration annotation)? Despite
the difficulty with this event class, there exists some clear cases, for example, in “A new
Essex County task force began delving Thursday into the slayings of 14 black women over the
last five years in the Newark area,” it is correct to bound “began” to Thursday, whereas the
event “delving” should last much longer.

5. Learning Event Durations

It is highly unlikely that the relatively small amount of data we have annotated so
far could support an automatic classification task at this fine granularity. But we have
identified two classification tasks at a coarser granularity that we can hope to do well
on and that have some independent utility. The first exploits the distribution shown
in Figure 3, a bimodal distribution of events classifying them into those lasting less
than a day and those lasting more than a day. The second coarse-grained task is the
approximate identification of the temporal unit most likely to be used to describe the
duration of the event.

In Section 5.1 we describe the features that were used in the machine learning ex-
periments. Section 5.2 describes the experiment on classifying events into those lasting
more or less than a day. Section 5.3 describes the experiment on identifying the most
appropriate temporal unit for the mean durations.

5.1 Features

In this section, we describe the lexical, syntactic, and semantic features that we consid-
ered in learning event durations.

5.1.1 Local Context. For a given event, the local context features include a window of n
tokens to its left and n tokens to its right, as well as the event itself, for n = {0, 1, 2, 3}.
The best n determined via cross validation turned out to be 0, that is, the event itself
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with no local context. But we also present results for # = 2 in Section 5.2.3 to evaluate
the utility of local context.

A token can be a word or a punctuation mark. Punctuation marks are not removed,
because they can be indicative features for learning event durations. For example, the
quotation mark is a good indication of quoted reporting events, and the duration of
such events most likely lasts for seconds or minutes, depending on the length of the
quoted content. However, there are also cases where quotation marks are used for other
purposes, such as for titles of artistic works.

For each token in the local context, including the event itself, three features are
included: the original form of the token, its lemma (or root form), and its part-of-
speech (POS) tag. The lemma of the token is extracted from parse trees generated
by the CONTEX parser (Hermjakob and Mooney 1997), which includes rich context
information in parse trees, and the Brill tagger (Brill 1992) is used for POS tagging.

The local context features extracted for the “signed” event in the sentence below is
shown in Table 2 (with a window size n = 2). The feature vector is [signed, sign, VBD,
the, the, DT, plan, plan, NN, Friday, Friday, NNP, on, on, IN].

The two presidents on Friday signed the plan.

5.1.2 Syntactic Relations. The information in the event’s syntactic environment is very
important in deciding the durations of events. For example, there is a difference in the
durations of the “watch” events in the phrases “watch a movie” and “watch a bird fly.”

For a given event, both the head of its subject and the head of its object are extracted
from the parse trees generated by the CONTEX parser. Similarly to the local context
features, for both the subject head and the object head, their original form, lemma,
and POS tags are extracted as features. When there is no subject or object for an event,
“NULL” is used for the feature values.

For the “signed” event in The two presidents on Friday signed the plan, the head of
its subject is “presidents” and the head of its object is “plan.” The extracted syntactic
relation features are shown in Table 3, and the feature vector is [presidents, president,
NNS, plan, plan, NNJ.

5.1.3 WordNet Hypernyms. Events with the same hypernyms may have similar durations.
For example, events “ask” and “talk” both have a direct WordNet (Miller et al. 1990)
hypernym of “communicate,” and most of the time they do have very similar durations
in the corpus.

However, closely related events don’t always have the same direct hypernyms.
For example, “see” has a direct hypernym of “perceive,” whereas for “observe” one

Table 2
Local context features for the “signed” event with n = 2 in “The two presidents on Friday signed
the plan.”

Features Original Lemma POS
Event signed sign VBD
1token-after the the DT
2token-after plan plan NN
ltoken-before  Friday Friday = NNP
2token-before  on on IN
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Table 3
Syntactic relation features for the “signed” event in “The two presidents on Friday signed
the plan.”

Features  Original Lemma POS

Subject  presidents president NNS
Object plan plan NN

needs to go two steps up through the hypernym hierarchy before reaching “perceive.”
Correlation between events may be lost if only the direct hypernyms of the words are
extracted.

It is useful to extract the hypernyms not only for the event itself, but also for the
subject and object of the event. For example, events related to a group of people or an
organization usually last longer than those involving individuals, and the hypernyms
can help distinguish such concepts. The direct hypernyms of nouns are not always
general enough for this purpose, but a hypernym at too high a level can be too general
to be useful. For our learning experiments, we use the first three levels of hypernyms
from WordNet.

Hypernyms are only used for the events and their subjects and objects, not for the
local context words. For each level of hypernyms in the hierarchy, it’s possible to have
more than one hypernym, for example, “see” has two direct hypernyms, “perceive” and
“comprehend.” For a given word, it may also have more than one sense in WordNet. In
such cases, as in Gildea and Jurafsky (2002), we only take the first sense of the word
and the first hypernym listed for each level of the hierarchy. A word disambiguation
module might improve the learning performance. But because the features we need are
the hypernyms, not the word sense itself, even if the first word sense is not the correct
one, its hypernyms can still be good enough in many cases. For example, in one news
article, the word “controller” refers to an air traffic controller, which corresponds to the
second sense in WordNet, but its first sense (business controller) has the same hypernym
of “person” (three levels up) as the second sense (direct hypernym). Because we take the
first three levels of hypernyms, the correct hypernym is still extracted.

When there are fewer than three levels of hypernyms for a given word, its hyper-
nym on the previous level is used. When there is no hypernym for a given word (e.g.,
“g0”), the word itself will be used as its hypernyms. Because WordNet only provides
hypernyms for nouns and verbs, “NULL" is used for the feature values for a word that
is not a noun or a verb.

For the “signed” event in The two presidents on Friday signed the plan, the extracted
WordNet hypernym features for the event (“signed”), its subject (“presidents”), and
its object (“plan”) are shown in Table 4, and the feature vector is [write, communicate,
interact, corporate_executive, executive, administrator, idea, content, cognition].

Table 4
WordNet hypernym features for the event (“signed”), its subject (“presidents”), and its object
(“plan”) in The two presidents on Friday signed the plan.

Feature 1-hyper 2-hyper 3-hyper
Event write communicate interact
Subject  corporate executive  executive administrator
Object  idea content cognition
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5.2 Learning Coarse-Grained Event Durations

The distribution of the means of the annotated durations in Figure 3 is bimodal, dividing
the events into those that take less than a day and those that take a day or more. Thus,
in our first machine learning experiment, we have tried to learn this coarse-grained event
duration information as a binary classification task.

5.2.1 Inter-Annotator Agreement, Baseline, and Upper Bound. Before evaluating the perfor-
mance of different learning algorithms, we first assess the inter-annotator agreement,
the baseline, and the upper bound for the learning task.

Table 5 shows the inter-annotator agreement results among three annotators for
binary event durations. The experiments were conducted on the same data sets as in
Section 3.3. Two kappa values are reported with different ways of measuring expected
agreement (P(E)), that is, whether or not the annotators have prior knowledge of the
global distribution of the task, as described in Section 3.2.

Human agreement is 0.877 and is a good estimate of the upper bound performance
for this binary classification task. The baseline for the learning task is always taking
the most probable class. Because 59.0% of the total data is “long” events, the baseline
performance is 59.0%.

5.2.2 Data. The original annotated data was translated into a binary classification. For
each event annotation, the most likely or mean duration was calculated by averaging
the logs of its lower and upper bound durations. If its most likely or mean duration
was less than a day (about 11.4 in the natural logarithmic scale), it was assigned to the
“short” event class, otherwise it was assigned to the “long” event class. (Note that these
labels are strictly a convenience and not an analysis of the meanings of “short” and
“long.”)

We divided the total annotated non-WSJ data (2,132 event instances) into two data
sets: a training data set with 1,705 event instances (about 80% of the total non-WSJ
data) and a held-out test data set with 427 event instances (about 20% of the total
non-WSJ data). The WSJ data (156 event instances) was kept for further test purposes
(see Section 5.2.5).

5.2.3 Experimental Results (non-WSJ)

Learning Algorithms. Three supervised learning algorithms were evaluated for our
binary classification task, namely, Support Vector Machines (SVM) (Vapnik 1995), Naive
Bayes (NB) (Duda and Hart 1973), and Decision Trees (C4.5) (Quinlan 1993). The Weka
(Witten and Frank 2005) machine learning package was used for the implementation of
these learning algorithms. Linear kernel is used for SVM in our experiments.

Table 5

Inter-annotator agreement for binary event durations.
P(A) P(E) Kappa
0.877  With global distribution 0.528  0.740

Without global distribution  0.500 0.755
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Table 6
Test performance of three algorithms.

Class Algor. Prec. Recall F-Score

Short SVM  0.707 0.606 0.653
NB 0.567  0.768 0.652
C45 0571  0.600 0.585

Long SVM 0793 0.857 0.823
NB 0.834 0.665 0.740
C45 0765 0.743 0.754

Each event instance has a total of 18 feature values, as described in Section 5.1,
for the event only condition, and 30 feature values for the local context condition, when
n =2.For SVM and C4.5, all features are converted into binary features (6,665 and 12,502
features).

Results. Ten-fold cross validation was used to train the learning models, which were
then tested on the unseen held-out test set, and the performance (including the pre-
cision, recall, and F-score* for each class) of the three learning algorithms is shown
in Table 6. The significant measure is overall precision, and this is shown for the
three algorithms in Figure 6, together with human agreement (the upper bound of the
learning task) and the baseline.

We can see that among the three learning algorithms, SVM achieves the best F-score
for each class and also the best overall precision (76.6%). Compared with the baseline
(59.0%) and human agreement (87.7%), this level of performance is very encouraging,
especially as the learning is from such limited training data.

Feature Evaluation. The best performing learning algorithm, SVM, was then used
to examine the utility of combinations of four different feature sets (i.e., event, local
context, syntactic, and WordNet hypernym features). The detailed comparison is shown
in Table 7.°

We can see that most of the performance comes from event word or phrase itself.
A significant improvement above that is due to the addition of information about the
subject and object. Local context does not help and in fact may hurt, and hypernym
information also does not seem to help. It is of interest that the most important infor-
mation is that from the predicate and arguments describing the event, as our linguistic
intuitions would lead us to expect.

5.2.4 Learning Performance by Event Class. It's useful to compare the learning performance
between different event classes, and see how they contribute to the overall learning
performance. We would intuitively expect that some classes of events (e.g., reporting
events) are relatively easier to learn than others.

4 F-score is computed as the harmonic mean of the precision and recall: F = (2 x Prec x Rec) / (Prec+Rec).
5 When all features are used, the results for event and context become the same, which indicates that the
syntactic and hypenym features dominate.
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Figure 6
Overall test precision on non-WS]J data.
Table 7
Feature evaluation with different feature sets using SVM.
Class Event Only (1 = 0) Event Only Event + Syn
(n=0) + Syntactic + Hyper
Prec. Rec. F Prec. Rec. F Prec. Rec. F
Short 0.742 0465 0571 0758 0587 0.662 0707 0.606 0.653
Long 0.748 0908 0.821 0.792 0.893 0839 0793 0.857 0.823
Overall Prec. 74.7% 78.2% 76.6%
Local Context Context Context + Syn
(n=2) + Syntactic + Hyper

Short 0.672  0.568 0.615 0.710 0.600 0.650 0.707  0.606 0.653
Long 0.774 0.842 0.806 0.791 0860 0.824 0793 0.857 0.823
Overall Prec. 74.2% 76.6% 76.6%

Table 8 shows the precision for each TimeML event class for the test set. For each
event class, it also includes the total number of event instances, how many of them are
as short or long events based on their annotations in the corpus, and the number of error
instances.

Although there is too few data to draw firm conclusions, we can see that the
event classes with the highest precision are aspectual events (e.g., continue, start) and
perception events (e.g., see, look), though they don’t contribute much to the overall
performance (total instances are only 14 and 9, respectively). As we expected, reporting
events perform relatively better than most other event classes, but they don’t actually
contribute much to the overall performance either (only 39 instances out of a total
of 427 instances). The biggest event class is occurrence events (240 instances), and its
precision is not much lower than the overall precision (73.3% vs. 76.5%). The most
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Table 8
Learning performance for each event class.

Event Class #Events #Short #Long #Error Precision

Aspectual 14 3 11 0 100%
Perception 9 0 9 0 100%
Reporting 39 38 1 6 84.6%
I_State 32 8 24 5 84.4%
State 61 2 59 13 78.7%
Occurrence 240 84 156 64 73.3%
I_Action 32 17 15 12 62.5%
Total 427 152 275 100 76.6%
Table 9

Test performance on WSJ data.

Class Prec. Rec. F

Short 0.692 0.610 0.649

Long 0.779 0.835 0.806

Overall Prec. 75.0%

difficult event class for learning their durations seems to be I-action events (e.g., try,
insist).

5.2.5 Test on WSJ Data. Section 5.2.3 describes the experimental results with the learned
model trained and tested on data from the same genre, that is, non-WSJ articles. In order
to evaluate whether the learned model can perform well on data from different news
genres, we tested it on the unseen WSJ data (156 event instances). The performance
(including the precision, recall, and F-score for each class) is shown in Table 9. The pre-
cision (75.0%) is very close to the test performance on the non-WSJ data, and indicates
the significant generalization capacity of the learned model.

5.3 Learning the Most Likely Temporal Unit

These encouraging results prompted us to try to learn more fine-grained event duration
information, namely, the most likely temporal units of event durations (cf. Rieger’s
[1974] ORDERHOURS, ORDERDAYS).

For each original event annotation, we can obtain the most likely (mean) duration
by averaging its lower and upper bound durations, and assigning it to one of seven
classes—second, minute, hour, day, week, month, and year—based on the temporal unit
of its most likely duration.

However, human agreement on this more fine-grained task is low (44.4%). This is
understandable. An annotation of [30 minutes, 1 hour] and [35 minutes, 2 hours] will
not match, even though the area of their overlap is 52.72%.°

6 A natural logarithmic scale is used for the overlap/agreement computation, as described in Section 3.1.
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Table 10
Inter-annotator agreement for most likely temporal unit.

P(A) P(E) Kappa

0.798  With global distribution 0.151  0.762
Without global distribution  0.143  0.764

Based on this observation, instead of evaluating the exact agreement between an-
notators, an “approximate agreement” is computed for the most likely temporal unit of
events. In “approximate agreement,” temporal units are considered to match if they are
the same temporal unit or an adjacent one. For example, “second” and “minute” match,
but “minute” and “day” do not.

We conducted an experiment for learning this multi-classification task. The same
data sets as in the binary classification task were used. The only difference was that the
class for each instance was now labeled with one of the seven temporal unit classes.

The baseline for this multi-classification task was always taking the temporal unit
which with its two neighbors spans the greatest amount of data. Because the “week,”
“month,” and “year” classes together take up the largest portion (51.5%) of the data,
the baseline was always taking the “month” class, where both “week” and “year” were
also considered a match. Table 10 shows the inter-annotator agreement results for the
most likely temporal unit when using “approximate agreement”. Human agreement,
the upper bound, for this task increases from 44.4% to 79.8%.

Ten-fold cross validation was also used to train the learning models, which were
then tested on the unseen held-out test set. The performance of the three algorithms is
shown in Figure 7. The best performing learning algorithm is again SVM with 67.9%
test precision. Compared with the baseline (51.5%) and human agreement (79.8%), this
again is a very promising result, especially for a multi-classification task with such
limited training data. It is reasonable to expect that when more annotated data become
available, the learning algorithm will achieve higher performance when learning this
and more fine-grained event duration information.

90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0% T T T
Baseline c4.5 NB SVM Human
Agreement
Figure 7

Overall test precisions for learning most likely temporal unit.
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Although the coarse-grained duration information may look too coarse to be useful,
computers have no idea at all whether a meeting event takes seconds or centuries, so
even coarse-grained estimates would give it a useful rough sense of how long each
event may take. More fine-grained duration information is definitely more desirable for
temporal reasoning tasks. But coarse-grained durations to a level of temporal units can
already be very useful. For example, when you want to know how long it takes to learn
to use some new software, an answer of “hours” or “months” is often enough.

6. Conclusion

In the research described in this article, we have addressed a problem—extracting
information about event durations encoded in event descriptions—that has heretofore
received very little attention in the field. It is information that can have a substantial
impact on applications where the temporal placement of events is important. Moreover,
it is representative of a set of problems—making use of the vague information in
text—that has largely eluded empirical approaches in the past. We have explicated the
linguistic categories of the phenomena that give rise to grossly discrepant judgments
among annotators, and give guidelines for resolving these discrepancies. We have also
described a method for measuring inter-annotator agreement when the judgments are
intervals on a scale; this should extend from time to other scalar judgments. Inter-
annotator agreement is too low on fine-grained judgments. However, for the coarse-
grained judgments of more than or less than a day, and of approximate agreement on
temporal unit, human agreement is acceptably high. For these cases, we have shown
that machine-learning techniques achieve encouraging results.

This article has also provided the necessary foundation for modeling and learning
our most fine-grained duration annotations that are intervals on a scale. The duration
interval has been modeled using the normal distribution, and the difference between
two duration intervals are then the overlap between two distributions. So in order to
learn this distribution, only two parameters need to be learned, namely, the mean and
the standard deviation of the normal distribution, and the cost function can be defined
as a function of distribution overlaps.
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