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We present a new data-driven methodology for simulation-based dialogue strateqy learning,
which allows us to address several problems in the field of automatic optimization of dialogue
strategies: learning effective dialogue strategies when no initial data or system exists, and
determining a data-driven reward function. In addition, we evaluate the result with real users,
and explore how results transfer between simulated and real interactions. We use Reinforce-
ment Learning (RL) to learn multimodal dialogue strategies by interaction with a simulated
environment which is “bootstrapped” from small amounts of Wizard-of-Oz (WOZ) data. This
use of WOZ data allows data-driven development of optimal strategies for domains where no
working prototype is available. Using simulation-based RL allows us to find optimal policies
which are not (necessarily) present in the original data. Our results show that simulation-based
RL significantly outperforms the average (human wizard) strategy as learned from the data by
using Supervised Learning. The bootstrapped RL-based policy gains on average 50 times more
reward when tested in simulation, and almost 18 times more reward when interacting with real
users. Users also subjectively rate the RL-based policy on average 10% higher. We also show that
results from simulated interaction do transfer to interaction with real users, and we explicitly
evaluate the stability of the data-driven reward function.

1. Introduction
Statistical learning approaches, such as Reinforcement Learning (RL), for Spoken Dia-

logue Systems offer several potential advantages over the standard rule-based hand-
coding approach to dialogue systems development: a data-driven development cycle,
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provably optimal action policies, a precise mathematical model for action selection, pos-
sibilities for generalization to unseen states, and automatic optimization of competing
trade-offs in the objective function. See Young (2000), Lemon and Pietquin (2007), and
Frampton and Lemon (2009) for an introduction to dialogue strategy learning.

One of the major limitations of this approach is that it relies on a large quantity of
data being available. In cases when a fixed data set is used for learning (e.g., Walker
2000; Singh et al. 2002; Henderson, Lemon, and Georgila 2008), the optimal policy can
only be discovered when it is present in the data set. (Note, by a policy being “present
in a data set” we mean that the set of state-action mappings which define the policy
is contained in that data set. When a policy is not present in a data set, either some
states covered by the policy are not seen at all in that data, or the actions chosen by the
policy in some states are different to those seen in the data.) To overcome this problem,
simulated learning environments are being used to explore optimal policies which were
previously unseen in the data (e.g., Eckert, Levin, and Pieraccini 1997; Ai, Tetreault,
and Litman 2007; Young et al. 2009). However, several aspects of the components of
this simulated environment are usually hand-crafted, and thus limit the scope of policy
learning. In particular, the optimization (or reward) function is often manually set (Paek
2006). In order to build simulation components from real data, annotated in-domain
dialogue corpora have to be available which explore a range of dialogue management
decisions. Collecting dialogue data without a working prototype is problematic, leaving
the developer with a classic “chicken-or-egg” problem.

We therefore propose to learn dialogue strategies using simulation-based RL, where
the simulated environment is learned from small amounts of Wizard-of-Oz (WOZ) data.
In a WOZ experiment, a hidden human operator, the so-called “wizard,” simulates
(partly or completely) the behavior of the application, while subjects are left in the belief
that they are interacting with a real system (Fraser and Gilbert 1991).

In contrast to preceding work, our approach enables strategy learning in domains
where no prior system is available. Optimized learned strategies are then available
from the first moment of on-line operation, and handcrafting of dialogue strategies
is avoided. This independence from large amounts of in-domain dialogue data allows
researchers to apply RL to new application areas beyond the scope of existing dialogue
systems. We call this method “bootstrapping.”

In addition, our work is the first using a data-driven simulated environment. Previ-
ous approaches to simulation-based dialogue strategy learning usually handcraft some
of their components.

Of course, some human effort is needed in developing the WOZ environment and
annotating the collected data, although automatic dialogue annotation could be ap-
plied (Georgila et al. 2009). The alternative—collecting data using hand-coded dialogue
strategies—would still require annotation of the user actions, and has the disadvantage
of constraining the system policies explored in the collected data. Therefore, WOZ data
allows exploration of a range of possible strategies, as intuitively generated by the
wizards, in contrast to using an initial system which can only explore a pre-defined
range of options.

However, WOZ experiments usually only produce a limited amount of data, and
the optimal policy is not likely to be present in the original small data set. Our method
shows how to use these data to build a simulated environment in which optimal
policies can be discovered. We show this advantage by comparing RL-based strategy
against a supervised strategy which captures average human wizard performance on
the dialogue task. This comparison allows us to measure relative improvement over the
training data.
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The use of WOZ data has earlier been proposed in the context of RL. Williams and
Young (2004) use WOZ data to discover the state and action space for the design of
a Markov Decision Process (MDP). Prommer, Holzapfel, and Waibel (2006) use WOZ
data to build a simulated user and noise model for simulation-based RL. Although
both studies show promising first results, their simulated environments still contain
many hand-crafted aspects, which makes it hard to evaluate whether the success of the
learned strategy indeed originates from the WOZ data. Schatzmann et al. (2007) propose
to “bootstrap” with a simulated user which is entirely hand-crafted. In the following we
propose what is currently the most strongly data-driven approach to these problems. We
also show that the resulting policy performs well for real users. In particular we propose
a five-step procedure (see Figure 1):

1.  We start by collecting data in a WOZ experiment, as described in Section 2.

2. From these data we train and test different components of our simulated
environment using Supervised Learning techniques (Section 3). In
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Figure 1
Data-driven methodology for simulation-based dialogue strategy learning for new applications.
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particular, we extract a supervised policy, reflecting human (wizard)
performance on this task (see Section 3.3). We build a noise simulation
(Section 3.4), and two different user simulations (Section 3.5), as well as a
data-driven reward function (Section 3.6).

3. We then train and evaluate dialogue policies by interacting with the
simulated environment (Section 4).

4. Once the learned policies are “good enough” in simulation, we test them
with real users (Section 5).

5. Inaddition, we introduce a final phase where we meta-evaluate the whole
framework (Section 6). This final step is necessary because WOZ
experiments only simulate human—computer interaction (HCI). We
therefore need to show that a strategy bootstrapped from WOZ data
indeed transfers to real HCI. We first show that the results between
simulated and real interaction are compatible (Section 6.1). We also
meta-evaluate the reward function, showing that it is a stable, accurate
estimate for real user’s preferences (Section 6.2).

Note that RL is fundamentally different to Supervised Learning (SL): RL is a statisti-
cal planning approach which allows us to find an optimal policy (sequences of actions)
with respect to an overall goal (Sutton and Barto 1998); SL, in contrast, is concerned with
deducing a function from training data for predicting/classifying events. This article
is not concerned with showing differences between SL and RL on a small amount of
data, but we use SL methods to capture the average human wizard strategy in the
original data, and show that simulation-based RL is able to find new policies that were
previously unseen.

We apply this framework to optimize multimodal information-seeking dialogue
strategies for an in-car digital music player. Dialogue Management and multimodal
output generation are two closely interrelated problems for information seeking dia-
logues: the decision of when to present information depends on how many pieces of
information to present and the available options for how to present them, and vice versa.
We therefore formulate the problem as a hierarchy of joint learning decisions which are
optimized together. We see this as a first step towards an integrated statistical model of
Dialogue Management and more advanced output planning/Natural Language Gener-
ation (Lemon 2008; Rieser and Lemon 2009b; Lemon 2011; Rieser, Lemon, and Liu 2010;
Janarthanam and Lemon 2010).

In the following, Section 2 describes the Wizard-of-Oz data collection (i.e., how
to collect appropriate data when no initial data or system exists), Section 3 explains
the construction of the simulated learning environment (including how to determine a
data-driven reward function), Section 4 presents training and evaluation of the learned
policies in simulation (i.e., how to learn effective dialogue strategies), Section 5 presents
the results of the tests with real users, and Section 6 presents a meta-evaluation of the
framework, including transfer results.

2. Wizard-of-Oz Data Collection

The corpus used for learning was collected in a multimodal study of German task-
oriented dialogues for an in-car music player application. The corpus was created
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in the larger context of the TALK project' and is also known as the SAMMIE corpus
(Kruijff-Korbayové et al. 2006). In contrast to conventional WOZ trials we were not only
interested in the users’” behavior, but also in the behavior of our human wizards. This
study provides insights into natural strategies of information presentation as performed
by human wizards.

2.1 Experimental Setup

Six people played the role of an intelligent interface (the “wizards”). The wizards
were able to speak freely and display search results on the screen by clicking on pre-
computed templates. Wizards’ outputs were not restricted, in order to explore the
different ways they intuitively chose to present search results. Wizard’s utterances were
immediately transcribed and played back to the user with Text-To-Speech. Twenty-one
subjects (11 women, 10 men) were given a set of predefined tasks to perform, as well as
a primary driving task, using a driving simulator (Mattes 2003). The users were able to
speak, as well as make selections on the screen.

The experiment proceeded as follows. First the wizards were trained to use the
database interface and they were also given general instructions about how to interact
with the user. Training took 45 minutes, including five example tasks.

After the user arrived s/he was introduced to the driving simulator and had to
perform a short test drive. The users solved two sets of tasks with two tasks in each.
After each task the user filled out a task-specific questionnaire, in which they indicated
perceived task success and satisfaction on a five-point Likert scale. Finally, the user was
interviewed by the experiment leader following a questionnaire containing questions
similar to the PARADISE study (Walker, Kamm, and Litman 2000), including questions
on task ease, timing, multimodal and verbal presentation, as well as future use of such
systems. All subjects reported that they were convinced that they were interacting with
a real system.

To approximate speech recognition errors we used a tool that randomly deletes
parts of the transcribed utterances. Due to the fact that humans are able to make sense
of even heavily corrupted input, this method not only covers non-understandings, but
wizards also built up their own hypotheses about what the user really said, which can
lead to misunderstandings. The word deletion rate varied: 20% of the utterances were
weakly corrupted (= deletion rate of 20%), and 20% were strongly corrupted (= deletion
rate of 50%). In 60% of the cases the wizard saw the transcribed speech uncorrupted.
Example (1) illustrates the kind of corrupted utterances the wizard had to deal with.

(1) uncorrupted: “Zu dieser Liste bitte Track “Tonight’ hinzufiigen.”
[ “Add track “Tonight’ to this list.”]
weakly corrupted: “Zu dieser Liste bitte Track “Tonight”....”
[“...track “Tonight” to this list.”]
strongly corrupted: “Zu...Track “Tonight’....
[“...track “Tonight' to ...”]

There are some shortcomings of this technique, which we discuss in Rieser and
Lemon (2009a). However, the data are useful for our purposes because our main interest

1 TALK (Talk and Look: Tools for Ambient Linguistic Knowledge; www.talk-project.org) was funded by
the EU as project no. IST-507802 within the 6th Framework program.
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here is in multimodal presentation strategies (in the presence of some input noise).
Other studies have specifically targeted the Dialogue Management question of how to
handle ASR input noise (e.g., Stuttle, Williams, and Young 2004; Skantze 2005).

2.2 Data Collected

The corpus gathered with this set-up comprises 21 sessions and over 1,600 turns. Some
example dialogues can be found in Appendix B. Example (2) shows a typical multi-
modal presentation sub-dialogue from the corpus (translated from German). Note that
the wizard displays quite a long list of possible candidates on an (average sized) com-
puter screen, while the user is driving. This example illustrates that even for humans it
is difficult to find an “optimal” solution to the problem we are trying to solve.

(2) User: “Please search for music by Bjork.”
Wizard: “I found 43 items. The items are displayed on the screen.”
[displays list]

User: “Please select Human Behaviour.”

Information was logged for each session, for example, the transcriptions of the
spoken utterances, the wizard’s database query and the number of results, and the
screen option chosen by the wizard. A rich set of contextual dialogue features was
also annotated, as listed in Section 3.1. Also see Rieser, Kruijff-Korbayovéa, and Lemon
(2005).

Of the 793 wizard turns 22.3% were annotated as presentation strategies, re-
sulting in 177 instances for learning, where the six wizards contributed about equal
proportions.

A x? test on presentation strategy (comparing whether wizards chose to present
in multimodal or verbal modality) showed significant differences between wizards
(x2(1) = 34.21, p < .001). On the other hand, a Kruskal-Wallis test comparing user
preferences for the multimodal output showed no significant difference across wizards
(H(5)=10.94, p > .05).2 Mean performance ratings for the wizards’ multimodal behavior
ranged from 1.67 to 3.5 on a five-point Likert scale. We also performed an analysis of
whether wizards improved their performance over time (learning effects). The results
show that the wizard’s average user satisfaction scores in general slightly decreased
with the number of sessions that they performed, however.

Observing significantly different strategies that are not significantly different in
terms of user satisfaction, we conjecture that the wizards converged on strategies which
were appropriate in certain contexts. To strengthen this hypothesis we split the data by
wizard and performed a Kruskal-Wallis test on multimodal behavior per session. Only
the two wizards with the lowest performance score showed no significant variation
across session, whereas the wizards with the highest scores showed the most varying
behavior. These results again indicate a context-dependent strategy.

In Section 3.1 we test this hypothesis (that good multimodal clarification strate-
gies are context-dependent) by using feature selection techniques in order to find the

2 The Kruskal-Wallis test is the non-parametric equivalent to a one-way ANOVA. Because the users
indicated their satisfaction on a five-point likert scale, an ANOVA which assumes normality would be
invalid.
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features which are most predictive for the wizards” behavior. The dialogues show that
common “mistakes” were that the wizards either displayed too much information on
the screen, see Example (1) in Appendix B, or the wizards fail to present results early
enough, see Example (2) in Appendix B. In general, users report that they get distracted
from driving if too much information is presented. On the other hand, users prefer
shorter dialogues (most of the user ratings are negatively correlated with dialogue
length).

These results indicate that we need to find a strategy given the competing trade-
offs between the number of results (large lists are difficult for users to process), the
length of the dialogue (long dialogues are tiring, but collecting more information can
result in more precise results), and the noise in the speech recognition environment
(in high noise conditions accurate information is difficult to obtain). In the following
we utilize the ratings from the user questionnaires to optimize a presentation strategy
using simulation-based RL.

3. Simulated Learning Environment

Simulation-based RL learns by interaction with a simulated environment (Sutton and
Barto 1998). We obtain the simulated components from the WOZ corpus using data-
driven methods. Although this requires quite a large effort, the exercise is important as
a case study for exploring the proposed methodology.

The employed database contains 438 items and is similar in retrieval ambiguity and
structure to the one used in the WOZ experiment. The dialogue system used for learning
implements a multimodal information presentation strategy which is untrained, but
comprises some obvious constraints reflecting the system logic (e.g., that only filled
slots can be confirmed), implemented as Information State Update (ISU) rules (see also
Heeman 2007; Henderson, Lemon, and Georgila 2008).

Other behavior which is hand-coded in the system is to greet the user in the
beginning of a dialogue and to provide help if the user requests help. The help function
provides the user with some examples of what to say next (see system prompt s6 in the
Example Dialogue in Table 1 in Appendix D). All other actions are left for optimization.

3.1 Feature Space

A state or context in our system is a dialogue “information state” as defined in (Lemon
et al., 2005). We divide the types of information represented in the dialogue information
state into local features (constituting low-level and dialogue features), dialogue history
features, and user model features. We also defined features reflecting the application
environment (e.g., driving). The information state features are shown in Tables 1, 2,
and 3, and further described below. All features are automatically extracted from the
WOZ log-files (as described in Section 2.2), and are available at runtime in ISU-based
dialogue systems.

Local features. First, we extracted features present in the “local” context of a wizard
action, as shown in Table 1, such as the number of matches returned from the database
query (DB), whether any words were deleted by the corruption algorithm (see Sec-
tion 2.1), and the previous user speech act (user-act) of the antecedent utterance. The
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Table 1
Contextual /information-state features: Local features.

Local features

DB: database matches (integer)
deletion: words deleted (yes/no)
user-act: add, repeat, y/n, change, others

user actions are annotated manually by two annotators (k = .632). Please see Table 1 in
Appendix A for detailed results on inter-annotator agreement.

Also, note that the deletion feature (and later delHist, and delUser) counts the
number of words deleted by the corruption tool (see Section 2.1) and serves as an
approximation to automatic speech recognition (ASR) confidence scores as observed by
the system. Equally, the human wizard will be able to infer when words in a sentence
were deleted and hence has a certain confidence that the input is complete.

Dialogue history features. The history features account for events in the whole dialogue
so far, that is, all information gathered before entering the presentation phase, as
shown in Table 2. We include features such as the number of questions that the wizard
asked so far (questHist), how often the screen output was already used (screenHist),
the average corruption rate so far (delHist), the dialogue length measured in turns
(dialogueLength), the dialogue duration in seconds (dialogueDuration), and whether
the user reacted to the screen output, either by verbally referencing (refHist), for
example, using expressions such as It’s item number 4, or by clicking (clickHist).

User model features. Under “user model features” we consider features reflecting the wiz-
ards’ responsiveness to the behavior and situation of the user. Each session comprises
four dialogues with one wizard. The user model features average the user’s behavior in
these dialogues so far, as shown in Table 3, such as how responsive the user is towards
the screen output, namely, how often this user clicks (clickUser) and how frequently
s/he used verbal references so far (refUser); how often the wizard had already shown a
screen output (screenUser) and how many questions were already asked (questUser);
how much the user’s speech was corrupted on average so far (delUser), that is, an
approximation of how well this user is recognized; and whether this user is currently
driving or not (driving). This information was available to the wizards.

Table 2
Contextual/information-state features: History features.

Dialogue History Features

questHist: number of questions (integer)

screenHist: number screen outputs (integer)

delHist: average corruption rate; " viDaeiiomosnir (real)
dialogueLength: length in turns (integer)

dialogueDuration: time in sec (real)

refHist: number of verbal user references to screen output (integer)

clickHist: number of click events (integer)
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Table 3
Contextual/information-state features: User model features.

User model features

clickUser: average number of clicks (real)
refUser: average number of verbal references (real)

. : . no.wordsDeletedForUserSoFar
delUser: average corruption rate for that user; 2awordsbecicalorllseroorar (req])

screenUser: average number of screens shown to that user (real)
questUser: average number of questions asked to user (real)
driving: user driving (yes/no)

Note that all these features are generic over information-seeking dialogues where
database results can be displayed on a screen; except for driving which only applies
to hands-and-eyes-busy situations. This potential feature space comprises 16 features,
many of them taking numerical attributes as values. Including them all in the state space
for learning would make the RL problem unnecessarily complex. In the next section we
describe automatic feature selection techniques, which help to reduce the feature space
to a subset which is most predictive of when and how to present search results.

3.1.1 Feature Selection. We use feature selection techniques to identify the context features
which are most predictable for the wizards choosing a specific action. We choose to
apply forward selection for all our experiments in order to not include redundant
features, given our large feature set. We use the following feature filtering methods:
correlation-based subset evaluation (CFs; Hall 2000) and a decision tree algorithm (rule-
based SL). We also apply a correlation-based x> ranking technique. Filtering techniques
account for inter-feature relations, selecting subsets of predictive features at the expense
of saying less about individual feature performance itself. Ranking techniques evaluate
each feature individually. For our experiments we use implementations of selection
techniques provided by the WEKA toolkit (Witten and Frank 2005).

First, we investigated the wizards’ information acquisition strategy, namely, which
features are related to the wizards’ decision when to present a list (presentInfo)—that
is, the task is to predict presentInfo vs. all other possible dialogue acts. None of the
feature selection techniques were able to identify any predictive feature for this task.

Next, we investigated the wizards’ information presentation strategy, that is, which
features are related to the wizards’ decision to present a list verbally (presentInfo-
verbal) or multi-modally (presentInfo-multimodal). All the feature selection tech-
niques consistently choose the feature DB (number of retrieved items from the database).
This result is maybe not very surprising, but it supports the claim that using feature
selection on WOZ data delivers valid results. Relevant features for other domains may
be less obvious. For example, Levin and Passonneau (2006) suggest the use of WOZ
data in order to discover the state space for error recovery strategies. For this task many
other contextual features may come into play, as shown by Gabsdil and Lemon (2004)
and Lemon and Konstas (2009) for automatic ASR re-ranking.

We use this information to construct the state space for RL, as described in the
following section, as well as using these feature selection methods to construct the
wizard strategy as described in Section 3.3.
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Figure 2
State-action space for hierarchical Reinforcement Learning.

3.2 MDP and Problem Representation

The structure of an information-seeking dialogue system consists of an information
acquisition phase, and an information presentation phase. For information acquisition
the task of the dialogue manager is to gather “enough” search constraints from the user,
and then, “at the right time,” to start the information presentation phase, where the pre-
sentation task is to present “the right amount” of information in the right way—either
on the screen or listing the items verbally. What “the right amount” actually means
depends on the application, the dialogue context, and the preferences of users. For
optimizing dialogue strategies information acquisition and presentation are two closely
interrelated problems and need to be optimized jointly: When to present information
depends on the available options for how to present them, and vice versa.

We therefore formulate the problem as an MDD, relating states to actions in a hierar-
chical manner (see Figure 2): Four actions are available for the information acquisition
phase; once the action presentInfo is chosen, the information presentation phase is
entered, where two different actions for output realization are available.

The state space is constructed semi-automatically. We manually enumerate the task-
related features needed to learn about the dialogue task. For example, we manually
specified the number of slots, and information about the “grounded-ness” of the slots,
needed to learn confirmation strategies.> We also added the features which were auto-
matically discovered by the feature selection techniques defined in Section 3.1.1.

The state-space comprises eight binary features representing the task for a four-
slot problem: filledSlot indicates whether a slot is filled, confirmedSlot indicates
whether a slot is confirmed. We also add the number of retrieved items (DB). We found
that human wizards especially pay attention to this feature, using the feature selection
techniques of Rieser and Lemon (2006b). The feature DB takes integer values between
1 and 438, resulting in 28 x 438 = 112,128 distinct dialogue states for the state space.
In total there are 4112128 theoretically possible policies for information acquisition.* For

3 Note that we simplified the notion of a slot being grounded as a binary feature, following Henderson,
Lemon, and Georgila (2008). More recent work uses more fine-grained notions of confidence in
user-provided information (e.g., Roque and Traum 2008), or the notion of “belief states” in Partially
Observable Markov Decision Processes (e.g., Williams and Young 2007). This does lead to new policies in
information acquisition, but is not the focus of this article.

4 In practice, the policy space is smaller, as some combinations are not possible (e.g., a slot cannot be
confirmed before being filled). Furthermore, some incoherent action choices are excluded by the basic
system logic.
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the presentation phase the DB feature is discretized, as we will further discuss in Section

3.7. For the information presentation phase there are 22" — 256 theoretically possible
policies.

3.3 Wizard Behavior

Our hypothesis is that simulation-based RL allows us to find optimal policies which are
superior to those present in the original data. Therefore we create a policy which mimics
the average wizard behavior, and this allows us to measure the relative improvements
over the training data (cf. Henderson, Lemon, and Georgila 2008). We create this base-
line by applying SL. For these experiments we use the WEKA toolkit (Witten and Frank
2005). We learn with the decision tree J4.8 classifier, WEKA’s implementation of the C4.5
system (Quinlan 1993), and rule induction JRIP, the WEKA implementation of RIPPER
(Cohen 1995). In particular, we learn models which predict the following wizard actions:

®  Presentation timing: when the “average” wizard starts the presentation
phase on a turn level (binary decision).

®  Presentation modality: in which modality the list is presented (multimodal
vs. verbal).

We use annotated dialogue context features as input, as described in Section 3.1,
with feature selection techniques as described in Section 3.1.1. Both models are trained
using 10-fold cross validation, comparing the predicted labels against the true labels in
a hold-out test set. Table 4 presents the results for comparing the accuracy of the learned
classifiers against the majority baseline.

A data analysis shows that all of the wizards are more likely to show a graphic
on the screen when the number of database hits is > 4. However, none of the wizards
strictly follows that strategy.

For presentation timing, none of the classifiers produces significantly improved
results. Hence, we conclude that there is no distinctive pattern observable by the SL
algorithms for when to present information. For strategy implementation we therefore
use a frequency-based approach following the distribution in the WOZ data: In 48% of
cases the baseline policy decides to present the retrieved items; for the rest of the time
the system follows a hand-coded strategy.

For learning presentation modality, both classifiers significantly outperform the ma-
jority baseline. The learned models both learn the same rule set, which can be rewritten
as in Listing 1. Note that this rather simple algorithm is meant to represent the average
strategy as learned by SL from the initial data (which then allows us to measure the
relative improvements of the RL-based strategy).

Table 4

Predicted accuracy for presentation timing and modality (with standard deviation £).
majority baseline JRip J48

timing 52.0(£ 2.2) 50.2(£ 9.7) 53.5(+ 11.7)

modality 51.0(+ 7.0) 93.5(£11.5)%  94.6(+ 10.0)*

* Statistically significant improvement at p < .05.
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Listing 1
Supervised Strategy

if (db<4){

return presentlnfoVerbal;}
else{

return presentInfoMM;}

3.4 Noise Simulation

One of the fundamental characteristics of HCI is an error-prone communication chan-
nel. Therefore, the simulation of channel noise is an important aspect of the learn-
ing environment. Previous work uses data-intensive simulations of ASR errors (e.g.,
Pietquin and Dutoit 2006; Schatzmann, Thomson, and Young 2007a). Because we only
have limited data available, we use a simple model simulating the effects of non- and
misunderstanding on the interaction, rather than the noise itself. This method is espe-
cially suited to learning from small data sets. From our data we estimate a 30% chance
of user utterances to be misunderstood, and 4% to be complete non-understandings,
which is a realistic estimation for deployed dialogue systems (cf. Litman and Pan 1999;
Carpenter et al. 2001; Hirschberg, Litman, and Swerts 2001; Georgila, Henderson, and
Lemon 2005).

We simulate the effects that noise has on the user behavior, as well as for the task
accuracy.’ For the user side, the noise model defines the likelihood of the user accepting
or rejecting the system’s hypothesis (e.g., when the system utters a confirmation), that
is, in 30% of the cases the user rejects, in 70% the user agrees. These probabilities are
combined with the probabilities for user actions from the user simulation, as described
in the next section. For non-understandings we have the user simulation generating
Out-of-Vocabulary utterances with a chance of 4%. Furthermore, the noise model deter-
mines the likelihood of task accuracy as calculated in the reward function for learning.
A filled slot which is not confirmed by the user has a 30% chance of having been mis-
recognized, see Task Completion as defined in Section 3.6.

3.5 User Simulation

A user simulation is a predictive model of real user behavior used for automatic di-
alogue strategy development and testing. See Schatzmann et al. (2006) for a compre-
hensive survey. Simulations on the intention/dialogue act level are most popular for
RL-based strategy learning, as they outperform the lower level approaches in terms of
robustness, portability, and scalability. For our domain, the user can either add new
information (add), repeat or paraphrase information which was already provided at an
earlier stage (repeat), give a simple yes/no answer (y/n), or change to a different topic
by providing a different slot value than the one asked for (change). Examples from the
corpus are given in Table 5 and in the dialogues listed in Appendix B. These actions are
annotated manually by two annotators (k = .632, see Appendix A).

5 Simulating the effects of noise, rather than the noise itself, is sufficient to learn presentation strategies in
the presence of noise (e.g., whether a slot has to be confirmed before a result can be presented). Note that
other work has focused on learning dialogue strategies under different noise conditions (e.g., Bohus et al.
2006; Williams and Young 2007).
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Table 5

User action types and frequencies as annotated in the data.

# actiontype freq % example (original) translation

1 add 54  30.5 ih, Ella Fitzgerald. er, Ella Fitzgerald.

3 repeat 57 322 ja, Smileja. yes, Smile yes.

2 y/n 14 79 ja, in Ordnung. yes, that’s OK.

4 change 17 9.6 dann machen wir was anderes  Let’s try something else then. I
und zwar hitte ich gern eine  would like a playlist with three
Playlist mit drei Liedern. songs.

others 35 19.8 — no answer, comment, aside

In this work, we are challenged to learn user simulations from a small data set. We
first construct a simple bigram model in order to explore the quality of the data. Bigram
(or more general n-gram) models for user simulations were first introduced by Eckert,
Levin, and Pieraccini (1997, 1998). An n-gram-based user simulation predicts the user
action a,,; at time t that is most probable given the dialogue history of system and user
actions, see Equation (1) where a,; denotes the system action at time .

Zl\u,t‘ = ngﬂxﬂwtp(ﬂu,t AsprAst—1, A t—1s oor A t—n+1s as,t—n—i—l) (1)

The bigram model obtained from our WOZ data and the observed frequencies are
shown in Figure 3. When examining the distributions of user replies per system turn for
the bigram model, we can see that 25% of the state-action pairs have zero frequencies.
However, user simulations should allow the learner to also find strategies which are
not in the data. Especially when learning from small data sets, user simulations for

90 : : : :
I add
80+ = I rcpeat ||
T y/n
[ change
70+ 5
60 - "
& 50+ -
3
=]
g
2 40+ 1
30+ 5
20+ -
10} T
0 H |—| 11 H
askAQ explConf implConf presV  presMM reject
user actions
Figure 3

User action frequencies following a system act (bigram model): 25% zero frequencies for
state-action pairs due to data sparsity.
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automatic strategy training should cover the whole variety of possible user action for
each state in order to produce robust strategies. Ai, Tetreault, and Litman (2007), for
example, show that random models outperform more accurate ones if the latter fail to
provide enough coverage. On the other hand, user simulations used for festing should
be more accurate with respect to the data in order to test under realistic conditions (e.g.,
Moller et al. 2006).

We therefore apply two learning methods to deal with data sparsity (for n-gram
models): First, we develop a user simulation which is based on a new clustering tech-
nique; second, we apply smoothing (which is the standard technique applied to account
for zero frequencies in n-gram models).

3.5.1 Cluster-Based User Simulation. We introduce a cluster-based technique for building
user simulations from small amounts of data (see also Rieser and Lemon 2006a). A sim-
ilar approach has later been suggested by Schatzmann, Thomson, and Young (2007b),
called the “summary-space mapping technique,” where similar states are summarized,
and a distribution of possible user behavior is assigned to a set of states, which we call
“clusters.” This method allows one to generate the full range of possible user behavior
in every state.

Cluster-based user simulations generate explorative user behavior which is similar
but not identical to user behavior observed in the original data. In contrast to the bigram
model, where the likelihood of the next user act is conditioned on the previous system
action, the likelihood for the cluster-based model is conditioned on a cluster of similar
system states (see Equation (2)).

a,p = argmax, P(a,;|clusters; ;) )

The underlying idea is that, with sparse training data, we want user simulations to be
“similar to real users in similar situation.” This user simulation should generate any
kind of observed user behavior in a context (as opposed to the zero frequencies for
sparse data), while still generating behavior which is pragmatically plausible in this sit-
uation. That is, we want our user simulation to generate behavior which is complete and
consistent with respect to the observed actions in the data. We also want our model to
generate actions which show some variability with respect to the observed behavior, that
is, a controlled degree of randomness. This variance will help us to explore situations
which are not observed in the data, which is especially valuable when building a model
from sparse training data (cf. Ai, Tetreault, and Litman 2007).

Clustering is applied in order to identify more general situations than the previ-
ously annotated system speech acts by grouping them according to their similarity. For
building such clusters we apply the Expectation-Maximization (EM) algorithm. The EM
algorithm is an incremental approach to clustering (Dempster, Laird, and Rubin 1977),
which fits parameters of Gaussian density distributions to the data. In order to define
similarity between system actions, we need to describe their (semantic) properties.
We therefore annotate the system acts using a fine-grained scheme by Rodriguez and
Schlangen (2004) and Rieser and Moore (2005), which allows classification of dialogue
acts in terms of different forms and functions.

We use a slightly modified version of the scheme, where we only use a subset of the
suggested annotation tags, while adding another level describing the output modality,
as summarized in Figure 4. In particular, the annotation scheme describes wizard
actions in terms of their communication level, which describes the linguistic target
after Clark (1996). We distinguish between utterances which aim to elicit acoustic
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level {contact |acoustic|reference] intention}
WIZARD SA: | severity: {confirmat ion|repetition] elaboration}

modality: {multimodal | verbal}

Figure 4
Annotation scheme of discourse functions for wizard’s actions.

information (e.g., Sorry, can you please repeat? and utterances which aim to elicit fur-
ther information to uniquely identify the user’s reference (e.g., By which artist?). As
well as utterances trying to establish contact (e.g., Can you hear me?), and utterances
about the user’s intention (e.g., What do you want me to do?). The problem severity
describes which type of feedback the system requests from the user, namely, asking for
confirmation, for repetition, or for elaboration. The modality of the dialogue act
can either be verbal or multimodal.

Table 6 shows a mapping between system speech acts as described in Figure 2 and
the annotated discourse functions. We use these features for clustering the speech acts
according to their similarity in discourse function and form.

The EM algorithm generates three state clusters: The system acts askAQuestion and
implConfirm are summarized into cluster 1; explConf and reject are in cluster 2; and
presentListVerbal and presentListMM are in cluster 3. For every cluster we assign the
observed frequencies of user actions (i.e., all the user actions which occur with one of
the states belonging to that cluster), as shown in Figure 5.

3.5.2 Smoothed Bigram User Simulation. For our second user simulation model we apply
smoothing to a bigram model. We implement a simple smoothing technique called
“add-one smoothing” (Jurafsky and Martin 2000). This technique discounts some non-
zero counts in order to obtain probability mass that will be assigned to the zero counts.
We apply this technique to the original frequency-based bigram model. The resulting
model is shown in Figure 6.

In general, the smoothed model is closer to the original data than the cluster-based
one (thus being more realistic at the expense of allowing less exploratory behavior). In
the next section we introduce an evaluation metric which allows us to assess the level of
exploratory versus realistic user behavior as exhibited by the different user simulations.

Table 6

System speech acts and corresponding discourse functions.

speech act level severity modality
reject acoustic  repetition verbal
explicitConfirm acoustic confirmation verbal
askAQuestion goal elaboration verbal
implicitConfirm goal confirmation+elaboration  verbal
presentVerbal goal confirmation verbal
presentMM goal confirmation multimodal
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Figure 5
User action frequencies from the cluster-based user simulation.
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Figure 6
User action frequencies from the smoothed bigram user simulation.

3.5.3 Evaluation of User Simulations. Several metrics have been proposed to evaluate
user simulations (e.g., Scheffler and Young 2001; Schatzmann, Georgila, and Young
2005; Ai and Litman 2006; Georgila, Henderson, and Lemon 2006; Williams 2007).
A good measure of dialogue similarity is based on the Kullback-Leibler (KL) diver-

168


http://www.mitpressjournals.org/action/showImage?doi=10.1162/coli_a_00038&iName=master.img-002.jpg&w=249&h=203
http://www.mitpressjournals.org/action/showImage?doi=10.1162/coli_a_00038&iName=master.img-003.jpg&w=297&h=225

Rieser and Lemon Learning and Evaluation of Dialogue Strategies for New Applications

Table 7
Kullback-Leibler divergence scores for the different user simulations.

User simulations Baselines

smoothed cluster random majority

0.087 0.095 0.43 0.48

gence® (as also used by Cuayahuitl et al. 2005; Jung et al. 2009), which is defined as
follows:

- P(i)
Di(PIIQ) = > P(i) «log i35 (3)
i=1

This metric measures the divergence between distributions P and Q in a context
with M responses. Ideally, the KL divergence between two similar distributions is close
to zero.

KL allows us to compare the raw probabilities as observed in the original data with
the probabilities generated by our user simulation models. We then compare the KL
results of the cluster-based and the smoothed user simulation against a random model
and a majority baseline (see Table 7). The random model is constructed by assigning
equal frequency to all four actions, whereas the majority baseline always predicts the
most frequent action in one context. The comparison against the random baseline tests
the hypothesis that our user simulations are more consistent with the observed data
than random behavior. The majority baseline represents the hypothesis that our user
simulation explores a significantly wider range of behavior than the most frequent user
action.

The user simulation models have a small divergence from the original data suggest-
ing that they are good simulations for training and testing policies. The smoothed and
the cluster-based model gain on average five times lower KL scores than the baselines.
We therefore conclude that both simulations show consistent (i.e., better than random)
as well as varying (i.e., better than the majority decision) behavior.

As mentioned previously, we want user simulations for policy training to allow
more exploration, whereas for testing we want user simulations which are more realis-
tic. We therefore choose to test with the smoothed model because its low KL score shows
that it is closest to the data, and we use the cluster-based simulation for training.

Note that the KL divergence only measures consistency with respect to specific
dialogue contexts. However, user simulations also need to be coherent with respect
to the dialogue history and the current user goal. We therefore model the user’s goal
(i.e., the song s/he is looking for) similar to “agenda-based user models”(Schatzmann
et al. 2007; Schatzmann, Thomson, and Young 2007b). The user goal corresponds to
a database entry, which is randomly chosen in the beginning of each dialogue. Every
time the user simulation generates a speech act, the corresponding value is chosen from
the goal record, dependent on the slot value the system was asking for.

6 Also known as information divergence, information gain, or relative entropy.
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3.6 Data-Driven Reward Modeling

The reward function defines the goal of the overall dialogue. For example, if it is most
important for the dialogue to be efficient, the function penalizes dialogue length, while
rewarding task success. In most previous work the reward function is manually set,
which makes it “the most hand-crafted aspect” of RL (Paek 2006). For example, Williams
and Young (2007) use +10 points for task completion and -1 point per turn, but there
is no empirical basis for this specific ratio. In contrast, we learn the reward model
from data, using a modified version of the PARADISE framework (Walker, Kamm, and
Litman 2000), following pioneering work by Walker, Fromer, and Narayanan (1998). In
PARADISE multiple linear regression is used to build a predictive model of subjective
user ratings (from questionnaires) from objective dialogue performance measures (such
as dialogue length). The subjective measure that we wish to optimize for our application
is Task Ease, a variable obtained by taking the average of two questions in the question-
naire.” We use PARADISE to predict Task Ease from various input variables, via stepwise
regression. The chosen model comprises dialogue length in turns, task completion (as
manually annotated in the WOZ data), and the multimodal user score from the user
questionnaire, as shown in Equation (4) (R? = .144, Rﬁayust 4 = -123).

e

TaskEase = — 20.2 x dialogueLength +
11.8 x taskCompletion + 8.7 x multimodalScore; 4)

This equation is used to calculate the overall reward for the information acquisition
phase. Task completion is calculated on-line during learning, penalizing all slots which
are filled but not confirmed. Slots that are filled but not confirmed have a 30% chance
of being incorrect according to the noise model (see Section 3.4). For the information
presentation phase, we compute a local reward. We relate the multimodal score (a
variable obtained by taking the average of four questions)® to the number of items
presented (DB) for each modality, using curve fitting. In contrast to linear regression,
curve fitting does not assume a linear inductive bias, but it selects the most likely model
(given the data points) by function interpolation. The resulting models are shown in
Figure 7. The reward for multimodal presentation is a quadratic function that assigns a
maximal score to a strategy displaying 14.8 items (curve inflection point). The reward
for verbal presentation is a linear function assigning negative scores to all presented
items > 4. The reward functions for information presentation intersect at no. items = 3.
A comprehensive evaluation of this reward function can be found in Section 6.2.

3.7 State Space Discretization

We use linear function approximation in order to learn with large state-action spaces.
Linear function approximation learns linear estimates for expected reward values of
actions in states represented as feature vectors. This is inconsistent with the idea of non-
linear reward functions (as introduced in the previous section). We therefore quantize
the state space for information presentation. We partition the database feature into three

7 “The task was easy to solve”, “I had no problems finding the information I wanted.”

8 “Iliked the combination of information being displayed on the screen and presented verbally”,
“Switching between modes did not distract me”, “The displayed lists and tables contained on average the
right amount of information”, “The information presented verbally was easy to remember.”
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Evaluation functions relating number of items presented in different modalities to multimodal
score.

bins, taking the first intersection point between verbal and multimodal reward and the
turning point of the multimodal function as discretization boundaries. Previous work
on learning with large databases commonly quantizes the database feature in order
to learn with large state spaces using manual heuristics (e.g., Levin, Pieraccini, and
Eckert 2000; Heeman 2007). Our quantization technique is more principled as it reflects
user preferences for multi-modal output. Furthermore, in previous work database items
were not only quantized in the state-space, but also in the reward function, resulting in a
direct mapping between quantized retrieved items and discrete reward values, whereas
our reward function still operates on the continuous values. In addition, the decision of
when to present a list (information acquisition phase) is still based on continuous DB
values. In future work we plan to engineer new state features in order to learn with
non-linear rewards while the state space is still continuous. A continuous representation
of the state space allows learning of more fine-grained local trade-offs between the
parameters, as demonstrated by Rieser and Lemon (2008a).

4. Training and Testing the Learned Policies in Simulation

We now train and test the multimodal presentation strategies by interacting with the
simulated learning environment. For the following RL experiments we used the REALL-
DUDE toolkit of Lemon et al. (2006). The SHARSHA algorithm is employed for train-
ing, which adds hierarchical structure to the well known SARSA algorithm (Shapiro and
Langley 2002). The policy is trained with the cluster-based user simulation over 180k
system cycles, which results in about 20k simulated dialogues. In total, the learned strat-
egy has 371 distinct state-action pairs as presented in the look-up table in Appendix E.
We test the RL-based and the SL wizard baseline policy, as listed in Listing 1,
which allows us to measure relative improvement over the training data. We run 500
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test dialogues with the smoothed user simulation, as described in Section 3.5.2, so that
we are not training and testing on the same simulation. We then compare quantitative
dialogue measures by performing a paired t-test. In particular, we compare mean
values of the final rewards, number of filled and confirmed slots, dialogue length,
and items presented multimodally (MM items) and items presented verbally (verbal
items). RL performs significantly better (p < .001) than the baseline strategy. The only
non-significant difference is the number of items presented verbally, where both the RL
and the average wizard strategy settled on a threshold of fewer than four items. The
mean performance measures for simulation-based testing are shown in Table 8.

The major strength of the RL policy is that it learns to keep the dialogues reasonably
short (on average 5.9 system turns for RL versus 8.4 turns for SL wizard) by presenting
lists as soon as the number of retrieved items is within tolerance range for the respec-
tive modality (as reflected in the reward function). The SL strategy in contrast has
not learned the right timing nor an upper bound for displaying items on the screen
(note that the distribution for MM items is highly positively skewed with a maximum of
283 items being displayed). See example dialogues in Appendix C.

The results show that simulation-based RL with an environment bootstrapped
from WOZ data allows learning of robust strategies which significantly outperform the
strategies learned by SL from the original data set. This confirms our hypothesis that
simulation-based RL allows us to find optimal policies which are not easily discoverable
(by Supervised Learning) in the original data.

Furthermore, RL allows us to provide additional information about user prefer-
ences in the reward function, whereas SL simply mimics the data. In addition, RL
is based on delayed rewards, namely, the optimization of a final goal. For dialogue
systems we often have measures indicating how successful and/or satisfying the overall
performance of a strategy was, but it is hard to tell how exactly things should have been
done in a specific situation. This is what makes RL specifically attractive for dialogue
strategy learning. In the next section we test the learned strategy with real users.

5. Tests with Real Users

5.1 Experimental Design

For the user tests the RL policy is ported to a working ISU-based dialogue system via
table look-up (see table in Appendix E) , which indicates the action with the highest

expected reward for each state (cf. Singh et al. 2002). The supervised average wizard
baseline is implemented using standard threshold-based update rules. The experimen-

Table 8

Comparison of results for SL wizard and RL-based strategies in simulation.
Measure SL wizard baseline RL Strategy

avg. turns 8.42(43.04) 5.9(£2.4)***

avg. speech items 1.04(+.2) 1.1(+.3)

avg. MM items 61.37(4+82.5) 11.2(£2.4)***

avg. reward —1,741.3(£566.2) 44.06(£51.5)***

*** Significant difference between SL and RL at p < .001 (with standard deviation £).
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Table 9
Comparison of mean user ratings for SL wizard baseline and RL policies (with standard
deviation +).

Measure Wizard Strategy RL Strategy

Task Ease 4.78 (+1.84) 5.51 (+1.44)**
Timing 442 (+1.84) 5.36 (£1.46)***
MM Presentation 4.57 (£1.87) 5.32 (£1.62)***
Verbal Presentation 4.94 (£1.52) 5.55 (+1.38)***
Future Use 3.86 (+£1.44) 4.68 (£1.39)***

*** Statistical significance at p < .001.

tal conditions are similar to the WOZ study, that is, we ask the users to solve similar
tasks, and use similar questionnaires.” Furthermore, we decided to use typed user
input rather than ASR. The use of text input allows us to target the experiments to the
dialogue management decisions on presentation strategies, and prevents ASR quality
from interfering with the experimental results, especially because subjective user scores
are highly sensitive to ASR noise (Hajdinjak and Mihelic 2006). Both RL and SL wizard
policies are trained to handle noisy conditions, so that they usually confirm user input,
which makes dialogues longer but more reliable. The lack of noise in this experiment
means that confirmation happens more than is strictly required (although there are
still text input spelling mistakes), but the information presentation decisions are not
affected.

Seventeen subjects (8§ women, 9 men) are given a set of 12 (6 x2) predefined, ordered
tasks, which they solve by interaction with the RL-based and the SL-based average
wizard system in a cyclic order. As a secondary task users are asked to count certain
objects in a driving simulation. In total, 204 dialogues with 1,115 turns are gathered in
this set-up. See also Rieser (2008).

5.2 Results

In general, the users rate the RL-based policy significantly higher (p < .001) than the
SL-based average wizard policy. The results from a Wilcoxon Signed Ranks Test on
the user questionnaire data (see Table 9) show significantly improved Task Ease, better
presentation timing, more agreeable verbal and multimodal presentation, and that more
users would use the RL-based system in the future (Future Use). All the observed
differences have a medium effects size (r > |.3|).

We also observe that female participants clearly favor the RL-based strategy,
whereas the ratings by male participants are more indifferent. Similar gender effects
are also reported by other studies on multimodal output presentation (e.g., Foster and
Oberlander 2006; Jokinen and Hurtig 2006).

Furthermore, we compare objective dialogue performance measures. The dialogues
of the RL strategy are significantly shorter (p < .005), while fewer items are dis-
played (p < .001), and the help function is used significantly less (p < .003). The mean

9 The WOZ study was performed in German, whereas the user tests are performed in English. Therefore, a
different database had to be used and task sets and user questionnaires had to be translated.
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performance measures for testing with real users are shown in Table 10. Also see
example dialogues in Appendix D. However, there is no significant difference for the
performance of the secondary driving task.

6. Meta Evaluation

We introduce a final phase where we meta-evaluate the whole framework. This final
step is necessary because WOZ experiments only simulate HCI. We therefore need to
show that a strategy bootstrapped from WOZ data indeed transfers to real HCI. We first
show that the results for simulated and real interaction are compatible (Section 6.1). We
also meta-evaluate the reward function, showing that it is a stable, accurate estimate for
real users’ preferences (Section 6.2).

6.1 Transfer Between Simulated and Real Environments

We first test whether the results obtained in simulation transfer to tests with real users,
following Lemon, Georgila, and Henderson (2006). We evaluate the quality of the simu-
lated learning environment by directly comparing the dialogue performance measures
between simulated and real interaction. This comparison enables us to make claims
regarding whether a policy which is “bootstrapped” from WOZ data is transferable to
real HCI. We first evaluate whether objective dialogue measures are transferable, using
a paired t-test, comparing overall mean performance.

For the RL policy there is no statistical difference in overall performance (reward),
dialogue length (turns), and the number of presented items (verbal and multimodal
items) between simulated and real interaction (see Figure 8). This fact (that the per-
formances are not different) indicates that the learned strategy transfers well to real
settings. For the SL wizard policy the dialogue length for real users is significantly
(t(101) = 5.5, p < .001, r = .48) shorter than in simulation. We conclude from an er-
ror analysis that this length difference is mainly due to the fact that real users tend
to provide the most “informative” slot value (i.e., the most specific value from the
experimental task description) right at the beginning of the task (and therefore more
efficiently contribute to solve the task), whereas simulated users use a default ordering
of slot values and most of the time they provide the slot value that the system was asking
for (provide_info). This difference becomes more prominent for the SL wizard policy
than for the RL-based policy, as the SL wizard policy in general asks more questions
before presenting the information. In future work the user simulation therefore should
learn optimal slot ordering.

Table 10

Comparison of results for SL average wizard and RL-based strategies with real users.
Measure Wizard Strategy = RL Strategy

avg. turns 5.86(£3.2) 5.07(£2.9)***

avg. speech items 1.29(+.4) 1.2(+.4)

avg. MM items 52.2(+68.5) 8.73(+4.4)**

avg. reward —628.2(+178.6) 37.62(+60.7)***

*** Significant difference between SL and RL at p < .001 (with standard deviation £).
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Figure 8
Graph comparison of objective measures. SLs = SL policy in simulation; SLr = SL policy with
real users; RLs = RL policy in simulation; RLr = RL policy with real users.

6.2 Evaluation of the Learned Reward Function

We propose a new method for meta-evaluation of the reward (or “objective”) function.
One major advantage of RL-based dialogue strategy development is that the dialogue
strategy can be automatically trained and evaluated using the same objective function
(Walker 2005). Despite its central aspect for RL, quality assurance for objective functions
has received little attention so far. In fact, as noted in Section 3.6, the reward function is
one of the most hand-coded aspects of RL (Paek 2006).

Here, we bring together two strands of research for evaluating the reward function:
One strand uses Reinforcement Learning to automatically optimize dialogue strategies
(e.g., Singh et al. 2002; Henderson, Lemon, and Georgila 2008; Rieser and Lemon 2008a,
2008b); the other focuses on automatic evaluation of dialogue strategies (e.g., the PAR-
ADISE framework [Walker et al. 1997]), and meta-evaluation of dialogue metrics (e.g.,
Engelbrecht and Moler 2007; Paek 2007). Clearly, automatic optimization and evaluation
of dialogue policies, as well as quality control of the objective function, are closely inter-
related problems: How can we make sure that we optimize a system according to real
users’ preferences?

In Section 3.6 we constructed a data-driven objective function using the PARADISE
framework, and used it for automatic dialogue strategy optimization, following work
by Walker, Former, and Narayanan (1998). However, it is not clear how reliable such
a predictive model is, that is, whether it indeed estimates real user preferences. The
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models obtained with PARADISE often fit the data poorly (Engelbrecht and Moéller 2007).
It is also not clear how general they are across different systems and user groups
(Walker, Kamm, and Litman 2000; Paek 2007). Furthermore, it is not clear how they per-
form when being used for automatic strategy optimization within the RL framework.
In the following we evaluate different aspects of the reward function. In Sec-
tion 6.2.1 we test the model stability in a test-retest comparison across different user
populations and data sets. In Section 6.2.2 we measure its prediction accuracy.

6.2.1 Reward Model Stability. We first test the reward model’s stability by re-constructing
it from the data gathered in the real user tests (see Section 5) and comparing it to the
original model constructed from the WOZ data. By replicating the regression model
on different data sets we test whether the automatic estimate of Task Ease general-
izes beyond the conditions and assumptions of a particular experimental design. The
resulting models are shown in Equations (5)—(7), where TaskEaseyoz is the regression
model obtained from the WOZ data,!? TaskEaseg; is obtained from the user test data
running the supervised average wizard policy, and TaskEaseg; is obtained from the
user test data running the RL-based policy. They all reflect the same trends: Longer
dialogues (measured in turns) result in a lower Task Ease, whereas a good performance
in the multimodal information presentation phase (multimodal score) will positively
influence Task Ease. For the user tests almost all the tasks were completed; therefore
task completion was only chosen to be a predictive factor for the WOZ model.

TaskEasewoz = 1.58 + .12 x taskCompl + .09 x mmScore — .20 x dialogueLength  (5)
TaskEases; = 3.50 + .54 x mmScore — .34 x dialogueLength (6)

TaskEaseg;, = 3.80 + .49 x mmScore — .36 x dialogueLength (7)

To evaluate the obtained regression models we use two measures: how well they
fit the data and how close the functions are to each other (model replicability). Both
are measured using goodness-of-fit R%. For the WOZ model the data fit was rather
low (R%,\,OZ = .123),!! whereas for the models obtained from the user tests the fit has
improved (R%;, = .48, and R%, = .55).

Next, we compare how well the models from different data sets fit each other.
Although the models obtained from the user test data show almost perfect overlap
(R? = .98), the (reduced) WOZ model differs (R? = .22) in the sense that it assigns less
weight to dialogue length and the multimodal presentation score, and more weight
is assigned to task completion. Task completion did not play a role for the user tests,
as mentioned earlier. This shows that multimodal presentation and dialogue length
become even more important once the tasks are being completed. Overall, then, the
data-driven reward model is relatively stable across the different data sets (WOZ, real
users with the SL policy, and real users using the RL policy).

6.2.2 Reward Model Performance: Prediction Accuracy. We now investigate how well these
reward models generalize by testing their prediction accuracy. Previous research evalu-

10 In contrast to the model in Equation (4) we now include the constant in the regression.
11 For R? we use the adjusted values.
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Table 11
Prediction accuracy for models within (1-3) and across (4-5) data sets.

ID train test RMSE % error

1 WOz WOz 0.82 16.42
2 SL SL 1.27 18.14
3 RL RL 1.06 15.14
4 RL SL 1.23 17.57
5 SL RL 1.03 14.71

ated two aspects: how well a given objective function/reward model is able to predict
unseen scores from the original system (Engelbrecht and Méller 2007), and how well it
is able to predict unseen scores of a new /different system (Walker, Kamm, and Litman
2000). We evaluate these two aspects as well, the only difference is that we use the
Root Mean Standard Error (RMSE) instead of R? for measuring the model’s prediction
accuracy. The RMSE is a frequently used measure of the differences between values
predicted by a model or an estimator and the values actually observed. It is defined over
[0, oo], where 0 indicates perfect overlap. The maximum RMSE possible (= worst case)
in our set-up is 7 for SL/RL and 5 for WOZ. In order to present results from different
scales we also report the percentage of the RMSE of the maximum error (% error). RMSE
is (we argue) more robust for small data sets.!?

R2 —1— Z?:l(yi — :/y\l')z

8

E?:l(?/ ), ®)

RMSE = | 15"y — 52 ©)
i=1

First, we measure the predictive power of our models within the same data set using
10-fold cross validation, and then across the different systems by testing models trained
on one system to predict perceived Task Ease scores for another system, following a
method introduced by Walker, Kamm, and Litman (2000).

The results for comparing the RMSE for training and testing within data sets (ID
1-3) and across data sets (ID 4-5) are shown in Table 11. RMSE measures the average of
the square of the “error.” As such, lower RMSE values are better. The contrary is true
for R?, where “1” indicates perfect overlap between two functions.

The results show that predictions according to PARADISE can lead to accurate test
results despite the low data fit. Whereas for the regression model obtained from the
WOZ data the fit was 10 times lower than for SL/RL, the prediction performance is
comparably good (see Table 11, ID 1-3). The models also generalize well across systems
(see Table 11, ID 4-5).

Table 12 visualizes the results (ID 1-3): Mean values for predicted and for true
ratings are plotted per turn (see Engelbrecht and Méller 2007). The top two graphs in the

12 In particular, we argue that, by correcting for variance, R? can lead to artificially good results when using
small tests sets (which typically vary more) and is sensitive to outliers (see Equation (8)). RMSE instead
measures the (root) mean difference between actual and predicted values (see Equation (9)).

177



Computational Linguistics Volume 37, Number 1

Table 12
Average Task Ease ratings for dialogues of different length (in turns); the solid lines are the true

ratings and the dashed line the predicted values; from top: RL, SL wizard, WOZ data.
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table show that the predicted mean values are fairly accurate for the SL and RL objective
functions. The graph at the bottom indicates that the predictions are less accurate for the
WOZ data, especially for low numbers of turns. This seems to contradict the previous
results in Table 11, which show low error rates for the WOZ data. However, this is due
to the fact that most of the observations in the WOZ data set are in the region where the
predictions are accurate (i.e., most of the dialogues in the WOZ data are over 14 turns
long, where the curves converge).

We conclude that, according to our measures, an objective function obtained from
WOZ data is a valid first estimate of real users’ preferences. Despite a low fit to the initial
data, the objective function obtained from WOZ data makes accurate and useful predic-
tions for automatic dialogue evaluation/reward. The models obtained from the tests
with a real system follow the same trends, but can be seen as more reliable estimates
of the objective function in this domain. In future work we will explore incrementally
training a system according to improved representations of real user preferences, for
example, gathered on-line from a deployed spoken dialogue system.

7. Conclusion

We have presented a new data-driven methodology for simulation-based dialogue
strategy learning. It allows us to address several problems in the field of automatic
optimization of dialogue strategies: learning effective dialogue strategies when no ini-
tial data or system exists, and determining a data-driven reward function. We learned
optimal strategies by interaction with a simulated environment which is bootstrapped
from a small amount of Wizard-of-Oz data, and we evaluated the result with real users.
The use of WOZ data allows us to develop optimal strategies for domains where no
working prototype is available. In contrast to previous work, the developed simulations
are largely data-driven and the reward function reflects real user preferences.

We compare the Reinforcement Learning-based strategy against a supervised strat-
egy which mimics the (human) wizards’ policies from the original data. This compari-
son allows us to measure relative improvement over the training data. Our results show
that RL significantly outperforms the average wizard strategy in simulation as well as in
interactions with real users. The RL-based policy gains on average 50 times more reward
when tested in simulation, and almost 18 times more reward when interacting with
real users. The human users also subjectively rate the RL-based policy on average 10%
higher, and 49% higher for Task Ease. We also show that results obtained in simulation
are comparable to results for real users and we also evaluate the reward function. We
conclude that a strategy trained from WOZ data via our bootstrapping method works
well for real HCIL.

Regarding scaling up such methods to larger databases, we would still quantize
the number of database hits into High, Medium, and Low (more hits would be added
to the “High” bin). In fact, wizards seemed to treat everything over 60 database hits
equivalently (see Section 3.7). For learning, the state space grows linearly with the
number of possible database hits. Techniques such as linear function approximation are
useful for handling the resulting larger state spaces (Henderson, Lemon, and Georgila
2008).

In ongoing work we apply similar techniques to statistical planning for Natural
Language Generation in spoken dialogue (Lemon 2011, 2008; Janarthanam and Lemon
2008; Rieser and Lemon 2009b; Rieser, Lemon, and Liu 2010; Janarthanam and Lemon
2010), see the EC FP7 CLASSIC project: www.classic-project.org.
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Appendix A: Measuring Inter-Annotator Agreement on User Act Using the
Kk Statistics

Cohen’s Kappa (often simply called kappa, k) is a measure of agreement between the
two individuals. We use this measure to assess inter-annotator agreement on user act,
following Carletta et al. (1997). Detailed results are in the table.

Table 1
Inter-annotator agreement on user act with k = .632.

annotatorl annotator2

userreply add change others repeat y/n total

add 58 5 2 1 0 66
change 4 11 0 0 0 15
others 9 5 21 1 0 36
repeat 9 0 7 9 0 25
y/n 2 0 2 1 30 35
total 82 21 32 12 30 177
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Appendix B: Wizard-of-Oz Example Dialogues

Table 1
Example dialogue from the SAMMIE WOZ corpus (mixed wizard strategy).
sl User: Bitte suche das Lied ,Layla’.
Transl.: Search for the song ‘Layla’ please.
SA* user: add -> song-title(Layla)
Wizard: Wir haben das Lied gefunden. Es existiert 142 mal in verschiedenen
Ausfithrungen
Transl.: The song is retrieved. There are 142 different versions.
mmAction: [ Table with 142 entries is shown on the screen. |
SA presentMM -> song-title (db:142)
wizard:
s2 User: Bitte suche das Lied on dem Komponisten ,Eric Clapton’.
Transl.: Search for the song by the composer “Eric Clapton’ please.
mm [ User does not react to what is displayed. ]
Action:
SA user: change -> artist(‘Eric Clapton’)
Wizard: Es gibt das Lied von ,Eric Clapton” oder von ‘Derek & the Dominos’.
Transl.: The song exists by ‘Eric Clapton’ or by ‘Derek & the Dominos’.
SA presentVerbal -> song-title, artist (db:2)
wizard:
s3 User: Bitte spiele das Lied von ,Eric Clapton Unplugged’ ab.
Transl.: Play the song from ‘Eric Clapton Unplugged’ please.
SA user: repeat —>album(‘Eric Clapton Unplugged’)
Wizard: Ich spiele das Lied jetzt ab.
Transl.: OK I am going to play the song now.
SA feedback/others
wizard:

mmAction: [ music |

user taskEase: 2, timing:2, mmPresent.: 1, verbalPresent: 3, futureUse:3
ratings

*SA = Speech Act

Comments:

In this example the wizard uses a mixed strategy presenting information multimodally in turn 1
and verbally in turn 2. The first time 142 items are presented multimodally by verbally reporting
the number of retrieved items while displaying them on the screen. The database used in the WOZ
experiments contained over a million songs and is searched with partial string match. Therefore
the retrieved items for ‘Layla’ can be as high as 142. The user does not directly react to what is
shown on the screen (either by referring to it or clicking), but continues providing information
until the wizard (verbally) presents two alternatives, where the user indirectly chooses one
by providing an album name which also disambiguates the artist. The user rankings from the
questionnaire are about average.
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Table 2
Example dialogue from the SAMMIE WOZ corpus (wizard not starting the presentation phase
early enough).

sl User: Also, ich suche das Lied ,Smile’.
Transl.: Well, I am searching for the song *Smile’.
SA user: add -> song-title(Smile)
Wizard: Welches Lied suchst du?
Transl.: What song are you searching for?
comment: [ Song name was deleted ]
SA reject(song-title)
wizard:

s2 User: Smile.
Transl.: Smile.
SA user: repeat -> song-title(Smile)
Wizard: Du suchst das Lied ,Smile’?
Transl.: Are you searching for the song 'Smile’?
SA explConf (song-title)
wizard:

s3 User: Ja, Smile ja.
Transl.: Yes, Smile yes.
SA user: y-answer -> song-title(Smile)
Wizard: Ich suche es... Ich habe vier Lieder mit dem einfachen Titel ,Smile’.
Transl.: I am searching... I found four songs with only ‘Smile” as the title.
SA presentVerbal (song-title)
wizard:

s4 User: Ja denn, das Lied bitte anzeigen.
Transl.: Very well then, why don’t you show it?
SA user: others
Wizard: OK.
Transl.: OK.
SA presentMM(song-title)
wizard:
user taskEase: 2, timing: 2, mmPresent.: 5, verbalPresent: 3, futureUse:3
ratings

Comments:

In this example the user is asking to see a short list on the screen (after resolving some under-
standing errors induced by the deletion tool), which is indicating that (a) the wizard did not enter
the presentation phase early enough, and (b) that for the user four items seems to be a reasonable
number to display. The user scores reflect this fact: The presentation mode got a maximal score
(which will influence learning towards showing short lists), whereas the task ease got a lower
score (task ease is used as an overall reward, i.e., this “tells’ the learner to enter the presentation
mode earlier).

182



Rieser and Lemon Learning and Evaluation of Dialogue Strategies for New Applications

Appendix C: Example Dialogues from Simulated Interaction

Table 1
Example dialogue with the SL policy operating in the simulated environment.

sl SL policy:  greet (db:438)

sim.User: add->genre (Rock)
state: filled [slotl], confirmed [], db:142
s2 SL policy: ~ implConfAskASlot -> genre, artist)
sim.User: repeat->genre (Rock)
state: filled [slot1], confirmed[slotl], db:142
s3 SL policy:  present[mm] ->genre
sim.User: change->artist(Jimi Hendrix)
state: filled [slotl,slot2], confirmed [slotil], db:4
s4 SL policy: ~ implConfAskASlot->artist, album
sim.User: add->album(Experience Hendrix: The Best of Jimi Hendrix)
state: filled [slotl,slot2,slot3], confirmed [sloti,slot2], db:4

s5 SL policy:  implConfAskASlot->album, song-title
sim.User: add->song-title(Voodoo Child)
state: filled [slotil,slot2,slot3,slot4], confirmed
[slotl,slot2,s10t3], db:1
s6 SL policy:  explicitConfirm->song-title
sim.User: repeat->song-title(Voodoo Child)
state: filled [slotl,slot2,slot3,slot4], confirmed
[slotl,slot2,sl0ot3,s1lot4], db:1
s7 SL policy:  present[verbal] ->genre, artist, album, song-title
sim.User: yes—-answer->yes (yes)
state filled [slotil,slot2,slot3,slot4], confirmed
[slotl,slot2,slot3,slot4], db:1

reward: lengthPenalty : —141.4, complVal : 118, presentVal : 8.7 x (4.33 — 2151.23)
finalReward:-18701.43

Comments:
This example shows a dialogue where the SL policy is operating in the simulated environment.
Presentation timing and amount of presented information are not ideal (and therefore leading to
quite a long dialogue): In turn 2 the system presents a list of 238 items, whereas when only having
four alternatives (from turn 3 onwards) it fails to show a list.
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Table 2
Example dialogue with the RL policy operating in the simulated environment (mixed strategy).

sl RL policy:  greet (db: 438)
sim.User: add->artist(Nirvana)
state: filled [slot2], confirmed [], db:26
s2 RL policy: ~ implConfAskASlot -> artist, album)
sim.User: add->album(MTV Unplugged)

state: filled [slot2,slot3], confirmed [slot2], db:14

s3 RL policy:  present [mm] ->artist, album
sim.User: click->song-title(On a Plain),genre(Alternative)*
state: filled [slotl,slot2,slot3,slot4], confirmed

[slot2,s810t3], db:1
s4 RL policy:  present[verball ->artist, album, song-title
sim.User: yes-answer->yes (yes)
state: filled [slotl,slot2,slot3,slot4], confirmed
[slotl,slot2,s1lot3,slot4], db:1

reward: lengthPenalty : —80.8, complVal : 118, presentVal : 8.7 x (4.33 4+ 7.23)
finalReward:140.3

Comments:
This example shows the RL policy interacting in the simulated environment. The system follows
a mixed strategy: first presenting a list of 14 items on the screen and then presenting a unique
item verbally.
* the user acts add after a multimodal presentation are equivalent to clicking

Table 3
Example dialogue with the RL policy operating in the simulated environment: presenting
alternatives.

s1  RLpolicy: greet (db: 438)
sim.User: add->artist (Bob Dylan)

state: filled [slot2], confirmed [], db:56
s2 RL policy: ~ implConf (artist)AskASlot (genre)

sim.User: change->song-title (Hurricane)

state: filled [slot2,slot4], confirmed [slot2], db:2
s3 RL policy:  present[verball ->albumi,album2

sim.User: add->album(Desire)

state: filled [slot2, slot3, slot4], confirmed [slot2,slot4], db:1
s4 RL policy:  present[verbal] ->artist, album, song-title

sim.User: yes—answer->yes(yes)

state: filled [slot2, slot3, slot4], confirmed

[slot2, slot3, slot4], db:1

reward: lengthPenalty : —80.8, complVal : 118, presentVal : 8.7 x (4.327 4 3.395)
finalReward: 104.38

Comments:
This example shows the RL policy interacting in the simulated environment. The system presents
two alternatives and a single item using only verbal output.
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Appendix D: Example Dialogues from User Testing

Table 1

Example dialogue with the SL policy operating with real users.

sl

s2

s3

s4

)

s6

s7

SL system:
SA system:
User:

SA user:
state:

SL system:

SA system:
User:

SA user:
state:

SL system:
SA system:
User:

SA user:
state:

SL system:
SA system:
User:

SA user:
state:

SL system:
SA system:
User:

SA user:
state:

SL system:

SA system:
User:

SA user:
state:

SL system:
SA system:
User:

SA user:
state:

reward:

user ratings

Hi, this is iTalk your talkative music player. How may I help you today?
greet (db: 438)

i would like to listen to a blues song

add->genre (Blues)

filled [slot1], confirmed [], db:175

There are 175 items matching your query. A list of possible candidates are
shown on the screen.

presentMM-> genre (db:175.0)

nothing (time out)

filled [slotl], confirmed [], db:175

A Blues song. By which artist?

implConf (genre), askASlot(artist)

eric clapton

add->artist(‘Eric Clapton) (db:25.0)

filled [slotl, slot2], confirmed [slotil], db:25

Searching for music by Eric Clapton. Which album?

implConf (‘Eric Clapton’), askASlot(album)

mtv unplugged

add->album( ‘MTV unplugged’)

filled [slotl, slot2, slot3], confirmed [slotl, slot2], db:13

A song from the album MTV unplugged. What is the title of the song?
implConf (album), askASlot(song-title)

what do you have

request-help

filled [slotl, slot2, slot3], confirmed [slotl, slot2], db:13

You have several options. For example: Layla , Nobody Knows You When
You Are Down and Out, Lonely Stranger , Old Love , and San Francisco Bay
Blues. Do you want to hear more?

give-help

no layla please

add->song-title(Layla)

filled [slotl, slot2, slot3, slot4], confirmed

[slotl, slot2, slot3], db:1

You will now hear Layla by Eric Clapton from the album MTV unplugged.
Are you happy with this option?
presentVerbal->genre,artist,album,song-title

yes

yes-answer

filled [slotl, slot2, slot3, slot4], confirmed

[slot1, slot2, slot3, slot4], db:1

lengthPenalty : —141.4, complVal : 118, presentVal : 8.7 x (4.33 — 7.63)
finalReward: -6577.03

taskEase:2, timing:2, mmPresent:1, verbalPresent:2, futureUse:2

Comments:

This example shows the SL policy applied with real users. In turn 2 the user ignores the 175 items displayed,
then the system does not display the 13 retrieved items. The user asks for help.
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Table 2

Example dialogue with the RL policy operating with real users: multimodal and verbal

presentation.

sl RL system:
SA system
User:
SA user:
state:

s2 RL system:
SA system:
User:
SA user:
state:

s3 RL system:

SA system:
User:
SA user:
state:

s4 RL system:

SA
User:
SA
state:

reward:

user ratings

Hi. this is iTalk your talkative music player. How may I help you today?
greet (db:438)

play me some blues

add->genre(Blues) (db:175)

filled [sloti1], confirmed [], db:175

Blues for type of music. By which artist?

implConf (genre),askASlot (artist)

from the album desire

change->album(Desire) (db:10)

filled [sloti, slot3], confirmed [slotl], db:10

There are 10 items matching your query. A list of possible candidates are
shown on the screen.

presentMM->genre,album

[clicks]

click->genre,song-title

filled [slotil, slot2, slot3, slot4], confirmed [slotl, slot3], db:1
You selected an item on the screen. Please wait a few moments. [...] You will
now hear Mozambique by Bob Dylan from the album Desire. Are you happy
with this option

presentVerbal->genre,album,artist,song-title

yes

yes—answer

filled [slotl, slot2, slot3, slot4], confirmed

[slotl, slot2, slot3, slot4], db:1

lengthPenalty : —60.6, complVal : 118, presentVal : 8.7 x (4.33 + 6.57)
finalReward: 152.16

taskEase:6, timing:7, mmPresent.:7 verbalPresent: 6 futureUse:6

Comments:

This example shows the RL policy interacting with real users. The system uses a mixed strategy, showing
multimodal output as soon as the number of retrieved items is below 15 (and therefore the reward will be
positive), and presenting one item verbally.

186



Rieser and Lemon Learning and Evaluation of Dialogue Strategies for New Applications

Table 3
Example dialogue with the RL policy operating with real users: Verbal presentation of options.

sl RL system: Hi. this is iTalk your talkative music player. How may I help you today?
SA system: greet (db:438)

User: i want to hear polly
SA user: add->song-title(Polly)
state: filled [slot4], confirmed [], db:2
s2 RL system: There are 2 results matching your query all by the artist Nirvana all from the

genre Alternative all having the song title Polly, but a different album. You
have the following options: Nevermind and MTV Unplugged. Which album
would you like?

SA system: presentVerbal->song-title,artist,genre
comment: systems fills unique slots.
User: mtv unplugged
SA user: add->album(‘MTV unplugged’) (db:1)
state: filled [slot3, slot4], confirmed [song4], db:1
s3 RL system: There is only one result matching your query. Please wait a few moments.

[...] You will now hear Polly by Nirvana from the album MTV unplugged.
Are you happy with this option ?

SA system: presentVerbal->song-title,artist,genre,album
User: yes

SA user: yes-answer

state: filled [slotl, slot2, slot3, slot4], confirmed

[slotl, slot2, slot3, slot4], db:1

reward: lengthPenalty : —60.6,complVal : 118, presentVal : 8.7 x (4.33 + 3.4)
finalReward: 124.6

user ratings  taskEase:7, timing:7, mmPresent.:7 verbalPresent: 7 futureUse:6

Comments:
This example shows the RL policy interacting with real users. Two alternatives are presented verbally.
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Appendix E: Learned State Action Mappings

The table in this section presents the learned state action mappings, and is to be read
as follows. The first two columns constitute the state space. The first column shows the
slots that have been filled and/or confirmed. The slots are:

slot 1: genre
slot 2: artist
slot 3: album
slot 4: song title

The second column represents possible numbers of database hits. Note that the possible
number of items returned from the database is constrained by the structure of the task
(i.e., how combinations of different slots values constrain the search space).

The third column is the optimal action for that state. The “x”s in the second column
denote the numbers of database hits that share the same optimal action (given the set
of filled and confirmed slots). Horizontal lines are drawn between sets of states with

different filled slots.
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