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Analysis of opinions, known as opinion mining or sentiment analysis, has attracted a great
deal of attention recently due to many practical applications and challenging research problems.
In this article, we study two important problems, namely, opinion lexicon expansion and
opinion target extraction. Opinion targets (targets, for short) are entities and their attributes
on which opinions have been expressed. To perform the tasks, we found that there are several
syntactic relations that link opinion words and targets. These relations can be identified using a
dependency parser and then utilized to expand the initial opinion lexicon and to extract targets.
This proposed method is based on bootstrapping. We call it double propagation as it propagates
information between opinion words and targets. A key advantage of the proposed method is that
it only needs an initial opinion lexicon to start the bootstrapping process. Thus, the method is
semi-supervised due to the use of opinion word seeds. In evaluation, we compare the proposed
method with several state-of-the-art methods using a standard product review test collection. The
results show that our approach outperforms these existing methods significantly.

1. Introduction

Opinion mining (or sentiment analysis) has attracted a great deal of attention from
researchers of natural language processing and data mining in the past few years due
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to many challenging research problems and practical applications. Two fundamental
problems in opinion mining are opinion lexicon expansion and opinion target extraction
(Liu 2006; Pang and Lee 2008). An opinion lexicon is a list of opinion words such
as good, excellent, poor, and bad which are used to indicate positive or negative senti-
ments. It forms the foundation of many opinion mining tasks, for example, sentence
(Yu and Hatzivassiloglou 2003; Kim and Hovy 2004) and document (Pang, Lee, and
Vaithyanathan 2002; Turney 2002) sentiment classification, and feature-based opinion
summarization (Hu and Liu 2004). Although there are several opinion lexicons pub-
licly available, it is hard, if not impossible, to maintain a universal opinion lexicon
to cover all domains as opinion expressions vary significantly from domain to do-
main. A word can be positive in one domain but has no opinion or even negative
opinion in another domain. Therefore, it is necessary to expand a known opinion
lexicon for applications in different domains using text corpora from the corresponding
domains.

Opinion targets are topics on which opinions are expressed. They are important
because without knowing the targets, the opinions expressed in a sentence or docu-
ment are of limited use. For example, in the opinion sentence I am not happy with the
battery life of this phone, battery life is the target of the opinion. If we do not know that,
this opinion is of little value. Although several researchers have studied the opinion
lexicon expansion and opinion target extraction (also known as topic, feature, or aspect
extraction) problems, their algorithms either need additional and external resources or
impose strong constraints and are of limited success. Detailed discussions of existing
works will be given in Section 2.

In this article, we propose a novel propagation based method to solve the opinion
lexicon expansion and target extraction problems simultaneously. Our approach differs
from existing approaches in that it requires no additional resources except an initial seed
opinion lexicon, which is readily available. Thus, it can be seen as a semi-supervised
method due to the use of the seeds. It is based on the observation that there are natural
relations between opinion words and targets due to the fact that opinion words are used
to modify targets. Furthermore, we find that opinion words and targets themselves
have relations in opinionated expressions too. These relations can be identified via
a dependency parser based on the dependency grammar (Tesniere 1959), and then
exploited to perform the extraction tasks.

The basic idea of our approach is to extract opinion words (or targets) itera-
tively using known and extracted (in previous iterations) opinion words and targets
through the identification of syntactic relations. The identification of the relations is
the key to the extractions. As our approach propagates information back and forth
between opinion words and targets, we call it double propagation. Opinion word
sentiment or polarity assignment (positive, negative, or neutral) and noisy target prun-
ing methods are also designed to refine the initially extracted results. In evaluation,
we compare our approach with several state-of-the-art existing approaches in opin-
ion lexicon expansion (or opinion word extraction) and target (or feature/topic) ex-
traction. The results show that our approach outperforms these existing approaches
significantly.

2. Related Work

Our work is related to opinion word extraction and target (or topic) extraction in
opinion mining.
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2.1 Opinion Word Extraction

Extensive work has been done on sentiment analysis at word, expression (Breck,
Choi, and Cardie 2007; Takamura, Inui, and Okumura 2007), sentence (Yu and
Hatzivassiloglou 2003; Kim and Hovy 2004) and document (Pang, Lee, and
Vaithyanathan 2002; Turney 2002) levels. We only describe work at word level as it is
most relevant to our work. In general, the existing work can be categorized as corpora-
based (Hatzivassiloglou and McKeown 1997; Wiebe 2000; Wiebe et al. 2004; Turney
and Littman 2003; Kanayama and Nasukawa 2006; Kaji and Kitsuregawa 2007) and
dictionary-based (Hu and Liu 2004; Kim and Hovy 2004; Kamps et al. 2004; Esuli and
Sebastiani 2005; Takamura, Inui, and Okumura 2005) approaches. Our work falls into
the corpora-based category.

Hatzivassiloglou and McKeown (1997) proposed the first method for determining
adjective polarities or orientations (positive, negative, and neutral). The method pre-
dicts orientations of adjectives by detecting pairs of such words conjoined by conjunc-
tions such as and and or in a large document set. The underlying intuition is that the
orientations of conjoined adjectives are subject to some linguistic constraints. For exam-
ple, in the sentence This car is beautiful and spacious, if we know that beautiful is positive,
we can infer that spacious is positive too. The weakness of this method is that as it relies
on the conjunction relations it is unable to extract adjectives that are not conjoined.

Wiebe (2000) and Wiebe et al. (2004) proposed an approach to finding subjective ad-
jectives using the results of word clustering according to their distributional similarity.
However, they did not tackle the prediction of sentiment polarities of the found subjec-
tive adjectives. Turney and Littman (2003) compute the point wise mutual information
(PMI) of the target term with each seed positive and negative term as a measure of their
semantic association. Their work requires additional access to the Web (or any other
corpus similar to the Web to ensure sufficient coverage), which is time consuming.

Another recent corpora-based approach is proposed by Kanayama and Nasukawa
(2006). Their work first uses clause level context coherency to find candidates, then uses
a statistical estimation method to determine whether the candidates are appropriate
opinion words. Their method for finding candidates would have low recall if the occur-
rences of seed words in the data are infrequent or an unknown opinion word has no
known opinion words in its context, however. Besides, the statistical estimation can be
unreliable if the corpus is small, which is a common problem for statistical approaches.
We will compare our approach with this approach in our experiments.

In dictionary-based approaches, Kamps et al. (2004) take advantage of WordNet
to construct a synonymy network by connecting pairs of synonymous words. The
semantic orientation of a word is decided by its shortest paths to two seed words good
and bad which are chosen as representatives of positive and negative orientations.
Esuli and Sebastiani (2005) use text classification techniques to classify orientations.
Their method is based on the glosses (textual definitions) in an on-line “glossary” or
dictionary. The work of Takamura, Inui, and Okumura (2005) also exploits the gloss
information from dictionaries. The method constructs a lexical network by linking two
words if one appears in the gloss of the other. The weights of links reflect if these two
connected words are of the same orientation. The works of Hu and Liu (2004) and Kim
and Hovy (2004) are simpler as they simply used synonyms and antonyms. However,
all dictionary-based methods are unable to find domain dependent sentiment words
because most entries in dictionaries are domain-independent. For example, unpredictable
is often a positive opinion word in movie reviews, as in unpredictable plot, but in car
reviews unpredictable is likely to be negative, as in unpredictable steering. Our approach
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extracts opinion words using domain dependent corpora; thus we are able to find
domain-dependent opinion words.

2.2 Opinion Target Extraction

Opinion target (or topic) extraction is a difficult task in opinion mining. Several methods
have been proposed, mainly in the context of product review mining (Hu and Liu 2004;
Popescu and Etzioni 2005; Kobayashi, Inui, and Matsumoto 2007; Mei et al. 2007; Scaffidi
et al. 2007; Wong, Lam, and Wong 2008; Stoyanov and Cardie 2008). In this mining
task, opinion targets usually refer to product features, which are defined as product
components or attributes, as in Liu (2006).

In the work of Hu and Liu (2004), frequent nouns and noun phrases are treated as
product feature candidates. In our work, we also extract only noun targets. Different
pruning methods are proposed to remove the noise. To cover infrequent features that are
missed, they regard the nearest nouns/noun phrases of the opinion words identified by
frequent features as infrequent features. In Popescu and Etzioni (2005), the authors in-
vestigated the same problem. Their extraction method, however, requires that the prod-
uct class is known in advance. The algorithm determines whether a noun/noun phrase
is a feature by computing the PMI score between the phrase and class-specific discrimi-
nators through a Web search. Querying the Web is a problem, as discussed earlier. We
will compare these two representative methods with our approach in the experiments.

In Scaffidi et al. (2007), the authors proposed a language model approach to product
feature extraction with the assumption that product features are mentioned more often
in a product review than they are mentioned in general English text. However, statistics
may not be reliable when the corpus is small, as pointed out earlier.

The recent work by Kobayashi, Inui, and Matsumoto (2007) focused on the
aspect-evaluation (aspect and evaluation mean the opinion target and opinion word
respectively in our context) and aspect-of extraction problems in blogs. Their aspect-
evaluation extraction uses syntactic patterns learned via pattern mining to extract
〈aspect, evaluation〉 pairs. Our work differs from theirs in that we make use of syntactic
relations from dependency trees. Additionally, we consider not only the relations of
opinion targets and opinion words, but also many other types of relations, as we will
see in Section 3.

In Stoyanov and Cardie (2008), the authors treated target extraction as a topic
coreference resolution problem. The key to their approach is to cluster opinions sharing
the same target together. They proposed to train a classifier to judge if two opinions are
on the same target, which indicates that their approach is supervised. Our work differs
from theirs in that our approach is semi-supervised.

Other related work on target extraction mainly uses the idea of topic modeling to
capture targets in reviews (Mei et al. 2007). Topic modeling is to model the generation
of a document set and mine the implied topics in the documents. However, our experi-
ments with topic modeling show that it is only able to find some general or coarse
topics in texts and represent them as clusters of words. Their aim is thus different from
our fine-grained opinion target extraction task.

3. Relation Identification

As stated previously, identification of the relations between opinion words/targets and
other opinion words/targets is the key to our opinion lexicon expansion and target
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extraction methods. In this section, we will describe the relation identification in detail.
Hereafter, for convenience, we refer to the relations between opinion words and tar-
gets as OT-Rel, between opinion words themselves as OO-Rel, and between targets as
TT-Rel.

In this work, we employ a dependency grammar to describe the relations syntacti-
cally. In the dependency grammar, a syntactic relation between two words A and B can
be described as A (or B) depends on B (or A). We define two categories to summarize all
possible dependencies between two words in sentences.

Definition 1 (Direct Dependency (DD))
A direct dependency indicates that one word depends on the other word without any
additional words in their dependency path (i.e., directly) or they both depend on a third
word directly.

Some examples are given in Figures 1 (a) and (b). In (a), A depends on B directly and
they both depend on H directly in (b).

Definition 2 (Indirect Dependency (IDD))
An indirect dependency indicates that one word depends on the other word through
some additional words (i.e., indirectly) or they both depend on a third word through
additional words.

Some examples are shown in Figures 1 (c) and (d). In (c), A depends on B through H1;
in (d), A depends on H through H1 and B depends on H through H2. Actually, IDDs
denote all possible relations apart from DDs.

Note that DDs and IDDs describe only the topology of all possible dependencies.
We then impose some constraints of the Part-of-speech (POS) tags on the opinion words

Figure 1
Different dependencies between words A and B.
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and targets, and also the potential syntactic relations on the dependency path. In this
work, we employ the Stanford POS tagging tool1 to do the POS tagging and Minipar2

as the sentence parser. We consider opinion words to be adjectives and targets to be
nouns/noun phrases, which has been widely adopted in previous work (Hu and Liu
2004; Popescu and Etzioni 2005; Mei et al. 2007). Thus the potential POS tags for opinion
words are JJ (adjectives), JJR (comparative adjectives), and JJS (superlative adjectives),
whereas those for targets are NN (singular nouns) and NNS (plural nouns). The de-
pendency relations describing relations between opinion words and targets include
mod, pnmod, subj, s, obj, obj2 and desc; and the relations for opinion words and targets
themselves contain only the conjunction relation conj. Therefore, we formulate OT-Rel,
OO-Rel, or TT-Rel as a quadruple 〈 POS(wi), DT, R, POS(wj) 〉, in which POS(wi) is the
POS tag of word wi, DT is the dependency type (i.e., DD or IDD), and R is the syntactic
relation. The values of POS(wi) and R are listed as described here.

4. Opinion Lexicon Expansion and Target Extraction

We perform the opinion lexicon expansion and target extraction tasks iteratively based
on propagation using the relations defined herein. To bootstrap the propagation, we
only require a seed opinion lexicon. Currently, we focus on one major type of opin-
ionated content, namely, product reviews, in which targets refer to product features.
Hereafter, we use target and product feature (or feature for short) interchangeably for
convenience.

Our extraction approach adopts the rule-based strategy which is quite natural given
the well-defined relations. For example, in an opinion sentence Canon G3 takes great
pictures, the adjective great is parsed as directly depending on the noun pictures through
mod, formulated as a OT-Rel quadruple 〈JJ, DD, mod, NN〉. If we know great is an opinion
word and are given a rule like “a noun on which an opinion word directly depends
through mod is taken as the target,” we can easily extract pictures as the target. Similarly,
if we know pictures is a target, we could extract the adjective great as an opinion word
using a similar rule. Based on such observations, the idea of the whole propagation
approach is first to extract opinion words and targets using the seed opinion lexicon and
then use the newly extracted opinion words and targets for further target and opinion
word extraction. The propagation ends until no more new opinion words or targets can
be identified. In this way, even if the seed opinion lexicon is small, targets can still be
extracted with high recall (as we will see in the experiments) and at the same time the
opinion lexicon is also expanded.

In the following sections, we first describe the extraction rules in detail and
then demonstrate the whole propagation algorithm with a walk-through example to
show how the propagation works. For the opinion lexicon expansion, one important
issue is to assign sentiment polarities to the newly found opinion words. We pro-
pose a novel polarity assignment method to perform this task. In target extraction,
we also propose several pruning methods to remove different types of noise intro-
duced during the propagation process. We will describe these methods in Sections 4.3
and 4.4.

1 http://nlp.stanford.edu/software/tagger.shtml.
2 http://webdocs.cs.ualberta.ca/lindek/minipar.htm.
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4.1 Propagation Rules Defined Based on Relations

In our propagation, there are four subtasks: (1) extracting targets using opinion words;
(2) extracting targets using the extracted targets; (3) extracting opinion words using the
extracted targets; (4) extracting opinion words using both the given and the extracted
opinion words. OT-Rels are used for tasks (1) and (3), TT-Rels are used for task (2), and
OO-Rels are used for task (4). Four types of rules are defined respectively for these four
subtasks and the details are shown in Table 1. As parsing is considerably more difficult
and error prone with informal expressions used in the Web environment, we only utilize
DD dependencies in our current approach. IDDs are more suitable for formal texts. Note
that the rules here are all domain-independent.

In the table, o (or t) stands for the output (extracted) opinion word (or target). {O}
(or {T}) is the set of known opinion words (or the set of targets) either given or extracted.
H means any word. POS(O(or T)) and O(or T)-Dep stand for the POS information and
dependency relation of the word O (or T) respectively. {JJ} and {NN} are sets of POS
tags of potential opinion words and targets, respectively. As discussed previously, {JJ}
contains JJ, JJR, and JJS; {NN} contains NN and NNS. {MR} consists of dependency

Table 1
Rules for target and opinion word extraction. Column 1 is the rule ID, column 2 is the observed
dependency and the constraint that it must satisfy (after s.t.), column 3 is the output, and
column 4 is an example. In each example, the underlined word is the known word and the
word with double quotes is the extracted word. We also show the corresponding instantiated
dependency in the parentheses.

RuleID Observations output Examples

R11 O → O-Dep → T s.t. O ∈ {O}, O-Dep ∈
{MR}, POS(T) ∈ {NN}

t = T The phone has a good “screen”.
(good → mod → screen)

R12 O → O-Dep → H ← T-Dep ← T s.t. O ∈
{O}, O/T-Dep∈ {MR}, POS(T) ∈ {NN}

t = T “iPod” is the best mp3 player.
(best → mod → player ← subj ←
iPod)

R21 O → O-Dep → T s.t. T ∈ {T}, O-Dep ∈
{MR}, POS(O) ∈ {JJ}

o = O same as R11 with screen as the
known word and good as the
extracted word

R22 O → O-Dep → H ← T-Dep ← T s.t. T ∈
{T}, O/T-Dep ∈ {MR}, POS(O) ∈ {JJ}

o = O same as R12 with iPod as the
known word and best as the
extract word

R31 Ti( j) → Ti( j)-Dep → Tj(i) s.t. Tj(i) ∈ {T},Ti( j)-
Dep∈ {CONJ}, POS(Ti( j) ) ∈ {NN}

t = Ti( j) Does the player play dvd with
audio and “video”? (video →
conj → audio)

R32 Ti →Ti-Dep→ H ←Tj-Dep← Tj s.t. Ti ∈
{T},Ti-Dep==Tj-Dep, POS(Tj) ∈ {NN}

t = Tj Canon “G3” has a great lens.
(lens → obj → has ← subj ← G3)

R41 Oi( j) →Oi( j)-Dep→ Oj(i) s.t. Oj(i) ∈ {O},
Oi( j)-Dep∈ {CONJ}, POS(Oi( j) ) ∈ {JJ}

o = Oi( j) The camera is amazing and
“easy” to use. (easy → conj →
amazing)

R42 Oi →Oi-Dep→ H ←Oj-Dep← Oj s.t. Oi ∈
{O},Oi-Dep==Oj-Dep, POS(Oj) ∈ {JJ}

o = Oj If you want to buy a sexy, “cool”,
accessory-available mp3 player,
you can choose iPod. (sexy →
mod → player ← mod ← cool)
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relations describing relations between opinion words and targets (mod, pnmod, subj, s,
obj, obj2 and desc). {CONJ} contains conj only. The arrows represent dependency. For
example, O → O-Dep → T means O depends on T through a syntactic relation O-Dep.
“==” represents the same or equivalent (Here equivalent specifically means mod is the
same as pnmod, and s or subj is the same as obj). For example, Ti-Dep==Tj-Dep means
Ti-Dep being the same as Tj-Dep or equivalent (e.g., subj and obj in R32).

Specifically, we employ R1i to extract targets (t) using opinion words (O), R2i to
extract opinion words (o) using targets (T), R3i to extract targets (t) using extracted
targets (Ti) and R4i to extract opinion words (o) using known opinion words (Oi).
Take R11 as an example. Given the opinion word O, the word with NN as its POS tag
and satisfying the relation O-Dep is extracted as the target. For example, we have the
sentence The phone has a good screen whose corresponding dependency tree is shown in
Figure 2. If we know that good is an opinion word, and it depends on screen through mod
which is contained in {MR} and screen is tagged as NN, R11 can be applied to extract
screen as a target.

4.2 The Propagation Algorithm

Figure 3 shows the detailed algorithm. In the algorithm, the opinion word lexicon O and
review data R about a product are provided as the input. The steps are set following the
propagation order. It stops when no more new opinion words or targets can be added.
The algorithm has been explained in the preceding text. We will not repeat it here. We
now use an example to illustrate the working of the algorithm. Assume we have the
following four sentences in a review: Canon G3 takes great pictures, The picture is amazing,
You may have to get more storage to store high quality pictures and recorded movies, and The
software is amazing. We only have one input opinion word great. Using lines 4 to 6 in
the algorithm, we can extract picture as a product feature (or target) based on R11. Given
this extracted feature, we can then determine that amazing is also an opinion word using
lines 16 to 18 based on R22, and movies also as a feature using lines 13 to 15 based on
R31. In the second iteration, as amazing is recognized as an opinion word, software can
be extracted as a feature using lines 4 to 6 based on R12. The propagation then stops
as no more features or opinion words can be extracted. As we can see, through the
propagation, the three product features (i.e., the targets) and new opinion words in the
review are discovered using only a single opinion word.

4.3 Opinion Word Polarity Assignment

Polarities of opinion words are important for many opinion mining tasks. Thus, the
newly extracted opinion words should be assigned with polarities. We now propose
a polarity assignment method based on the contextual evidence. The basic intuition is

Figure 2
The dependency tree for the sentence The phone has a good screen.
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Figure 3
The propagation algorithm.

that people often express their opinions in a consistent manner unless there are explicit
contrary words such as but and however. In practice, the assignment is done during the
opinion word extraction process. Before we describe our method, let us make some
observations about opinion words and targets:

Observation 1 (same polarity for same target in a review): A review is a document
written by a single reviewer. It is usually the case that the reviewer has the same senti-
ment or polarity on the same target, although the target may appear more than once in
the review.

Observation 2 (same polarity for same opinion word in a domain corpus): It is
usually the case that the same opinion word has the same polarity in one domain
corpus.

Based on these observations, we assign polarities to both newly extracted targets
and opinion words. The polarity of a target in a review is the identified sentiment
polarity on the target given in the review. The following rules are exploited to infer
polarities for extracted opinion words and targets:

1. Heterogeneous rule: For opinion words extracted by known targets, and targets
extracted by known opinion words, we assign them the same polarities as the known
ones. For example, if word A is an opinion word (or target) and B is a target (or opinion
word) and A is extracted through B, A will be assigned with the same polarity as B. Note
that targets themselves convey no polarities and opinion words are the only expressions
that people use to show their attitudes towards targets. Therefore, the polarities of
targets inherit those of associated opinion words. We also consider whether there are
negations/contrary words associated with the opinion words (by examining each word
in the surrounding 5-word window). (In our current work, the negation/contrary word
set consists of not, n’t, ’t, however, but, despite, though, except, although, oddly, and aside. We
compiled these words based on our experiences.)

2. Homogeneous rule: For opinion words extracted by known opinion words and
targets extracted by known targets, we assign them the same polarities as the known
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ones unless there are contrary words between them. For example, considering words
A and B both targets (or opinion words) and A being extracted through B, if there
are no contrary words between A and B, A will be assigned with the same polarity
as B, otherwise the opposite polarity. We also observe that these words can cancel the
polarity change when they are used together or associated with negations. Therefore, we
consider that the polarity changes only when there is an odd number of such contrary
words and negations between the two opinion words or targets.

3. Intra-review rule: There are new opinion words that are extracted by some targets
from other reviews. These targets should convey no polarities in the current review
because they do not conform to Observation 1. Hence, no polarities will be assigned to
the opinion words. Observation 2 cannot be applied either if these opinion words are
found only in the current review. To assign polarities to such opinion words, we make
use of the overall review polarity to infer. We assume that the opinion word takes the
polarity of the review, that is, if the review is positive, the opinion word is assigned with
positive polarity, otherwise negative polarity. The review polarity value is computed
as the sum of polarity values of the contained known opinion words (+1 for positive
polarity and −1 for negative polarity). If the final sum is greater than 0, the review is
positive, and negative otherwise.

Note that, due to the two observations, multiple polarities may be assigned to an
opinion word or target. To resolve conflict, we sum the polarity values. A positive
polarity is +1 and a negative polarity is −1. If the sum is larger than 0, the final polarity
is positive, otherwise negative.

4.4 Opinion Target Pruning

During the propagation, noise (incorrect targets and opinion words) may be introduced
besides genuine targets and opinion words. We now describe some methods for remov-
ing noisy target words. We do not perform pruning of extracted opinion words as our
current results give balanced precision and recall, which is desirable. We still do not
have an effective method for pruning opinion words to achieve better results. We will
study it in our future work.

One major type of target noise is the ordinary nouns that are not targets but are
extracted as targets due to parsing errors or their associations with opinion words or
targets. Another major kind of error in product reviews is the name of other competing
products or dealers on which the reviewers also expressed opinions. We propose two
corresponding pruning methods to identify these two types of noise. So far, all extracted
targets are individual words (such as weight, size). However, because many targets are
phrases (such as battery life), we need to identify them from the extracted individual
words. A third pruning technique is to filter the remaining non-targets after the target
phrase identification. Note that the first and third pruning techniques can be used for
other kinds of opinion texts as well as product reviews.

4.4.1 Pruning Based on Clauses. We correct the first type of errors by using the following
observation: A sentence clause usually contains only one target unless there are conjunctions
such as “and” and “or.” For example, in the sentence I bought apex a month ago in a
review for Apex DVD Player, both apex and month were extracted as potential targets
in some other sentences based on the rules. As these two potential targets are in the
same clause (we identify the boundary of a clause using Minipar) and are not connected
by a conjunction, one of them has to be removed. We call this method clause pruning.
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In this work, we filter non-targets based on frequency. That is, the one which is less
frequent in the data set is removed. The reason for using the frequency-based pruning
is that although reviewers usually have different things to say, when they comment on
the same product features, they tend to use similar words (Hu and Liu 2004).

4.4.2 Pruning of Other Products and Dealers. We use a heuristic method to prune such
non-targets. The basic idea is that when people compare the product under review with
other products, there are indications such as compare to, better than; when they mention
dealers/merchants, the indications are patterns such as shop with. We denote the in-
dications for products as {ProductINDI} (currently including compare to, compare with,
better than, worse than) and indications for dealers as {DealerINDI} (currently including
shop with and buy from). In this heuristic method, we take the nearest nouns following
any indication in {ProductINDI} as product names and those behind any indication in
{DealerINDI} as dealer names. The distance is measured by the number of words in
between. This simple heuristic method works quite well in practice for product reviews.
However, we should note that this domain-specific pruning method does not always
need to be employed as it trades recall for precision, but does not improve F-score. Our
target extraction method is already quite strong. This pruning, however, does present
some useful options in applications.

4.4.3 Identifying Target Phrases and Global Pruning. So far all the extracted targets are
individual words. After removal of non-target individual words, we identify target
phrases. As we consider targets to be nouns/noun phrases, we identify target phrases
by combining each target word with Q consecutive nouns right before and after the
target word, and K adjectives before the target word. We set Q = 2, K = 1 in our
experiments. After obtaining the target phrases, we conduct another frequency-based
pruning to remove targets that appear only once in the whole opinion data. This global
pruning compensates for the clause pruning in case that a clause contains only one target
which is kept no matter what its frequency is. Note that in clause pruning, it is possible
to prune some words in a target phrase (with two or more words), but they will be
recovered in this step by the combination as long as one of the words in the phrase is not
pruned.

5. Experiments and Discussions

We now present the experimental results on opinion lexicon expansion and target
extraction. We use the customer review collection3 from Hu and Liu (2004) as the testing
data. The collection contains five review data sets: two on two digital cameras, one on a
DVD player, one on an mp3 player, and one on a cell phone. The detailed information
of each review data set is shown in Table 2. The targets (i.e., product features) in these
reviews are already labeled. Although the opinion expressed on each target in each
sentence is also labeled, the polarities (or orientations) of opinion words are not labeled.
In our experiments, we manually labeled the opinion words and their polarities. The
seed opinion lexicon is also provided by Hu and Liu (2004), which contains 654 positive
and 1,098 negative opinion words.

3 http://www.cs.uic.edu/liub/FBS/sentiment-analysis.html.
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Table 2
Detailed information of the five review data sets.

Data set Number of reviews Number of sentences

D1 45 597
D2 34 346
D3 41 546
D4 95 1,716
D5 99 740
Avg 62.8 789

5.1 Experiments on Opinion Lexicon Expansion

For the comparison of our approach in opinion lexicon expansion, we implemented the
approach in Kanayama and Nasukawa (2006; referred to as KN06 hereafter). Details
about this approach were given in Section 2. We only considered adjectives as the
candidates in our experiments because our method is only concerned with adjective
opinion words. As propagation is not performed in KN06, we also implemented a non-
propagation version of our approach, in which opinion words are only extracted by the
seed words and targets which are extracted by both the seeds and extracted opinion
words. Furthermore, as our tasks can be regarded as a sequential labeling problem (to
label if a word is an opinion word, a target, or an ordinary word), we experimented with
the conditional random fields (CRF) technique (Lafferty, McCallum, and Pereira 2001)
for extraction, which is a popular information extraction method and has been success-
fully used in labeling tasks such as POS tagging (Lafferty, McCallum, and Pereira 2001)
and Named Entity Recognition (Finkel, Grenager, and Manning 2005). The well-known
toolkit CRF++4 is employed. We consider two kinds of processing windows, one using
the whole sentence (CRF); the other using words between any pair of adjective and noun
(CRF-D). In the first case, we designed seven labels for training, product features, non-
feature nouns, opinion adjectives, non-opinion adjectives, verbs, prepositions/conjunctions, and
others. In the second case, we took advantage of the relations on the shortest dependency
path between the two words and used them as labels. In this way, CRF is made to
capture long range dependencies between words. For both cases, we use the default
parameter settings in CRF++.

To train CRF for the extraction task, we use one data set for training and the
remaining four sets for testing. Consequently, we have five runs. The average results
are reported here. In the set-up of our approaches and KN06, to examine the accuracy in
extracting opinion words with different numbers of seeds we divide the initial opinion
lexicon into 10 subsets, each with roughly the same number of words. We call these lists
of opinion words the 10p lists. These ten 10p lists are combined to produce 20p, 50p,
and 80p lists which mean 20%, 50%, and 80% of the original set (1,752 opinion words),
respectively. The experiments using four kinds of seed lists are performed separately.

Note that all metrics (precision, recall, and F-score) are computed on the newly
extracted opinion words. This is an important point because only the new extractions
are meaningful. Using all the extracted words to compute precision and recall is not

4 http://crfpp.sourceforge.net/.
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Figure 4
Precisions of CRF, CRF-D, KN06, noProp-dep, and Prop-dep.

appropriate as they can include many words that are already in the seed list or the
labeled training set in the case of CRF.

5.1.1 Comparison Results and Discussions. Figures 4, 5, and 6 show the average results
of precision, recall, and F-score of different approaches using different numbers of
seed opinion words. CRF and CRF-D are not evaluated against the number of seed
opinion words because that results in too few training data for CRF and CRF-D and
consequently poorer results. That is also why their results stay the same for all cases.
Prop-dep is our propagation approach and noProp-dep is the non-propagation version
of our technique.

Observing from Figure 4, we can see that our approaches, both propagation and
non-propagation versions, outperform others in all the four cases in precision. This
indicates that our rules based on the dependency relations are effective in extracting
correct opinion words. The precision of CRF is low, which means CRF has difficulty in
distinguishing ordinary adjectives from opinion ones. The better performance of CRF-D
over CRF indicates that long-range dependency relations are helpful. KN06 is reported
to have around 60% precision in the Japanese test data, but it does not perform as well in

Figure 5
Recalls of Init, CRF, CRF-D, KN06, noProp-dep, and Prop-dep.
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Figure 6
F-scores of CRF, CRF-D, KN06, noProp-dep, and Prop-dep.

our experiments. One reason could be that the statistical estimation of KN06 measures
a word’s positive or negative occurrences compared to its total occurrences, which can
introduce unreliability if words are infrequent when the corpus is small. Considering
the size of the testing data in our experiments (which is much smaller than theirs), the
estimation can be quite unreliable. Many infrequent non-opinion words are identified
as opinion words, which lowers the precision. In our technique, rules are applied in
terms of single sentences. Thus it is not sensitive to the size of the testing data. Another
observation is that in our approaches, the best performance is gained at 10p rather than
80p. This is because at 80p most of the opinion words are already known (in the seed
list) and the number of remaining ones to be extracted is small and they are usually
harder to identify.

From Figure 5, we can see that our approach makes significant improvement over
others in recall except CRF-D. Clearly, the propagation is at work. In the 10p case,
the new opinion words extracted by our approach could cover almost 75% of the
whole opinion set whereas the corresponding seed words only cover 8% of the opinion
words in the data (see the Init line). Thus our propagation method is quite powerful
in identifying a large number of new opinion words. We also notice that the results
do not change dramatically in different cases (all around 75%), which shows that the
propagation performs steadily in extracting new opinion words with a different number
of seeds (although it does introduce more noise as the number of seeds increases, as
shown in Figure 4.). CRF is found to cover only about 30% of the opinion words.
Technically, CRF captures only local patterns rather than long-range patterns. Many de-
pendency relationships are long range (i.e., there are many words between the opinion
word and the feature that it modifies), which explains the weak performance of CRF.
CRF-D performs the best (about 78%), which confirms the usefulness of long range
patterns. However, considering the large size of training data for CRF-D (the training
data set already contains most of the correct opinion words) and poorer precision
(Figure 4), its result is weaker than our approach. KN06 performs poorly in finding
new opinion words, which we believe is due to its strategy in selecting candidates. The
strategy only considers adjectives in successive sentences and does not use features or
any dependency relationships. Such relationships clearly exist and are useful.

Figure 6 shows the F-score results. In all four cases, our propagation approach
(Prop-dep) achieves the highest F-score. We can thus draw the conclusion that our
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Figure 7
Average polarity assignment accuracy on correct new opinion words.

approach is superior to the existing methods. It indicates that rules defined based on
the relations are effective and the propagation idea is powerful.

5.1.2 Results of Polarity Assignment. Figure 7 shows the accuracy of polarity assignment of
different approaches computed on the newly discovered correct opinion words by each
approach. From the results, we can see that noProp-dep performs the best before around
65p (which means 65% of the complete opinion lexicon). Prop-dep performs worse than
KN06 but approaches it when the number of seeds increases, and outperforms KN06
from around 50p and noProp-dep from around 65p. Considering our approach has a
much higher recall, about 20% higher at 80p (Figure 5), this result is useful. At 10p,
20p, and 50p, the recall values of our methods are even higher than KN06. In the cases
of 50p and 80p, our method becomes more accurate than KN06 (Figure 7). We consider
those two cases to be realistic for practical applications because there are already several
existing opinion lexicons compiled by researchers. Thus, in practice, one does not need
to start with a very small number of seeds. Note that this does not conflict with our
earlier statement about our propagation approach’s ability in extracting a large number
of new opinion words with only a small set of seeds.

5.2 Experiments on Opinion Target Extraction

For performance evaluation on opinion target extraction, we compare our work (and
also the non-propagation version, i.e., extracting targets using only the opinion words)
with those in Hu and Liu (2004, henceforth Hu) and Popescu and Etzioni (2005, hence-
forth Popescu), which also considered only explicit noun targets and experimented with
the same data sets. Details of both approaches have been described in Section 2. Addi-
tionally, we experimented with the popular topic modeling algorithm PLSA (Hofmann
1999), using a public domain program,5 and CRF (CRF-D) using the toolkit CRF++. The
parameters and training set-ups were set the same as in the opinion word extraction
experiment. Note in this set of experiments, all our initial opinion words were used.

5 http://www.kyb.mpg.de/bs/people/pgehler/code/index.html.
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In PLSA, the maximum number of iterations was set to 500. As PLSA only clusters
words of the same rough topic together but does not perform fine-grained target ex-
traction directly, we computed the precision, recall, and F-score results by combining
the top M nouns of each cluster together as the extracted targets by PLSA. The value of
M and the number of clusters were chosen empirically. We set M as 10, 20, and 30 and
number of clusters as 10, 20, 30, 40, and 50. We used the best results based on F-scores
as the final results of each data set for PLSA. For the five data sets, the best results for
the DVD player were gained at M = 10 with the number of clusters being 30, and those
for the remaining four data sets were all gained at M = 20 with the number of clusters
being 10.

5.2.1 Comparison Results and Discussions. Tables 3, 4, and 5 show the precision, recall,
and F-score results respectively of our propagation approach (Prop-dep), the non-
propagation version (noProp-dep), Hu, Popescu, PLSA, and CRF (CRF-D).

From Table 3, we can see that on average our approach has a 16% improvement
in precision over Hu, 34% over PLSA, 28% over CRF, and 30% over CRF-D, and has
similar results to Popescu. noProp-dep performs the best, which indicates that the
rules are helpful in extracting targets, but the propagation introduces noise. The results
of Hu and Popescu are taken from their respective papers as their systems are not
available for experimentation. The Popescu approach is much more time consuming
as it needs to complete an extensive Web search and also must know the product
class in advance. Our proposed approach relies only on the review data itself and

Table 3
Precisions of our propagation approach (Prop-dep), the non-propagation version (noProp-dep),
Hu, Popescu, PLSA, CRF, and CRF-D.

Precision

Hu Popescu PLSA CRF CRF-D noProp-dep Prop-dep

D1 0.75 0.89 0.63 0.62 0.59 0.94 0.87
D2 0.71 0.87 0.48 0.64 0.58 0.97 0.90
D3 0.72 0.89 0.56 0.58 0.57 0.97 0.90
D4 0.69 0.86 0.53 0.53 0.54 0.88 0.81
D5 0.74 0.90 0.49 0.64 0.62 0.92 0.92
Avg 0.72 0.88 0.54 0.60 0.58 0.94 0.88

Table 4
Recalls of our propagation approach (Prop-dep), the non-propagation version (noProp-dep), Hu,
Popescu, PLSA, CRF, and CRF-D.

Recall

Hu Popescu PLSA CRF CRF-D noProp-dep Prop-dep

D1 0.82 0.80 0.53 0.37 0.52 0.70 0.81
D2 0.79 0.74 0.59 0.41 0.59 0.59 0.81
D3 0.76 0.74 0.56 0.30 0.45 0.67 0.86
D4 0.82 0.80 0.47 0.35 0.50 0.72 0.84
D5 0.80 0.78 0.59 0.27 0.45 0.64 0.86
Avg 0.80 0.78 0.55 0.34 0.50 0.66 0.83
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Table 5
F-scores of our propagation approach (Prop-dep), the non-propagation version (noProp-dep),
Hu, Popescu, PLSA, CRF, and CRF-D.

F-score

Hu Popescu PLSA CRF CRF-D noProp-dep Prop-dep

D1 0.78 0.84 0.58 0.46 0.55 0.80 0.84
D2 0.75 0.80 0.53 0.50 0.58 0.73 0.85
D3 0.74 0.81 0.56 0.40 0.50 0.79 0.88
D4 0.75 0.83 0.49 0.42 0.52 0.79 0.82
D5 0.77 0.84 0.54 0.38 0.52 0.75 0.89
Avg 0.76 0.82 0.54 0.43 0.54 0.77 0.86

no external information is needed. The poor results of PLSA show that many of the
top-ranked terms in clusters are not genuine opinion targets but other words, such
as telephone, message, location, buyer for the DVD player data set. The low precisions
of CRF and CRF-D show that CRF performs poorly in distinguishing targets and
non-targets.

Table 4 shows that our approach outperforms all the other approaches in recall.
We have 3% improvement over Hu, 5% over Popescu, 28% over PLSA, 49% over CRF,
and 33% over CRF-D. However, if we do not perform propagation, the recall results are
much worse than Hu and Popescu, as shown in noProp-dep. Therefore, propagation
is necessary in extracting a large number of targets. The reason for the improvement
of our approach over Popescu is quite evident. Although some of the product features
tend to appear with product discriminators like product has, of product, there are many
other features that do not have high co-occurrences with these discriminators. The better
performance of CRF-D over CRF again indicates that dependency relations are helpful
in identifying more targets.

F-scores in Table 5 show that our approach outperforms Hu (by 10%), Popescu (4%),
PLSA (32%), CRF (43%), and CRF-D (32%). Paired t-tests show that all the improve-
ments are statistically significant at the confidence level of 95%. noProp-dep also has
good F-score results (even a little better than Hu) due to its high precision. The poor
results seen with PLSA and CRF indicate that these approaches may not be suitable for
this task. As analyzed earlier, PLSA is known for its ability to mine rough topics in a
large text collection by clustering topic words together based on the probability distri-
bution in the corpus. It is not suitable for the fine-grained extraction task. Therefore, a
large number of non-targets are included. CRF and CRF-D perform poorly as explained
in the opinion word extraction task.

6. Conclusions

This article focuses on two important tasks in opinion mining, namely, opinion lexicon
expansion and target extraction. We propose a propagation approach to extract opinion
words and targets iteratively given only a seed opinion lexicon of small size. The ex-
traction is performed using identified relations between opinion words and targets, and
also opinion words/targets themselves. The relations are described syntactically based
on the dependency grammar. We also propose novel methods for new opinion word
polarity assignment and noisy target pruning. In the evaluation, we compared our new
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approach with others on standard testing data sets. The results show that our approach
outperforms other state-of-the-art methods in these two tasks. In the future, we plan to
first focus on improving the precision of opinion word extraction by working on opin-
ion word pruning methods. We will then also try to learn syntactic relations automat-
ically from large corpuses using pattern mining techniques to improve the relation
coverage.
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