
Distributional Memory: A General
Framework for Corpus-Based Semantics

Marco Baroni∗

University of Trento

Alessandro Lenci∗∗

University of Pisa

Research into corpus-based semantics has focused on the development of ad hoc models that treat
single tasks, or sets of closely related tasks, as unrelated challenges to be tackled by extracting
different kinds of distributional information from the corpus. As an alternative to this “one task,
one model” approach, the Distributional Memory framework extracts distributional information
once and for all from the corpus, in the form of a set of weighted word-link-word tuples arranged
into a third-order tensor. Different matrices are then generated from the tensor, and their rows
and columns constitute natural spaces to deal with different semantic problems. In this way,
the same distributional information can be shared across tasks such as modeling word similarity
judgments, discovering synonyms, concept categorization, predicting selectional preferences of
verbs, solving analogy problems, classifying relations between word pairs, harvesting qualia
structures with patterns or example pairs, predicting the typical properties of concepts, and
classifying verbs into alternation classes. Extensive empirical testing in all these domains shows
that a Distributional Memory implementation performs competitively against task-specific al-
gorithms recently reported in the literature for the same tasks, and against our implementations
of several state-of-the-art methods. The Distributional Memory approach is thus shown to be
tenable despite the constraints imposed by its multi-purpose nature.

1. Introduction

The last two decades have seen a rising wave of interest among computational linguists
and cognitive scientists in corpus-basedmodels of semantic representation (Grefenstette
1994; Lund and Burgess 1996; Landauer and Dumais 1997; Schütze 1997; Sahlgren 2006;
Bullinaria and Levy 2007; Griffiths, Steyvers, and Tenenbaum 2007; Padó and Lapata
2007; Lenci 2008; Turney and Pantel 2010). These models, variously known as vector
spaces, semantic spaces, word spaces, corpus-based semantic models, or, using the term
we will adopt, distributional semantic models (DSMs), all rely on some version of the
distributional hypothesis (Harris 1954; Miller and Charles 1991), stating that the degree
of semantic similarity between two words (or other linguistic units) can be modeled

∗ Center for Mind/Brain Sciences (CIMeC), University of Trento, C.so Bettini 31, 38068 Rovereto (TN),
Italy. E-mail: marco.baroni@unitn.it.

∗∗ Department of Linguistics T. Bolelli, University of Pisa, Via Santa Maria 36, 56126 Pisa (PI), Italy.
E-mail: alessandro.lenci@ling.unipi.it.

Submission received: 11 January 2010; revised submission received: 15 April 2010; accepted for publication:
1 June 2010.

© 2010 Association for Computational Linguistics



Computational Linguistics Volume 36, Number 4

as a function of the degree of overlap among their linguistic contexts. Conversely, the
format of distributional representations greatly varies depending on the specific aspects
of meaning they are designed to model.

The most straightforward phenomenon tackled by DSMs is what Turney (2006b)
calls attributional similarity, which encompasses standard taxonomic semantic rela-
tions such as synonymy, co-hyponymy, and hypernymy. Words like dog and puppy,
for example, are attributionally similar in the sense that their meanings share a large
number of attributes: They are animals, they bark, and so on. Attributional similarity
is typically addressed by DSMs based on word collocates (Grefenstette 1994; Lund and
Burgess 1996; Schütze 1997; Bullinaria and Levy 2007; Padó and Lapata 2007). These
collocates are seen as proxies for various attributes of the concepts that the words
denote. Words that share many collocates denote concepts that share many attributes.
Both dog and puppy may occur near owner, leash, and bark, because these words denote
properties that are shared by dogs and puppies. The attributional similarity between
dog and puppy, as approximated by their contextual similarity, will be very high.

DSMs succeed in tasks like synonym detection (Landauer and Dumais 1997) or
concept categorization (Almuhareb and Poesio 2004) because such tasks require a mea-
sure of attributional similarity that favors concepts that share many properties, such
as synonyms and co-hyponyms. However, many other tasks require detecting different
kinds of semantic similarity. Turney (2006b) defines relational similarity as the property
shared by pairs of words (e.g, dog–animal and car–vehicle) linked by similar semantic
relations (e.g., hypernymy), despite the fact that the words in one pair might not be
attributionally similar to those in the other pair (e.g., dog is not attributionally similar to
car, nor is animal to vehicle). Turney generalizes DSMs to tackle relational similarity and
represents pairs of words in the space of the patterns that connect them in the corpus.
Pairs of words that are connected by similar patterns probably hold similar relations,
that is, they are relationally similar. For example, we can hypothesize that dog–tail is
more similar to car–wheel than to dog–animal, because the patterns connecting dog and
tail (of, have, etc.) are more like those of car–wheel than like those of dog–animal (is a, such
as, etc.). Turney uses the relational space to implement tasks such as solving analogies
and harvesting instances of relations. Although they are not explicitly expressed in
these terms, relation extraction algorithms (Hearst 1992, 1998; Girju, Badulescu, and
Moldovan 2006; Pantel and Pennacchiotti 2006) also rely on relational similarity, and
focus on learning one relation type at a time (e.g., finding parts).

Although semantic similarity, either attributional or relational, has the lion’s share
in DSMs, similarity is not the only aspect of meaning that is addressed by distributional
approaches. For instance, the notion of property plays a key role in cognitive science and
linguistics, which both typically represent concepts as clusters of properties (Jackendoff
1990; Murphy 2002). In this case, the task is not to find out that dog is similar to puppy
or cat, but that it has a tail, it is used for hunting, and so on. Almuhareb (2006), Baroni
and Lenci (2008), and Baroni et al. (2010) use the words co-occurring with a noun to
approximate its most prototypical properties and correlate distributionally derived data
with the properties produced by human subjects. Cimiano and Wenderoth (2007) in-
stead focus on that subset of noun properties known in lexical semantics as qualia roles
(Pustejovsky 1995), and use lexical patterns to identify, for example, the constitutive
parts of a concept or its function (this is in turn analogous to the problem of relation
extraction). The distributional semantics methodology also extends to more complex
aspects of word meaning, addressing issues such as verb selectional preferences (Erk
2007), argument alternations (Merlo and Stevenson 2001; Joanis, Stevenson, and James
2008), event types (Zarcone and Lenci 2008), and so forth. Finally, some DSMs capture

674



Baroni and Lenci Distributional Memory

a sort of “topical” relatedness between words: They might find, for example, a relation
between dog and fidelity. Topical relatedness, addressed by DSMs based on document
distributions such as LSA (Landauer and Dumais 1997) and Topic Models (Griffiths,
Steyvers, and Tenenbaum 2007), is not further discussed in this article.

DSMs have found wide applications in computational lexicography, especially for
automatic thesaurus construction (Grefenstette 1994; Lin 1998a; Curran and Moens
2002; Kilgarriff et al. 2004; Rapp 2004). Corpus-based semantic models have also at-
tracted the attention of lexical semanticists as a way to provide the notion of synonymy
with a more robust empirical foundation (Geeraerts 2010; Heylen et al. 2008). Moreover,
DSMs for attributional and relational similarity are widely used for the semi-automatic
bootstrapping or extension of terminological repositories, computational lexicons (e.g.,
WordNet), and ontologies (Buitelaar, Cimiano, and Magnini 2005; Lenci 2010). Inno-
vative applications of corpus-based semantics are also being explored in linguistics,
for instance in the study of semantic change (Sagi, Kaufmann, and Clark 2009), lexical
variation (Peirsman and Speelman 2009), and for the analysis of multiword expressions
(Alishahi and Stevenson 2008).

The wealth and variety of semantic issues that DSMs are able to tackle confirms
the importance of looking at distributional data to explore meaning, as well as the
maturity of this research field. However, if we looked from a distance at the whole field
of DSMs we would see that, besides the general assumption shared by all models that
information about the context of a word is an important key in grasping its meaning, the
elements of difference overcome the commonalities. For instance, DSMs geared towards
attributional similarity represent words in the contexts of other (content) words, thereby
looking very different from models that represent word pairs in terms of patterns
linking them. In turn, both these models differ from those used to explore concept
properties or argument alternations. The typical approach in the field has been a local
one, in which each semantic task (or set of closely related tasks) is treated as a separate
problem, that requires its own corpus-derived model and algorithm, both optimized to
achieve the best performance in a given task, but lacking generality, since they resort
to task-specific distributional representations, often complemented by additional task-
specific resources. As a consequence, the landscape of DSMs looks more like a jigsaw
puzzle in which different parts have been completed and the whole figure starts to
emerge from the fragments, but it is not clear yet how to put everything together and
compose a coherent picture.

We argue that the “one semantic task, one distributional model” approach repre-
sents a great limit of the current state of the art. From a theoretical perspective, corpus-
based models hold promise as large-scale simulations of how humans acquire and use
conceptual and linguistic information from their environment (Landauer and Dumais
1997). However, existing DSMs lack exactly the multi-purpose nature that is a hallmark
of human semantic competence. The common view in cognitive (neuro)science is that
humans resort to a single semantic memory, a relatively stable long-term knowledge
database, adapting the information stored there to the various tasks at hand (Murphy
2002; Rogers and McClelland 2004). The fact that DSMs need to go back to their
environment (the corpus) to collect ad hoc statistics for each semantic task, and the fact
that different aspects of meaning require highly different distributional representations,
cast many shadows on the plausibility of DSMs as general models of semantic mem-
ory. From a practical perspective, going back to the corpus to train a different model for
each application is inefficient, and it runs the risk of overfitting the model to a specific
task, while losing sight of its adaptivity—a highly desirable feature for any intelligent
system. Think, by contrast, of WordNet (Fellbaum 1998), a single, general purpose

675



Computational Linguistics Volume 36, Number 4

network of semantic information that has been adapted to all sorts of tasks, many of
them certainly not envisaged by the resource creators. We think that it is not by chance
that no comparable resource has emerged from DSM development.

In this article, we want to show that a unified approach is not only a desirable
goal, but it is also a feasible one. With this aim in mind, we introduce Distributional
Memory (DM), a generalized framework for distributional semantics. Differently from
other current proposals that share similar aims, we believe that the lack of generalization
in corpus-based semantics stems from the choice of representing co-occurrence statistics
directly as matrices—geometrical objects that model distributional data in terms of
binary relations between target items (the matrix rows) and their contexts (the matrix
columns). This results in the development of ad hocmodels that lose sight of the fact that
different semantic spaces actually rely on the same kind of underlying distributional
information. DM instead represents corpus-extracted co-occurrences as a third-order
tensor, a ternary geometrical object that models distributional data in terms of word–
link–word tuples. Matrices are then generated from the tensor in order to perform se-
mantic tasks in the spaces they define. Crucially, these on-demand matrices are derived
from the same underlying resource (the tensor) and correspond to different “views”
of the same data, extracted once and for all from a corpus. DM is tested here on what
we believe to be the most varied array of semantic tasks ever addressed by a single
distributional model. In all cases, we compare the performance of several DM imple-
mentations to state-of-the-art results. While some of the ad hoc models that were devel-
oped to tackle specific tasks do outperform our most successful DM implementation,
the latter is never too far from the top, without any task-specific tuning. We think that
the advantage of having a general model that does not need to be retrained for each new
task outweighs the (often minor) performance advantage of the task-specific models.

The article is structured as follows. After framing our proposal within the general
debate on co-occurrence modeling in distributional semantics (Section 2), we introduce
the DM framework in Section 3 and compare it to other unified approaches in Section 4.
Section 5 pertains to the specific implementations of the DM framework we will test
experimentally. The experiments are reported in Section 6. Section 7 concludes by
summarizing what we have achieved, and discussing the implications of these results
for corpus-based distributional semantics.

2. Modeling Co-occurrence in Distributional Semantics

Corpus-based semantics aims at characterizing the meaning of linguistic expressions in
terms of their distributional properties. The standard view models such properties in
terms of two-way structures, that is, matrices coupling target elements (either single
words or whatever other linguistic constructions we try to capture distributionally)
and contexts. In fact, the formal definition of semantic space provided by Padó and
Lapata (2007) is built around the notion of a matrix M|B|×|T|, with B the set of basis
elements representing the contexts used to compare the distributional similarity of the
target elements T.

This binary structure is inherently suitable for approaches that represent distribu-
tional data in terms of unstructured co-occurrence relations between an element and
a context. The latter can be either documents (Landauer and Dumais 1997; Griffiths,
Steyvers, and Tenenbaum 2007) or lexical collocates within a certain distance from the
target (Lund and Burgess 1996; Schütze 1997; Rapp 2003; Bullinaria and Levy 2007). We
will refer to such models as unstructured DSMs, because they do not use the linguistic
structure of texts to compute co-occurrences, and only record whether the target occurs

676



Baroni and Lenci Distributional Memory

in or close to the context element, without considering the type of this relation. For
instance, an unstructured DSM might derive from a sentence like The teacher eats a red
apple that eat is a feature shared by apple and red, just because they appear in the same
context window, without considering the fact that there is no real linguistic relation
linking eat and red, besides that of linear proximity.

In structured DSMs, co-occurrence statistics are collected instead in the form of
corpus-derived triples: typically, word pairs and the parser-extracted syntactic relation
or lexico-syntactic pattern that links them, under the assumption that the surface con-
nection between two words should cue their semantic relation (Grefenstette 1994; Lin
1998a; Curran and Moens 2002; Almuhareb and Poesio 2004; Turney 2006b; Padó and
Lapata 2007; Erk and Padó 2008; Rothenhäusler and Schütze 2009). Distributional triples
are also used in computational lexicography to identify the grammatical and colloca-
tional behavior of a word and to define its semantic similarity spaces. For instance,
the Sketch Engine1 builds “word sketches” consisting of triples extracted from parsed
corpora and formed by two words linked by a grammatical relation (Kilgarriff et al.
2004). The number of shared triples is then used to measure the attributional similarity
between word pairs.

Structured models take into account the crucial role played by syntactic structures
in shaping the distributional properties of words. To qualify as context of a target item,
a word must be linked to it by some (interesting) lexico-syntactic relation, which is
also typically used to distinguish the type of this co-occurrence. Given the sentence
The teacher eats a red apple, structured DSMs would not consider eat as a legitimate con-
text for red and would distinguish the object relation connecting eat and apple as a
different type of co-occurrence from the modifier relation linking red and apple. On the
other hand, structured models require more preliminary corpus processing (parsing or
extraction of lexico-syntactic patterns), and tend to be more sparse (because there are
more triples than pairs). What little systematic comparison of the two approaches has
been carried out (Padó and Lapata 2007; Rothenhäusler and Schütze 2009) suggests
that structured models have a slight edge. In our experiments in Section 6.1 herein, the
performance of unstructured and structured models trained on the same corpus is in
general comparable. It seems safe to conclude that structured models are at least not
worse than unstructured models—an important conclusion for us, as DM is built upon
the structured DSM idea.

Structured DSMs extract a much richer array of distributional information from
linguistic input, but they still represent it in the same way as unstructured models.
The corpus-derived ternary data are mapped directly onto a two-way matrix, either
by dropping one element from the tuple (Padó and Lapata 2007) or, more commonly, by
concatenating two elements. The two words can be concatenated, treating the links as
basis elements, in order to model relational similarity (Pantel and Pennacchiotti 2006;
Turney 2006b). Alternatively, pairs formed by the link and one word are concatenated
as basis elements to measure attributional similarity among the other words, treated
as target elements (Grefenstette 1994; Lin 1998a; Curran and Moens 2002; Almuhareb
and Poesio 2004; Rothenhäusler and Schütze 2009). In this way, typed DSMs obtain
finer-grained features to compute distributional similarity, but, by couching distribu-
tional information as two-way matrices, they lose the high expressive power of corpus-
derived triples. We believe that falling short of fully exploiting the potential of ternary

1 http://www.sketchengine.co.uk.

677



Computational Linguistics Volume 36, Number 4

distributional structures is the major reason for the lack of unification in corpus-based
semantics.

The debate in DSMs has so far mostly focused on the context choice—for example,
lexical collocates vs. documents (Sahlgren 2006; Turney and Pantel 2010)—or on the
costs and benefits of having structured contexts (Padó and Lapata 2007; Rothenhäusler
and Schütze 2009). Although we see the importance of these issues, we believe that a
real breakthrough in DSMs can only be achieved by overcoming the limits of current
two-way models of distributional data. We propose here the alternative DM approach,
in which the core geometrical structure of a distributional model is a three-way object,
namely a third-order tensor. As in structured DSMs, we adopt word–link–word tuples
as the most suitable way to capture distributional facts. However, we extend and
generalize this assumption, by proposing that, once they are formalized as a three-
way tensor, tuples can become the backbone of a unified model for distributional
semantics. Different semantic spaces are then generated on demand through the inde-
pendently motivated operation of tensor matricization, mapping the third-order tensor
onto two-way matrices. The matricization of the tuple tensor produces both familiar
spaces, similar to those commonly used for attributional or relational similarity, and
other less known distributional spaces, which will yet prove useful for capturing some
interesting semantic phenomena. The crucial fact is that all these different semantic
spaces are now alternative views of the same underlying distributional object. Appar-
ently unrelated semantic tasks can be addressed in terms of the same distributional
memory, harvested only once from the source corpus. Thus, thanks to the tensor-based
representation, distributional data can be turned into a general purpose resource for
semantic modeling. As a further advantage, the third-order tensor formalization of
corpus-based tuples allows distributional information to be represented in a similar
way to other types of knowledge. In linguistics, cognitive science, and AI, semantic and
conceptual knowledge is represented in terms of symbolic structures built around typed
relations between elements, such as synsets, concepts, properties, and so forth. This is
customary in lexical networks like WordNet (Fellbaum 1998), commonsense resources
like ConceptNet (Liu and Singh 2004), and cognitive models of semantic memory
(Rogers andMcClelland 2004). The tensor representation of corpus-based distributional
data promises to build new bridges between existing approaches to semantic represen-
tation that still appear distant in many respects. This may indeed contribute to the on-
going efforts to combine distributional and symbolic approaches to meaning (Clark and
Pulman 2007).

3. The Distributional Memory Framework

We first introduce the notion of a weighted tuple structure, the format in which DM
expects the distributional data extracted from the corpus to be arranged (and that it
shares with traditional structured DSMs). We then show how aweighted tuple structure
can be represented, in linear algebraic terms, as a labeled third-order tensor. Finally,
we derive different semantic vector spaces from the tensor by the operation of labeled
tensor matricization.

3.1 Weighted Tuple Structures

Relations among entities can be represented by ternary tuples, or triples. Let O1 and
O2 be two sets of objects, and R ⊆ O1 ×O2 a set of relations between these objects.
A triple 〈o1, r, o2〉 expresses the fact that o1 is linked to o2 through the relation r. DM

678



Baroni and Lenci Distributional Memory

(like previous structured DSMs) includes tuples of a particular type, namely, weighted
distributional tuples that encode distributional facts in terms of typed co-occurrence
relations among words. Let W1 and W2 be sets of strings representing content words,
and L a set of strings representing syntagmatic co-occurrence links between words in
a text. T ⊆W1 × L×W2 is a set of corpus-derived tuples t = 〈w1, l,w2〉, such that w1
co-occurs with w2 and l represents the type of this co-occurrence relation. For instance,
the tuple 〈marine, use, bomb〉 in the toy example reported in Table 1 encodes the piece
of distributional information that marine co-occurs with bomb in the corpus, and use
specifies the type of the syntagmatic link between these words. Each tuple t has a
weight, a real-valued score vt, assigned by a scoring function σ :W1 × L×W2 → R.
A weighted tuple structure consists of the set TW of weighted distributional tuples
tw = 〈t, vt〉 for all t ∈ T and σ(t) = vt. The σ function encapsulates all the operations
performed to score the tuples, for example, by processing an input corpus with a
dependency parser, counting the occurrences of tuples, and weighting the raw counts
by mutual information. Because our focus is on how tuples, once they are harvested,
should be represented geometrically, we gloss over the important challenges of choos-
ing the appropriateW1, L andW2 string sets, as well as specifying σ.

In this article, we make the further assumption that W1 = W2. This is a natural
assumption when the tuples represent (link-mediated) co-occurrences of word pairs.
Moreover, we enforce an inverse link constraint such that for any link l in L, there is a
k in L such that for each tuple tw = 〈〈wi, l,wj〉, vt〉 in the weighted tuple structure TW ,
the tuple t−1

w = 〈〈wj, k,wi〉, vt〉 is also in TW (we call k the inverse link of l). Again, this
seems reasonable in our context: If we extract a tuple 〈marine, use, gun〉 and assign it a
certain score, we might as well add the tuple 〈gun, use−1, marine〉 with the same score.
The two assumptions, combined, lead the matricization process described in Section 3.3
to generate exactly four distinct vector spaces that, as we discuss there, are needed for
the semantic analyses we conduct. See Section 6.6 of Turney (2006b) for a discussion of
similar assumptions. Still, it is worth emphasizing that the general formalism we are
proposing, where corpus-extracted weighted tuple structures are represented as labeled
tensors, does not strictly require these assumptions. For example,W2 could be a larger
set of “relata” including not only words, but also documents, morphological features,
or even visual features (with appropriate links, such as, for word-document relations,
occurs-at-the-beginning-of ). The inverse link constraint might not be appropriate, for
example, if we use an asymmetric association measure, or if we are only interested in
one direction of certain grammatical relations. We leave the investigation of all these
possibilities to further studies.

Table 1
A toy weighted tuple structure.

word link word weight word link word weight

marine own bomb 40.0 sergeant use gun 51.9
marine use bomb 82.1 sergeant own book 8.0
marine own gun 85.3 sergeant use book 10.1
marine use gun 44.8 teacher own bomb 5.2
marine own book 3.2 teacher use bomb 7.0
marine use book 3.3 teacher own gun 9.3
sergeant own bomb 16.7 teacher use gun 4.7
sergeant use bomb 69.5 teacher own book 48.4
sergeant own gun 73.4 teacher use book 53.6

679



Computational Linguistics Volume 36, Number 4

3.2 Labeled Tensors

DSMs adopting a binary model of distributional information (either unstructured mod-
els or structured models reduced to binary structures) are represented by matrices
containing corpus-derived co-occurrence statistics, with rows and columns labeled by
the target elements and their contexts. In DM,we formalize the weighted tuple structure
as a labeled third-order tensor, from which semantic spaces are then derived through
the operation of labeled matricization. Tensors are multi-way arrays, conventionally
denoted by boldface Euler script letters: X (Turney 2007; Kolda and Bader 2009). The
order (or n-way) of a tensor is the number of indices needed to identify its elements.
Tensors are a generalization of vectors and matrices. The entries in a vector can be
denoted by a single index. Vectors are thus first-order tensors, often indicated by a bold
lowercase letter: v. The i-th element of a vector v is indicated by vi. Matrices are second-
order tensors, and are indicatedwith bold capital letters:A. The entry (i, j) in the i-th row
and j-th column of a matrix A is denoted by aij. An array with three indices is a third-
order (or three-way) tensor. The element (i, j, k) of a third-order tensor X is denoted
by xijk. A convenient way to display third-order tensors is via nested tables such as
Table 2, where the first index is in the header column, the second index in the first
header row, and the third index in the second header row. The entry x321 of the tensor in
the table is 7.0 and the entry x112 is 85.3. An index has dimensionality I if it ranges over
the integers from 1 to I. The dimensionality of a third-order tensor is the product of the
dimensionalities of its indices I × J × K. For example, the third-order tensor in Table 2
has dimensionality 3× 2× 3.

If we fix the integer i as the value of the first index of a matrix A and take the
entries corresponding to the full range of values of the other index j, we obtain a row
vector (that we denote ai∗). Similarly, by fixing the second index to j, we obtain the
column vector a∗j. Generalizing, a fiber is equivalent to rows and columns in higher
order tensors, and it is obtained by fixing the values of all indices but one. A mode-n
fiber is a fiber where only the n-th index has not been fixed. For example, in the tensor
X of Table 2, x∗11 = (40.0, 16.7, 5.2) is a mode-1 fiber, x2∗3 = (8.0, 10.1) is a mode-2 fiber,
and x32∗ = (7.0, 4.7, 53.6) is a mode-3 fiber.

A weighted tuple structure can be represented as a third-order tensor whose entries
contain the tuple scores. As for the two-way matrices of classic DSMs, in order to make
tensors linguistically meaningful we need to assign linguistic labels to the elements of
the tensor indices. We define a labeled tensor X λ as a tensor such that for each of its
indices there is a one-to-one mapping of the integers from 1 to I (the dimensionality of
the index) to I distinct strings, that we call the labels of the index. We will refer herein to
the string λ uniquely associated to index element i as the label of i, their correspondence

Table 2
A labeled third-order tensor of dimensionality 3× 2× 3 representing the weighted tuple
structure of Table 1.

j=1:own j=2:use j=1:own j=2:use j=1:own j=2:use

k=1:bomb k=2:gun k=3:book

i=1:marine 40.0 82.1 85.3 44.8 3.2 3.3
i=2:sergeant 16.7 69.5 73.4 51.9 8.0 10.1
i=3:teacher 5.2 7.0 9.3 4.7 48.4 53.6

680



Baroni and Lenci Distributional Memory

being indicated by i : λ. A simple way to perform the mapping—the one we apply in the
running example of this section—is by sorting the I items in the string set alphabetically,
and mapping increasing integers from 1 to I to the sorted strings.

A weighted tuple structure TW built from W1, L, and W2 can be represented by a
labeled third-order tensor X λ with its three indices labeled by W1, L, and W2, respec-
tively, and such that for each weighted tuple t ∈ TW = 〈〈w1, l,w2〉, vt〉 there is a tensor
entry (i : w1, j : l, k : w2)= vt. In other terms, a weighted tuple structure corresponds to
a tensor whose indices are labeled with the string sets forming the triples, and whose
entries are the tuple weights. Given the toy weighted tuple structure in Table 1, the
object in Table 2 is the corresponding labeled third-order tensor.

3.3 Labeled Matricization

Matricization rearranges a higher order tensor into a matrix (Kolda 2006; Kolda and
Bader 2009). The simplest case is mode-n matricization, which arranges the mode-n
fibers to be the columns of the resultingDn ×Dj matrix (whereDn is the dimensionality
of the n-th index, Dj is the product of the dimensionalities of the other indices). Mode-n
matricization of a third-order tensor can be intuitively understood as the process of
making vertical, horizontal, or depth-wise slices of a three-way object like the tensor in
Table 2, and arranging these slices sequentially to obtain a matrix (a two-way object).
Matricization unfolds the tensor into a matrix with the n-th index indexing the rows of
the matrix and a column for each pair of elements from the other two tensor indices. For
example, the mode-1 matricization of the tensor in Table 2 results in a matrix with the
entries vertically arranged as they are in the table, but replacing the second and third
indices with a single index ranging from 1 to 6 (cf. matrix A of Table 3). More explicitly,
in mode-n matricization we map each tensor entry (i1, i2, ..., iN ) to matrix entry (in, j),
where j is computed as in Equation (1), adapted from Kolda and Bader (2009).

j = 1 +
N∑
k=1
k �=n

((ik − 1)
k−1∏
m=1
m �=n

Dm) (1)

For example, if we apply mode-1 matricization to the tensor of dimensionality 3× 2× 3
in Table 2, we obtain the matrix A3×6 in Table 3 (ignore the labels for now). The tensor
entry x3,1,1 is mapped to the matrix cell a3,1; x3,2,3 is mapped to a3,6; and x1,2,2 is mapped
to a1,4. Observe that each column of the matrix is a mode-1 fiber of the tensor: The first
column is the x∗11 fiber; the second column is the x∗21 fiber, and so on.

Matricization has various mathematically interesting properties and practical appli-
cations in computations involving tensors (Kolda 2006). In DM, matricization is applied
to labeled tensors and it is the fundamental operation for turning the third-order tensor
representing the weighted tuple structure into matrices whose row and column vector
spaces correspond to the linguistic objects we want to study; that is, the outcome of
matricization must be labeled matrices. Therefore, we must define an operation of
labeled mode-n matricization. Recall from earlier discussion that when mode-n matri-
cization is applied, the n-th index becomes the row index of the resultingmatrix, and the
corresponding labels do not need to be updated. The problem is to determine the labels
of the column index of the resulting matrix. We saw that the columns of the matrix pro-
duced by mode-n matricization are the mode-n fibers of the original tensor. We must

681



Computational Linguistics Volume 36, Number 4

Table 3
Labeled mode-1, mode-2, and mode-3 matricizations of the tensor in Table 2.

Amode-1 1:〈own, 2:〈use, 3:〈own, 4:〈use, 5:〈own, 6:〈use,
bomb〉 bomb〉 gun〉 gun〉 book〉 book〉

1:marine 40.0 82.1 85.3 44.8 3.2 3.3
2:sergeant 16.7 69.5 73.4 51.9 8.0 10.1
3:teacher 5.2 7.0 9.3 4.7 48.4 53.6

Bmode-2 1:〈marine, 2:〈serg., 3:〈teacher, 4:〈marine, 5:〈serg., 6:〈teacher, 7:〈marine, 8:〈serg., 9:〈teach.,
bomb〉 bomb〉 bomb〉 gun〉 gun〉 gun〉 book〉 book〉 book〉

1:own 40.0 16.7 5.2 85.3 73.4 9.3 3.2 8.0 48.4
2:use 82.1 69.5 7.0 44.8 51.9 4.7 3.3 10.1 53.6

Cmode-3 1:〈marine, 2:〈marine, 3:〈sergeant, 4:〈sergeant, 5:〈teacher, 6:〈teacher,
own〉 use〉 own〉 use〉 own〉 use〉

1:bomb 40.0 82.1 16.7 69.5 5.2 7.0
2:gun 85.3 44.8 73.4 51.9 9.3 4.7
3:book 3.2 3.3 8.0 10.1 48.4 53.6

therefore assign a proper label to mode-n tensor fibers. A mode-n fiber is obtained by
fixing the values of two indices, and by taking the tensor entries corresponding to the
full range of values of the third index. Thus, the natural choice for labeling a mode-n
fiber is to use the pair formed by the labels of the two index elements that are fixed.
Specifically, each mode-n fiber of a tensor X λ is labeled with the binary tuple whose
elements are the labels of the corresponding fixed index elements. For instance, given
the labeled tensor in Table 2, the mode-1 fiber x∗11 = (40, 16.7, 5.2) is labeled with the
pair 〈own, bomb〉, the mode-2 fiber x2∗1 = (16.7, 69.5) is labeled with the pair 〈sergeant,
bomb〉, and the mode-3 fiber x32∗ = (7.0, 4.7, 53.6) is labeled with the pair 〈teacher, use〉.

Because mode-n fibers are the columns of the matrices obtained through mode-n
matricization, we define the operation of labeled mode-n matricization that, given
a labeled third-order tensor X λ, maps each entry (i1 : λ1, i2 : λ2, i3 : λ3) to the labeled
entry (in : λn, j : λj) such that j is obtained according to Equation (1), and λj is the bi-
nary tuple obtained from the triple 〈λ1, λ2, λ3〉 by removing λn. For instance, in mode-1
matricization, the entry (1:marine, 1:own, 2:gun) in the tensor in Table 2 is mapped onto
the entry (1:marine, 3:〈own, gun〉). Table 3 reports the matrices A, B, and C, respectively,
obtained by applying labeled mode-1, mode-2, and mode-3 matricization to the labeled
tensor in Table 2. The columns of each matrix are labeled with pairs, according to the
definition of labeled matricization we just gave. From now on, when we refer to mode-n
matricization we always assume we are performing labeledmode-nmatricization.

The rows and columns of the three matrices resulting from n-mode matricization
of a third-order tensor are vectors in spaces whose dimensions are the corresponding
column and row elements. Such vectors can be used to perform all standard linear
algebra operations applied in vector-based semantics: Measuring the cosine of the
angle between vectors, applying singular value decomposition (SVD) to the whole
matrix, and so on. Under the assumption thatW1 = W2 and the inverse link constraint
(see Section 3.1), it follows that for each column of the matrix resulting from mode-1
matricization and labeled by 〈l,w2〉, there will be a column in the matrix resulting

682



Baroni and Lenci Distributional Memory

from mode-3 matricization that is labeled by 〈w1, k〉 (with k being the inverse link of
l and w1 = w2) and that is identical to the former, except possibly for the order of the
dimensions (which is irrelevant to all operations we perform on matrices and vectors,
however). Similarly, for any row w2 in the matrix resulting from mode-3 matricization,
there will be an identical row w1 in the mode-1 matricization. Therefore, given a
weighted tuple structure TW extracted from a corpus and subject to the constraints we
just mentioned, by matricizing the corresponding labeled third-order tensor X λ we
obtain the following four distinct semantic vector spaces:

word by link–word (W1×LW2): vectors are labeled with words w1, and vector
dimensions are labeled with tuples of type 〈l,w2〉;

word–word by link (W1W2×L): vectors are labeled with tuples of type 〈w1,w2〉,
and vector dimensions are labeled with links l;

word–link by word (W1L×W2): vectors are labeled with tuples of type 〈w1, l〉,
and vector dimensions are labeled with words w2;

link by word–word (L×W1W2): vectors are labeled with links l and vector
dimensions are labeled with tuples of type 〈w1,w2〉.

Words like marine and teacher are represented in the W1×LW2 space by vectors whose
dimensions correspond to features such as 〈use, gun〉 or 〈own, book〉. In this space,
we can measure the similarity of words to each other, in order to tackle attributional
similarity tasks such as synonym detection or concept categorization. The W1W2×L
vectors represent instead word pairs in a space whose dimensions are links, and it
can be used to measure relational similarity among different pairs. For example, one
could notice that the link vector of 〈sergeant, gun〉 is highly similar to that of 〈teacher,
book〉. Crucially, as can be seen in Table 3, the corpus-derived scores that populate the
vectors in these two spaces are exactly the same, just arranged in different ways. In DM,
attributional and relational similarity spaces are different views of the same underlying
tuple structure.

The other two distinct spaces generated by tensor matricization look less familiar,
and yet we argue that they allow us to subsume under the same general DM framework
other interesting semantic phenomena. We will show in Section 6.3 how the W1L×W2
space can be used to capture different verb classes based on the argument alternations
they display. For instance, this space can be used to find out that the object slot of kill
is more similar to the subject slot of die than to the subject slot of kill (and, generalizing
from similar observations, that the subject slot of die is a theme rather than an agent). The
L×W1W2 space displays similarities among links. The usefulness of this will of course
depend on what the links are. We will illustrate in Section 6.4 one function of this space,
namely, to perform feature selection, picking links that can then be used to determine a
meaningful subspace of theW1W2×L space.

Direct matricization is just one of the possible uses we can make of the labeled
tensor. In Section 6.5 we illustrate another use of the tensor formalism by performing
smoothing through tensor decomposition. Other possibilities, such as graph-based algo-
rithms operating directly on the graph defined by the tensor (Baroni and Lenci 2009), or
deriving unstructured semantic spaces from the tensor by removing one of the indices,
are left to future work.

Before we move on, it is worth emphasizing that, from a computational point of
view, there is virtually no additional cost in the tensor approach, with respect to tra-
ditional structured DSMs. The labeled tensor is nothing other than a formalization of

683



Computational Linguistics Volume 36, Number 4

distributional data extracted in the word–link–word–score format, which is customary
in many structured DSMs. Labeled matricization can then simply be obtained by con-
catenating two elements in the original triple to build the corresponding matrix—again,
a common step in building a structured DSM. In spite of being cost-free in terms of
implementation, the mathematical formalism of labeled tensors highlights the common
core shared by different views of the semantic space, thereby making distributional
semantics more general.

4. Related Work

As will be clear in the next sections, the ways in which we tackle specific tasks are, by
themselves, mostly not original. The main element of novelty is the fact that methods
originally developed to resort to ad hoc distributional spaces are now adapted to fit into
the unified DM framework. We will point out connections to related research specific to
the various tasks in the sections devoted to describing their reinterpretation in DM.
We omit discussion of our own work that the DM framework is an extension and
generalization of Baroni et al. (2010) and Baroni and Lenci (2009). Instead, we briefly
discuss two other studies that explicitly advocate a uniform approach to corpus-based
semantic tasks, and one article that, like us, proposes a tensor-based formalization of
corpus-extracted triples. See Turney and Pantel (2010) for a very recent general survey
of DSMs.

Padó and Lapata (2007), partly inspired by Lowe (2001), have proposed an interest-
ing general formalization of DSMs. In their approach, a corpus-based semantic model is
characterized by (1) a set of functions to extract statistics from the corpus, (2) construc-
tion of the basis-by-target-elements co-occurrence matrix, and (3) a similarity function
operating on the matrix. Our focus is entirely on the second aspect. A DM, according
to the characterization in Section 3, is a labeled tensor based on a source weighted
tuple structure and coupled with matricization operations. How the tuple structure
was built (corpus extraction methods, association measures, etc.) is not part of the DM
formalization. At the other end, DM provides sets of vectors in different vector spaces,
but it is agnostic about how they are used (measuring similarity via cosines or other
measures, reducing the matrices with SVD, etc.). Of course, much of the interesting
progress in distributional semantics will occur at the two ends of our tensor, with better
tuple extraction and weighting techniques on one side, and better matrix manipulation
and similarity measurement on the other. As long as the former operations result in
data that can be arranged into a weighted tuple structure, and the latter procedures act
on vectors, such innovations fit into the DM framework and can be used to improve
performance on tasks defined on any space derivable from the DM tensor.

Whereas the model proposed by Padó and Lapata (2007) is designed only to ad-
dress tasks involving the measurement of the attributional similarity between words,
Turney (2008) shares with DM the goal of unifying attributional and relational similarity
under the same distributional model. He observes that tasks that are traditionally solved
with an attributional similarity approach can be recast as relational similarity tasks.
Instead of determining whether two words are, for example, synonymous by looking
at the features they share, we can learn what the typical patterns are that connect syn-
onym pairs when they co-occur (also known as, sometimes called, etc.), and make a de-
cision about a potential synonym pair based on their occurrence in similar contexts.
Given a list of pairs instantiating an arbitrary relation, Turney’s PairClass algorithm
extracts patterns that are correlated with the relation, and can be used to discover new

684



Baroni and Lenci Distributional Memory

pairs instantiating it. Turney tests his system in a variety of tasks (TOEFL synonyms;
SAT analogies; distinguishing synonyms and antonyms; distinguishing pairs that are
semantically similar, associated, or both), obtaining good results across the board.

In the DM approach, we collect one set of statistics from the corpus, and then exploit
different views of the extracted data and different algorithms to tackle different tasks.
Turney, on the contrary, uses a single generic algorithm, but must go back to the corpus
to obtain new training data for each new task. We compare DM with some of Turney’s
results in Section 6 but, independently of performance, we find the DM approach more
appealing. As corpora grow in size and are enriched with further levels of annotation,
extracting ad hoc data from them becomes a very time-consuming operation. Although
we did not carry out any systematic experiments, we observe that the extraction of tuple
counts from (already POS-tagged and parsed) corpora in order to train our sample DM
models took days, whereas even the most time-consuming operations to adapt DM to
a task took on the order of 1 to 2 hours on the same machines (task-specific training is
also needed in PairClass, anyway). Similar considerations apply to space: Compressed,
our source corpora take about 21 GB, our best DM tensor (TypeDM) 1.1 GB (and opti-
mized sparse tensor representations could bring this quantity down drastically, if the
need arises). Perhaps more importantly, extracting features from the corpus requires
a considerable amount of NLP know-how (to pre-process the corpus appropriately, to
navigate a dependency tree, etc.), whereas the DM representation of distributional data
as weighted triples is more akin to other standard knowledge representation formats
based on typed relations, which are familiar to most computer and cognitive scientists.
Thus, a trained DM can become a general-purpose resource and be used by researchers
beyond the realms of the NLP community, whereas applying PairClass requires a good
understanding of various aspects of computational linguistics. This severely limits its
interdisciplinary appeal.

At a more abstract level, DM and PairClass differ in the basic strategy with which
unification in distributional semantics is pursued. Turney’s approach amounts to pick-
ing a task (identifying pairs expressing the same relation) and reinterpreting other tasks
as its particular instances. Thus, attributional and relational similarity are unified by
considering the former as a subtype of the latter. Conversely, DM assumes that each
semantic task may keep its specificity, and unification is achieved by designing a suffi-
ciently general distributional structure, populating a specific instance of the structure,
and generating semantic spaces on demand from the latter. This way, DM is able to
address a wider range of semantic tasks than Turney’s model. For instance, language
is full of productive semantic phenomena, such as the selectional preferences of verbs
with respect to unseen arguments (eating topinambur vs. eating sympathy). Predicting
the plausibility of unseen pairs cannot, by definition, be tackled by the current version
of PairClass, which will have to be expanded to deal with such cases, perhaps adopting
ideas similar to those we present (that are, in turn, inspired by Turney’s own work on
attributional and relational similarity). A first step in this direction, within a framework
similar to Turney’s, was taken by Herdaǧdelen and Baroni (2009).

Turney (2007) explicitly formalizes the set of corpus-extracted word–link–word
triples as a tensor, and was our primary source of inspiration in formalizing DM in these
terms. The focus of Turney’s article, however, is on dimensionality reduction techniques
applied to tensors, and the application to corpora is only briefly discussed. Moreover,
Turney only derives the W1×LW2 space from the tensor, and does not discuss the pos-
sibility of using the tensor-based formalization to unify different views of semantic data,
which is instead our main point. The higher-order tensor dimensionality reduction
techniques tested on language data by Turney (2007) and Van de Cruys (2009) can be

685



Computational Linguistics Volume 36, Number 4

applied to the DM tensors before matricization. We present a pilot study in this direc-
tion in Section 6.5.

5. Implementing DM

5.1 Extraction of Weighted Tuple Structures from Corpora

In order to make our proposal concrete, we experiment with three different DMmodels,
corresponding to different ways to construct the underlying weighted tuple structure
(Section 3.1). All models are based on the natural idea of extracting word–link–word
tuples from a dependency parse of a corpus, but this is not a requirement for DM: The
links could for example be based on frequent n-grams as in Turney (2006b) and Baroni
et al. (2010), or even on very different kinds of relation, such as co-occurring within the
same document.

The current models are trained on the concatenation of (1) the Web-derived ukWaC
corpus,2 about 1.915 billion tokens (here and subsequently, counting only strings
that are entirely made of alphabetic characters); (2) a mid-2009 dump of the English
Wikipedia,3 about 820 million tokens; and (3) the British National Corpus,4 about
95 million tokens. The resulting concatenated corpus was tokenized, POS-tagged, and
lemmatized with the TreeTagger5 and dependency-parsed with the MaltParser.6 It
contains about 2.83 billion tokens. The ukWaC and Wikipedia sections can be freely
downloaded, with full annotation, from the ukWaC corpus site.

For all our models, the label sets W1 = W2 contain 30,693 lemmas (20,410 nouns,
5,026 verbs, and 5,257 adjectives). These terms were selected based on their frequency
in the corpus (they are approximately the top 20,000 most frequent nouns and top 5,000
most frequent verbs and adjectives), augmenting the list with lemmas that we found in
various standard test sets, such as the TOEFL and SAT lists. In all models, the words are
stored in POS-suffixed lemma form. The weighted tuple structures differ for the choice
of links in L and/or for the scoring function σ.

DepDM. Our first DM model relies on the classic intuition that dependency paths are
a good approximation to semantic relations between words (Grefenstette 1994; Curran
and Moens 2002; Padó and Lapata 2007; Rothenhäusler and Schütze 2009). DepDM is
also the model with the least degree of link lexicalization among the three DM instances
we have built (its only lexicalized links are prepositions). LDepDM includes the follow-
ing noun–verb, noun–noun, and adjective–noun links (in order to select more reliable
dependencies and filter out possible parsing errors, dependencies between words with
more than five intervening items were discarded):

sbj intr: subject of a verb that has no direct object: The teacher is singing→
〈teacher, sbj intr, sing〉; The soldier talked with his sergeant→ 〈soldier, sbj intr, talk〉;

sbj tr: subject of a verb that occurs with a direct object: The soldier is reading a
book→ 〈soldier, sbj tr, read〉;

2 http://wacky.sslmit.unibo.it/.
3 http://en.wikipedia.org/wiki/Wikipedia:Database download.
4 http://www.natcorp.ox.ac.uk.
5 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/.
6 http://w3.msi.vxu.se/∼nivre/research/MaltParser.html.

686



Baroni and Lenci Distributional Memory

obj: direct object: The soldier is reading a book→ 〈book, obj, read〉;

iobj: indirect object in a double object construction: The soldier gave the woman
a book→ 〈woman, iobj, give〉;

nmod: noun modifier: good teacher→ 〈good, nmod, teacher〉; school teacher→ 〈school,
nmod, teacher〉;

coord: noun coordination: teachers and soldiers→ 〈teacher, coord, soldier〉;

prd: predicate noun: The soldier became sergeant→ 〈sergeant, prd, become〉;

verb: an underspecified link between a subject noun and a complement noun
of the same verb: The soldier talked with his sergeant→ 〈soldier, verb, sergeant〉;
The soldier is reading a book→ 〈soldier, verb, book〉;

preposition: every preposition linking the noun head of a prepositional phrase
to its noun or verb head (a different link for each preposition): I saw a soldier
with the gun→ 〈gun, with, soldier〉; The soldier talked with his sergeant→
〈sergeant, with, talk〉.

For each link, we also extract its inverse (this holds for all our DMmodels). For example,
there is a sbj intr−1 link between an intransitive verb and its subject: 〈talk, sbj intr−1,
soldier〉. The cardinality of LDepDM is 796, including direct and inverse links.

The weights assigned to the tuples by the scoring function σ are given by Local
Mutual Information (LMI) computed on the raw corpus-derived word–link–word co-
occurrence counts. Given the co-occurrence count Oijk of three elements of interest (in
our case, the first word, the link, and the second word), and the corresponding expected
count under independence Eijk, LMI = Oijk log

Oijk
Eijk

. LMI is an approximation to the
log-likelihood ratio measure that has been shown to be a very effective weighting
scheme for sparse frequency counts (Dunning 1993; Padó and Lapata 2007). The mea-
sure can also be interpreted as the dominant term of average MI or as a heuristic
variant of pointwise MI to avoid its bias towards overestimating the significance of
low frequency events, and it is nearly identical to the Poisson–Stirling measure (Evert
2005). LMI has considerable computational advantages in cases like ours, in which we
measure the association of three elements, because it does not require keeping track
of the full 2× 2× 2 contingency table, which is the case for the log-likelihood ratio.
Following standard practice (Bullinaria and Levy 2007), negative weights (cases where
the observed value is lower than the expected value) are raised to 0. The number of
non-zero tuples in the DepDM tensor is about 110M, including tuples with direct links
and their inverses. DepDM is a 30, 693× 796× 30, 693 tensor with density 0.0149% (the
proportion of non-zero entries in the tensor).

LexDM. The second model is inspired by the idea that the lexical material connect-
ing two words is very informative about their relation (Hearst 1992; Pantel and
Pennacchiotti 2006; Turney 2006b). LLexDM contains complex links, each with the struc-
ture pattern+suffix. The suffix is in turn formed by two substrings separated by a +, each
respectively encoding the following features ofw1 andw2: their POS andmorphological
features (number for nouns, number and tense for verbs); the presence of an article
(further specified with its definiteness value) and of adjectives for nouns; the presence
of adverbs for adjectives; and the presence of adverbs, modals, and auxiliaries for verbs,
together with their diatheses (for passive only). If the adjective (adverb) modifying
w1 or w2 belongs to a list of 10 (250) high frequency adjectives (adverbs), the suffix

687



Computational Linguistics Volume 36, Number 4

string contains the adjective (adverb) itself, otherwise only its POS. For instance, from
the sentence The tall soldier has already shot we extract the tuple 〈soldier, sbj intr+n-the-
j+vn-aux-already, shoot〉. Its complex link contains the pattern sbj intr and the suffix
n-the-j+vn-aux-already. The suffix substring n-the-j encodes the information that w1 is
a singular noun (n), is definite (the), and has an adjective ( j) that does not belong to
the list of high frequency adjectives. The substring vn-aux-already specifies that w2 is a
past-participle (vn), has an auxiliary (aux), and is modified by already, belonging to the
pre-selected list of high frequency adverbs. The patterns in the LexDM links include:

LDepDM : every DepDM link is a potential pattern of a LexDM link: The soldier has
shot→ 〈soldier, sbj intr+n-the+vn-aux, shoot〉;

verb: if the verb link between a subject noun and a complement noun belongs to
a list of 52 high frequency verbs, the underspecified verb link of DepDM is
replaced by the verb itself: The soldier used a gun→ 〈soldier, use+n-the+n-a,
gun〉; The soldier read the yellow book→ 〈soldier, verb+n-the+n-the-j, book〉;

is: copulative structures with an adjectival predicate: The soldier is tall→ 〈tall,
is+j+n-the, soldier〉;

preposition–link noun–preposition: this schema captures connecting expressions
such as of a number of, in a kind of ; link noun is one of 48 semi-manually
selected nouns such as number, variety, or kind; the arrival of a number of
soldiers→ 〈soldier, of-number-of+ns+n-the, arrival〉;

attribute noun: one of 127 nouns extracted fromWordNet and expressing
attributes of concepts, such as size, color, or height. This pattern connects
adjectives and nouns that occur in the templates (the) attribute noun of
(a|the) NOUN is ADJ (Almuhareb and Poesio 2004) and (a|the) ADJ
attribute noun of NOUN (Veale and Hao 2008): the color of strawberries is red→
〈red, color+j+ns, strawberry〉; the autumnal color of the forest→ 〈autumnal,
color+j+n-the, forest〉;

as adj as: this pattern links an adjective and a noun that match the template as
ADJ as (a|the) NOUN (Veale and Hao 2008): as sharp as a knife→ 〈sharp,
as adj as+j+n-a, knife〉;

such as: links two nouns occurring in the templates NOUN such as NOUN and
such NOUN as NOUN (Hearst 1992, 1998): animals such as cats→
〈animal, such as+ns+ns, cat〉; such vehicles as cars→ 〈vehicle, such as+ns+ns, car〉.

LexDM links have a double degree of lexicalization. First, the suffixes encode a wide
array of surface features of the tuple elements. Secondly, the link patterns themselves,
besides including standard syntactic relations (such as direct object or coordination),
extend to lexicalized dependency relations (specific verbs) and lexico-syntactic shallow
templates. The latter include patterns adopted in the literature to extract specific pieces
of semantic knowledge. For instance, NOUN such as NOUN and such NOUN as NOUN
were first proposed by Hearst (1992) as highly reliable patterns for hypernym identifi-
cation, whereas (the) attribute noun of (a|the) NOUN is ADJ and (a|the) ADJ attribute noun
of NOUN were successfully used to identify typical values of concept attributes
(Almuhareb and Poesio 2004; Veale and Hao 2008). Therefore, the LexDM distributional
memory is a repository of partially heterogeneous types of corpus-derived information,
differing in their level of abstractness, which ranges from fairly abstract syntactic rela-
tions to shallow lexicalized patterns. LLexDM contains 3,352,148 links, including inverses.

688



Baroni and Lenci Distributional Memory

The scoring function σ is the same as that in DepDM, and the number of non-
zero tuples is about 355M, including direct and inverse links. LexDM is a 30,693×
3,352,148× 30,693 tensor with density 0.00001%.

TypeDM. This model is based on the idea, motivated and tested by Baroni et al. (2010)—
but see also Davidov and Rappoport (2008a, 2008b) for a related method—that what
matters is not so much the frequency of a link, but the variety of surface forms that
express it. For example, if we just look at frequency of co-occurrence (or strength of
association), the triple 〈 fat, of−1, land〉 (a figurative expression) is much more common
than the semantically more informative 〈 fat, of−1, animal〉. However, if we count the
different surface realizations of the former pattern in our corpus, we find that there are
only three of them (the fat of the land, the fat of the ADJ land, and the ADJ fat of the land),
whereas 〈 fat, of−1, animal〉 has nine distinct realizations (a fat of the animal, the fat of the
animal, fats of animal, fats of the animal, fats of the animals, ADJ fats of the animal, and the fats
of the animal). TypeDM formalizes this intuition by adopting as links the patterns inside
the LexDM links, while the suffixes of these patterns are used to count their number
of distinct surface realizations. We call the model TypeDM because it counts types of
realizations, not tokens. For instance, the two LexDM links of−1+n-a+n-the and of−1+ns-
j+n-the are counted as two occurrences of the same TypeDM link of−1, corresponding to
the pattern in the two original links.

The scoring function σ computes LMI not on the raw word–link–word co-
occurrence counts, but on the number of distinct suffix types displayed by a link when it
co-occurs with the relevant words. For instance, a TypeDM link derived from a LexDM
pattern that occurs with nine different suffix types in the corpus is assigned a frequency
of 9 for the purpose of the computation of LMI. The distinct TypeDM links are 25,336.
The number of non-zero tuples in the TypeDM tensor is about 130M, including direct
and inverse links. TypeDM is a 30, 693× 25, 336× 30, 693 tensor with density 0.0005%.

To sum up, the three DM instance models herein differ in the degree of lexicali-
zation of the link set, and/or in the scoring function. LexDM is a heavily lexicalized
model, contrasting with DepDM, which has a minimum degree of lexicalization, and
consequently the smallest set of links. TypeDM represents a sort of middle level both
for the kind and the number of links. These consist of syntactic and lexicalized patterns,
as in LexDM. The lexical information encoded in the LexDM suffixes, however, is not
used to generate different links, but to implement a different counting scheme as part
of a different scoring function.

A weighted tuple structure (equivalently: a labeled DM tensor) is intended as
a long-term semantic resource that can be used in different projects for different
tasks, analogously to traditional hand-coded resources such as WordNet. Coherent
with this approach, we make our best DM model (TypeDM) publicly available from
http://clic.cimec.unitn.it/dm. The site also contains a set of Perl scripts that per-
form the basic operations on the tensor and its derived vectors we are about to describe.

5.2 Semantic Vector Manipulation

TheDM framework provides, viamatricization, a set of matrices with associated labeled
row and column vectors. These labeled matrices can simply be derived from the tuple
tensor by concatenating two elements in the original triples. Any operation that can
be performed on the resulting matrices and that might help in tackling a semantic
task is fair game. However, in the experiments reported in this article we will work
with a limited number of simple operations that are well-motivated in terms of the

689



Computational Linguistics Volume 36, Number 4

geometric framework we adopt, and suffice to face all the tasks we will deal with (the
decomposition techniques explored in Section 6.5 are briefly introduced there).

Vector length and normalization. The length of a vector v with dimensions v1, v2, . . . , vn is:

||v|| =

√∑i=n

i=1
v2i

A vector is normalized to have length 1 by dividing each dimension by the original
vector length.

Cosine.We measure the similarity of two vectors x and y by the cosine of the angle they
form:

cos(x,y) =

∑i=n
i=1 xiyi

||x||||y||

The cosine ranges from±1 for vectors pointing in the same direction to 0 for orthogonal
vectors. Other similarity measures, such as Lin’s measure (Lin 1998b), work better than
the cosine in some tasks (Curran and Moens 2002; Padó and Lapata 2007). However,
the cosine is the most natural similarity measure in the geometric formalism we are
adopting, and we stick to it as the default approach to measuring similarity.

Vector sum. Two or more vectors are summed in the obvious way, by adding their values
on each dimension. We always normalize the vectors before summing. The resulting
vector points in the same direction as the average of the summed normalized vectors.
We refer to it as the centroid of the vectors.

Projection onto a subspace. It is sometimes useful to measure length or compare vectors by
taking only some of their dimensions into account. For example, one way to find nouns
that are typical objects of the verb to sing is to measure the length of nouns in aW1×LW2
subspace in which only dimensions such as 〈obj, sing〉 have non-0 values. We project
a vector onto a subspace of this kind through multiplication of the vector by a square
diagonal matrix with 1s in the diagonal cells corresponding to the dimensions we want
to preserve and 0s elsewhere. A matrix of this sort performs an orthogonal projection of
the vector it multiplies (Meyer 2000, chapter 5).

6. Semantic Experiments with the DM Spaces

As we saw in Section 3, labeled matricization generates four distinct semantic spaces
from the third-order tensor. For each space, we have selected a set of semantic ex-
periments that we model by applying some combination of the vector manipulation
operations of Section 5.2. The experiments correspond to key semantic tasks in compu-
tational linguistics and/or cognitive science, typically addressed by distinct DSMs so
far. We have also aimed at maximizing the variety of aspects of meaning covered by
the experiments, ranging from synonymy detection to argument structure and concept
properties, and encompassing all the major lexical classes. Both these facts support the
view of DM as a generalized model that is able to overtake state-of-the-art DSMs in
the number and types of semantic issues addressed, while being competitive in each
specific task.

690



Baroni and Lenci Distributional Memory

The choice of the DM semantic space to tackle a particular task is essentially based
on the “naturalness” with which the task can be modeled in that space. However,
alternatives are conceivable, both with respect to space selection, and to the operations
performed on the space. For instance, Turney (2008) models synonymy detection with
a DSM that closely resembles our W1W2×L space, whereas we tackle this task under
the more standard W1×LW2 view. It is an open question whether there are principled
ways to select the optimal space configuration for a given semantic task. In this article,
we limit ourselves to proving that each space derived through tensor matricization is
semantically interesting in the sense that it provides the proper ground to address some
semantic task.

Feature selection/reweighting and dimensionality reduction have been shown to
improve DSM performance. For instance, the feature bootstrapping method proposed
by Zhitomirsky-Geffet and Dagan (2009) boosts the precision of a DSM in lexical en-
tailment recognition. Even if these methods can be applied to DM as well, we did not
use them in our experiments. The results presented subsequently should be regarded as
a “baseline” performance that could be enhanced in future work by exploring various
task-specific parameters (we will come back in the conclusion to the role of parameter
tuning in DM). This is consistent with our current aim of focusing on the generality and
adaptivity of DM, rather than on task-specific optimization. As a first, important step
in this latter direction, however, we conclude the empirical evaluation in Section 6.5
by replicating one experiment using tensor-decomposition-based smoothing, a form of
optimization that can only be performed within the tensor-based approach to DSMs.

In order to maximize coverage of the experimental test sets, they are pre-processed
with a mixture of manual and heuristic procedures to assign a POS to the words they
contain, lemmatize, convert some multiword forms to single words, and turn some ad-
verbs into adjectives (our models do not contain multiwords or adverbs). Nevertheless,
some words (or word pairs) are unrecoverable, and in such cases we make a random
guess (in cases where we do not have full coverage of a data set, the reported results are
averages across repeated experiments, to account for the variability in random guesses).

In many of the experiments herein, DM is not only compared to the results avail-
able in the literature, but also to our implementation of state-of-the-art DSMs. These
alternative models have been trained on the same corpus (with the same linguistic pre-
processing) used to build the DM tuple tensors. This way, we aim at achieving a fairer
comparison with alternative approaches in distributional semantics, abstracting away
from the effects induced by differences in the training data.

Most experiments report global (micro-averaged) test set accuracy (alone, or com-
bined with other measures) to assess the performance of the algorithms. The number of
correctly classified items among all test elements can be seen as a binomially distributed
random variable, and we follow the ACL Wiki state-of-the-art site7 in reporting also
Clopper–Pearson binomial 95% confidence intervals around the accuracies (binomial
intervals and other statistical quantities were computed using the R package;8 where no
further references are given, we used the standard R functions for the relevant analysis).
The binomial confidence intervals give a sense of the spread of plausible population
values around the test-set-based point estimates of accuracy. Where appropriate and
interesting, we compare the accuracy of two specific models statistically with an exact
Fisher test on the contingency table of correct and wrong responses given by the two

7 http://aclweb.org/aclwiki/index.php?title=State Of The Art.
8 http://www.r-project.org/.

691



Computational Linguistics Volume 36, Number 4

models. This approach to significance testing is problematic in many respects, the most
important being that we ignore dependencies in correct and wrong counts due to the
fact that the algorithms are evaluated on the same test set (Dietterich 1998). More
appropriate tests, however, would require access to the fully itemized results from the
compared algorithms, whereas in most cases we only know the point estimate reported
in the earlier literature. For similar reasons, we do not make significance claims regard-
ing other performance measures, such as macro-averaged F. Other forms of statistical
analysis of the results are introduced herein when they are used; they are mostly limited
to the models for which we have full access to the results. Note that we are interested in
whether DM performance is overall within state-of-the-art range, and not on making
precise claims about the models it outperforms. In this respect, we think that our
general results are clear even where they are not supported by statistical inference, or
interpretation of the latter is problematic.

6.1 The W1×LW2 Space

The vectors of this space are labeled with words w1 (rows of matrix Amode-1 in Table 3),
and their dimensions are labeled with binary tuples of type 〈l,w2〉 (columns of the same
matrix). The dimensions represent the attributes of words in terms of lexico-syntactic
relations with lexical collocates, such as 〈sbj intr, read〉, or 〈use, gun〉. Consistently, all
the semantic tasks that we address with this space involve the measurement of the
attributional similarity between words.

TheW1×LW2 matrix is a structured semantic space similar to those used by Curran
and Moens (2002), Grefenstette (1994), and Lin (1998a), among others. To test if the
use of links detracts from performance on attributional similarity tasks, we trained on
our concatenated corpus two alternative models—Win and DV—whose features only
include lexical collocates of the target. Win is an unstructured DSM that does not rely on
syntactic structure to select the collocates, but just on their linear proximity to the targets
(Lund and Burgess 1996; Schütze 1997; Bullinaria and Levy 2007, and many others). Its
matrix is based on co-occurrences of the same 30K words we used for the other models
within a window of maximally five content words before or after the target. DV is an
implementation of the Dependency Vectors approach of Padó and Lapata (2007). It is a
structured DSM, but dependency paths are used to pick collocates, without being part of
the attributes. The DV model is obtained from the same co-occurrence data as DepDM
(thus, relying on the dependency paths we picked, not the ones originally selected
by Padó and Lapata for their tests). Frequencies are summed across dependency path
links for word–link–word triples with the same first and second words. Suppose that
soldier and gun occur in the tuples 〈soldier, have, gun〉 (frequency 3) and 〈soldier, use, gun〉
(frequency 37). In DepDM, this results in two features for soldier: 〈have, gun〉 and 〈use,
gun〉. In DV, we would derive a single gun feature with frequency 40. As for the DM
models, theWin and DV counts are converted to LMI weights, and negative LMI values
are raised to 0. Win is a 30,693× 30,693 matrix with about 110 million non-zero entries
(density: 11.5%). DV is a 30,693× 30,693 matrix with about 38 million non-zero values
(density: 4%).

6.1.1 Similarity Judgments. Our first challenge comes from the classic data set of
Rubenstein and Goodenough (1965), consisting of 65 noun pairs rated by 51 subjects
on a 0–4 similarity scale. The average rating for each pair is taken as an estimate of the
perceived similarity between the two words (e.g., car–automobile: 3.9, cord–smile: 0.0).
Following the earlier literature, we use Pearson’s r to evaluate how well the cosines

692



Baroni and Lenci Distributional Memory

in the W1×LW2 space between the nouns in each pair correlate with the ratings. The
results (expressed in terms of percentage correlations) are presented in Table 4, which
also reports state-of-the-art performance levels of corpus-based systems from the litera-
ture (the correlation of all systems with the ratings is very significantly above chance,
according to a two-tailed t-test for Pearson correlation coefficients; df = 63, p < 0.0001
for all systems).

One of the DMmodels, namely TypeDM, does very well on this task, outperformed
only by DoubleCheck, an unstructured system that relies onWeb queries (and thus on a
much larger corpus) and for which we report the best result across parameter settings.
We also report the best results from a range of experiments with different models and
parameter settings from Herdaǧdelen, Erk, and Baroni (2009) (whose corpus is about
half the size of ours) and Padó and Lapata (2007) (who use a much smaller corpus). For
the latter, we also report the best result they obtain when using cosine as the similarity
measure (cosDV-07). Overall, the TypeDM result is in line with the state of the art, given
the size of the input corpus, and the fact that we did not perform any tuning. Following
Padó, Padó, and Erk (2007) we used the approximate test proposed by Raghunathan
(2003) to compare the correlations with the human ratings of sets of models (this is only
possible for themodels we developed, as the test requires computation of correlation co-
efficients across models). The test suggests that the difference in correlation with human
ratings between TypeDM and our second best model, Win, is significant (Q = 4.55, df =
0.23, p < 0.01). On the other hand, there is no significant difference across Win, DepDM,
DV and LexDM (Q = 1.02, df = 1.80, p = 0.55).

6.1.2 Synonym Detection. The previous experiment assessed how the models can simu-
late quantitative similarity ratings. The classic TOEFL synonym detection task focuses
on the high end of the similarity scale, asking the models to make a discrete decision
about which word is the synonym from a set of candidates. The data set, introduced
to computational linguistics by Landauer and Dumais (1997), consists of 80 multiple-
choice questions, each made of a target word (a noun, verb, adjective, or adverb) and
four candidates. For example, given the target levied, the candidates are imposed, believed,
requested, correlated, the first one being the correct choice. Our algorithms pick the
candidate with the highest cosine to the target item as their guess of the right synonym.

Table 5 reports results (percentage accuracies) on the TOEFL set for our models as
well as the best model of Herdaǧdelen and Baroni (2009) and the corpus-based models
from the ACL Wiki TOEFL state-of-the-art table (we do not include those models from
the Wiki that resort to other knowledge sources, such as WordNet or a thesaurus). The
claims to follow about the relative performance of the models must be interpreted
cautiously, in light of the spread of the confidence intervals: It suffices to note that,

Table 4
Percentage Pearson correlation with the Rubenstein and Goodenough (1965) similarity ratings.

model r model r model r

DoubleCheck1 85 Win 65 DV 57
TypeDM 82 DV-073 62 LexDM 53
SVD-092 80 DepDM 57 cosDV-073 47

Model sources: 1Chen, Lin, and Wei (2006); 2Herdaǧdelen, Erk, and Baroni (2009); 3Padó and
Lapata (2007).

693



Computational Linguistics Volume 36, Number 4

Table 5
Percentage accuracy in TOEFL synonym detection with 95% binomial confidence intervals (CI).

model accuracy 95% CI model accuracy 95% CI

LSA-031 92.50 84.39–97.20 DepDM 75.01 64.06–84.01
GLSA2 86.25 76.73–92.93 LexDM 74.37 63.39–83.49
PPMIC3 85.00 75.26–92.00 PMI-IR-018 73.75 62.72–82.96
CWO4 82.55 72.38–90.09 DV-079 73.00 62.72–82.96
PMI-IR-035 81.25 70.97–89.11 Win 69.37 58.07–79.20
BagPack6 80.00 69.56–88.11 Human10 64.50 53.01–74.88
DV 76.87 66.10–85.57 LSA-9710 64.38 52.90–74.80
TypeDM 76.87 66.10–85.57 Random 25.00 15.99–35.94
PairClass7 76.25 65.42–85.05

Model sources: 1Rapp (2003); 2Matveeva et al. (2005); 3Bullinaria and Levy (2007); 4Ruiz-Casado,
Alfonseca, and Castells (2005); 5Terra and Clarke (2003); 6Herdaǧdelen and Baroni (2009); 7Turney
(2008); 8Turney (2001); 9Padó and Lapata (2007); 10Landauer and Dumais (1997).

according to a Fisher test, the difference between the second-best model, GLSA, and the
twelfthmodel, PMI-IR-01, is not significant at theα = .05 level (p= 0.07). The difference
between the bottom model, LSA-97, and random guessing is, on the other hand, highly
significant (p < .00001).

The best DM model is again TypeDM, which also outperforms Turney’s unified
PairClass approach (supervised, and relying on a much larger corpus), as well as his
Web-statistics based PMI-IR-01 model. TypeDM does better than the best Padó and
Lapata model (DV-07), and comparably to our DV implementation. Its accuracy is more
than 10% higher than the average human test taker and the classic LSAmodel (LSA-97).
Among the approaches that outperform TypeDM, BagPack is supervised, and CWO
and PMI-IR-03 rely on much larger corpora. This leaves us with three unsupervised
(and unstructured) models from the literature that outperform TypeDM while being
trained on comparable or smaller corpora: LSA-03, GLSA, and PPMIC. In all three
cases, the authors show that parameter tuning is beneficial in attaining the reported
best performance. Further work should investigate how we could improve TypeDM by
exploring various parameter settings (many of which do not require going back to the
corpus: feature selection and reweighting, SVD, etc.).

6.1.3 Noun Categorization. Humans are able to group words into classes or categories
depending on their meaning similarities. Categorization tasks play a prominent role
in cognitive research on concepts and meaning, as a probe into the semantic organiza-
tion of the lexicon and the ability to arrange concepts hierarchically into taxonomies
(Murphy 2002). Research in corpus-based semantics has always been interested in
investigating whether distributional (attributional) similarity could be used to group
words into semantically coherent categories. From the computational point of view, this
is a particularly crucial issue because it concerns the possibility of using distributional
information to assign a semantic class or type to words. Categorization requires (at least
in current settings) a discrete decision, as in the TOEFL task, but it is based on detecting
not only synonyms but also less strictly related words that stand in a coordinate/co-
hyponym relation. We focus here on noun categorization, which we operationalize as
a clustering task. Distributional categorization has been investigated for other POS as
well, most notably verbs (Merlo and Stevenson 2001; Schulte imWalde 2006). However,

694



Baroni and Lenci Distributional Memory

verb classifications are notoriously more controversial than nominal ones, and deeply
interact with argument structure properties. Some experiments on verb classification
will be carried out in theW1L×W2 space in Section 6.3.

Because the task of clustering concepts/words into superordinates has recently
attracted much attention, we have three relevant data sets from the literature available
for our tests. The Almuhareb–Poesio (AP) set includes 402 concepts from WordNet,
balanced in terms of frequency and ambiguity. The concepts must be clustered into
21 classes, each selected from one of the 21 uniqueWordNet beginners, and represented
by between 13 and 21 nouns. Examples include the vehicle class (helicopter,motorcycle. . . ),
the motivation class (ethics, incitement, . . . ), and the social unit class (platoon, branch). See
Almuhareb (2006) for the full set.

The Battig test set introduced by Baroni et al. (2010) is based on the expanded
Battig and Montague norms of Van Overschelde, Rawson, and Dunlosky (2004). The
set comprises 83 concepts from 10 common concrete categories (up to 10 concepts per
class), with the concepts selected so that they are rated as highly prototypical of the
class. Class examples include land mammals (dog, elephant. . . ), tools (screwdriver, hammer)
and fruit (orange, plum). See Baroni et al. (2010) for the full list.

Finally, the ESSLLI 2008 set was used for one of the Distributional Semantic Work-
shop shared tasks (Baroni, Evert, and Lenci 2008). It is also based on concrete nouns,
but it includes fewer prototypical members of categories (rocket as vehicle or snail as
land animal). The 44 target concepts are organized into a hierarchy of classes of in-
creasing abstraction. There are 6 lower level classes, with maximally 13 concepts per
class (birds, land animals, fruit, greens, tools, vehicles). At a middle level, concepts are
grouped into three classes (animals, vegetables, and artifacts). At the most abstract level,
there is a two-way distinction between living beings and objects. See http://wordspace.
collocations.de for the full set.

We cluster the nouns in each set by computing their similarity matrix based on
pairwise cosines, and feeding it to the widely used CLUTO toolkit (Karypis 2003). We
use CLUTO’s built-in repeated bisections with global optimization method, accepting
all of CLUTO’s default values for this method.

Cluster quality is evaluated by percentage purity, one of the standard clustering
quality measures returned by CLUTO (Zhao and Karypis 2003). If nir is the number of
items from the i-th true (gold standard) class that were assigned to the r-th cluster, n the
total number of items, and k the number of clusters, then

Purity = 1
n

k∑
r=1

max
i

(nir)

Expressed in words, for each cluster we count the number of items that belong to the
true class that is most represented in the cluster, and then we sum these counts across
clusters. The resulting sum is divided by the total number of items so that, in the best
case (perfect clusters), purity will be 1 (in percentage terms, 100%). As cluster quality de-
teriorates, purity approaches 0. For the models where we have full access to the results,
we use a heuristic bootstrap procedure to obtain confidence intervals around the puri-
ties (Efron and Tibshirani 1994). We resample with replacement 10K data sets (cluster-
assignment+true-label pairs) of the original size. Empirical 95% confidence intervals are
then computed from the distribution of the purities in the bootstrapped data sets (for
the ESSLLI results, we only perform the procedure for 6-way clustering). The confidence
intervals give a rough idea of how stable purity estimates are across small variations of

695



Computational Linguistics Volume 36, Number 4

the items in the data sets. The Random models for this task are baselines assigning
the concepts randomly to the target clusters, with the constraint that each cluster must
contain at least one concept. Random assignment is repeated 10K times, and we obtain
means and confidence intervals from the distribution of these simulations.

Table 6 reports purity results for the three data sets, comparing our models to
those in the literature. Again, the TypeDM model has an excellent performance. On
the ESSLLI 2008 set, it outperforms the best configuration of the best shared task system
among those that did three-level categorization (Katrenko’s), despite the fact that the
latter uses the full Web as a corpus and manually crafted patterns to improve feature
extraction. TypeDM’s performance is equally impressive on the AP set, where it outper-
forms AttrValue-05, the best unsupervised model by the data set proponents, trained
on the full Web. Interestingly, the DepPath model of Rothenhäusler and Schütze (2009),
which is the only one outperforming TypeDM on the AP set, is another structured
model with dependency-based link-mediated features, which would fit well into the

Table 6
Purity in noun clustering with bootstrapped 95% confidence intervals (CI).

Almuhareb & Poesio (AP)

model purity 95% CI model purity 95% CI

DepPath1 79 NA DV 65 61–69
TypeDM 76 72–81 DepDM 62 59–67
AttrValue-052 71 NA LexDM 59 56–65
Win 71 67–76 Random 16 14–17
VSM3 70 67–75

Battig

model purity 95% CI model purity 95% CI

Win 96 91–100 DV-104 79 73–89
TypeDM 94 89–99 LexDM 78 72–88
Strudel4 91 85–98 SVD-104 71 67–83
DepDM 90 84–96 AttrValue4 45 44–61
DV 84 79–93 Random 29 24–34

ESSLLI 2008

model 6-way purity 95% CI 3-way purity 2-way purity avg purity

TypeDM 84 77–95 98 100 94.0
Katrenko5 91 NA 100 80 90.3
DV 75 70–89 93 100 89.3
DepDM 75 68–89 93 100 89.3
LexDM 75 70–89 87 100 87.3
Peirsman5 82 NA 84 86 84.0
Win 75 70–89 86 59 73.3
Shaoul5 41 NA 52 55 49.3
Random 38 32–45 49 57 48.0

Model sources: 1Rothenhäusler and Schütze (2009); 2Almuhareb and Poesio (2005); 3Herdaǧdelen,
Erk, and Baroni (2009); 4Baroni et al. (2010); 5ESSLLI 2008 shared task.

696



Baroni and Lenci Distributional Memory

DM framework. TypeDM’s purity is extremely high with the Battig set as well, although
here it is outperformed by the unstructured Win model. Our top two performances are
higher than Strudel, the best model by the proponents of the task. The latter was trained
on about half of the data we used, however (moreover, the confidence intervals of these
models largely overlap, suggesting that their difference is not significant).

6.1.4 Selectional Preferences. Our last pair of data sets for the W1×LW2 space illustrate
how the space can be used not only to measure similarity among words, but also to
work with more abstract notions, such as that of a typical filler of an argument slot of a
verb (such as the typical killer and the typical killee). We think that these are especially
important experiments, because they show how the same matrix that has been used for
tasks that were entirely bound to lexical items can also be used to generalize to struc-
tures that go beyond what is directly observed in the corpus. In particular, we model
here selectional preferences (how plausible a noun is as subject/object of a verb), but
our method is generalizable to many other semantic tasks that pertain to composition
constraints; that is, they require measuring the goodness of fit of a word/concept as
argument filler of another word/concept, including assigning semantic roles, logical
metonymy, coercion (Pustejovsky 1995), and many other challenges.

The selectional preference test sets are based on averages of human judgments
on a seven-point scale about the plausibility of nouns as arguments (either subjects
or objects) of verbs. The McRae data set (McRae, Spivey-Knowlton, and Tanenhaus
1998) consists of 100 noun–verb pairs rated by 36 subjects. The Padó set (Padó 2007)
has 211 pairs rated by 20 subjects.

For each verb, we first use the W1×LW2 space to select a set of nouns that are
highly associated with the verb via a subject or an object link. In this space, nouns are
represented as vectors with dimensions that are labeled with 〈link, word〉 tuples, where
the word might be a verb, and the link might stand for, among other things, syntactic
relations such as obj (or, in the LexDMmodel, an expansion thereof, such as obj+the-j). To
find nouns that are highly associated with a verb v when linked by the subject relation,
we project theW1×LW2 vectors onto a subspace where all dimensions are mapped to 0
except the dimensions that are labeled with 〈lsbj, v〉, where lsbj is a link containing either
the string sbj intr or the string sbj tr, and v is the verb. We then measure the length of the
noun vectors in this subspace, and pick the top n longest ones as prototypical subjects
of the verb. The same operation is performed for the object relation. In our experiments,
we set n to 20, but this is of course a parameter that should be explored.

We normalize and sum the vectors (in the fullW1×LW2 space) of the picked nouns,
to obtain a centroid that represents an abstract “subject prototype” for the verb (and
analogously for objects). The plausibility of an arbitrary noun as the subject (object) of a
verb is then measured by the cosine of the noun vector to the subject (object) centroid in
W1×LW2 space. Crucially, the algorithm can provide plausibility scores for nouns that
do not co-occur with the target verb in the corpus, by looking at how close they are
to the centroid of nouns that do often co-occur with the verb. The corpus may contain
neither eat topinambur nor eat sympathy, but the topinambur vector will likely be closer to
the prototypical eat object vector than the one of sympathy would be.

It is worth stressing that the whole process relies on a single W1×LW2 matrix: This
space is first used to identify typical subjects (or objects) of a verb via subspacing, then to
construct centroid vectors for the verb subject (object) prototypes, and finally tomeasure
the distance of nouns to these centroids. Our method is essentially the same, save for
implementation and parameter choice details, as the one proposed by Padó, Padó,
and Erk (2007), in turn inspired by Erk (2007). However, they treat the identification

697



Computational Linguistics Volume 36, Number 4

of typical argument fillers of a verb as an operation to be carried out using different
resources, whereas we reinterpret it as a different way to use the sameW1×LW2 space in
which we measure plausibility.

Following Padó and colleagues, we measure performance by the Spearman ρ corre-
lation coefficient between the average human ratings and the model predictions, con-
sidering only verb–noun pairs that are present in the model. Table 7 reports percentage
coverage and correlations for the DM models (the task requires the links to extract
typical subjects and objects, so we cannot use DV nor Win), results from Padó, Padó,
and Erk (2007) (ParCos is the best among their purely corpus-based systems), and the
performance on the Padó data set of the supervised system of Herdaǧdelen and Baroni
(2009). Testing for significance of the correlation coefficients with two-tailed tests based
on a Spearman-coefficient derived t statistic, we find that the Resnik’s model correlation
for the McRae data is not significantly different from 0 (t = 0.29, df = 92, p = 0.39),
ParCos on McRae is significant at α = .05 (t = 2.134, df = 89, p = 0.018), and all other
models on either data set are significant at α = .01 and below.

TypeDM emerges as an excellent model to tackle selectional preferences, and as the
overall winner on this task. On the Padó data set, it is as good as Padó’s (2007) FrameNet
based model, and it is outperformed only by the supervised BagPack approach. On the
McRae data set, all three DM models do very well, and TypeDM is slightly worse than
the other two models. On this data set, the DM models are outperformed by Padó’s
FrameNet model in terms of correlation, but the latter has a much lower coverage,
suggesting that for practical purposes the DM models are a better choice. According to
Raghunathan’s test (see Section 6.1.1), the difference in correlation with human ratings
among the three DM models is not significant on the McRae data, where TypeDM is
below the other models (Q = 0.19, df = 0.67, p = 0.50). On the Padó data set, on the
other hand, where TypeDM outperforms the other DM models, the same difference is
highly significant (Q = 12.70, df = 1.00, p < 0.001).

As a final remark on the W1×LW2 space, we can notice that DM models perform
very well in tasks involving attributional similarity. The performance of unstructured
DSMs (including Win, our own implementation of this type of model) is also high,
sometimes even better than that of structured DSMs. However, our best DMmodel also
achieves brilliant results in capturing selectional preferences, a task that is not directly
addressable by unstructured DSMs. This fact suggests that the real advantage provided
by structured DSMs—particularly when linguistic structure is suitably exploited, as

Table 7
Correlation with verb–argument plausibility judgments.

McRae Padó

model coverage ρ model coverage ρ

Padó1 56 41 BagPack2 100 60
DepDM 97 32 TypeDM 100 51
LexDM 97 29 Padó1 97 51
TypeDM 97 28 ParCos1 98 48
ParCos1 91 22 DepDM 100 35
Resnik1 94 3 LexDM 100 34

Resnik1 98 24

Model sources: 1Padó, Padó, and Erk (2007); 2Herdaǧdelen and Baroni (2009).

698



Baroni and Lenci Distributional Memory

with the DM third-order tensor—actually resides in their versatility in addressing a
much larger and various range of semantic tasks. This preliminary conclusion will also
be confirmed by the experiments modeled with the other DM spaces.

6.2 The W1W2×L Space

The vectors of this space are labeled with word pair tuples 〈w1,w2〉 (columns of matrix
Bmode-2 in Table 3) and their dimensions are labeled with links l (rows of the same
matrix). This arrangement of our tensor reproduces the “relational similarity” space of
Turney (2006b), also implicitly assumed in much relation extraction work, where word
pairs are compared based on the patterns that link them in the corpus, in order to mea-
sure the similarity of their relations (Pantel and Pennacchiotti 2006). The links that in
W1×LW2 space provide a form of shallow typing of lexical features (〈use, gun〉) associ-
ated with single words (soldier) constitute under theW1W2×L view full features (use) as-
sociated with word pairs (〈soldier, gun〉). Besides exploiting this view of the tensor to
solve classic relational tasks, we will also show how problems that have not been tradi-
tionally defined in terms of a word-pair-by-link matrix, such as qualia harvesting with
patterns or generating lists of characteristic properties, can be elegantly recast in the
W1W2×L space by measuring the length of 〈w1,w2〉 vectors in a link (sub)space, thus
bringing a wider range of semantic operations under the umbrella of the natural DM
spaces.

TheW1W2×L space represents pairs of words that co-occur in the corpus within the
maximum span determined by the scope of the links connecting them (for our models,
this maximum span is never larger than a single sentence). When words do not co-occur
or only co-occur very rarely (and even in large corpora this will often be the case), attri-
butional similarity can come to the rescue. Given a target pair, we can construct other,
probably similar pairs by replacing one of the words with an attributional neighbor. For
example, given the pair 〈automobile, wheel〉, we might discover inW1×LW2 space that car
is a close neighbor of automobile. We can then look for the pair 〈car, wheel〉, and use rela-
tional evidence about this pair as if it pertained to 〈automobile, wheel〉. This is essentially
the way to deal withW1W2×L data sparseness proposed by Turney (2006b), except that
he relies on independently harvested attributional and relational spaces, whereas we
derive both from the same tensor. More precisely, in theW1W2×L tasks where we know
the set of target pairs in advance (Sections 6.2.1 and 6.2.2), we smooth the DMmodels by
combining in turn one of the words of each target pair with the top 20 nearestW1×LW2
neighbors of the other word, obtaining a total of 41 pairs (including the original). The
centroid of the W1W2×L vectors of these pairs is then taken to represent a target pair
(the smoothed 〈automobile, wheel〉 vector is an average of the 〈automobile, wheel〉, 〈car,
wheel〉, 〈automobile, circle〉, etc., vectors). The nearest neighbors are efficiently searched
in the W1×LW2 matrix by compressing it to 5,000 dimensions via random indexing,
using the parameters suggested by Sahlgren (2005). Smoothing consistently improved
performance, and we only report the relevant results for the smoothed versions of the
models (including our implementation of LRA, to be discussed next).

We reimplemented Turney’s Latent Relational Analysis (LRA) model, training it on
our source corpus (LRA is trained separately for each test set, because it relies on a given
list of word pairs to find the patterns that link them). We chose the parameter values of
Turney’s main model (his “baseline LRA system”). In short (see Turney’s article for de-
tails), for a given set of target pairs we count all the patterns that connect them, in either
order, in the corpus. Patterns are sequences of one to three words occurring between the
targets, with all, none, or any subset of the elements replaced bywildcards (with the,with

699



Computational Linguistics Volume 36, Number 4

Table 8
Percentage accuracy in solving SAT analogies with 95% binomial confidence intervals (CI).

model accuracy 95% CI model accuracy 95% CI

Human1 57.0 52.0–62.3 TypeDM 42.4 37.4–47.7
LRA-062 56.1 51.0–61.2 LSA7 42.0 37.2–47.4
PERT3 53.3 48.5–58.9 LRA 37.8 32.8–42.8
PairClass4 52.1 46.9–57.3 PMI-IR-062 35.0 30.2–40.1
VSM1 47.1 42.2–52.5 DepDM 31.4 26.6–36.2
BagPack5 44.1 39.0–49.3 LexDM 29.3 24.8–34.3
k-means6 44.0 39.0–49.3 Random 20.0 16.1–24.5

Model sources: 1Turney and Littman (2005); 2Turney (2006b); 3Turney (2006a); 4Turney (2008);
5Herdaǧdelen and Baroni (2009); 6Biciçi and Yuret (2006); 7Quesada, Mangalath, and Kintsch
(2004).

*, * the, * *). Only the top 4,000 most frequent patterns are preserved, and a target-pair-
by-pattern matrix is constructed (with 8,000 dimensions, to account for directionality).
Values in the matrix are log- and entropy-transformed using Turney’s formula. Finally,
SVD is applied, reducing the columns to the top 300 latent dimensions (here and sub-
sequently, we use SVDLIBC9 to perform SVD). For simplicity and to make LRA more
directly comparable to the DM models, we applied our attributional-neighbor-based
smoothing technique (the neighbors for target pair expansion are taken from the best
attributional DM model, namely, TypeDM) instead of the more sophisticated one used
by Turney. Thus, our LRA implementation differs from Turney’s original in two aspects:
the smoothing method and the source corpus (Turney uses a corpus of more than
50 billion words). Neither variation pertains to inherent differences between LRA and
DM.Given the appropriate resources, a DMmodel could be trained on Turney’s gigantic
corpus, and smoothed with his technique.

6.2.1 Solving Analogy Problems. The SAT test set introduced by Turney and collaborators
contains 374 multiple-choice questions from the SAT college entrance exam. Each ques-
tion includes one target (ostrich–bird) and five candidate analogies (lion–cat, goose–flock,
ewe–sheep, cub–bear, primate–monkey). The data set is dominated by noun–noun pairs,
but all other combinations are also attested (noun–verb, verb–adjective, verb–verb, etc.)
The task is to choose the candidate pair most analogous to the target (lion–cat in the
previous example). This is essentially the same task as the TOEFL, but applied to word
pairs instead of words. As in the TOEFL, we pick the candidate with the highest cosine
with the target as the right analogy.

Table 8 reports our SAT results together with those of other corpus-based methods
from the ACL Wiki and other systems. TypeDM is again emerging as the best among
our models. To put its performance in context statistically, according to a Fisher test its
accuracy is not significantly different from that of VSM (p = 0.239), whereas it is better
than that of PMI-IR-06 (p= 0.043; even the bottommodel, LexDM, is significantly better
than the random guesser, p = 0.004).

TypeDM is at least as good as LRA when the latter is trained on the same data
and smoothed with our method, suggesting that the excellent performance of Turney’s
version of LRA (LRA-06) is due to the fact that he used a much larger corpus, and/or to

9 http://tedlab.mit.edu/∼dr/SVDLIBC/.

700



Baroni and Lenci Distributional Memory

his more sophisticated smoothing technique, and not to the specific way in which LRA
collects corpus-based statistics. All the algorithms with higher accuracy than TypeDM
are based onmuch larger input corpora, except BagPack, which is, however, supervised.
The LSA system of Quesada, Mangalath, and Kintsch (2004), which performs similarly
to TypeDM, is based on a smaller corpus, but it relies on hand-coded “analogy domains”
that are represented by lists of manually selected characteristic words.

6.2.2 Relation Classification. Just as the SAT is the relational equivalent of the TOEFL task,
the test sets we tackle next are a relational analog to attributional concept clustering,
in that they require grouping pairs of words into classes that instantiate the same
relations. Whereas we cast attributional categorization as an unsupervised clustering
problem (following much of the earlier literature), the common approach to classify-
ing word pairs by relation is supervised, and relies on labeled examples for training. In
this article, we exploit training data in a very simple way, via a nearest centroid method.
In the SEMEVAL task we are about to introduce, where both positive and negative
examples are available for each class, we use the positive examples to construct a
centroid that represents a target class, and negative examples to construct a centroid rep-
resenting items outside the class. We then decide if a test pair belongs to the target class
by measuring its distance from the positive and negative centroids, picking the nearest
one. For example, the Cause–Effect relation has positive training examples such as
cycling–happiness and massage–relief and negative examples such as customer–satisfaction
and exposure–protection. We create a positive centroid by summing theW1W2×L vectors
of the first set of pairs, and a negative centroid by summing the latter. We then mea-
sure the cosine of a test item such as smile–wrinkle with the centroids, and decide
if it instantiates the Cause–Effect relation based on whether it is closer to the positive
or negative centroid. For the other tasks (as well as the transitive alternation task of
Section 6.3), we do not have negative examples, but positive examples for different
classes. We create a centroid for each class, and classify test items based on the centroid
they are nearest to.

Our first test pertains to the seven relations between nominals in Task 4 of
SEMEVAL 2007 (Girju et al. 2007): Cause–Effect, Instrument–Agency, Product–
Producer, Origin–Entity, Theme–Tool, Part–Whole, Content–Container. For each rela-
tion, the data set includes 140 training and about 80 test items. Each item consists of a
Web snippet, containing word pairs connected by a certain pattern (e.g., “* causes *”).
The retrieved snippets are manually classified by the SEMEVAL organizers as positive
or negative instances of a certain relation (see the earlier Cause–Effect examples). About
50% training and test cases are positive instances. In our experiments we do not make
use of the contexts of the target word pairs that are provided with the test set.

The second data set (NS) comes from Nastase and Szpakowicz (2003). It pertains to
the classification of 600 modifier–noun pairs and it is of interest because it proposes a
very fine-grained categorization into 30 semantic classes, such as Cause (cloud–storm),
Purpose (album–picture), Location-At (pain–chest), Location-From (visitor–country), Fre-
quency (superstition–occasional), Time-At (snack–midnight), and so on. The modifiers can
be nouns, adjectives, or adverbs. Because the data set is not split into training and test
data we follow Turney (2006b) and perform leave-one-out cross-validation. The data set
also comes with a coarser five-way classification. Our unreported results on it are com-
parable, in terms of relative performance, to the ones for the 30-way classification.

The last data set (OC) contains 1,443 noun–noun compounds classified by Ó
Séaghdha and Copestake (2009) into 6 relations: Be (celebrity–winner), Have (door–latch),
In (air–disaster), Actor (university–scholarship), Instrument ( freight–train), and About

701



Computational Linguistics Volume 36, Number 4

(bank–panic); see Ó Séaghdha and Copestake (2009) and references there. We use the
same five-way cross-validation splits as the data set proponents.

Table 9 reports performance of models from our experiments and from the literature
on the three supervised relation classification tasks. Following the relevant earlier stud-
ies, for SEMEVAL we report macro-averaged accuracy, whereas for the other two data
sets we report global accuracy (with binomial confidence intervals). All other measures
are macro-averaged. Majority is the performance of a classifier that always guesses the

Table 9
Relation classification performance; all measures macro-averaged, except accuracy in the NS and
OC data sets, where we also report the accuracy 95% confidence intervals (CI).

SEMEVAL 2007

model prec recall F acc model prec recall F acc

TypeDM 71.7 62.5 66.4 70.2 DepDM 61.0 57.3 58.9 61.8
UCD-FC1 66.1 66.7 64.8 66.0 UTH1 56.1 57.1 55.9 58.8
UCB1 62.7 63.0 62.7 65.4 Majority 81.3 42.9 30.8 57.0
LexDM 64.7 61.3 62.5 65.4 ProbMatch 48.5 48.5 48.5 51.7
ILK1 60.5 69.5 63.8 63.5 UC3M1 48.2 40.3 43.1 49.9
LRA 63.7 60.0 61.0 63.1 AllTrue 48.5 100.0 64.8 48.5
UMELB-B1 61.5 55.7 57.8 62.7

Nastase & Szpakowicz (NS)

model prec recall F acc acc 95% CI

LRA-062 41.0 35.9 36.6 39.8 35.9–43.9
VSM-AV3 27.9 26.8 26.5 27.8 24.3–31.6
LRA 23.0 23.1 21.1 25.5 22.1–29.2
VSM-WMTS2 24.0 20.9 20.3 24.7 21.3–28.3
TypeDM 19.5 20.2 13.7 15.4 12.5–18-5
LexDM 7.5 14.1 8.1 12.1 9.7–15.0
DepDM 11.6 14.5 8.1 8.7 6.5–11.2
Majority 0.3 3.3 0.5 8.2 6.1–10.6
ProbMatch 3.3 3.3 3.3 4.7 3.1–6.7
AllTrue 3.3 100 6.4 NA NA

Ó Séaghdha & Copestake (OC)

model prec recall F acc acc 95% CI

OC-Comb4 NA NA 61.6 63.1 60.6–65.6
OC-Rel4 NA NA 49.9 52.1 49.5–54.7
TypeDM 33.8 33.5 31.4 32.1 29.7–34.6
LRA 31.5 30.8 30.7 31.3 28.9–33.8
LexDM 29.9 28.9 28.7 29.7 27.4–32.2
DepDM 28.2 28.2 27.0 27.6 25.3–30.0
Majority 3.6 16.7 5.9 21.3 19.2–23.5
ProbMatch 16.7 16.7 16.7 17.1 15.2–19.2
AllTrue 16.7 100 28.5 NA NA

Model sources: 1SEMEVAL Task 4; 2Turney (2006b); 3Turney and Littman (2005); 4Ó Séaghdha
and Copestake (2009).

702



Baroni and Lenci Distributional Memory

majority class in the test set (in SEMEVAL, for each class, it guesses that all or no items
belong to it depending on whether there are more positive or negative examples in the
test data; in the other tasks, it labels all items with the majority class). AllTrue always
assigns an item to the target class (being inherently binary, it does not provide a well-
defined multi-class global accuracy). ProbMatch randomly guesses classes matching
their distribution in the test data (in SEMEVAL, it matches the proportion of positive
and negative examples within each class).

For SEMEVAL, the table reports the results of those models that took part in the
shared task and, like ours, did not use the organizer-provided WordNet sense labels
nor information about the query used to retrieve the examples. All these models are
outperformed by TypeDM, despite the fact that they exploit the training contexts
and/or specific additional resources: an annotated compound database (UCD-FC),
more sophisticated machine learning algorithms to train the relation classifiers (ILK,
UCD-FC), Web counts (UCB), and so on.

For the NS data set, none of the DM models do well, although TypeDM is once
more the best among them. The DM models are outperformed by other models from
the literature, all trained on much larger corpora, and also by our implementation of
LRA. The difference in global accuracy between LRA and TypeDM is significant (Fisher
test, p = 0.00002). TypeDM’s accuracy is nevertheless well above the best (Majority)
baseline accuracy (p = 0.0001).

The OC results confirm that TypeDM is the best of our models, again (slightly)
outperforming our LRA implementation. Still, our best performance is well below
that of OC-Comb, the absolute best, and OC-Rel, the best purely relational model
of Ó Séaghdha and Copestake (2009) (the difference in global accuracy between the
latter and TypeDM is highly significant, p < 0.000001). Ó Séaghdha and Copestake use
sophisticated kernel-based methods and extensive parameter tuning to achieve these
results. We hope that the TypeDM performance would also improve by improving the
machine learning aspects of the procedure.

As an ad interim summary, we observe that TypeDM achieves competitive results in
semantic tasks involving relational similarity. In particular, in both analogy solving and
two out of three relation classification experiments, TypeDM is at least as good as our
LRA implementation. We now move on to show how this same view of the DM tensor
can be successfully applied to aspects of meaning that are not normally addressed by
relational DSMs.

6.2.3 Qualia Extraction. A popular alternative to the supervised approach to relation
extraction is to pick a set of lexico-syntactic patterns that should capture the relation
of interest and to harvest pairs they connect in text, as famously illustrated by Hearst
(1992) for the hyponymy relation. In the DM approach, instead of going back to the
corpus to harvest the patterns, we exploit the information already available in the
W1W2×L space. We select promising links as our equivalent of patterns and we measure
the length of word pair vectors in the W1W2×L subspace defined by these links. We
illustrate this with the data set of Cimiano andWenderoth (2007), which contains qualia
structures (Pustejovsky 1995) for 30 nominal concepts, both concrete (door) and abstract
(imagination). Cimiano and Wenderoth asked 30 subjects to produce qualia for these
words (each word was rated by at least three subjects), obtaining a total of 1,487 word–
quale pairs, instantiating the four roles postulated by Pustejovsky: Formal (the category
of the object: door–barrier), Constitutive (constitutive parts, materials the object is made
of: food–fat), Agentive (what brings the object about: letter–write), and Telic (the func-
tion of the object: novel–entertain).

703



Computational Linguistics Volume 36, Number 4

We approximate the patterns proposed by Cimiano and Wenderoth by manually
selecting links that are already in our DM models, as reported in Table 10 (here and
subsequently when discussing qualia-harvesting links, we use n and q to indicate the
linear position of the noun and the potential quale with respect to the link). All qualia
roles have links pertaining to noun–noun pairs. The Agentive and Telic patterns also
harvest noun–verb pairs. For LexDM, we pick all links that begin with one of the strings
in Table 10. For the DepDM model, the only attested links are n with q (Constitutive),
n sbj intr q, n sbj tr q (Telic), and q obj n (Agentive). Consequently, DepDM does not
harvest Formal qualia, and is penalized accordingly in the evaluation.

We project all W1W2×L vectors that contain a target noun onto each of the four
subspaces determined by the quale-specific link sets, and we compute their subspace
lengths. Given a target noun n and a potential quale q, the length of the 〈n, q〉 vector
in the subspace characterized by the links that represent role r is our measure of how
good q is as a quale of type r for n (for example, the length of 〈book, read〉 in the subspace
defined by the Telic links is our measure of fitness of read as Telic role of book). We use
length in the subspace associated to the qualia role r to rank all 〈n, q〉 pairs relevant to r.

Following Cimiano and Wenderoth’s evaluation method, for each noun we first
compute, separately for each role, the ranked list precision (with respect to themanually
constructed qualia structure) at 11 equally spaced recall levels from 0% to 100%. We
select the precision, recall, and F values at the recall level that results in the highest
F score (i.e., in the best precision–recall trade-off). We then average across the roles, and
then across target nouns. The task, as framed here, cannot be run with the LRA model,
and, because of its open-ended nature (we do not start from a predefined list of pairs),
we do not smooth the models.

Table 11 reports the performance of our models, as well as the F scores reported by
Cimiano and Wenderoth. For our models, where we have access to the itemized data,
we also report the standard deviation of F across the target nouns.

All the DM models perform well (including DepDM, which is disfavored by the
lack of Formal links), and once more TypeDM emerges as the best among them, with
an F value that is also (slightly) above the best Cimiano and Wenderoth models (that
are based on co-occurrence counts from the whole Web). Despite the large standard
deviations, the difference in F across concepts between TypeDM and the second-best
DM model (DepDM) is highly significant (paired t-test, t = 4.02, df = 29, p < 0.001),
suggesting that the large variance is due to different degrees of difficulty of the concepts,
affecting the models in similar ways.

Table 10
Links approximating the patterns proposed in Cimiano and Wenderoth (2007).

FORMAL CONSTITUTIVE

n as-form-of q, q as-form-of n q as-member-of n, q as-part-of n, nwith q
n as-kind-of q, n as-sort-of q, n be q nwith-lot-of q, nwith-majority-of q
q such as n nwith-number-of q, nwith-sort-of q

nwith-variety-of q

AGENTIVE TELIC

n as-result-of q, q obj n n for-use-as q, n for-use-in q, n sbj tr q
n sbj intr q

704



Baroni and Lenci Distributional Memory

Table 11
Average qualia extraction performance.

model precision recall F F s.d.

TypeDM 26.2 22.7 18.4 8.7
P1 NA NA 17.1 NA
WebP1 NA NA 16.7 NA
LexDM 19.9 23.6 16.2 7.1
WebJac1 NA NA 15.2 NA
DepDM 17.8 16.9 12.8 6.4
Verb-PMI1 NA NA 10.7 NA
Base1 NA NA 7.6 NA

Model source: 1Cimiano and Wenderoth (2007).

6.2.4 Predicting Characteristic Properties. Recently, there has been some interest in the
automated generation of commonsense concept descriptions in terms of intuitively
salient properties: a dog is a mammal, it barks, it has a tail, and so forth (Almuhareb
2006; Baroni and Lenci 2008; Baroni, Evert, and Lenci 2008; Baroni et al. 2010). Similar
property lists, collected from subjects in elicitation tasks, are widely used in cognitive
science as surrogates of mental features (Garrard et al. 2001; McRae et al. 2005; Vinson
and Vigliocco 2008). Large-scale collections of property-based concept descriptions are
also carried out in AI, where they are important for commonsense reasoning (Liu and
Singh 2004).

In the qualia task, given a concept we had to extract properties of certain kinds (cor-
responding to the qualia roles). The property-based description task is less constrained,
because the most salient relations of a nominal concept might be in all sorts of relations
with it (parts, typical behaviors, location, etc.). Still, we couch the task of unconstrained
property extraction as a challenge in theW1W2×L space. The approach is similar to the
method adopted for qualia roles, but now the wholeW1W2×L space is used, instead of
selected subspaces. Given all the 〈n,w2〉 pairs that have the target nominal concept as
first element, we rank them by length in theW1W2×L space. The longest 〈n,w2〉 vectors
in this space should correspond to salient properties of the target concept, as we expect
a concept to often co-occur in texts with its important properties (because in the current
DM implementations links are disjoint across POS, we map properties with different
POS onto the same scale by dividing the length of the vector representing a pair by the
length of the longest vector in the harvested concept–property set that has the same POS
pair). For example, among the longestW1W2×L vectors with car as first itemwe find 〈car,
drive〉, 〈car, park〉, and 〈car, engine〉. The first two pairs are normalized by dividing by the
longest 〈noun, verb〉 vector in the harvested set, the third by dividing by the longest
〈noun, noun〉 vector.

We test this approach in the ESSLLI 2008 Distributional Semantic Workshop un-
constrained property generation challenge (Baroni, Evert, and Lenci 2008). The data set
contains, for each of 44 concrete concepts, 10 properties that are those that were most
frequently produced by subjects in the elicitation experiment of McRae et al. (2005) (the
“gold standard lists”). Algorithms must generate lists of 10 properties per concept, and
performance is measured by overlap with the subject-produced properties, that is, by
the cross-concept average proportions of properties in the generated lists that are also
in the corresponding gold standard lists. Smoothing would be very costly (we would
need to smooth all pairs that contain a target concept) and probably counterproductive

705



Computational Linguistics Volume 36, Number 4

(as the most typical properties of a concept should be highly specific to it, rather than
shared with neighbors). Because LRA (at least in a reasonably efficient implementation)
requires a priori specification of the target pairs, it is not well suited to this task.

Table 12 reports the percentage overlap with the gold standard properties (averaged
across the 44 concepts) for our models as well as the only ESSLLI 2008 participant that
tried this task, and for the models of Baroni et al. (2010). TypeDM is the best DMmodel,
and it also does quite well compared to the state of the art. The difference between
Strudel, the best model from the earlier literature, and TypeDM is not statistically signif-
icant, according to a paired t-test across the target concepts (t = 1.1, df = 43, p = 0.27).
The difference between TypeDM and DV-10, the second best model from the literature,
is highly significant (t = 2.9, df = 43, p < 0.01). If we consider how difficult this sort
of open-ended task is (see the very low performance of the respectable models at the
bottom of the list), matching on average two out of ten speaker-generated properties, as
TypeDM does, is an impressive feat.

6.3 The W1L×W2 Space

The vectors of this space are labeled with binary tuples of type 〈w1, l〉 (columns of
matrix Cmode-3 in Table 3), and their dimensions are labeled with words w2 (rows of the
samematrix). We illustrate this space in the task of discriminating verbs participating in
different argument alternations. However, other uses of the space can also be foreseen.
For example, the rows of W1L×W2 correspond to the columns of the W1×LW2 space
(given the constraints on the tuple structure we adopted in Section 3.1). We could use
the former space for feature smoothing or selection in the latter space, for example, by
merging the features ofW1×LW2 whose corresponding vectors inW1L×W2 have a cosine
similarity over a given threshold. We leave this possibility to further work.

Among the linguistic objects represented by the W1L×W2 vectors, we find the
syntactic slots of verb frames. For instance, the vector labeled with the tuple 〈read,
sbj−1〉 represents the subject slot of the verb read in terms of the distribution of its
noun fillers, which label the dimensions of the space. We can use theW1L×W2 space to
explore the semantic properties of syntactic frames, and to extract generalizations about
the inner structure of lexico-semantic representations of the sort formal semanticists
have traditionally been interested in. For instance, the high similarity between the
object slot of kill and the subject slot of die might provide a distributional correlate to
the classic cause(subj,die(obj)) analysis of killing by Dowty (1977) and many others.

Measuring the cosine between the vectors of different syntactic slots of the same
verb corresponds to estimating the amount of fillers they share. Measures of “slot
overlap” have been used by Joanis, Stevenson, and James (2008) as features to classify
verbs on the basis of their argument alternations. Levin and Rappaport-Hovav (2005)

Table 12
Average percentage overlap with subject-generated properties and standard deviation.

model overlap s.d. model overlap s.d. model overlap s.d.

Strudel1 23.9 11.3 LexDM 14.5 12.1 SVD-101 4.1 6.1
TypeDM 19.5 12.4 DV-101 14.1 10.3 Shaoul2 1.8 3.9
DepDM 16.1 12.6 AttrValue1 8.8 9.9

Model sources: 1Baroni et al. (2010); 2ESSLLI 2008 shared task.

706



Baroni and Lenci Distributional Memory

define argument alternations as the possibility for verbs to have multiple syntactic
realizations of their semantic argument structure. Alternations involve the expression
of the same semantic argument in two different syntactic slots. We expect that, if a
verb undergoes a particular alternation, then the set of nouns that appear in the two
alternating slots should overlap to a certain degree.

Argument alternations represent a key aspect of the complex constraints that shape
the syntax–semantics interface. Verbs differ with respect to the possible alternations
they can undergo, and this variation is strongly dependent on their semantic proper-
ties (semantic roles, event type, etc.). Levin (1993) has in fact proposed a well-known
classification of verbs based on their range of syntactic alternations. Recognizing the
alternations licensed by a verb is extremely important in capturing its argument struc-
ture properties, and consequently in describing its semantic behavior. We focus here on
a particular class of alternations, namely transitivity alternations, whose verbs allow
both for a transitive NP V NP variant and for an intransitive NP V (PP) variant (Levin
1993). We use the W1L×W2 space to carry out the automatic classification of verbs that
participate in different types of transitivity alternations.

In the causative/inchoative alternation, the object argument (e.g., John broke the vase)
can also be realized as an intransitive subject (e.g., The vase broke). In a first experiment,
we use the W1L×W2 space to discriminate between transitive verbs undergoing the
causative/inchoative alternation (C/I) (e.g., break) and non-alternating ones (e.g.,mince;
cf. John minced the meat vs. *The meat minced). The C/I data set was introduced by
Baroni and Lenci (2009), but not tested in a classification task there. It consists of 232
causative/inchoative verbs and 170 non-alternating transitive verbs from Levin (1993).

In a second experiment, we apply the W1L×W2 space to discriminate verbs that
belong to three different classes, each corresponding to a different type of transitive
alternation. We use the MS data set (Merlo and Stevenson 2001), which includes 19 un-
ergative verbs undergoing the induced action alternation (e.g., race), 19 unaccusative
verbs that undergo the causative/inchoative alternation (e.g., break), and 20 object-drop
verbs participating in the unexpressed object alternation (e.g., play). See Levin (1993)
for details about each of these transitive alternations. The complexity of this task is
due to the fact that the verbs in the three classes have both transitive and intransitive
variants, but with very different semantic roles. For instance, the transitive subject of
unaccusative (The man broke the vase) and unergative verbs (The jockey raced the horse past
the barn) is an agent of causation, whereas the subject of the intransitive variant of un-
accusative verbs has a theme role (i.e., undergoes a change of state: The vase broke), and
the intransitive subject of unergative verbs has instead an agent role (The horse raced past
the barn). Thus, their surface identity notwithstanding, the semantic properties of the
syntactic slots of the verbs in each class are very different. By testing theW1L×W2 space
on such a task we can therefore evaluate its ability to capture non-trivial properties of
the verb’s thematic structure.

We address these tasks by measuring the similarities between theW1L×W2 vectors
of the transitive subject, intransitive subject, and direct object slots of a verb, and using
these inter-slot similarities to classify the verb. For instance, given the definition of
the C/I alternation, we can predict that with alternating verbs the intransitive subject
slot should be similar to the direct object slot (the things that are broken also break),
while this should not hold for non-alternating verbs (mincees are very different from
mincers). For each verb v in a data set, we extract the corresponding W1L×W2 slot
vectors 〈v, l〉 whose links are sbj intr, sbj tr, and obj (for LexDM, we sum the vectors
with links beginning with one of these three patterns). Then, for each v we build a
three-dimensional vector with the cosines between the three slot vectors. These second

707



Computational Linguistics Volume 36, Number 4

order vectors encode the profile of similarity across the slots of a verb, and can be used to
spot verbs that have comparable profiles (e.g., verbs that have a high similarity between
their subj intr and obj slots).

We model both experiments as classification tasks using the nearest centroid
method on the three-dimensional vectors, with leave-one-out cross-validation. We per-
form binary classification of the C/I data set (treating non-alternating verbs as negative
examples), and three-way classification of the MS data. Table 13 reports the results, with
the baselines computed similarly to the ones in Section 6.2.2 (for C/I, Majority is equiv-
alent to AllTrue). The DM performance is also compared with the results of Merlo and
Stevenson (2001) for their classifiers tested with the leave-one-out methodology (macro-
averaged F has been computed on the class-by-class scores reported in that article).

All the DMmodels discriminate the verb classes much more reliably than the base-
lines. The accuracy of DepDM, the worst DM model, is significantly higher than that of
the best baselines, AllTrue in C/I (Fisher test, p= 0.024) andMajority onMS (p= 0.039).

TypeDM is again our best model. Its performance is comparable to the lower range
of the Merlo and Stevenson classifiers (considering the large confidence intervals due to
the small sample size, the accuracy of TypeDM is not significantly below even that of the
top model NoPass; p = 0.43). The TypeDM results were obtained simply by measuring
the verb inter-slot similarities in theW1L×W2 space. Conversely, the classifiers in Merlo
and Stevenson (2001) rely on a much larger range of knowledge-intensive features
selected in an ad hoc fashion for this task (on the other hand, their training corpus

Table 13
Verb classification performance (precision, recall, and F for MS are macro-averaged). Global
accuracy supplemented by 95% binomial confidence intervals (CI).

Causative/Inchoative (C/I)

model prec recall F acc acc 95% CI

LexDM 76.0 69.9 72.8 69.9 65.2–74.3
TypeDM 75.7 68.5 71.9 69.1 64.4–73.6
DepDM 72.8 64.6 68.4 65.7 60.8–70.3
AllTrue 57.7 100 73.2 57.7 52.7–62.6
ProbMatch 57.7 57.7 57.7 51.2 46.2–56.2

Merlo & Stevenson (MS)

model prec recall F acc acc 95% CI

NoPass1 NA NA 71.2 71.2 57.3–81.9
AllFeatures1 NA NA 69.1 69.5 55.5–80.5
NoTrans1 NA NA 63.8 64.4 50.1–76.0
NoCaus1 NA NA 62.6 62.7 48.4–74.5
TypeDM 60.7 61.7 60.8 61.5 47.5–73.7
NoVBN1 NA NA 61.0 61.0 46.6–73.0
NoAnim1 NA NA 59.9 61.0 46.6–73.0
LexDM 55.3 56.7 55.8 56.4 43.2–69.8
DepDM 52.9 55.0 53.2 54.7 41.5–68.3
Majority 11.3 33.3 16.9 33.9 22.5–48.1
ProbMatch 33.3 33.3 33.3 33.3 21.0–46.3
AllTrue 33.3 100 50.0 NA NA

Model source: 1Merlo and Stevenson (2001).

708



Baroni and Lenci Distributional Memory

is not parsed and it is much smaller than ours). Finally, we can notice that in both
experiments the mildly (TypeDM) and heavily (LexDM) lexicalized DM models score
better than their non-lexicalized counterpart (DepDM), although the difference between
the best DM model and DepDM is not significant on either data set (p = 0.23 for the
LexDM/DepDMdifference in C/I; p= 0.57 for the TypeDM/DepDMdifference inMS).

Verb alternations do not typically appear among the standard tasks on which DSMs
are tested. Moreover, they involve non-trivial properties of argument structure. The
good performance of DM in these experiments is therefore particularly significant in
supporting its vocation as a general model for distributional semantics.

6.4 The L×W1W2 Space

The vectors of this space are labeled with links l (rows of matrix Bmode-2 in Table 3)
and their dimensions are labeled with word pair tuples 〈w1,w2〉 (columns of the same
matrix). Links are represented in terms of the word pairs they connect. The L×W1W2
space supports tasks where we are directly interested in the links as an object of
study—for example, characterizing prepositions (Baldwin, Kordoni, and Villavicencio
2009) or measuring the relative similarity of different kinds of verb–noun relations. We
focus here instead on a potentially more common use of L×W1W2 vectors as a “feature
selection and labeling” space forW1W2×L tasks.

Specifically, we go back to the qualia extraction task of Section 6.2.3. There, we
started with manually identified links. Here, we start with examples of noun–quale
pairs 〈n, qr〉 that instantiate a role r. We project all L×W1W2 vectors in a subspace where
only dimensions corresponding to one of the example pairs are non-zero. We then pick
the most characteristic links in this subspace to represent the target role r, and look for
new pairs 〈n, qr〉 in theW1W2×L subspace defined by these automatically picked links,
instead of the manual ones. Although we stop at this point, the procedure can be seen
as a DM version of popular iterative bootstrapping algorithms such as Espresso (Pantel
and Pennacchiotti 2006): Start with some examples of the target relation, find links that
are typical of these examples, use the links to find new examples, and so on. In DM,
the process does not go back to a corpus to harvest new links and example pairs, but it
iterates between the column and row spaces of a pre-compiled matrix (i.e, the mode-2
matricization in Table 3).

For each of the 30 noun concepts in the Cimiano and Wenderoth gold standard, we
use the noun–quale pairs pertaining to the remaining 29 concepts as training examples
to select a set of 20 links that we then use in the same way as the manually selected links
of Section 6.2.3. Simply picking the longest links in the L×W1W2 subspace defined by the
example 〈n, qr〉 dimensions does not work, because we harvest links that are frequent
in general, rather than characteristic of the qualia roles (noun modification, of, etc.). For
each role r, we construct instead two L×W1W2 subspaces, one positive subspace with the
example pairs 〈n, qr〉 as unique non-zero dimensions, and a negative subspace with non-
zero dimensions corresponding to all 〈w1,w2〉 pairs such that w1 is one of the training
nominal concepts, and w2 is not a quale qr in the example pairs. We then measure the
length of each link in both subspaces. For example, we measure the length of the obj
link in a subspace characterized by 〈n, qtelic〉 example pairs, and the length of obj in a
subspace characterized by 〈n, w2〉 pairs that are probably not Telic examples. We com-
pute the pointwise mutual information (PMI) statistic (Church and Hanks 1990) on
these lengths to find the links that are most typical of the positive subspace corre-
sponding to each qualia role. PMI, with respect to other association measures, finds
more specific links, which is good for our purposes. However, it is also notoriously

709



Computational Linguistics Volume 36, Number 4

prone to over-estimating the importance of rare items (Manning and Schütze 1999,
Chapter 5). Thus, before selecting the top 20 links ranked by PMI, we filter out those
links that do not have at least 10 non-zero dimensions in the positive subspace. Many
parameters here should be tuned more systematically (top n links, association measure,
minimum non-zero dimensions), but the current results will nevertheless illustrate our
methodology.

Table 14 reports, for each quale, the TypeDM links that were selected in each of the
30 leave-one-concept-out folds. The links n is q, n in q, and q such as n are a good sketch of
the Formal relation, which essentially subsumes various taxonomic relations. The other
Formal links are less conspicuous. However, note the presence of noun coordination
(n coord q and q coord n), consistently with the common claim that coordinated terms
tend to be related taxonomically (Widdows and Dorow 2002). Constitutive is mostly a
whole–part relation, and the harvested links do a good job at illustrating such a relation.
For the Telic, q by n, q through n, and q via n capture cases in which the quale stands in an
action–instrument relation to the target noun (murder by knife). These links thus encode
the subtype of Telic role that Pustejovsky (1995) calls “indirect.” The two verb–noun
links (q obj n and n sbj intr q) instead capture “direct” Telic roles, which are typically
expressed by the theme of a verb (read a book, the book reads well). The least convincing
results are those for the Agentive role, where only q obj n and perhaps q out n are
intuitively plausible canonical links. Interestingly, the manual selections we carried out
in Section 6.2.3 also gave very poor results for the Agentive role, as shown by the fact
that Table 10 reports just one link for such a role. This suggests that the problems with
this qualia role might be due to the number and type of lexicalized links used to build
the DM tensors, rather than to the selection algorithm presented here.

Coming now to the quantitative evaluation of the harvested patterns, the results in
Table 15 (to be compared to Table 11 in Section 6.2.3) are based on W1W2×L subspaces
where the non-zero dimensions correspond to the links that we picked automatically
with the method we just described (different links for each concept, because of the
leave-one-concept-out procedure). TypeDM is the best model in this setting as well.
Its performance is even better than the one (reported in Table 11) obtained with the
manually picked patterns (although the difference is not statistically significant; paired
t-test, t = 0.75, df = 29, p = 0.46), and the automated approach has more room for
improvement via parameter optimization.

We did not get as deeply into L×W1W2 space as we did with the other views, but
our preliminary results on qualia harvesting suggest at least that looking at links as

Table 14
Links selected in all folds of the leave-one-out procedure to extract links typical of each qualia
role.

FORMAL CONSTITUTIVE

n is q, q is n, q become n, n coord q, n have q, n use q, nwith q, nwithout q
q coord n, q have n, n in q, n provide q,
q such as n

AGENTIVE TELIC

q after n, q alongside n, q as n, q before n, q behind n, q by n, q like n, q obj n,
q besides n, q during n, q in n, q obj n, n sbj intr q, q through n, q via n
q out n, q over n, q since n, q unlike n

710



Baroni and Lenci Distributional Memory

Table 15
Average qualia extraction performance with automatically harvested links (compare to Table 11).

model precision recall F F s.d.

TypeDM 24.2 26.7 19.1 7.7
DepDM 18.4 27.0 15.1 4.9
LexDM 22.6 18.1 14.8 7.7

L×W1W2 vectors might be useful for feature selection in W1W2×L or for tasks in which
we are given a set of pairs, and we have to find links that can function as verbal labels
for the relation between the word pairs (Turney 2006a).

6.5 Smoothing by Tensor Decomposition

Dimensionality reduction techniques such as the (truncated) SVD approximate a sparse
co-occurrence matrix with a denser lower-rank matrix of the same size, and they have
been shown to be effective in many semantic tasks, probably because they provide
a beneficial form of smoothing of the dimensions. See Turney and Pantel (2010) for
references and discussion. We can apply SVD (or similar methods) to any of the tensor-
derivedmatrices we used for the tasks herein. An interesting alternative is to smooth the
source tensor directly by a tensor decomposition technique. In this section, we present
(very preliminary) evidence that tensor decomposition can improve performance, and
it is at least as good in this respect as matrix-based SVD. This is the only experiment
in which we operate on the tensor directly, rather than on the matrices derived from it,
paving the way to a more active role for the underlying tensor in the DM approach to
semantics.

The (truncated) Tucker decomposition of a tensor can be seen as a higher-order
generalization of SVD. Given a tensor X of dimensionality I1 × I2 × I3, its n-rank Rn
is the rank of the vector space spanned by its mode-n fibers (obviously, for each
mode n of the tensor, Rn ≤ In). Tucker decomposition approximates the tensorX having
n-ranks R1, . . . ,Rn with X̃ , a tensor with n-ranks Qn ≤ Rn for all modes n. Unlike the
case of SVD, there is no analytical procedure to find the best lower-rank approximation
to a tensor, and Tucker decomposition algorithms search for the reduced rank tensor
with the best fit (as measured by least square error) iteratively. Specifically, we use the
memory-efficient MET(1) algorithm of Kolda and Sun (2008) as implemented in the
Matlab Tensor Toolbox.10 Kolda and Bader (2009) provide details on Tucker decompo-
sition, its general properties, as well as applications and alternatives.

SVD is believed to exploit patterns of higher order co-occurrence between the rows
and columns of a matrix (Manning and Schütze 1999; Turney and Pantel 2010), making
row elements that co-occur with two synonymic columns more similar than in the
original space. Tucker decomposition applied to the mode-3 tuple tensor could capture
patterns of higher order co-occurrence for each of the modes. For example, it might
capture at the same time similarities between links such as use and hold and w2 elements
such as gun and knife. SVD applied after construction of the W1×LW2 matrix, on the
other hand, would miss the composite nature of columns such as 〈use, gun〉, 〈use, knife〉
and 〈hold, gun〉. Another attractive feature of Tucker decomposition is that it could be

10 http://csmr.ca.sandia.gov/∼tgkolda/TensorToolbox/.

711



Computational Linguistics Volume 36, Number 4

Table 16
Purity in Almuhareb–Poesio concept clustering with rank reduction of the APTypeDM tensor;
95% confidence intervals (CI) obtained by bootstrapping.

reduction rank purity 95% CI

Tucker 250×50×500 75 72–80
Tucker 300×50×500 75 71–79
Tucker 300×50×450 74 71–79
SVD 200 74 71–79
SVD 350 74 70–79
Tucker 300×40×500 74 70–78
Tucker 300×60×500 74 70–78
Tucker 350×50×500 73 69–77
Tucker 300×50×550 72 69–77
SVD 250 72 69–77
SVD 150 72 68–77
none ≤ 402 71 69–77
SVD 300 71 68–76
SVD 100 68 65–73
SVD 50 64 61–70

applied once to smooth the source tensor, whereas with SVD each matricization must
be smoothed separately. However, Tucker decomposition and SVD are computationally
intensive procedures, and, at least with our current computational resources, we are not
able to decompose even the smallest DM tensor (similarly, we cannot apply SVD to a
full matricization). Given the continuous growth in computational power and the fact
that efficient tensor decomposition is a very active area of research (Turney 2007; Kolda
and Sun 2008) full tensor decomposition is nevertheless a realistic near future task.

For the current pilot study, we replicated the AP concept clustering experiment
described in Section 6.1.3. Because for efficiency reasons we must work with just a
portion of the original tensor, we thought that the AP data set, consisting of a relatively
large and balanced collection of nominal concepts, would offer a sensible starting point
to extract the subset. Specifically, we extract from our best tensor TypeDM the values
labeled by tuples 〈wAP, l,w2〉where wAP is in the AP set, l is one of the 100 most common
links occurring in tuples with a wAP, and w2 is one of the 1,000 most common words
occurring in tuples with a wAP and a l. The resulting (sub-)tensor, APTypeDM, has
dimensionality 402× 100× 1, 000 with 1,318,214 non-zero entries (density: 3%). The
W1×LW2 matricization of APTypeDM results in a 402× 1, 000, 000 matrix with 66,026
non-zero columns and the same number of non-zero entries and density as the tensor.

The possible combinations of target lower n-ranks constitute a large tridimensional
parameter space, and we leave its systematic exploration to further work. Instead, we
pick 300, 50, and 500 as (intuitively reasonable) initial target n-ranks for the threemodes,
and we explore their neighborhood in parameter space by changing one target n-rank at
a time, by a relatively small value (300± 50, 50± 10, and 500± 50, respectively). For the
parameters concerning the reduced tensor fitting process, we accept the default values
of the Tensor Toolbox. For comparison purposes, we also apply SVD to the W1×LW2
matrix derived from APTypeDM. We systematically explore the SVD target lower rank
parameter from 50 to 350 in increments of 50 units.

The results are reported in Table 16. The rank column reports the n-ranks when
reduction is performed on the tensor, and matrix ranks in the other cases. Bootstrapped
confidence intervals are obtained as described in Section 6.1.3. In general, the results

712



Baroni and Lenci Distributional Memory

confirm that smoothing by rank reduction is beneficial to semantic performance, al-
though not spectacularly so, with an improvement of about 4% for the best reduced
model with respect to the raw APTypeDM tensor (consider however also the relatively
wide confidence intervals). As a general trend, tensor-based smoothing (Tucker) does
better than matrix-based smoothing (SVD). As we said, for Tucker we only report re-
sults from a small region of the tridimensional parameter space, whereas the SVD rank
parameter range is explored coarsely but exhaustively. Thus, although other parameter
combinations might lead to dramatic changes in Tucker performance, the best SVD
performance in the table is probably close to the SVD performance upper bound.

The present pilot study suggests an attitude of cautious optimism towards tensor
decomposition as a smoothing technique. At least in the AP task, it helps as compared
to no smoothing at all. The same conclusion is reached by Turney (2007), who uses
essentially the same method (with some differences in implementation) to tackle the
TOEFL task, and obtains more than 10% improvement in accuracy with respect to the
corresponding raw tensor. At least as a trend, tensor decomposition appears to be better
than matrix decomposition, but only marginally so (Turney does not perform this com-
parison). Still, even if the tensor- and matrix-based decompositions turned out to have
comparable effects, tensor-based smoothing is more attractive in the DM framework
because we could perform the decomposition once, and use the smoothed tensor as our
stable underlying DM (modulo, of course, memory problems with computing such a
large tensor decomposition).

Beyond smoothing, tensor decomposition might provide some novel avenues for
distributional semantics, while keeping to the DM program of a single model for many
tasks. Van de Cruys (2009) used tensor decomposition to find commonalities in latent
dimensions across the fiber labels (in the DM formalism, this would amount to finding
commonalities across w1, l, and w2 elements). Another possible use for smoothing
would be to propagate “link mass” across parts of speech. Our tensors, being based on
POS tagging and dependency parsing, have 0 values for noun-link-noun tuples such as
〈city, obj, destruction〉 and 〈city, subj tr, destruction〉. In a smoothed tensor, by the influence
of tuples such as 〈city, obj, destroy〉 and 〈city, sbj tr, destroy〉, these tuples will get some
non-0 weight that, hopefully, will make the object relation between city and destruction
emerge. This is at the moment just a conjecture, but it constitutes an exciting direction
for further work focusing on tensor decomposition within the DM framework.

7. Conclusion

A general framework for distributional semantics should satisfy the following two
requirements: (1) representing corpus-derived data in such a way as to capture aspects
of meaning that have so far been modeled with different, prima facie incompatible data
structures; (2) using this common representation to address a large battery of semantic
experiments, achieving a performance at least comparable to that of state-of-art, task-
specific DSMs. We can now safely claim that DM satisfies both these desiderata, and
thereby represents a genuine step forward in the quest for a general purpose approach
to distributional semantics.

DM addresses point (1) by modeling distributional data as a structure of weighted
tuples that is formalized as a labeled third-order tensor. This is a generalization with
respect to the common approach of many corpus-based semantic models (the structured
DSMs) that rely on distributional information encoded into word–link–word tuples,
associated with weights that are functions of their frequency of co-occurrence in the cor-
pus. Existing structured DSMs still couch this information directly in binary structures,

713



Computational Linguistics Volume 36, Number 4

namely, co-occurrence matrices, thereby giving rise to different semantic spaces and los-
ing sight of the fact that such spaces share the same kind of distributional information.
The third-order tensor formalization of distributional data allows DM to fully exploit
the potential of corpus-derived tuples. The four semantic spaces we analyzed and tested
in Section 6 are generated from the same underlying third-order tensor, by the standard
operation of tensor matricization. This way, we derive a set of semantic spaces that can
be used for measuring attributional similarity (finding synonyms, categorizing concepts
into superordinates, etc.) and relational similarity (finding analogies, grouping concept
pairs into relation classes, etc.). Moreover, the distributional information encoded in the
tensor and unfolded via matricization leads to further arrangements of the data useful
in addressing semantic problems that do not fall straightforwardly into the attributional
or the relational paradigm (grouping verbs by alternations, harvesting patterns that
represent a relation). In some cases, it is obvious how to reformulate a semantic problem
in the new framework. Other tasks can be reframed in terms of our four semantic
spaces using geometric operations such as centroid computations and projection onto
a subspace. This was the case for selectional preferences, pattern- and example-based
relation extraction (illustrated by qualia harvesting), and the task of generating typical
properties of concepts. We consider a further strength of the DM approach that it natu-
rally encourages us to think, as we did in these cases, of ways to tackle apparently
unrelated tasks with the existing resources, rather than devising unrelated approaches
to deal with them.

Regarding point (2), that is, addressing a large battery of semantic experiments with
good performance, in nearly all test sets our best implementation of DM (TypeDM) is
at least as good as other algorithms reported in recently published papers (typically
developed or tuned for the task at hand), often towards (or at) the top of the state-of-
the-art ranking. Where other models outperform TypeDM by a large margin, there are
typically obvious reasons for this: The rivals have been trained on much larger corpora,
or they rely on special knowledge resources, or on sophisticated machine learning
algorithms. Importantly, TypeDM is consistently at least as good (or better than) those
models we reimplemented to be fully comparable to our DMs (i.e., Win, DV, LRA).

Moreover, the best DM implementation does not depend on the semantic space:
TypeDM outperforms (at least in terms of average performance across tasks) the other
two models in all four spaces. This is not surprising (better distributional tuples should
still be better when seen from different views), but it is good to have an empirical con-
firmation of the a priori intuition. The current results suggest that one could, for exam-
ple, compare alternative DMs on a few attributional tasks, and expect the best DM in
these tasks to also be the best in relational tasks and other semantic challenges.

The final experiment of Section 6 briefly explored an interesting aspect of the
tensor-based formalism, namely, the possibility of improving performance on some
tasks by working directly on the tensor (in this case, applying tensor rank reduction
for smoothing purposes) rather than on the matrices derived from it. Besides this pilot
study, we did not carry out any task-specific optimization of TypeDM, which achieves
its very good performance using exactly the same underlying parameter configuration
(e.g., dependency paths, weighting function) across the different spaces and tasks.
Parameter tuning is an important aspect in DSM development, with an often dramatic
impact of parameter variation (Bullinaria and Levy 2007; Erk and Padó 2009). We
leave the exploration of parameter space in DM for future research. Its importance not-
withstanding, however, we regard this as a rather secondary aspect, if compared with
the good performance of a DM model (even in its current implementation) in the large
and multifarious set of tasks we presented.

714



Baroni and Lenci Distributional Memory

Of course, many issues are still open. It is one thing to claim that the models that
outperform TypeDMdo so because they rely on larger corpora; it is another to show that
TypeDM trained on more data does reach the top of the current heap. The differences
between TypeDM and the other, generally worse-performing DM models remind us
that the idea of a shared distributional memory per se is not enough to obtain good
results, and the extraction of an ideal DM from the corpus certainly demands further
attention. We need to reach a better understanding of which pieces of distributional
information to extract, and whether different semantic tasks require focusing on specific
subsets of distributional data. Another issue we completely ignored but which will be of
fundamental importance in applications is how a DM-based system can deal with out-
of-vocabulary items. Ideally, we would like a seamless way to integrate new terms in
the model incrementally, based on just a few extra data points, but we leave it to further
research to study how this could be accomplished, together with the undoubtedly many
further practical and theoretical problems that will emerge. We will conclude, instead,
by discussing some general advantages that follow from the DM approach of separating
corpus-based model building, the multi-purpose long term distributional memory, and
different views of the memory data to accomplish different semantic tasks, without
resorting to the source corpus again.

First of all, we would like to make a more general point regarding parameter
tuning and task-specific optimization, by going back to the analogy with WordNet as a
semantic multi-purpose resource. If you want to improve performance of a WordNet-
based system, you will probably not wait for its next release, but rather improve the
algorithms that work on the existing WordNet graph. Similarly, in the DM approach we
propose that corpus-based resources for distributional semantics should be relatively
stable, multi-purpose, large-scale databases (in the form of weighted tuple structures),
only occasionally updated (because a better or larger corpus becomes available, a better
parser, etc.). Still, given the same underlying DM and a certain task, much work can be
done to exploit the DM optimally in the task, with no need to go back to corpus-based
resource construction. For example, performance on attributional tasks could be raised
by dimension reweighting techniques such as recently proposed by Zhitomirsky-Geffet
and Dagan (2009). For the problem of data sparseness in the W1W2×L space, we could
treat the tensor as a graph and explore random walks and other graphical approaches
that have been shown to “scale down” gracefully to capture relations in sparser data
sets (Minkov and Cohen 2007, 2008). As in our simple example of smoothing relational
pairs with attributional neighbors, more complex tasks may be tackled by combining
different views of DM, and/or resorting to different (sub)spaces within the same view,
as in our approach to selectional preferences. One might even foresee an algorithmic
way to mix and match the spaces as most appropriate to a certain task. We propose a
similar split for the role of supervision in DSMs. Construction of the DM tensor from the
corpus is most naturally framed as an unsupervised task, because the model will serve
many different purposes. On the other hand, supervision can be of great help in tuning
the DM data to specific tasks (as we did, in a rather naive way, with the nearest centroid
approach to most non-attributional tasks). A crucial challenge for DSMs is whether
and how corpus-derived vectors can also be used in the construction of meaning for
constituents larger than words. These are the traditional domains of formal semantics,
which is most interested in how the logical representation of a sentence or a discourse
is built compositionally by combining the meanings of its constituents. DSMs have so
far focused on representing lexical meaning, and compositional and logical issues have
either remained out of the picture, or have received still unsatisfactory accounts. A gen-
eral consensus exists on the need to overcome this limitation, and to build new bridges

715



Computational Linguistics Volume 36, Number 4

between corpus-based semantics and symbolic models of meanings (Clark and Pulman
2007; Widdows 2008). Most problems encountered by DSMs in tackling this challenge
are specific instances of more general issues concerning the possibility of representing
symbolic operations with distributed, vector-based data structures (Markman 1999).
Many avenues are currently being explored in corpus-based semantics, and interesting
synergies are emerging with research areas such as neural systems (Smolensky 1990;
Smolensky and Legendre 2006), quantum information (Widdows and Peters 2003; Aerts
and Czachor 2004; Widdows 2004; Van Rijsbergen 2004; Bruza and Cole 2005; Hou
and Song 2009), holographic models of memory (Jones and Mewhort 2007), and so
on. A core problem in dealing with compositionality with DSMs is to account for the
role of syntactic information in determining the way semantic representations are built
from lexical items. For instance, the semantic representation assigned to The dog bites
the man must be different from the one assigned to The man bites the dog, even if they
contain exactly the same lexical items. Although it is still unclear which is the best
way to compose the representation of content words in vector spaces, it is nowadays
widely assumed that structured representations like those adopted by DM are in the
right direction towards a solution to this issue, exactly because they allow distributional
representations to become sensitive to syntactic structures (Erk and Padó 2008). Compo-
sitionality and similar issues in DSMs lie beyond the scope of this paper. However, there
is nothing in DM that prevents it from interacting with any of the research directions we
have mentioned here. Indeed, we believe that the generalized nature of DM represents
a precondition for distributional semantics to be able to satisfactorily address these
more advanced challenges. A multi-purpose, distributional semantic resource like DM
can allow researchers to focus on the next steps of semantic modeling. These include
compositionality, but also modulating word meaning in context (Erk and Padó 2008;
Mitchell and Lapata 2008) and finding ways to embed the distributional memory in
complex NLP systems (e.g., for question answering or textual entailment) or even
embodied agents and robots.

DM-style triples predicating a relation between two entities are common currency
in many semantic representation models (e.g., semantic networks) and knowledge-
exchange formalisms such as RDF. This might also pave the way to the integration of
corpus-based information with other knowledge sources. It is hard to see how such
integration could be pursued within generalized systems, such as PairClass (Turney
2008), that require keeping a full corpus around and corpus-processing know-how on
behalf of interested researchers from outside the NLP community (see discussion in
Section 4 above). Similarly, the DM triples might help in fostering the dialogue between
computational linguists and the computational neuro-cognitive community, where it is
common to adopt triple-based representations of knowledge, and to use the same set of
tuples to simulate various aspects of cognition. For a recent extended example of this
approach, see Rogers and McClelland (2004). It would be relatively easy to use a DM
model in lieu of their neural network, and use it to simulate the conceptual processes
they reproduce.

DM, unlike classic DSM models that go directly from the corpus data to solving
specific semantic tasks, introduces a clear distinction between an acquisition phase
(corpus-based tuple extraction and weighting), the declarative structure at the core of
semantic modeling (the distributional memory), and the procedural problem-solving
components (possibly supervised procedures to perform different semantic tasks). This
separation is in line with what is commonly assumed in cognitive science and formal
linguistics, and we hope it will contribute to make corpus-based modeling a core part
of the ongoing study of semantic knowledge in humans and machines.

716



Baroni and Lenci Distributional Memory

Acknowledgments
We thank Abdulrahman Almuhareb,
Philipp Cimiano, George Karypis,
Tamara Kolda, Thomas Landauer,
Mirella Lapata, Ken McRae, Brian Murphy,
Vivi Nastase, Diarmuid Ó Séaghdha,
Sebastian and Ulrike Padó, Suzanne
Stevenson, Peter Turney, their colleagues,
and the SEMEVAL Task 4 organizers for
data and tools. We thank Gemma Boleda,
Phillipp Cimiano, Katrin Erk, Stefan Evert,
Brian Murphy, Massimo Poesio, Magnus
Sahlgren, Tim Van de Cruys, Peter Turney,
and three anonymous reviewers for a
mixture of advice, clarification, and ideas.

References
Aerts, Diederik and Marek Czachor. 2004.
Quantum aspects of semantic analysis and
symbolic artificial intelligence. Journal of
Physics A: Mathematical and General,
37:123–132.

Alishahi, Afra and Suzanne Stevenson. 2008.
A distributional account of the semantics
of multiword expressions. Italian Journal of
Linguistics, 20(1):157–179.

Almuhareb, Abdulrahman. 2006. Attributes
in Lexical Acquisition. Ph.D. thesis,
University of Essex.

Almuhareb, Abdulrahman and Massimo
Poesio. 2004. Attribute-based and
value-based clustering: An evaluation.
In Proceedings of EMNLP, pages 158–165,
Barcelona.

Almuhareb, Abdulrahman and Massimo
Poesio. 2005. Concept learning and
categorization from the web. In Proceedings
of CogSci, pages 103–108, Stresa.

Baldwin, Timothy, Valia Kordoni, and
Aline Villavicencio. 2009. Prepositions in
applications: A survey and introduction to
the special issue. Computational Linguistics,
35(2):119–149.

Baroni, Marco, Eduard Barbu, Brian Murphy,
and Massimo Poesio. 2010. Strudel: A
distributional semantic model based on
properties and types. Cognitive Science,
34(2):222–254.

Baroni, Marco, Stefan Evert, and
Alessandro Lenci, editors. 2008. Bridging
the Gap between Semantic Theory and
Computational Simulations: Proceedings
of the ESSLLI Workshop on Distributional
Lexical Semantic. FOLLI, Hamburg.

Baroni, Marco and Alessandro Lenci. 2008.
Concepts and properties in word spaces.
Italian Journal of Linguistics, 20(1):55–88.

Baroni, Marco and Alessandro Lenci. 2009.
One distributional memory, many
semantic tasks. In Proceedings of the EACL
GEMS Workshop, pages 1–8, Athens.

Biciçi, Ergun and Deniz Yuret. 2006.
Clustering word pairs to answer analogy
questions. In Proceedings of the Fifteenth
Turkish Symposium on Artificial Intelligence
and Neural Networks, pages 277–284,
Muǧla.

Bruza, Peter and Richard Cole. 2005.
Quantum logic of semantic space:
An exploratory investigation of context
effects in practical reasoning. In
Sergei Artemov, Howard Barringer,
Arthur d’Avila Garcez, Luis C. Lamb,
and John Woods, editors,We Will Show
Them: Essays in Honour of Dov Gabbay,
volume one. College Publications, London,
pages 339–361.

Buitelaar, Paul, Philipp Cimiano, and
Bernardo Magnini. 2005. Ontology
Learning from Text. IOS Press, Amsterdam.

Bullinaria, John and Joseph Levy. 2007.
Extracting semantic representations
from word co-occurrence statistics: A
computational study. Behavior Research
Methods, 39:510–526.

Chen, Hsin-Hsi, Ming-Shun Lin, and
Yu-Chuan Wei. 2006. Novel association
measures using Web search with double
checking. In Proceedings of COLING-ACL,
pages 1009–1016, Sydney.

Church, Kenneth and Peter Hanks. 1990.
Word association norms, mutual
information, and lexicography.
Computational Linguistics, 16(1):22–29.

Cimiano, Philipp and Johanna Wenderoth.
2007. Automatic acquisition of ranked
qualia structures from the Web. In
Proceedings of ACL, pages 888–895,
Prague.

Clark, Stephen and Stephen Pulman. 2007.
Combining symbolic and distributional
models of meaning. In Proceedings of the
AAAI Spring Symposium on Quantum
Interaction, pages 52–55, Stanford, CA.

Curran, James and Marc Moens. 2002.
Improvements in automatic thesaurus
extraction. In Proceedings of the ACL
Workshop on Unsupervised Lexical
Acquisition, pages 59–66, Philadelphia, PA.

Davidov, Dmitry and Ari Rappoport. 2008a.
Classification of semantic relationships
between nominals using pattern clusters.
In Proceedings of ACL, pages 227–235,
Columbus, OH.

Davidov, Dmitry and Ari Rappoport.
2008b. Unsupervised discovery of

717



Computational Linguistics Volume 36, Number 4

generic relationships using pattern
clusters and its evaluation by
automatically generated SAT analogy
questions. In Proceedings of ACL,
pages 692–700, Columbus, OH.

Dietterich, Thomas. 1998. Approximate
statistical tests for comparing supervised
classification learning algorithms. Neural
Computation, 10(7):1895–1924.

Dowty, David. 1977.Word Meaning and
Montague Grammar. Kluwer, Dordrecht.

Dunning, Ted. 1993. Accurate methods for
the statistics of surprise and coincidence.
Computational Linguistics, 19(1):61–74.

Efron, Bradley and Robert Tibshirani. 1994.
An Introduction to the Bootstrap. Chapman
and Hall, Boca Raton, FL.

Erk, Katrin. 2007. A simple, similarity-based
model for selectional preferences.
In Proceedings of ACL, pages 216–223,
Prague.

Erk, Katrin and Sebastian Padó. 2008. A
structured vector space model for word
meaning in context. In Proceedings of
EMNLP, pages 897–906, Honolulu, HI.

Erk, Katrin and Sebastian Padó. 2009.
Paraphrase assessment in structured
vector space: Exploring parameters and
datasets. In Proceedings of the EACL
GEMS Workshop, pages 57–65, Athens.

Evert, Stefan. 2005. The Statistics of Word
Cooccurrences. Ph.D. dissertation,
Stuttgart University.

Fellbaum, Christiane, editor. 1998.WordNet:
An Electronic Lexical Database. MIT Press,
Cambridge, MA.

Garrard, Peter, Matthew Lambon Ralph,
John Hodges, and Karalyn Patterson.
2001. Prototypicality, distinctiveness,
and intercorrelation: Analyses of the
semantic attributes of living and nonliving
concepts. Cognitive Neuropsychology,
18(2):25–174.

Geeraerts, Dirk. 2010. Theories of Lexical
Semantics. Oxford University Press,
Oxford.

Girju, Roxana, Adriana Badulescu, and
Dan Moldovan. 2006. Automatic discovery
of part-whole relations. Computational
Linguistics, 32(1):83–135.

Girju, Roxana, Preslav Nakov, Vivi Nastase,
Stan Szpakowicz, Peter Turney, and
Deniz Yuret. 2007. SemEval-2007 task 04:
Classification of semantic relations
between nominals. In Proceedings of
SemEval 2007, pages 13–18, Prague.

Grefenstette, Gregory. 1994. Explorations in
Automatic Thesaurus Discovery. Kluwer,
Boston, MA.

Griffiths, Tom, Mark Steyvers, and Josh
Tenenbaum. 2007. Topics in semantic
representation. Psychological Review,
114:211–244.

Harris, Zellig. 1954. Distributional structure.
Word, 10(2-3):1456–1162.

Hearst, Marti. 1992. Automatic acquisition
of hyponyms from large text corpora. In
Proceedings of COLING, pages 539–545,
Nantes.

Hearst, Marti. 1998. Automated discovery
of WordNet relations. In Christiane
Fellbaum, editor,WordNet: An Electronic
Lexical Database. MIT Press, Cambridge,
MA, pages 131–151.

Herdaǧdelen, Amaç and Marco Baroni.
2009. BagPack: A general framework to
represent semantic relations. In Proceedings
of the EACL GEMS Workshop, pages 33–40,
Athens.

Herdaǧdelen, Amaç, Katrin Erk, and
Marco Baroni. 2009. Measuring semantic
relatedness with vector space models
and random walks. In Proceedings of
TextGraphs-4, pages 50–53, Singapore.

Heylen, Kris, Yves Peirsman, Dirk Geeraerts,
and Dirk Speelman. 2008. Modelling word
similarity: An evaluation of automatic
synonymy extraction algorithms. In
Proceedings of LREC, pages 3243–3249,
Marrakech.

Hou, Yuexian and Dawei Song. 2009.
Characterizing pure high-order
entanglements in lexical semantic
spaces via information geometry.
In Peter Bruza, Donald Sofge, William
Lawless, and C. J. van Rijsbergen, editors,
Quantum Interaction: Third International
Symposium, QI 2009. Springer, Berlin,
pages 237–250.

Jackendoff, Ray. 1990. Semantic Structures.
MIT Press, Cambridge, MA.

Joanis, Eric, Suzanne Stevenson, and David
James. 2008. A general feature space for
automatic verb classification. Natural
Language Engineering, 14(3):337–367.

Jones, Michael and Douglas Mewhort.
2007. Representing word meaning
and order information in a composite
holographic lexicon. Psychological
Review, 114:1–37.

Karypis, George. 2003. CLUTO: A clustering
toolkit. Technical Report 02-017,
University of Minnesota Department
of Computer Science, Minneapolis.

Kilgarriff, Adam, Pavel Rychly, Pavel Smrz,
and David Tugwell. 2004. The Sketch
Engine. In Proceedings of Euralex,
pages 105–116, Lorient.

718



Baroni and Lenci Distributional Memory

Kolda, Tamara. 2006. Multilinear operators
for higher-order decompositions. Technical
Report 2081, SANDIA, Albuquerque, NM.

Kolda, Tamara and Brett Bader. 2009. Tensor
decompositions and applications. SIAM
Review, 51(3):455–500.

Kolda, Tamara and Jimeng Sun. 2008.
Scalable tensor decompositions for
multi-aspect data mining. In Proceedings
of ICDM, pages 94–101, Pisa.

Landauer, Thomas and Susan Dumais. 1997.
A solution to Plato’s problem: The latent
semantic analysis theory of acquisition,
induction, and representation of
knowledge. Psychological Review,
104(2):211–240.

Lenci, Alessandro. 2008. Distributional
approaches in linguistic and cognitive
research. Italian Journal of Linguistics,
20(1):1–31.

Lenci, Alessandro. 2010. The life cycle
of knowledge. In Chu-Ren Huang,
Nicoletta Calzolari, Aldo Gangemi,
Alessandro Lenci, Alessandro Oltramari,
and Laurent Prévot, editors, Ontology
and the Lexicon. A Natural Language
Processing Perspective. Cambridge
University Press, Cambridge, UK,
pages 241–257.

Levin, Beth. 1993. English Verb Classes and
Alternations: A Preliminary Investigation.
University of Chicago Press, Chicago, IL.

Levin, Beth and Malka Rappaport-Hovav.
2005. Argument Realization. Cambridge
University Press, Cambridge, UK.

Lin, Dekang. 1998a. Automatic retrieval
and clustering of similar words. In
Proceedings of COLING-ACL,
pages 768–774, Montreal.

Lin, Dekang. 1998b. An information-theoretic
definition of similarity. In Proceedings of
ICML, pages 296–304, Madison, WI.

Liu, Hugo and Push Singh. 2004.
ConceptNet: A practical commonsense
reasoning toolkit. BT Technology Journal,
pages 211–226.

Lowe, Will. 2001. Towards a theory of
semantic space. In Proceedings of CogSci,
pages 576–581, Edinburgh, UK.

Lund, Kevin and Curt Burgess. 1996.
Producing high-dimensional semantic
spaces from lexical co-occurrence.
Behavior Research Methods, 28:203–208.

Manning, Chris and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA.

Markman, Arthur B. 1999. Knowledge
Representation. Psychology Press,
New York, NY.

Matveeva, Irina, Gina-Anne Levow,
Ayman Farahat, and Christian Royer. 2005.
Generalized latent semantic analysis for
term representation. In Proceedings of
RANLP, pages 60–68, Borovets.

McRae, Ken, George Cree, Mark Seidenberg,
and Chris McNorgan. 2005. Semantic
feature production norms for a large set
of living and nonliving things. Behavior
Research Methods, 37(4):547–559.

McRae, Ken, Michael Spivey-Knowlton,
and Michael Tanenhaus. 1998. Modeling
the influence of thematic fit (and
other constraints) in on-line sentence
comprehension. Journal of Memory and
Language, 38:283–312.

Merlo, Paola and Suzanne Stevenson. 2001.
Automatic verb classification based on
statistical distributions of argument
structure. Computational Linguistics,
27(3):373–408.

Meyer, Carl. 2000.Matrix Analysis and Applied
Linear Algebra. SIAM, Philadelphia, PA.

Miller, George and Walter Charles. 1991.
Contextual correlates of semantic
similarity. Language and Cognitive
Processes, 6:1–28.

Minkov, Einat and William Cohen. 2007.
Learning to rank typed graph walks:
Local and global approaches. In
Proceedings of WebKDD/SNA-KDD,
pages 1–8, San José, CA.

Minkov, Einat and William Cohen. 2008.
Learning graph walk based similarity
measures for parsed text. In Proceedings
of EMNLP, pages 907–916, Honolulu, HI.

Mitchell, Jeff and Mirella Lapata. 2008.
Vector-based models of semantic
composition. In Proceedings of ACL,
pages 236–244, Columbus, OH.

Murphy, Gregory. 2002. The Big Book of
Concepts. MIT Press, Cambridge, MA.

Nastase, Vivi and Stan Szpakowicz. 2003.
Exploring noun-modifier semantic
relations. In Proceedings of the Fifth
International Workshop on Computational
Semantics, pages 285–301, Tilburg,
The Netherlands.

Ó Séaghdha, Diarmuid and Ann Copestake.
2009. Using lexical and relational
similarity to classify semantic relations.
In Proceedings of EACL, pages 621–629,
Athens.

Padó, Sebastian and Mirella Lapata. 2007.
Dependency-based construction of
semantic space models. Computational
Linguistics, 33(2):161–199.

Padó, Ulrike. 2007. The Integration of
Syntax and Semantic Plausibility in a

719



Computational Linguistics Volume 36, Number 4

Wide-Coverage Model of Sentence Processing.
Ph.D. dissertation, Saarland University,
Saarbrücken.

Padó, Ulrike, Sebastian Padó, and Katrin Erk.
2007. Flexible, corpus-based modelling
of human plausibility judgements. In
Proceedings of EMNLP, pages 400–409,
Prague.

Pantel, Patrick and Marco Pennacchiotti.
2006. Espresso: Leveraging generic
patterns for automatically harvesting
semantic relations. In Proceedings of
COLING-ACL, pages 113–120, Sydney.

Peirsman, Yves and Dirk Speelman. 2009.
Word space models of lexical variation.
In Proceedings of the EACL GEMS
Workshop, pages 9–16, Athens.

Pustejovsky, James. 1995. The Generative
Lexicon. MIT Press, Cambridge, MA.

Quesada, Jose, Praful Mangalath, and
Walter Kintsch. 2004. Analogy-making
as predication using relational information
and LSA vectors. In Proceedings of CogSci,
page 1623, Chicago, IL.

Raghunathan, Trivellore. 2003. An
approximate test for homogeneity of
correlated correlation coefficients.
Quality & Quantity, 37:99–110.

Rapp, Reinhard. 2003. Word sense discovery
based on sense descriptor dissimilarity.
In Proceedings of the 9th MT Summit,
pages 315–322, New Orleans, LA.

Rapp, Reinhard. 2004. A freely available
automatically generated thesaurus of
related words. In Proceedings of LREC,
pages 395–398, Lisbon.

Rogers, Timothy and James McClelland.
2004. Semantic Cognition: A Parallel
Distributed Processing Approach. MIT Press,
Cambridge, MA.

Rothenhäusler, Klaus and Hinrich Schütze.
2009. Unsupervised classification with
dependency based word spaces. In
Proceedings of the EACL GEMS Workshop,
pages 17–24, Athens, Greece.

Rubenstein, Herbert and John Goodenough.
1965. Contextual correlates of synonymy.
Communications of the ACM, 8(10):627–633.

Ruiz-Casado, Maria, Enrique Alfonseca,
and Pablo Castells. 2005. Using
context-window overlapping in synonym
discovery and ontology extension. In
Proceedings of RANLP, pages 1–7, Borovets.

Sagi, Eyal, Stefan Kaufmann, and Brady
Clark. 2009. Semantic density analysis:
Comparing word meaning across time
and phonetic space. In Proceedings of the
EACL GEMS Workshop, pages 104–111,
Athens.

Sahlgren, Magnus. 2005. An introduction to
random indexing. http://www.sics.se/
∼mange/papers/RI intro.pdf.

Sahlgren, Magnus. 2006. The Word-Space
Model. Ph.D. dissertation, Stockholm
University.

Schulte im Walde, Sabine. 2006. Experiments
on the automatic induction of German
semantic verb classes. Computational
Linguistics, 32:159–194.

Schütze, Hinrich. 1997. Ambiguity Resolution
in Natural Language Learning. CSLI
Publications, Stanford, CA.

Smolensky, Paul. 1990. Tensor product
variable binding and the representation
of symbolic structures in connectionist
systems. Artificial Intelligence, 46:159–216.

Smolensky, Paul and Geraldine Legendre.
2006. The Harmonic Mind. From Neural
Computation to Optimality-theoretic
Grammar. MIT Press, Cambridge, MA.

Terra, Egidio and Charles Clarke. 2003.
Frequency estimates for statistical word
similarity measures. In Proceedings of
HLT-NAACL, pages 244–251, Edmonton.

Turney, Peter. 2001. Mining the Web for
synonyms: PMI-IR versus LSA on TOEFL.
In Proceedings of ECML, pages 491–502,
Freiburg.

Turney, Peter. 2006a. Expressing implicit
semantic relations without supervision.
In Proceedings of COLING-ACL,
pages 313–320, Sydney.

Turney, Peter. 2006b. Similarity of semantic
relations. Computational Linguistics,
32(3):379–416.

Turney, Peter. 2007. Empirical evaluation
of four tensor decomposition algorithms.
Technical Report ERB-1152, NRC,
Ottawa.

Turney, Peter. 2008. A uniform approach to
analogies, synonyms, antonyms and
associations. In Proceedings of COLING,
pages 905–912, Manchester.

Turney, Peter and Michael Littman. 2005.
Corpus-based learning of analogies and
semantic relations.Machine Learning,
60(1-3):251–278.

Turney, Peter and Patrick Pantel. 2010. From
frequency to meaning: Vector space
models of semantics. Journal of Artificial
Intelligence Research, 37:141–188.

Van de Cruys, Tim. 2009. A non-negative
tensor factorization model for selectional
preference induction. In Proceedings of the
EACL GEMS Workshop, pages 83–90,
Athens.

Van Overschelde, James, Katherine Rawson,
and John Dunlosky. 2004. Category

720



Baroni and Lenci Distributional Memory

norms: An updated and expanded
version of the Battig and Montague (1969)
norms. Journal of Memory and Language,
50:289–335.

Van Rijsbergen, C. J. 2004. The Geometry of
Information Retrieval. Cambridge
University Press, Cambridge, UK.

Veale, Tony and Yanfen Hao. 2008.
Acquiring naturalistic concept
descriptions from the Web. In
Proceedings of LREC, pages 1121–1124,
Marrakech.

Vinson, David and Gabriella Vigliocco. 2008.
Semantic feature production norms for a
large set of objects and events. Behavior
Research Methods, 40(1):183–190.

Widdows, Dominic. 2004. Geometry and
Meaning. CSLI Publications, Stanford, CA.

Widdows, Dominic. 2008. Semantic vector
products: Some initial investigations.
In Proceedings of the Second AAAI
Symposium on Quantum Interaction,
pages 1–8, Oxford.

Widdows, Dominic and Beate Dorow.
2002. A graph model for unsupervised
lexical acquisition. In Proceedings of
ICCL, pages 1–7, Taipei.

Widdows, Dominic and Stanley Peters.
2003. Word vectors and quantum logic.
In Proceedings of the Eighth Mathematics
of Language Conference, pages 1–14,
Bloomington, IN.

Zarcone, Alessandra and Alessandro Lenci.
2008. Computational models of event type
classification in context. In Proceedings of
LREC, pages 1232–1238, Marrakech.

Zhao, Ying and George Karypis. 2003.
Criterion functions for document
clustering: Experiments and analysis.
Technical Report 01-40, University of
Minnesota Department of Computer
Science, Minneapolis.

Zhitomirsky-Geffet, Maayan and Ido Dagan.
2009. Bootstrapping distributional feature
vector quality. Computational Linguistics,
35(3):435–461.

721




