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This article presents a novel approach for readability assessment through sorting. A comparator
that judges the relative readability between two texts is generated through machine learning, and
a given set of texts is sorted by this comparator. Our proposal is advantageous because it solves
the problem of a lack of training data, because the construction of the comparator only requires
training data annotated with two reading levels. The proposed method is compared with regres-
sion methods and a state-of-the art classification method. Moreover, we present our application,
called Terrace, which retrieves texts with readability similar to that of a given input text.

1. Introduction

Readability assessment is an important NLP issue with much application in the domain
of language education. The capability to automatically judge the readability of a text
would greatly help language teachers and learners, who currently spend a great deal of
time skimming through texts looking for a text at an appropriate reading level.

Substantial previous work has been done over the past decades (Klare 1963, DuBay
2004a, 2004b). Early work generated measures based on simple text statistics by as-
suming that these reflect the text reading level. For example, Kincaid, Fishburne, and
Rodgers (1975) assumed that the lengths of words and sentences represent their re-
spective difficulty. Chall and Dale (1995) used a manually constructed list of words
assumed to capture the difficulty of vocabulary. These measures are easy to use but
difficult to apply to languages other than English, because some features, such as word
length, are specific to alphabetic writing. Such methods, however, do not compete with
recent methods based on more sophisticated handling of language statistics. Collins-
Thompson and Callan (2004) proposed a classification model by constructing different
language models for different school grades (Si and Callan 2001), and Schwarm and
Ostendorf (2005) applied a support vector machine (SVM). Both of these methods
outperform classical methods and are less language-dependent.

These new methods, however, have a serious problem when implementation is at-
tempted for multiple languages: the lack of training corpora. Large amounts of training
data annotated with 12 school grades have not been at all easy to obtain on a reasonable
scale. Another possibility might have been to manually construct such training data,
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but humans are generally unable to precisely judge the level of a given text among 12
arbitrary levels. The corpora therefore have to be constructed from academic texts used
in schools. The amount of such data, however, is limited, and its use is usually strictly
limited by copyrights. Thus, it is crucial to devise a new method or approach that allows
readability assessment by using only generally available corpora, such as newspapers.

Given a single text, it is hard to attribute an absolute readability level from among
12 levels, but given two texts, there should be a better chance of judging which of them
is more difficult. This intuition led to the new model presented in this article. Our idea
is based on sorting, which is implemented in two stages:

� A comparator is generated by an SVM. This comparator judges the relative
readability of two given texts.

� Given a set of texts, the texts are sorted by the comparator with a sorting
algorithm. In our case, we used a robust binary insertion sort, as explained
in further detail later in this article.

The first step requires a training corpus, but because the comparator only judges which
of two texts is more difficult, the texts of a corpus need only be labeled according to
two different levels. Two sets of texts—one difficult, the other easy—are far easier to
obtain than a training corpus annotated for 12 different levels. Overall, our model of
readability thus differs from previous regression or classification models.

Applying this new method, we also present an application, called Terrace, which is a
system that retrieves a text with readability similar to that of a given input text. Terrace
was originally motivated by a faculty request made by teachers of multiple foreign
languages. The system currently works for English and Japanese, and the languages
will be extended to include Chinese and French.

Note that we do not claim that our model and method is better than existing meth-
ods. Although our method does compete well with previous methods, the classification
approach used in any given scenario should remain the most natural, relevant method.
The intention of this article is simply to propose an alternative way of handling read-
ability assessment, especially when adequate training corpora annotated with multiple
levels are not available.

2. Related Work

Readability, in general, describes the ease with which a text document can be read and
understood. Readability is studied in at least two different domains, those of coherence
(Barzilay and Lapata 2008) and language learning. Readability in this article signifies
the latter, for both a mother tongue and a second language.

Even within this domain, substantial previous work has been done (Klare 1963;
DuBay 2004a, 2004b). DuBay (2004a) writes that:

By the 1980s, there were 200 formulas and over a thousand studies published on the
readability formulas attesting to their strong theoretical and statistical validity (p. 2).

Every method of readability assessment extracts some features from a text and maps
the feature space to some readability norm. There are the two viewpoints regarding
features and the mapping of feature values to readability, and correspondingly there are
two kinds of work in this domain.
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Regarding the first type, many researchers have reported how various features
affect the readability of text in terms of vocabulary, syntax, and discourse relations.
Recently, Pitler and Nenkova (2008) presented an impressive verification of the effects of
each kind of feature and found that vocabulary and discourse relations are prominent,
although other features are not negligible.

The focus of the current work, however, is not on what feature set to consider, so we
use the same features throughout the article, as explained further in Section 3.1. Rather,
the focus of this article is on mapping the extracted feature values to a readability norm.
So far, two models have been used for this: regression and classification.

In regression, readability is given by a score based on a linearly weighted sum
of feature values. Early methods, from the Wannetka formula (Washburne and Vogel
1928), to the recent methods of Flesch–Kincaid (Kincaid, Fishburne, and Rodgers 1975)
and Dale–Chall (Chall and Dale 1995), are of this kind. Elaboration of such regression
methods in a more modern context could proceed through a generalized linear model
based on estimation of the weights by machine learning, although we have not found
such an approach within the literature of readability assessment for language learning.
Our proposal is compared with such an enhanced version of regression in Section 8.

In classification, readability is segmented by academic grades, and the assessment
is conducted as a classification task. The first is implemented by means of statistical
classification modeling, as reported in Collins-Thompson and Callan (2004) and Si
and Callan (2001). The authors used a language model (unigrams) and a naive Bayes
classifier by presuming different language models for each reading level. A language
model Mi is constructed for each level of readability i by using different corpora for
each level. The readability of a given text T is assessed using the formula L(Mi|T) =
Σw∈TC(w) log Pr(w|Mi), where w denotes a word in text T, C(w) denotes the frequency
of w, and Pr(w|Mi) denotes the probability of w under Mi. The second is based on an
SVM (Schwarm and Ostendorf 2005) and the authors also studied the effect of statistical
features, such as n-grams and syntactic features.

In these papers, the readability norms are represented by means of scores and
classes of readability. That is, given a single text, the system assigns a value correspond-
ing to a school grade. The result is easy to understand, and various applications have
been constructed with this type of scoring. This solution only works, however, when
a sufficient amount of training data with annotations regarding multiple levels is pro-
vided. Usually, the availability of training data in readability assessment is limited, even
for school grading. This is due to the inherent difficulty of classifying the readability of a
text into 12 grades, making it difficult to uniformly construct a large set of training data.
Moreover, the copyright issue is more serious for academic texts.1 Given this situation,
when readability assessment is modeled by regression or classification, a research team
wanting to apply these previous methods faces the problem of assembling training data,
as we did for over a year.

In this article, the readability norm is designed in a completely different way: Given
two texts, a comparator judges which is more difficult. By applying this comparator, a
set of texts is sorted. The readability of a text is assessed by searching for its position

1 We asked the authors of previous studies based on the classification approach to share their training
data, but they could not because of the copyright issue. This is a serious issue in Japanese, as well:
These copyrights are more tightly protected than those of normal texts, and publishing companies
refused to provide us with electronic files. We thus had to scan texts and use OCR to obtain the test
data utilized in this work. This experience demonstrates how difficult it is to obtain large-scale
training data with multiple levels.
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within the sorted texts. The norm is thus considered as the location of a text among an
ordered set of texts. Our approach linguistically enhances assessment of the readability of
a text as the relative ease compared to other texts, not as the absolute difficulty of the text.

The root of this idea has been presented in two articles of which we are aware. In
Inui and Yamamoto (2001), the readability of sentences for deaf people is judged by a
comparator generated by an SVM. In addition, Pitler and Nenkova (2008) presented a
comparison of texts in terms of difficulty by using an SVM. Similarly to what we present
in Section 3.1, those authors propose constructing a comparator by using an SVM to
compare two sentences or texts with multiple features. However, neither further applied
this approach to obtain readability assessment based on sorting. Our contribution in
this study is therefore that we show how a machine learning method can be used as a
comparator and applied to sort texts.

Our method can be situated more generally among machine learning methods for
ranking, where the methods learn so that they rank a set of elements given a set of
ordered training data. Various methods have been proposed so far. In one of the earliest
attempts, Cohen, Schapire, and Singer (1998) obtain a function that scores the probabil-
ity that an element is ranked higher than another, and rank all elements by maximizing
the sum of the pairwise probabilities. In another, Joachims (2002) applies an SVM to
rank elements, by devising the input vector by subtraction of feature values. In more
recent studies, such as Xia et al. (2008), an attempt is made to directly obtain the ranking
function for the whole ordered training data, not as a composition of pairwise function
application between elements. Among these methods, our proposal is unique in two
ways. First, none of the previous methods, as far as we know, proposed discretized
ranking based on sorting. Second and most importantly, all previous methods assume
the existence of fully ordered training data. In contrast, as emphasized by our problem
described in this section, such training data are difficult to acquire in the readability
domain, and we have to devise a method which works even when very limited training
data are all that is available. Our contribution lies in our study of the possibility of
using a learning-to-rank method even when learning data are only partially available.
Such an approach can be further considered for learning-to-rank methods in general in
future work.

3. The Method

In our method, a comparator of the level of difficulty of two texts is generated by using
machine learning and then the comparator is applied to sort a set of texts. The method
has two parts:

� construction of the readability relation <, and
� sorting and searching texts by using the relation.

These tasks are explained in the following sections.

3.1 Readability Comparator

The readability comparator is constructed by applying machine learning. Given texts
a, b ∈ S, where S is a set of texts, feature vectors Va and Vb are constructed. By applying
an operator ◦, Vab is constructed as Va ◦ Vb. When Vab is entered into the comparator, the
comparator outputs 1 when a > b (i.e., a is more difficult) and –1 when a < b. Because
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Figure 1
Construction of a comparator using an SVM.

the output is binary, we use an SVM to construct the comparator (see Figure 1). Note
that Vab and Vba are not the same. Reversibility of a feature vector is thus not obvious in
our work, but ideally, when the judgment for Vab is 1, that for Vba will be –1.

In terms of constructing a feature vector Va for a text a, substantial features have
been proposed (Klare 1963; DuBay 2004a, 2004b; Schwarm and Ostendorf 2005; Pitler
and Nenkova 2008). In this work, we only utilize the most basic features of vocabulary
in terms of word frequencies for three reasons. First, as stated in Section 2, because
the focus of this article is not to study the set of features, it is best to set the feature
issue aside and use only the most fundamental features. Even then, there are many
viewpoints to be verified, as will be seen in Sections 7–9. Furthermore, we have to take
into account the pros and cons of various features, because naive features only capture
coarse, default trends and could degrade performance. For example, the text length
in our data tends to be longer for more difficult texts, thus having a bad influence on
short, higher-grade texts and long, lower-grade texts. Therefore, in this article, we only
consider simple features regarding vocabulary. Second, previous work has argued for
the fundamental nature of vocabulary as a factor in readability (Alderson 1984; Laufer
1991; Pitler and Nenkova 2008). Third, some features other than word frequencies are
language-dependent in terms of the writing system, corpus availability, and perfor-
mance of NLP analysis systems. For example, average word length, used in the Flesch–
Kincaid approach, cannot be applied to Japanese. Thus, we have focused on features
that are available for any language, so that the performance becomes comparable across
languages.

The features we use are as follows. There are two factors within vocabulary: the local
and global factors. The local factor is what words are used and how frequently they ap-
pear within a text, whereas the global factor indicates the degree of readability of these
words among the overall vocabulary. Both are considered within this article, as follows:

Local: the frequency of each word divided by the frequency of the number of words in
the text (this is called relative frequency here).

Global: the log frequency of words obtained from a large corpus.

Local frequency is the most basic statistic used in machine learning methods. Relative
frequency is used to avoid the influence of text length, as mentioned above.

Regarding global frequency, psychological studies have shown that every word has
a level of familiarity that is fairly commonly understood among people. For exam-
ple, the verb meet is more familiar than the verb encounter. Such levels of familiarity
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attributed to all words should affect the difficulty levels of texts. In Chall and Dale
(1995), the authors counted the number of words not appearing in a list of the most
basic 3,000 words, in order to judge vocabulary difficulty, but the plausibility of such a
list is difficult to evaluate and such lists might not exist for languages other than English.
An alternative is to use word lists with familiarity scores, such as the MRC list in English
(Database 2006) or the Amano list in Japanese (Amano and Kondo 2000), but such lists
are costly to generate and the word coverage is limited. Instead, we decided to use the
log frequency obtained from several terabytes of corpora, because the psychological
familiarity score is known to correlate strongly with the log frequency obtained from
corpora, as reported in Tanaka-Ishii and Terada (2009) and Amano and Kondo (1995).
Tanaka-Ishii and Terada show that log frequency correlates better for larger corpora.
Thus, as will be explained in Section 6, Web corpora consisting of 6 terabytes for
English and 2 terabytes for Japanese—possibly the largest corpora available for the two
languages—were used to obtain the log frequencies.

Local and global features are extracted for all words of the two texts a and b to
be compared. The final vector is generated by applying an operator ◦, such that Vab =
Va ◦ Vb. Two simple possibilities for the operation ◦ are the following:

Concatenation: concatenate Vb’s elements after the elements of Va.
Conjunction: produce a new value for the ith element of Vab from the ith elements of Va

and Vb by some function. Typical possibilities for such a function are subtraction
and division.

The two possible vectors for Vab are explained by the illustration in Figure 2. The upper
half of the figure shows Vab generated by concatenation. Because the comparator is

Figure 2
Composition of the vectors fed into the SVM.
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constructed by machine learning, the dimension of the vectors is four times the number
of word tokens that appear in the training data. Each kind of word has a location in
a vector, which appears four times within Vab: twice in each Va and Vb for local and
global features. The first half denotes Va, and the second half denotes Vb. In the first half
of Va, the vector values are the relative frequencies for words appearing in text a, or zero
otherwise. For the second half of Va, the values are log frequencies measured in a large
corpus for the words appearing in a, or zero otherwise. Vb is constructed in a similar
manner, and the two vectors are concatenated.

In contrast, in the case of conjunction, the dimension of the vector remains twice
the number of word tokens appearing in the training data, as illustrated in the lower
half of Figure 2. The ith dimension of Vab is calculated as a function of the ith values of
Va and Vb. Pitler and Nenkova (2008) are likely to have used subtraction within their
experiment.2 For this reason, among various other possible functions for the conjunction
of two vector values, we also used subtraction.

Construction of a comparator requires training data. Because the comparator judges
the difficulty between two texts, the training data contains two sets of texts, a set Ld of
a relatively difficult level and a set Le of a relatively easy level. The SVM is trained
on a combination of texts taken from Le and Ld. The training data can combine up to
2× |Le| × |Ld|. For example, if |Le| = |Ld| = 600, the number of data points for training
could amount to 720,000. Whether learning can fully exploit such combined training
data is an interesting issue, which is examined in Section 8.

After training, for two given texts a′ and b′, the relative difficulty is judged by
inputting Va′b′ into the SVM. In this phase, if a new word which was not in the training
corpora appears in either a′ or b′, the word is ignored for the purposes of this work.

3.2 Sorting and Searching Texts

With a comparator thus constructed, the texts of S are sorted. Further, readability
assessment is performed by searching for the position of a text within the sorted texts.

The sorting and searching algorithms can be chosen from among the basic ones
already established within computer science. There are further requirements, however,
as follows:

� Searching must be as fast as possible for the actual application.
� Sorting and searching should be implemented with the same procedure,

given the nature of the application, as will be explained in Section 5.
Moreover, sorting should be done incrementally to facilitate the addition
of texts.

� Sorting must be made robust to overcome judgment errors made by the
comparator.

Given the first two requirements, we chose binary insertion sort and binary sorting from
among various sorting and searching algorithms, because it provides one of the fastest
search methods.

2 This is no more than our guess. The precise calculation method unfortunately cannot be understood from
their paper, because the description is very brief.
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To meet the last requirement, the algorithm is made robust by performing multiple
comparisons at one time, as explained here. In binary insertion sort, given a new text,
the insertion position is searched for among the previously sorted texts (from the easiest
text to the most difficult text), and the text is inserted between two successive texts i
and i + 1, where the text is more difficult than the ith easiest text and it is easier than
the i + 1th text. Through repetition of this operation, all texts are sorted. Because our
comparator is generated using an SVM, one sole comparison could lead to an erroneous
result. Moreover, one comparison error could lead to disastrous sorting results with a
binary sort, because binary search changes the insertion position significantly, especially
at the beginning of the search procedure.

To avoid such comparison mistakes, the comparison judgment is made through
multiple comparisons with texts located at the proximity of each position. The number
of multiple comparisons is called the width and is denoted as M = 2K + 1, with K
being a positive natural number, as illustrated in Figure 3. M is dynamically changed
during the search procedure by narrowing it down to indicate the exact position. The
procedure starts with a given set of texts S and an empty set SS. At each judgment, a
text to be inserted is removed from S and inserted into SS. The procedure proceeds as
follows:

1. Obtain a text x from S. If SS is empty, the text x is put into SS and another
text x is obtained from S.

2. The texts of SS are already sorted and are indexed by i = 1 . . . n, where
i = 1 is the easiest and i = n is the most difficult. Searching is done using
three variables, which are initialized as follows: bottom← 1; top← n;
middle← �(top + bottom)/2�. The width M is set as follows: M = 2× K + 1
(K ∈ N ).

3. If M > �(top− bottom)/2�, then K← �(top− bottom)/2�. A change in K also
changes the value of M, which is always set to 2× K + 1.

4. Compare x with texts at i = middle− K...middle + K. If more than K texts
are judged as difficult, then top← middle− 1. Otherwise, bottom←
middle + 1.

5. If top < bottom, then insert x before the bottom. Otherwise, go to step 3.

Figure 3
Robust comparison.
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6. Insert x before bottom.

7. If |S| > 1, then go to step 1. Otherwise, the procedure is complete.

The complexity for sorting a set |S| amounts to O(C|S|2), where C is the maximum value
of M. Because the time complexity required for insertion is log n, it might seem that
the total time complexity is O(C|S| log |S|), but this is not the case: Random access for
binary insertion requires the whole data structure to be implemented by an array, which
requires copying of the whole SS at every insertion. Note that the sorting speed at this
point does not affect the usability of our application, since the text collection is sorted
offline (as explained in Section 5).

On the other hand, the searching speed does affect the usability. For sorted texts,
the readability of a text is assessed by searching for its insertion position. The searching
is done by binary search, through the same procedure in steps 2 to 6. The computational
complexity is O(C log |SS|), where C is the maximum value of M.

4. Pros and Cons of the Proposed Method

Now that we have explained our method, we compare it with the previous models of
regression and classification mentioned in Section 2. The comparison is summarized in
Table 1.

In previous work that we mentioned, the readability of a text is represented by a
score or class, which typically has been indicated in terms of school grades (third row).
In contrast, readability in our method is presented as a position among texts, indicating
the ranking of a text situated globally among the other texts of SS. Considering the
nature of the output of assessment, the regression method is continuous, in that feature
values are mapped to scores within a continuous range, whereas classification and our
method are both discrete, in that the former gives a class and the latter gives a rank
(fourth row).

This fundamental difference gives rise to pros and cons. Above all, the advantage
of our method is that it facilitates the construction of training data (fifth row), because it
requires only two sets of typically difficult and easy texts. Here, what kinds of corpora
the regression method requires in the modern machine learning context has not been
clarified because of the lack of previous work in machine learning regression. However,
our empirical results, shown in Section 8, suggest that the two sets of difficult and
easy training data will not be sufficient, and machine learning regression requires texts
labeled with scores for different levels.

Table 1
Qualitative comparison of our method with previous methods.

previous methods our method

model regression classification ordering

readability score class ranking
output continuous discrete discrete
required levels of training data multiple multiple two
comprehensiveness high high questionable
speed of assessment fast fast slow
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At the same time, there are disadvantages to our model. First, because the method
only outputs a relative ranking, applications must be re-designed differently from those
in the previous work (sixth row). It could be said that when a > b for documents a and
b, then a contains more unfamiliar words as tokens. Even if two texts are next to each
other, however, their readability could be very different. For example, texts of grades 1
and 11 could be next to each other in a collection if it lacks texts from grade 2 to 10. An
application system generated using our model must cope with this new problem caused
by this lack of absoluteness for the readability norm. In the next section, we show how
this problem is dealt with in Terrace through the use of graphical representation.

Second, the scores and classes of regression and classification are used to hash the
position of texts within the readability norm. On the other hand, because our method
lacks scores, the location of a text must always be searched for. Thus, the previous
methods require only O(1) time for searching, whereas our method requires a certain
amount of time before a response is obtained. Therefore, it must be verified that an ap-
plication works within a reasonable response time when handling a large text collection.
In Section 9, we show that the response time is indeed within a reasonable time.

5. Terrace: An Application

As mentioned in Section 1, creation of this system was motivated by a request from
faculty members who teach multiple foreign languages. These teachers must look for
up-to-date reading materials with appropriate reading levels every day. This requires
scanning through newspapers and Web resources. The teachers’ request was that we
construct a system that would facilitate this text search task. More precisely, given a
sample text used within the classroom, the system should return texts of similar levels
of readability from among newspaper articles and other on-line archives.

At the beginning of this project, we tried to apply Schwarm and Ostendorf (2005)
and Collins-Thompson and Callan (2004). Because the request covered multiple lan-
guages, though, we faced the corpus construction problem in different languages. This
problem was serious, to the extent that training corpora used in published work in
English were unavailable. We were forced to look for another path towards building
the requested system without annotated corpora having academic grades.

The problem of returning texts of similar readability does not necessarily require
intermediating a score/class, because both the input and output are texts. Thus, chang-
ing our way of thinking, we looked for another readability norm, which led to the
framework presented so far.

Terrace is a Web-based system in which the user uploads a text, and the system
returns texts of similar readability from among a collection of texts usable as teaching
materials, which are crawled for and obtained from the Web. Currently, Terrace works
for English and Japanese. The number of languages is currently being increased.

Figure 4 shows an example of giving an input text to Terrace. After the user uploads
the text and clicks the Terrace search button, a page like that shown in Figure 5 is
displayed.

After showing the Terrace banner, the system presents the ranking of the text within
the text collection, which is crawled from the Web site. The number of texts in the
collection is 14,877 and each is taken from CNN (CNN 2008). The ranking in this
example is 8,174th from the easiest text. A horizontal bar is shown below, indicating
the location among the 14,877 texts, with triangular indicators showing the locations
of texts with annotation in terms of grades. These indicators are meant to help users
understand the location of the input text. They are generated by sorting texts with
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Figure 4
Screen shot of Terrace input.

Figure 5
Screen shot of Terrace result for the given input.

annotations together with the text collection. For example, the leftmost indicator G1
shows where a text with an annotation of grade one is located within the bar. Note that
such indicators are easily generated, because the number of annotated texts does not
need to be large.
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Figure 6
Terrace system.

The texts with the closest readability are shown below, and then easier texts are
listed. Further down, more difficult texts are listed. By clicking on any of these texts, the
user can obtain texts with the desired readability.

This functionality of Terrace is implemented via two modules, one each for search-
ing and for crawling, as shown in Figure 6. The crawler collects texts from news sites and
other related archive sites every day, and the module incrementally sorts the collected
documents. These texts are searched upon a user request.

6. Data for Evaluation

In the rest of this article, the proposed method and the Terrace system are evaluated.
The key question to be considered through the evaluation is whether the comparator
can discern slight differences in the readability levels of test data from only two sets of
training data that are roughly different.

The proposed method was tested for English and Japanese. The data is summarized
in Table 2, where the upper block corresponds to English and the lower to Japanese. For

Table 2
Training and test data.

English Data

label corpus levels # of Texts # of Words

Training & TD1-E Time normal 600 623,203
children 600 259,163

TD2-M-E AtoZ 27 levels (5 grades) 674 1,060,557
TD2-F-E English textbook 5 levels (linear) 153 114,054

Japanese Data

label corpus levels # of Texts # of Words

Training & TD1-J Asahi newspaper normal 600 841,289
children 600 533,568

TD2-M-J Japanese Textbook 6 levels (linear) 58 121,610
TD2-F-J Japanese Proficiency Test 4 levels 44 87,846
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both languages, there were training data and test data. The test data consisted of two
sorts:

TD1: A collection of texts taken from the same kind of data as the training data.
TD2: A collection of texts unrelated to the training data and originally assigned levels

or a linear ordering. These levels and ordering were used as the correct ordering
in our work.

TD2 further consisted of two kinds of data in each language: data for learners of their
mother tongue (i.e., children and students) and data for learners of a foreign language.
These are labeled as TD2-M and TD2-F, respectively.

For English, the training data were taken from Time (Time 2008) and Time For Kids
(TimeForKids 2008). We downloaded 600 articles (that is, |Ld| = |Le| = 600), of which 100
were used as TD1-E. The total number of different words in TD1-E is 22,736, which is
the dimension of the feature vector of a text when TD2 is used as the text data.3 When
using subtraction as ◦, the dimension is doubled (for local and global), and when using
concatenation, the dimension is four times this value. TD2-M-E consisted of the data set
called AtoZ, which can be purchased (ReadingA-Z.com 2008). Each of the texts in this
data set is labeled by 27 levels and graded by 5 levels. TD2-F-E consisted of the English
textbooks used in Japanese junior high and high schools (Morizumi 2007; Yoneyama
2007). These texts are classified into five grades and also linearly ordered; that is, the
texts become more difficult in their order of appearance in the textbooks. These levels
and orders originally attached to the data were used as the gold standard in this study.
For the global frequency, we used the log frequency of each word as measured from
almost 6 terabytes of Web data in English, scanned in the autumn of 2006 (Tanaka-Ishii
and Terada 2009).

For Japanese, the training data and TD1-J were taken from Asahi newspapers
(AsahiNewspaper 2008; KodomoAsahi 2008). Six hundred (600) articles were acquired,
and 100 of these were used as TD1-J. The total number of different words in this training
data is 48,762.4 TD2-M-J consisted of Japanese junior high and high school textbooks
with six grades, which also appeared in a linear order (Miyaji 2008). TD2-F-J consisted
of the texts used in the Japanese language proficiency test (JEES 2008). The texts in this
data set are classified into four levels and not linearly ordered. For the global frequency,
we used the log frequency of each word as measured from almost 2 terabytes of Web
data in Japanese, scanned in the autumn of 2006.

The other evaluation settings were as follows. As the SVM (Joachims 1998, 1999), we
used LIBSVM (Chang and Lin 2001). The SVM training was done using the parameters
of cost = 0.1 and gamma = 0.00001 with a Gaussian kernel. The value of K used in robust
sorting (Section 3.2) was K = 2.

7. Evaluation of the Comparator

The basic performance was first tested using TD1. Because |Ld| = |Le| = 600, 500 texts
were chosen and paired randomly, and 2× 500 = 1,000 pairs were used for training. The
factor of 2 is necessary, because a pair can be used twice by exchanging the comparison
order Ved and Vde. The remaining 100 texts were randomly paired and tested. The results

3 Words are transformed into their standard forms using the Lancaster algorithm (Paice and Husk 2008).
Moreover, we do not use feature selection, because it has been reported that the distribution of function
words also counts with respect to readability (Collins-Thompson and Callan 2004).

4 Words are transformed into their standard forms using MeCab (Kudo 2009).

215



Computational Linguistics Volume 36, Number 2

Table 3
Accuracy of the comparator for different operators and features tested on TD1.

English

Concatenation 91.67%
Subtraction 94.27%

Japanese

Concatenation 95.47%
Subtraction 95.47%

presented here were produced through six-fold cross-validation, and each fold was
further repeated five times by changing the pairing of training and testing (i.e., total
execution was done 30 times to obtain one performance value).

Table 3 shows the accuracy for English (upper block) and Japanese (lower block).
The rows of a block represent the different operators explained in Section 3.1. Overall,
the scores were above 90%.

The comparator performance for TD2 was also investigated (Table 4). Here, the
training data amount was set to 2 × 600. The accuracy was measured for all pairs of
texts with different levels. For TD2-M-E, all five levels were considered, whereas for
the linearly ordered TD2-F-E and TD2-M-J, the levels were considered by grade (that
is, five levels for TD2-F-E and six levels for TD2-M-J). The accuracy reported here is the
average of execution done five times by changing the random pairing for the training
data. The performance was, in general, lower than that for TD1, but still stayed close
to 90%. For the operator ◦, whether concatenation or subtraction was used made no
difference. Therefore, from here on, the operator ◦ is set to concatenation.

To evaluate the classification performance in more detail, the accuracy for every
two-class combination was determined for TD2-M-E in English, as shown in Table 5.
Because TD2-M-E has five grades, the columns indicate the 1st to 4th grades, whereas
the rows indicate the 2nd to 5th grades. The evaluation thus forms a 4 × 4 table, where
each cell indicates the accuracy of distinguishing the two–class pairs for the row and
column.

Table 4
Accuracy of the comparator (TD2).

English

Concatenation Subtraction

TD2-M-E 97.23 % 97.14 %
TD2-F-J 90.06 % 90.06 %

Japanese

Concatenation Subtraction

TD2-M-J 88.18 % 88.18 %
TD2-F-J 94.49 % 94.49 %
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Table 5
Classification results between two classes, tested for TD2-M-E in English.

Grade 4 Grade 3 Grade 2 Grade 1

Grade 5 84.28% 98.18% 100.00% 100.00%
Grade 4 – 94.16% 99.97% 100.00%
Grade 3 – – 96.79% 100.00%
Grade 2 – – – 99.01%

The closer to the diagonal, the more difficult the classification task was, because
the levels to be distinguished became closer to each other. The results reflect this ten-
dency, with lower values for cells closer to the diagonal. In particular, the performance
for discerning grades between pairs of the 4th and 5th grades was poor. Distinction
between the 1st/2nd and 2nd/3rd grades was more successful than that between the
3rd/4th and 4th/5th grades, since the lower the grades the easier it is to discern two
given successive school levels.

Before going on to actually sort text using the comparator, we verified how abnor-
mal our generated comparator was. Ideally, we want a complete ordering of the set,
and for this the comparator must obey certain laws in the sense of mathematical sets. A
comparator is considered abnormal if it does not obey two laws:

Reversibility: Texts a, b are defined as reversible if b < a and a > b both hold. This
corresponds to the law that when Vab’s value is +1, then Vba’s value must be –1
and vice versa.

Transitivity: If a < b and b < c, then a < c.

Especially for transitivity, in an ordered set this law is the primary requirement that
must be fulfilled among ordered elements. If transitivity does not hold in many triples,
we have to introduce partial ordering instead of the total ordering considered thus far.

The anomalies were measured by using the four TD2 data sets. For all pairs and
triples of TD2, we tested the reversibility and transitivity for all possible pairs and triples
by changing the random pairing of test data (TD1) five times. For reversibility,

� 10 pairs out of 226,801 for TD2-M-E were non-reversible once,
� 1 pair out of 11,628 for TD2-F-E was non-reversible once, and
� all pairs for all other data and random pairings of training data were

reversible.

Such strong results were obtained because the training was done by reversing the
order of the pairs (thus, the SVM learned both Ved as +1 and Vde as –1.) Similarly, for
transitivity,

� one triple out of 50,803,424 of TD2-M-E was non-transitive once, and
� all triples for all other data and random pairings of training data were

transitive.

Such results show how rarely these anomalies occur in our method. Therefore, our
choice of total ordering seems relevant.
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8. Evaluation of Sorting

Since the basic results have been clarified thus far, we will now report the results for
concatenation for a more global evaluation of sorting and searching.

The TD2 data were sorted by the method explained in Section 3.2, and the correla-
tion with the correct order was investigated. Three methods were used for comparison:

� Flesch–Kincaid
� Dale–Chall
� Support vector regression (SVR [Drucker et al. 1996])

In these three methods, the readability level is obtained as a value, whereas our method
presents an order. Therefore, the results of the three methods were sorted according to
the values. The resulting orders for the three methods and for ours were then compared
with the correct order in the test data. We used the finest annotation for correct ordering;
for example, 27 levels for TD2-M-E, linear ordering for TD2-F-E, linear ordering for
TD2-M-J, and 4 levels for TD2-F-J.

Here, SVR was trained by labeling the Time/Asahi newspaper texts as +1.0 and
the texts of Time/Asahi for children as –1.0, and then using the 600 texts for training.
The LIBSVM package was used with the same kernel and parameter settings given in
Section 6.

We used Spearman’s correlation to evaluate the ordering. Spearman’s basic correla-
tion formula is

rs = 1− 6
∑n

i=1 d2
i

n3 − n

where n is the number of texts, and di is the difference in ranking between the correct
and obtained results for text i. This formula has an extended version to cope with
multiple elements having the same ranking. Given x and y as ordered sequences with
the same ranking, the correlation is given as follows:

rs =
Tx + Ty −

∑n
i=1 d2

i

2
√

TxTy

where

Tx = (n3 − n)−
nx∑

i=1

(t3
i − ti), Ty = (n3 − n)−

ny∑

j=1

(t3
j − tj)

Here, nx and ny are the numbers of the rankings for equivalently ranked elements in
x and y, respectively, and ti, tj denote the number of elements with the same ranking
as elements which are indexed as i, j, respectively. For example, given an order x =
[1,2,3,3,4], nx = 1, because only 3 had the same ranking, ti = 2 for i = 1, because there
are two 3s.

The results are shown in Figure 7. The horizontal axis represents the four data sets
of TD2, and the vertical axis represents the correlation value. Note that for the Japanese
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Figure 7
Correlation with the test data.

data, there are only two bars, because Flesch–Kincaid and Dale–Chall are inapplicable.
Moreover, note that the vertical heights are comparable within a data set but not among
data sets, because the number of levels for each data set is different.

Comparing within each block, our method performed better than any other, having
a correlation of more than 0.8 for all cases. Flesch–Kincaid performed quite well, having
a high correlation of more than 0.6 for the TD2-M-E data. The use of SVR was less
effective, with the correlation being lower than that with our method. This shows that
the performance of the regression method is limited, even with a machine learning
method, when training data for two levels only are available. In contrast, our method
shows that even with rough two-level training data, high correlation is achievable. Such
performance is enabled by comparison among texts even in the middle range between
difficult and easy texts.

How this performance compares to that of previous classification methods is diffi-
cult to say. Above all, our method cannot be fairly compared with previous classification
methods from the viewpoint of classification, because in order to transform our sorted
results into classes, we would have to give the number of texts in each class. Because
this information is not provided to the classification methods, the comparison would be
unfair, thus favoring our method. Therefore, the comparison must be made by means of
correlation. Another problem is that because we do not possess the training data used
in previous work, we could only test with what we have listed in Table 2.

Therefore, we compared the performance using TD2-E-M as training data. Because
the amount of training data was small, the number of classes considered here was five.
Slightly less than half of the data (67 texts) was taken from each of five different levels,
and the remaining texts (which differed in number at each level) were used for testing:
a sufficient amount of test data is needed, too, since our evaluation is done through
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correlation measured on sorted results. By exchanging the halves, the result reported
here is the average of two-fold cross-validation.

We compared three methods:

1. A classification method using part of TD2-E-M as training data.

2. The sorting method using the same part of TD2-E-M as training data.

3. The sorting method with TD1-E as training data.

The first classification method followed that of Schwarm and Ostendorf (2005). The
amount of training data used to build a classifier for each class was 67 for +1 and 4× (67)
for –1. The parameters used for the SVM were the same as those used for our method.
For the second method, the training data consisted of 1,340 (2 × 5C2 [pairs among 5
classes] × 67 texts) random pairs of two successive levels. Each fold of two-fold cross-
validation was done five times by changing the pairs randomly. For the third method,
TD1-E was used as in the previous evaluation, but this time the verification was done
with five levels (whereas the first block in Figure 7 was evaluated with 27 levels). The
amount of training data was the same as TD1 (i.e., 1,200) and the experiment was done
five times by changing the pairs randomly.

The results are shown in Figure 8. Three bars are shown from first to third, cor-
responding to each of the three methods. For classification, the correlation was 0.925,
whereas the correlations of the second and third bars were 0.946, 0.941, respectively. Our
methods thus slightly outperformed the classification method. Moreover, the difference
between the second and third methods showed that two-level training data could
perform similarly to multiple-level training data. This shows the strength of our method
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Figure 8
Comparison of classification methods and our model on TD2-M-E.
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in that it can complement a limited amount of training data through relative comparison
within the set.

It is not our intention, though, to assert that our method is better than the classifica-
tion method based only on this experiment. Classification has a much better chance of
achieving better performance with large-scale training data, especially when features
are studied further. The point here is to show the potential of the sorting model,
especially when sufficient amounts of corpus data annotated in multiple classes are
unavailable.

Finally, we investigated the effect of the amount of training data as mentioned in
Section 3.1. Given a set of relatively difficult texts Ld and a set of easy texts Le, the
maximum number of training pairs will amount to 2× |Ld| × |Le|, with |L| indicating
the number of elements in set L. Two effects related to the amount of data should
be considered. First, there is the effect of the absolute amount of data used; that is,
the amounts of |Ld| and |Le|. We let N = |Ld| = |Le| and measured the correlation shift
by changing N from 100 to 600. For each N, the number of training pairs was 2N,
constructed by randomly sampling N documents from Ld and Le and forming N pairs,
and then constructing Vde and Ved for each pair.

Second, the effect of combination should be considered; that is, the number of pairs
whose maximum number is 2× |Ld| × |Le| for a given N. When N = 600, this amounts
to 720,000 training pairs, which is too large in terms of the time required for training.
Therefore, by fixing N = 100, we tested the learning effect for numbers of training pairs
up to 2× 100× {1, 5, 10, 50, 100}.

The results are shown in Figure 9, where the first graph shows the effect of the
amount of data and the second graph shows the effect of combination. The horizontal
axes represent the amount of training data (namely, 2N for the first graph and 2× 100×
{1, 5, 10, 50, 100} for the second graph), and the vertical axes represent the correlation.
In the second graph, the horizontal axis is in log scale. Each graph has four lines, each
corresponding to a subset of data from TD2. Every plot was obtained by averaging five
repetitions of the random pairing of learning data.

In the first graph, the increase in the amount of local data led to only a slight
increase in performance, which is almost invisible. In the second graph, the increase
in combination did not lead to higher performance, but rather to drastically decreased
performance for the English data. This decrease was especially prominent with TD2-F-
E, the English textbook for Japanese students. This must have been due to the different
natures of the training and test data. On the other hand, the texts of the Asahi newspaper
articles and TD2-{M,F}-J are controlled under a similar standard (in terms of vocabu-
lary, syntax, and so forth), which would account for the difference from the case in
English.

These results suggest that even if our method has the possibility of obtaining large
amounts of training data by combination, this would not lead to higher performance.
Moreover, the graphs suggest the importance of obtaining a sufficient amount of train-
ing data from two levels which match the target domain.

9. Evaluation of the Terrace System

9.1 Evaluation of Searching

The search performance using the algorithm presented in Section 3.2 was evaluated via
the average positional error when a text is searched. The search performance of our
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Figure 9
Effect of increasing the amount of data (left: corpus data amount; right: training data amount
increased by combination).

method was compared with that of the three methods presented at the beginning of
Section 8. Because the sorting performance already differed among the methods, we
evaluated the performance on correctly sorted texts. One text was removed from the
correctly sorted texts, its position was searched for with each method, and the difference
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between the resulting and correct positions was measured. This procedure was repeated
for all texts of TD2, and the average difference was obtained. The finest levels for TD2
were used as the correct annotation. The execution was again performed five times by
changing the random pairing within the training data.

The results are shown in Figure 10. The horizontal axis represents blocks of TD2
data, and the vertical axis represents the average locational error of searching divided
by the total number of levels of each data. Unlike the correlation figures seen so far, the
smaller the value of each result, the better the precision of the search results. As was the
case in Figure 7, the heights of bars are comparable within a data block, whereas bars
across blocks are not comparable because of the different numbers of levels.

Naturally, the results are reversed from those of Figure 7. Methods with higher
performance in sorting had smaller errors. Overall, our method had the smallest errors
among all methods.

Because Terrace is different from previous systems based on the absolute scores
of Flesch–Kincaid or Dale–Chall, it was presented to several language teachers who
originated the Terrace project (as mentioned in Section 5). They reacted positively to
Terrace, even though the system does not show any absolute readability scores. There
are two main reasons for the favorable response. First, as mentioned, because they
need texts rather than scores, teachers liked the fact that Terrace returns texts directly
without outputting the values. With previous systems, teachers themselves had to input
one candidate text after another to find one of an appropriate level. Second, for for-
eign language teachers, especially of languages other than English, scores are not well
standardized, and teachers are often puzzled by some readability scores. The teaching
levels do not necessarily correspond to standard school grades for natives. Therefore,
they prefer that a system outputs texts directly as in Terrace, because this means they
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Search comparison.
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do not have to interpret some score which is difficult to assess. Nevertheless, they
found that the graphical indicators are helpful for locating themselves among numerous
collections.

9.2 Response Time

In Section 4, qualitative analysis showed that a disadvantage of our model is the
greater computational complexity in readability assessment. This section reports on the
response time when using Terrace.

The response time of Terrace is determined by the addition of three factors:

� extraction of features from a text
� searching for the text’s position within a text collection
� system overhead time (server access, Web page generation, etc.)

The time needed for feature vector construction is linear with respect to the text length.
This process is conducted once before a search. The text’s position within the text
collection is then searched for. Because comparison is performed multiple times in a
search, this factor dominates the response time. As mentioned in Section 3.2, this time
is logarithmic with respect to the number of texts in a collection. The last factor is
constant.

We evaluated the response time for TD2-M-E, since we currently have a larger text
collection in English and TD2-M-E is a larger data set than TD-F-E. As noted in Section 5,
this collection amounts to 14,877 texts taken from CNN (CNN 2008). The input texts
were all texts of TD2-M-E. Because K = 2, which makes M = 2× K + 1 = 5 (e.g., the
width of comparison was 5), the total number of comparisons was about 70 for one
search. The computational environment was as follows: CPU: Intel(R) Core(TM)2 Quad
CPU Q9550 (2.83 GHz); main memory: 3.5 GB; OS: Debian GNU/Linux 4.0.

The results are plotted in Figure 11. Because the key factor for response time is
the length of a text, the horizontal axis represents the text length and the vertical axis
represents the response time. Each plot corresponds to one text in TD2-M-E. The longer
the text, the slower the response time will be. The plotted points are separated into
two clusters, with one at the upper right and the other just below. This disjunction
corresponds to texts which were judged as more difficult and those judged as easier,
respectively, at the first comparison within the binary search. Because the Terrace system
stores its feature vectors in a MySQL database, when the number of non-zero features
is large, access becomes slower, even when all vector dimensions are the same. For
texts judged as more difficult at the first comparison, the vector length in the string
(which is how it is implemented in MySQL) becomes longer, and the overall procedure
takes a longer time. In any case, for all texts the response time was less than a second.
Therefore, although our method does have a complexity disadvantage, the results of
this evaluation suggest this is not a serious problem.

10. Conclusion

We have described a new model of readability assessment that uses sorting. Our
approach makes it possible to assess the readability of texts in terms of relative ease
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System response time for texts in TD2-M-E.

compared to other texts, rather than based on an indicator of the absolute difficulty
of the text. In our method, a comparator is constructed using an SVM, which judges
which of two texts is more difficult. This comparator is then used to sort the texts of a
given set using a binary insertion sort algorithm. Our method differs from traditional
readability assessment methods, most of which are based on linear regression, and it
also differs from recent methods of statistical readability assessment, which are based
on multi-value classification. The advantage of our model is that it solves the problem
of assembling training data annotated in multiple classes, because it only requires
two classes of training data: easy and difficult. At the same time, our model has the
disadvantages of the resulting norm being somewhat incomprehensible as a ranking
and greater computational complexity compared to previous methods.

After performing a fundamental evaluation, we compared the overall performance
of our method with those of other methods. Our method achieved a higher correlation
with the gold standard, more than 0.8, in sorting text collections in both English and
Japanese; this was higher than both traditional methods and an SVR trained with
two-class corpora. Another comparison with a state-of-the-art classification method
confirmed the potential of our method.

We also presented an actual application, called Terrace: a system that retrieves a
text of similar readability from a text collection when given an input text. We showed
that Terrace can overcome the disadvantages of the proposed model, by introducing
a graphical representation of the positions of texts with known levels, and also by
verifying that the response time is always less than a second.

Currently, we are extending the number of languages for Terrace. In addition, we
are investigating the effects of introducing other features.
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