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We introduce a generative probabilistic model, the noisy channel model, for unsupervised word
sense disambiguation. In our model, each context C is modeled as a distinct channel through
which the speaker intends to transmit a particular meaning S using a possibly ambiguous word
W. To reconstruct the intended meaning the hearer uses the distribution of possible meanings
in the given context P(S|C) and possible words that can express each meaning P(W|S). We
assume P(W|S) is independent of the context and estimate it using WordNet sense frequencies.
The main problem of unsupervised WSD is estimating context-dependent P(S|C) without access
to any sense-tagged text. We show one way to solve this problem using a statistical language
model based on large amounts of untagged text. Our model uses coarse-grained semantic classes
for S internally and we explore the effect of using different levels of granularity on WSD per-
formance. The system outputs fine-grained senses for evaluation, and its performance on noun
disambiguation is better than most previously reported unsupervised systems and close to the
best supervised systems.

1. Introduction

Word sense disambiguation (WSD) is the task of identifying the correct sense of an
ambiguous word in a given context. An accurate WSD system would benefit appli-
cations such as machine translation and information retrieval. The most successful
WSD systems to date are based on supervised learning and trained on sense-tagged
corpora. In this article we present an unsupervised WSD algorithm that can leverage
untagged text and can perform at the level of the best supervised systems for the all-
nouns disambiguation task.

The main drawback of the supervised approach is the difficulty of acquiring
considerable amounts of training data, also known as the knowledge acquisition
bottleneck. Yarowsky and Florian (2002) report that each successive doubling of the
training data for WSD only leads to a 3–4% error reduction within their experimental
range. Banko and Brill (2001) experiment with the problem of selection among
confusable words and show that the learning curves do not converge even after
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a billion words of training data. They suggest unsupervised, semi-supervised, or
active learning to take advantage of large data sets when labeling is expensive. Yuret
(2004) observes that in a supervised naive Bayes WSD system trained on SemCor,
approximately half of the test instances do not contain any of the contextual features
(e.g., neighboring content words or local collocation patterns) observed in the training
data. SemCor is the largest publicly available corpus of sense-tagged text, and has only
about a quarter million sense-tagged words. In contrast, our unsupervised system uses
the Web1T data set (Brants and Franz 2006) for unlabeled examples, which contains
counts from a 1012 word corpus derived from publicly-available Web pages.

A note on the term “unsupervised” may be appropriate here. In the WSD literature
“unsupervised” is typically used to describe systems that do not directly use sense-
tagged corpora for training. However, many of these unsupervised systems, including
ours, use sense ordering or sense frequencies from WordNet (Fellbaum 1998) or other
dictionaries. Thus it might be more appropriate to call them weakly supervised or
semi-supervised. More specifically, context–sense pairs or context–word–sense triples
are not observed in the training data, but context-word frequencies (from untagged
text) and word-sense frequencies (from dictionaries or other sources) are used in model
building. One of the main problems we explore in this study is the estimation of context-
dependent sense probabilities when no context–sense pairs have been observed in the
training data.

The first contribution of this article is a probabilistic generative model for word
sense disambiguation that seamlessly integrates unlabeled text data into the model
building process. Our approach is based on the noisy channel model (Shannon 1948),
which has been an essential ingredient in fields such as speech recognition and machine
translation. In this study we demonstrate that the noisy channel model can also be the
key component for unsupervised word sense disambiguation, provided we can solve
the context-dependent sense distribution problem. In Section 2.1 we show one way
to estimate the context-dependent sense distribution without using any sense-tagged
data. Section 2.2 outlines the complete unsupervised WSD algorithm using this model.
We estimate the distribution of coarse-grained semantic classes rather than fine-grained
senses. The solution uses the two distributions for which we do have data: the distribu-
tion of words used to express a given sense, and the distribution of words that appear
in a given context. The first can be estimated using WordNet sense frequencies, and the
second can be estimated using an n-gram language model as described in Section 2.3.

The second contribution of this article is an exploration of semantic classes at differ-
ent levels of granularity for word sense disambiguation. Using fine-grained senses for
model building is inefficient both computationally and from a learning perspective. The
noisy channel model can take advantage of the close distribution of similar senses if they
are grouped into semantic classes. We take semantic classes to be groups of WordNet
synsets defined using the hypernym hierarchy. In each experiment we designate a
number of synsets high in the WordNet hypernym hierarchy as “head synsets” and
use their descendants to partition the senses into separate semantic classes. In Section 3
we present performance bounds for such class-based WSD and describe our method of
exploring the different levels of granularity.

In Section 4 we report on our actual experiments and compare our results with
the best supervised and unsupervised systems from SensEval-2 (Cotton et al. 2001),
SensEval-3 (Mihalcea and Edmonds 2004), and SemEval-2007 (Agirre, Màrquez, and
Wicentowski 2007). Section 5 discusses these results and the idiosyncrasies of the
data sets, baselines, and evaluation metrics used. Section 6 presents related work, and
Section 7 summarizes our contributions.
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2. The Noisy Channel Model for WSD

2.1 Model

The noisy channel model has been the foundation of standard models in speech recog-
nition (Bahl, Jelinek, and Mercer 1983) and machine translation (Brown et al. 1990).
In this article we explore its application to WSD. The noisy channel model can be
used whenever a signal received does not uniquely identify the message being sent.
Bayes’ Law is used to interpret the ambiguous signal and identify the most probable
intended message. In WSD, we model each context as a distinct channel where the
intended message is a word sense (or semantic class) S, and the signal received is an
ambiguous wordW. In this section we will describe how to model a given context C as
a noisy channel, and in particular how to estimate the context-specific sense distribution
without using any sense-tagged data.

Equation (1) expresses the probability of a sense S of wordW in a given context C.
This is the well-known Bayes’ formula with an extra P(.|C) in each term indicating the
dependence on the context.

P(S|W,C) =
P(W|S,C)P(S|C)

P(W|C)
(1)

To perform WSD we need to find the sense S that maximizes the probability P(S|W,C).
This is equivalent to the maximization of the product P(W|S,C)P(S|C) because the
denominator P(W|C) does not depend on S. To perform the maximization, the two
distributions P(W|S,C) and P(S|C) need to be estimated for each context C.

The main challenge is to estimate P(S|C), the distribution of word senses that can
be expressed in the given context. In unsupervised WSD we do not have access to any
sense-tagged data, thus we do not know what senses are likely to be expressed in any
given context. Therefore it is not possible to estimate P(S|C) directly.

What we do have is the word frequencies for each sense P(W|S), and the word
frequencies for the given context P(W|C). We use the WordNet sense frequencies to
estimate P(W|S) and a statistical language model to estimate P(W|C) as detailed in
Section 2.3. We make the independence assumption P(W|S,C) = P(W|S), that is, the
distribution of words used to express a particular sense is the same for all contexts.
Finally, the relationship between the three distributions, P(S|C), P(W|S,C), and P(W|C)
is given by the total probability theorem:

P(W|C) =
∑

S

P(S|C)P(W|S,C) (2)

We can solve for P(S|C) using linear algebra. Let WS be a matrix, s and w two vectors
such that:

WSij = P(W = i|S = j)

sj = P(S = j|C = k)

wi = P(W = i|C = k) (3)
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Using this new form, we can see that Equation (2) is equivalent to the linear equation
w = WS× s and s can be solved using a linear solver. Typically WS is a tall matrix and
the system has no exact solutions. We use the Moore–Penrose pseudoinverse WS+ to
compute an approximate solution:

s = WS+ × w (4)

Appendix A discusses possible scaling issues of this solution and offers alternative
solutions. We use the pseudoinverse solution in all our experiments because it can be
computed fast and none of the alternatives we tried made a significant difference in
WSD performance.

2.2 Algorithm

Section 2.1 described how to apply the noisy channel model for WSD in a single context.
In this section we present the steps we follow in our experiments to simultaneously
apply the noisy channel model to all the contexts in a given word sense disambiguation
task.

Algorithm 1

1. Let W be the vocabulary. In this study we took the vocabulary to be the
approximately 12,000 nouns in WordNet that have non-zero sense
frequencies.

2. Let S be the set of senses or semantic classes to be used. In this study we
used various partitions of noun synsets as semantic classes.

3. Let C be the set of contexts (nine-word windows for a 5-gram model)
surrounding each target word in the given WSD task.

4. Compute the matrix WC where WCik = P(W = i|C = k). Here i ranges
over the vocabulary W and k ranges over the contexts C. This matrix
concatenates the (w) word distribution vectors from Equation (4) for each
context. The entries of the matrix are computed using the n-gram language
model described in Section 2.3. This is the most expensive step in the
algorithm (see Appendix B for a discussion of implementation efficiency).

5. Compute the matrix WS where WSij = P(W = i|S = j). Here i ranges over
the vocabulary W and j ranges over the semantic classes S. The entries of
the matrix are computed using the WordNet sense frequencies.

6. Compute the matrix SC = WS+ ×WC where SCjk = P(S = j|C = k).
Here j ranges over the semantic classes S and k ranges over the contexts C.
This step computes the pseudoinverse solution described in Section 2.1
simultaneously for all the contexts, and the resulting SC matrix is a
concatenation of the (s) solution vectors from Equation (4) for each context.
WS+ is the pseudoinverse of the matrix WS.

7. Compute the best semantic class for each WSD instance by using
argmaxSP(S|W,C) ∝ P(W|S)P(S|C). Here P(S|C) comes from the column
of the SC matrix that corresponds to the context of the WSD instance
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and P(W|S) comes from the row of the WS matrix that corresponds to the
word to be disambiguated.

8. Compute the fine-grained answer for each WSD instance by taking the
most frequent (lowest numbered) sense in the chosen semantic class.

9. Apply the one sense per discourse heuristic: If a word is found to have
multiple senses in a document, replace them with the majority answer.

2.3 Estimation Procedure

In Section 2.1, we showed how the unsupervised WSD problem expressed as a noisy
channel model can be decomposed into the estimation of two distributions: P(W|S) and
P(W|C). In this section we detail our estimation procedure for these two distributions.

To estimate P(W|S), the distribution of words that can be used to express a given
meaning, we used the WordNet sense frequencies.1 We did not perform any smoothing
for the zero counts and used the maximum likelihood estimate: count(W,S)/count(S).
As described in later sections, we also experimented with grouping similar WordNet
senses into semantic classes. In this case S stands for the semantic class, and the counts
from various senses of a word in the same semantic class are added together to estimate
P(W|S).

To estimate the distribution of words in a given context, P(W|C), we used a 5-gram
language model. We define the context as the nine-word window centered on the target
word w1w2 . . .w9, whereW = w5. The probability of a word in the given context can be
expressed as:

P(W = w5) ∝ P(w1 . . .w9) (5)

= P(w1)P(w2|w1) . . .P(w9|w1 . . .w8) (6)

∝ P(w5|w1 . . .w4)P(w6|w2 . . .w5)P(w7|w3 . . .w6) (7)

P(w8|w4 . . .w7)P(w9|w5 . . .w8)

Equation (5) indicates that P(W|C) is proportional to P(w1 . . .w9) because the other
words in the context are fixed for a given WSD instance. Equation (6) is the standard
decomposition of the probability of a word sequence into conditional probabilities.
The first four terms do not include the target word w5, and have been dropped in Equa-
tion (7). We also truncate the remaining conditionals to four words reflecting the Markov
assumption of the 5-gram model. Finally, using an expression that is proportional to
P(W|C) instead of P(W|C) itself will not change the WSD result because we are taking
the argmax in Equation (1).

Each term on the right hand side of Equation (7) is estimated using a 5-gram
language model. To get accurate domain-independent probability estimates we used the
Web 1T data set (Brants and Franz 2006), which contains the counts of word sequences
up to length five in a 1012 word corpus derived from publicly-accessible Web pages.
Estimation of P(W|C) is the most computationally expensive step of the algorithm, and
some implementation details are given in Appendix B.

1 The sense frequencies were obtained from the index.sense file included in the WordNet distribution.
We had to correct the counts of three words (person, group, and location) whose WordNet counts
unfortunately include the corresponding named entities and are thus inflated.

115



Computational Linguistics Volume 36, Number 1

Figure 1
Upper bound on fine-grained accuracy for a given number of semantic classes.

3. Semantic Classes

Our algorithm internally differentiates semantic classes rather than fine-grained senses.
Using fine-grained senses in the noisy channel model would be computationally ex-
pensive because the word–sense matrix needs to be inverted (see Equation [4]). It is
also unclear whether using fine-grained senses for model building will lead to better
learning performance: The similarity between the distributions of related senses is
ignored and the data becomes unnecessarily fragmented.

Even though we use coarse-grained semantic classes for model building, we use
fine-grained senses for evaluation. During evaluation, the coarse-grained semantic
classes predicted by the model are mapped to fine-grained senses by picking the lowest
numbered WordNet sense in the chosen semantic class.2 This is necessary to perform a
meaningful comparison with published results.

We take semantic classes to be groups of WordNet synsets defined using the hyper-
nym hierarchy (see Section 6 for alternative definitions). Section 4 presents three WSD
experiments using different sets of semantic classes at different levels of granularity.
In each experiment we designate a number of synsets high in the WordNet hypernym
hierarchy as “head synsets” and use their descendants to form the separate semantic
classes.

An arbitrary set of head synsets will not necessarily have mutually exclusive and
collectively exhaustive descendants. To assign every synset to a unique semantic class,
we impose an ordering on the semantic classes. Each synset is assigned only to the first
semantic class whose head it is a descendant of according to this ordering. If there are
synsets that are not descendants of any of the heads, they are collected into a separate
semantic class created for that purpose.

Using the coarse-grained semantic classes for prediction, Algorithm 1 will be unable
to return the correct fine-grained sense when this is not the lowest numbered sense in
a semantic class. To quantify the restrictive effect of working with a small number of
semantic classes, Figure 1 plots the number of semantic classes versus the best possible

2 The sense numbers are ordered by the frequency of occurrence in WordNet.
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oracle accuracy for the nouns in the SemCor corpus. To compute the oracle accuracy, we
assume that the program can find the correct semantic class for each instance, but has to
pick the first sense in that class as the answer. To construct a given number of semantic
classes, we used the following algorithm:

Algorithm 2

1. Initialize all synsets to be in a single “default” semantic class.

2. For each synset, compute the following score: the oracle accuracy achieved
if that synset and all its descendants are split into a new semantic class.

3. Take the synset with the highest score and split that synset and its
descendants into a new semantic class.

4. Repeat steps 2 and 3 until the desired number of semantic classes is
achieved.

The upper bound on fine-grained accuracy given a small number of semantic
classes is surprisingly high. In particular, the best reported noun WSD accuracy (78%)
is achievable if we could perfectly distinguish between five semantic classes.

4. Three Experiments

We ran three experiments with the noisy channel model using different sets of semantic
classes. The first experiment uses the 25 WordNet semantic categories for nouns, the
second experiment looks at what happens when we group all the senses to just two
or three semantic classes, and the final experiment optimizes the number of semantic
classes using one data set (which gives 135 classes) and reports the out-of-sample result
using another data set.

The noun instances from the last three SensEval/SemEval English all-words tasks
are used for evaluation. We focus on the disambiguation of nouns for several reasons.
Nouns constitute the largest portion of content words (48% of the content words in the
Brown corpus [Kucera and Francis 1967] are nouns). For many tasks and applications
(e.g., Web queries [Jansen, Spink, and Pfaff 2000]) nouns are the most frequently encoun-
tered and important part of speech. Finally, WordNet has a more complete coverage
of noun semantic relations than other parts of speech, which is important for our
experiments with semantic classes.

As described in Section 2.2 we use the model to assign each ambiguous word to its
most likely semantic class in all the experiments. The lowest numbered sense in that
class is taken as the fine-grained answer. Finally we apply the one sense per discourse
heuristic: If the same word has been assigned more than one sense within the same
document, we take a majority vote and use sense numbers to break the ties.

Table 1 gives some baselines for comparison. The performance of the best super-
vised and unsupervised systems on noun disambiguation for each data set are given.
The first-sense baseline (FSB) is obtained by always picking the lowest numbered sense
for the word in the appropriate WordNet version. We prefer the FSB baseline over the
commonly used most-frequent-sense baseline because the tie breaking is unambiguous.
All the results reported are for fine-grained sense disambiguation. The top three systems
given in the table for each task are all supervised systems; the result for the best
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Table 1
Baselines for the three SensEval English all-words tasks; the WordNet version used (WN);
number of noun instances (Nouns); percentage accuracy of the first-sense baseline (FSB); the top
three supervised systems; and the best unsupervised system (Unsup). The last row gives the
total score of the best systems on the three tasks.

Task WN Nouns FSB 1st 2nd 3rd Unsup

senseval2 1.7 1,067 71.9 78.0 74.5 70.0 61.8
senseval3 1.7.1 892 71.0 72.0 71.2 71.0 62.6
semeval07 2.1 159 64.2 68.6 66.7 66.7 63.5

total 2,118 70.9 74.4 72.5 70.2 62.2

unsupervised system is given in the last column. The reported unsupervised systems
do use the sense ordering and frequency information from WordNet.

4.1 First Experiment: The 25 WordNet Categories

In previous work, descendants of 25 special WordNet synsets (known as the unique
beginners) have been used as the coarse-grained semantic classes for nouns (Crestan,
El-Bèze, and De Loupy 2001; Kohomban and Lee 2005). These unique beginners were
used to organize the nouns into 25 lexicographer files based on their semantic category
during WordNet development. Figure 2 shows the synsets at the top of the noun
hierarchy in WordNet. The 25 unique beginners have been shaded, and the two graphics
show how the hierarchy evolved between the two WordNet versions used in this study.

Figure 2
The top of the WordNet noun hypernym hierarchy for version 1.7 (left) and version 2.1 (right).
The 25 WordNet noun categories are shaded.
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Table 2
The performance of the noisy channel model with the 25 semantic classes based on WordNet
lexicographer files. The columns give the data set, the percentage of times the model picks the
correct semantic class, maximum possible fine-grained score if the model had always picked the
correct class, and the actual score.

Data Set CorrClass MaxScore Score

senseval2 85.1 90.3 77.7
senseval3 78.0 88.7 70.1
semeval07 75.5 86.2 64.8

total 81.4 89.3 73.5

We ran our initial experiments using these 25 WordNet categories as semantic
classes. The distribution of words for each semantic class, P(W|S), is estimated based
on WordNet sense frequencies. The distribution of words for each context, P(W|C), is
estimated using a 5-gram model based on the Web 1T corpus. The system first finds the
most likely semantic class based on the noisy channel model, then picks the first sense in
that class. Table 2 gives the results for the three data sets, which are significantly higher
than the previously reported unsupervised results.

To illustrate which semantic classes are the most difficult to disambiguate, Table 3
gives the confusion matrix for the Senseval2 data set. We can see that frequently occur-
ring concrete classes like person and body are disambiguated well. The largest source
of errors are the abstract classes like act, attribute, cognition, and communication. These
25 classes may not be the ideal candidates for word sense disambiguation. Even though
they allow a sufficient degree of fine-grained distinction (Table 2 shows that we can get

Table 3
Confusion matrix for Senseval2 data with the 25 WordNet noun classes. The rows are actual
classes, the columns are predicted classes. Column names have been abbreviated to save space.
The last two columns give the frequency of the class (F) and the accuracy of the class (A).

ac an ar at bo co co ev fe fo gr lo mo ob pe ph po pr qu re sh st su ti F A
act 58 0 4 7 0 7 2 3 2 0 5 0 0 0 0 0 1 4 1 1 0 2 0 0 9.1 59.8

animal 0 17 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.1 77.3
artifact 0 0 66 2 0 0 6 5 0 0 5 1 0 1 0 0 0 0 0 0 3 1 0 0 8.4 73.3

attribute 3 0 0 19 0 3 0 0 0 0 0 1 0 1 2 0 2 1 0 0 1 3 0 0 3.4 52.8
body 0 0 0 0 123 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 11.6 99.2

cognition 6 0 1 2 0 82 5 1 0 0 0 2 1 1 1 0 1 0 5 1 0 5 0 0 10.7 71.9
communicat 2 0 1 0 0 2 29 1 0 0 0 2 5 0 0 1 0 0 0 1 0 0 0 2 4.3 63.0

event 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2.0 90.5
feeling 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 100.

food 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 100.
group 0 0 0 2 0 5 0 0 0 0 69 2 0 3 0 0 0 0 0 1 1 0 0 1 7.9 82.1

location 0 0 0 1 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 2.2 95.7
motive 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.2 50.0
object 2 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0.7 14.3
person 2 4 0 0 0 1 1 0 0 0 1 0 0 0 168 0 0 0 0 0 0 0 0 0 16.6 94.9

phenomenon 1 0 0 1 0 1 0 2 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 1.0 27.3
possession 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0.4 100.

process 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 12 0 0 0 1 0 0 1.4 80.0
quantity 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 10 0 0 0 0 0 1.2 76.9
relation 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0.3 66.7

shape 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.1 100.
state 1 0 1 5 0 1 1 2 0 0 1 0 0 0 1 0 0 0 0 0 0 98 0 0 10.4 88.3

substance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0.9 100.
time 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 44 4.8 86.3

119



Computational Linguistics Volume 36, Number 1

Table 4
The performance of the noisy channel model with two to three semantic classes. The columns
give the data set, the head synsets, the percentage of times the model picks the correct semantic
class, maximum possible fine-grained score if the model had always picked the correct class, and
the actual score.

Data Set Heads CorrClass MaxScore Score

senseval2 entity/default 86.6 76.8 74.9
senseval3 entity/default 94.2 75.8 71.2
senseval3 object/entity/default 93.8 77.4 72.9
semeval07 psychological-feature/default 91.2 74.8 68.6

85–90% if we could pick the right class every time), they seem too easy to confuse. In the
next few experiments we will use these observations to design better sets of semantic
classes.

4.2 Second Experiment: Distinguishing Mental and Physical Concepts

Figure 1 shows that the upper bound for fine-grained disambiguation is relatively high
even for a very small number of semantic classes. In our next experiment we look at
how well our approach can perform differentiating only two or three semantic classes.

We use Algorithm 2 applied to the appropriate version of SemCor to pick the head
synsets used to define the semantic classes. Figure 2 shows that the top level of the
hypernym hierarchy has changed significantly between the WordNet versions. Thus,
different head synsets are chosen for different data sets. However, the main distinction
captured by our semantic classes seems to be between mental and physical concepts.
Table 4 gives the results. The performance with a few semantic classes is comparable to
the top supervised algorithms in each of the three data sets.

4.3 Third Experiment: Tuning the Number of Classes

Increasing the number of semantic classes has two opposite effects on WSD perfor-
mance. The higher the number, the finer distinctions we can make, and the maximum
possible fine-grained accuracy goes up. However, the more semantic classes we define,
the more difficult it becomes to distinguish them from one another. For an empirical
analysis of the effect of semantic class granularity on the fine-grained WSD accuracy,
we generated different sets of semantic classes using the following algorithm.

Algorithm 3

1. Sort all the synsets according to their “subtree frequency”: i.e., the total
frequency of each synset’s descendants in the hypernym tree.

2. Take the desired number of synsets with the highest subtree frequency and
use them as head synsets, that is, split their descendants into separate
semantic classes.

Figure 3 shows the fine-grained accuracy we achieved on the Senseval2 data set
with up to 600 semantic classes defined based on Algorithm 3. Note the differences: (i)
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Figure 3
The fine-grained accuracy on Senseval2 data set for a given number of semantic classes.

Figure 1 gives the best possible oracle accuracy, Figure 3 gives the actual WSD accuracy;
(ii) Algorithm 2 chooses the head synsets based on their oracle score, Algorithm 3
chooses them based on their subtree frequency.

As we suspected, the relationship is not simple or monotonic. However, one can
identify distinct peaks at 3, 25, and 100–150 semantic classes. One hypothesis is that
these peaks correspond to “natural classes” at different levels of granularity. Here are
some example semantic classes from each peak:

3 classes entity, abstraction
25 classes action, state, content, location, attribute, ...

135 classes food, day, container, home, word, business, feeling, material, job, man, ...

To test the out-of-sample effect of tuning the semantic classes based on the peaks
of Figure 3, we used the SemEval-2007 data set as our test sample. When the 135
semantic classes from the highest peak are used for the disambiguation of the nouns
in the SemEval-2007 data set, an accuracy of 69.8% was achieved. This is higher than
the accuracy of the best supervised system on this task (68.6%), although the difference
is not statistically significant.

5. Discussion

In this section we will address several questions raised by the results of the experi-
ments. Why do we get different results from different data sets? Are the best results
significantly different than the first-sense baseline? Can we improve our results using
better semantic classes?

5.1 Why Do We Get Different Results from Different Data Sets?

Table 5 summarizes our results from the three experiments of Section 4. There are some
significant differences between the data sets.
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Table 5
Result summary for the three data sets. The columns give the data set, the results of the three
experiments, best reported result, the first-sense baseline, and the number of instances.

Data set Exp1 Exp2 Exp3 Best FSB Instances

senseval2 77.7 74.9 - 78.0 71.9 1,067
senseval3 70.1 72.9 - 72.0 71.0 892
semeval07 64.8 68.6 69.8 68.6 64.2 159

The SemEval-2007 data set appears to be significantly different from the other two
with its generally lower baseline and scores. The difference in accuracy is probably
due to the difference in data preparation. In the two Senseval data sets all content
words were targeted for disambiguation. In the SemEval-2007 data set only verbs and
their noun arguments were selected, targeting only about 465 lemmas from about 3,500
words of text. For the Senseval-3 data set none of our results, or any published result
we know of, is significantly above the baseline for noun disambiguation. This may be
due to extra noise in the data—the inter-annotator agreement for nouns in this data set
was 74.9%.

5.2 Are the Best Results Significantly Different Than the FSB?

Among all the published results for these three data sets, our two results for the
Senseval-2 data set and the top supervised result for the Senseval-2 data set are the
only ones statistically significantly above the FSB for noun disambiguation at the 95%
confidence interval. This is partly because of the lack of sufficient data. For example, the
SemEval-2007 data set has only 159 nouns; and a result of 71.8% would be needed to
demonstrate a difference from the baseline of 64.2% at the 95% confidence interval.

More importantly, however, statistical significance should not be confused with
“significance” in general. A statistically significant difference may not be necessary or
sufficient for a significant impact on an application. Even a WSD system that is statis-
tically indistinguishable from the baseline according to the “total accuracy” metric is
most probably providing significantly different answers compared to always guessing
the first sense. There are metrics that can reveal these differences, such as “balanced
error rate” (i.e., arithmetic average of the error rates for different senses) or “accuracy in
detecting the use of a non-dominant sense.”

Finally, the relatively high first-sense baseline (e.g., 71.0% for Senseval-3 nouns)
combined with the relatively low inter-annotator agreement (e.g., 74.9% for Senseval-
3 nouns) makes progress in the traditional WSD task difficult. Annotators who are
perfectly proficient in comprehending language nevertheless find it difficult to distin-
guish between artificially-created dictionary senses. If our long term goal is to model
human competence in language comprehension, it would make sense to focus on tasks
at which humans are naturally competent. Dictionary-independent tasks such as lexical
substitution or textual entailment may be the right steps in this direction.

5.3 Can We Improve Our Results Using Better Semantic Classes?

In order to get an upper bound for our approach, we searched for the best set of semantic
classes specific to each data set using the following greedy algorithm.
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Table 6
The performance of the noisy channel model with the best set of semantic classes picked for each
data set. The columns give the data set, the number of classes, maximum possible score if the
model always picks the correct class, percentage of times it actually picks the correct class, and
its fine-grained accuracy.

Data Set NumClass MaxScore CorrClass Score

senseval2 23 89.2 88.8 80.1
senseval3 29 87.2 87.4 77.4
semeval07 12 84.9 89.9 79.2

Algorithm 4

1. Initialize all synsets to be in a single “default” semantic class.

2. For each synset, compute the following score: the WSD accuracy achieved
if that synset and all its descendants are split into a new semantic class.

3. Take the synset with the highest score and split that synset and its
descendants into a new semantic class.

4. Repeat steps 2 and 3 until the WSD accuracy can no longer be improved.

Algorithm 4 was run for each of the three data sets, which resulted in three different
sets of semantic classes. The noisy channel model was applied with the best set of
semantic classes for each data set. Table 6 summarizes the results. Note that these results
are not predictive of out-of-sample accuracy because Algorithm 4 picks a specific set of
semantic classes optimal for a given data set. But the results do indicate that a better
set of semantic classes may lead to significantly better WSD accuracy. In particular
each result in Table 6 is significantly higher than previously reported supervised or
unsupervised results.

How to construct a good set of semantic classes that balance specificity and identi-
fiability is a topic of ongoing research. See Kohomban and Lee (2007) for a supervised
solution using feature-based clustering that tries to maintain feature–class coherence.
Non-parametric Bayesian approaches such as Teh et al. (2006) applied to context distri-
butions could reveal latent senses in an unsupervised setting.

6. Related Work

For a general overview of different approaches to WSD, see Navigli (2009) and
Stevenson (2003). The Senseval and SemEval workshops (Cotton et al. 2001; Mihalcea
and Edmonds 2004; Agirre, Màrquez, and Wicentowski 2007) are good sources of recent
work, and have been used in this article to benchmark our results.

Generative models based on the noisy channel framework have previously been
used for speech recognition (Bahl, Jelinek, and Mercer 1983), machine translation
(Brown et al. 1990), question answering (Echihabi and Marcu 2003), spelling correction
(Brill and Moore 2000), and document compression (Daume III and Marcu 2002) among
others. To our knowledge our work is the first application of the noisy channel model
to unsupervised word sense disambiguation.
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Using statistical language models based on large corpora for WSD has been ex-
plored in Yuret (2007) and Hawker (2007). For specific modeling techniques used in this
article see Yuret (2008); for a more general review of statistical language modeling see
Chen and Goodman (1999), Rosenfeld (2000), and Goodman (2001).

Grouping similar senses into semantic classes for WSD has been explored in previ-
ous work. Senses that are similar have been identified using WordNet relations (Peters,
Peters, and Vossen 1998; Crestan, El-Bèze, and De Loupy 2001; Kohomban and Lee
2005), discourse domains (Magnini et al. 2003), annotator disagreements (Chklovski
and Mihalcea 2003), and other lexical resources such as Roget (Yarowsky 1992), LDOCE
(Dolan 1994), and ODE (Navigli 2006).

Ciaramita and Altun (2006) build a supervised HMM tagger using “supersenses,”
essentially the 25 WordNet noun categories we have used in our first experiment in
addition to 15 verb categories similarly defined. They report a supersense precision of
67.60 for nouns and verbs of Senseval-3. Table 2 gives our supersense score as 78% for
Senseval-3 nouns. However, the results are not directly comparable because they do not
report the noun and verb scores separately or calculate the corresponding fine-grained
score to compare with other Senseval-3 results.

Kohomban and Lee (2007) go beyond the WordNet categories based on lexicogra-
pher files and experiment with clustering techniques to construct their semantic classes.
Their classes are based on local features from sense-labeled data and optimize feature–
class coherence rather than adhering to the WordNet hierarchy. Their supervised system
achieves an accuracy of 74.7% on Senseval-2 nouns and 73.6% on Senseval-3 nouns.

The systems mentioned so far are supervised WSD systems. Agirre and Martinez
(2004) explore the large-scale acquisition of sense-tagged examples from the Web and
train supervised, minimally supervised (requiring sense bias information from hand-
tagged corpora, similar to our system), and fully unsupervised WSD algorithms using
this corpus. They report good results on the Senseval-2 lexical sample data compared to
other unsupervised systems. Martinez, de Lacalle, and Agirre (2008) test a similar set of
systems trained using automatically acquired corpora on Senseval-3 nouns. Their mini-
mally supervised system obtains 63.9% accuracy on polysemous nouns from Senseval-3
(corresponding to 71.86% on all nouns).

7. Contributions

We have introduced a new generative probabilistic model based on the noisy channel
framework for unsupervised word sense disambiguation. The main contribution of this
model is the reduction of the word sense disambiguation problem to the estimation of
two distributions: the distribution of words used to express a given sense, and the dis-
tribution of words that appear in a given context. In this framework, context similarity
is determined by the distribution of words that can be placed in the given context. This
replaces the ad hoc contextual feature design process by a statistical language model,
allowing the advances in language modeling and the availability of large unlabeled
corpora to have a direct impact on WSD performance.

We have provided a detailed analysis of using coarse-grained semantic classes for
fine-grained WSD. The noisy channel model is a good fit for class-based WSD, where
the model decides on a coarse-grained semantic class instead of a fine-grained sense.
The chosen semantic class is then mapped to a specific sense based on the WordNet
ordering during evaluation. We show that the potential loss from using coarse-grained
classes is limited, and state-of-the-art performance is possible using only a few semantic
classes. We explore semantic classes at various levels of granularity and show that
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the relationship between granularity and fine-grained accuracy is complex, thus more
work is needed to determine an ideal set of semantic classes.

In several experiments we compare the performance of our unsupervised WSD
system with the best systems from previous Senseval and SemEval workshops. We
consistently outperform any previously reported unsupervised results and achieve
comparable performance to the best supervised results.

Appendix A: Solutions for P(S|C)

To solve for P(S|C) using P(W|C) and P(W|S), we represent the first two as vectors: sj =
P(S = j|C = k) and wi = P(W = i|C = k), and the last one as a matrix: WSij = P(W =
i|S = j). Our problem becomes finding a solution to the linear equation w = WS× s.
Using the Moore–Penrose pseudoinverse, WS+, we find a solution s = WS+ × w. This
solution minimizes the distance |WS× s− w|. There are two potential problems with
this pseudoinverse solution. First, it may violate the non-negativity and normalization
constraints of a probability distribution. Second, a maximum likelihood estimate should
minimize the cross entropy between WS× s and w, not the Euclidean distance. We
addressed the normalization problem using a constrained linear solver and the cross-
entropy problem using numerical optimization. However, our experiments showed the
difference in WSD performance to be less than 1% in each case. The pseudoinverse
solution, s = WS+ × w, can be computed quickly and works well in practice, so this
is the solution that is used in all our experiments.

Appendix B: Estimating P(W|C)

Estimating P(W|C) for each context is expensive because the number of words that need
to be considered is large. The Web 1T data set contains 13.5 million unique words, and
WordNet defines about 150,000 lemmas. To make the computation feasible we needed
to limit the set of words for which P(W|C) needs to be estimated. We limited our set to
WordNet lemmas with the same part of speech as the target word. We further required
the word to have a non-zero count in WordNet sense frequencies. The inflection and
capitalization of each word W was automatically matched to the target word. As a
result, we estimated P(W|C) for about 10,000 words for each noun context and assumed
the other words had zero probability. The n-grams required for all the contexts were
listed, and their counts were extracted from the Web 1T data set in one pass. The P(W|C)
was estimated for all the words and contexts based on these counts. In the end, we only
used the 100 most likely words in each context for efficiency, as the difference in results
using the whole distribution was not significant. For more details on smoothing with a
large language model see Yuret (2008), although we did not see a significant difference
in WSD performance based on the smoothing method used.
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