
Last Words

Empiricism Is Not a Matter of Faith

Ted Pedersen∗

University of Minnesota, Duluth

1. The Sad Tale of the Zigglebottom Tagger

“Hurrah, this is it!” you exclaim as you set down the most recent issue of Computational
Linguistics. “This Zigglebottom Tagger is exactly what I need!” A gleeful smile crosses
your face as you imagine how your system will improve once you replace your tagger
from graduate school with the clearly superior Zigglebottom method. You rub your
hands together and page through the article looking for a way to obtain the tagger,
but nothing is mentioned. That doesn’t dampen your enthusiasm, so you search the
Web, but still nothing turns up. You persist though; those 17 pages of statistically
significant results really are impressive. So you e-mail Zigglebottom asking for the
tagger.

Some days, or perhaps weeks, later, you get a hesitant reply saying: “We’re planning
to release a demo version soon, stay tuned . . . ” Or perhaps: “We don’t normally do this,
but we can send you a copy (informally) once we clean it up a bit . . . ” Or maybe: “We
can’t actually give you the tagger, but you should be able to re-implement it from the
article. Just let us know if you have any questions . . . ”

Still having faith, and lacking any better alternative, you decide to re-implement the
Zigglebottom Tagger. Despite three months of on-and-off effort, the end result provides
just the same accuracy as your old tagger, which is nowhere near that reported in the
article. Feeling sheepish, you conclude you must have misunderstood something, or
maybe there’s a small detail missing from the article. So you contact Zigglebottom again
and explain your predicament. He eventually responds: “We’ll look into this right away
and get back to you . . . ”

A year passes. You have the good fortune to bump into Zigglebottom at the Annual
Meeting of the Association for Computational Linguistics (ACL). You angle for a seat
next to him during a night out, and you buy him a few beers before you politely
resume your quest for the tagger. Finally, he confesses rather glumly: “My student
Pifflewhap was the one who did the implementation and ran the experiments, and if
he’d only respond to my e-mail I could ask him to tell you how to get it working, but
he’s graduated now and is apparently too busy to reply.”

After a fewmore beers, Zigglebottom finally agrees to give you the tagger: “I’ll send
you the version of the code I have, no promises though!” And true to his word, what he
sends is incomplete and undocumented. It doesn’t compile easily, and it’s engineered
so that a jumble of programs must be run in an undisclosed kabalistic sequence known
only to (perhaps) the elusive Pifflewhap. You try your best to make it work every now

∗ Department of Computer Science, 1114 Kirby Drive, University of Minnesota, Duluth, MN 55812, USA.
E-mail: tpederse@d.umn.edu.

© 2008 Association for Computational Linguistics



Computational Linguistics Volume 34, Number 3

and then for a few months, but eventually you give up, and go back to using the same
old tagger you used before.

2. The Paradox of Faith-Based Empiricism

The tale of the Zigglebottom Tagger is one of disappointment, not just for you but also
for Zigglebottom himself. While his work achieved publication, it must gnaw at his
scientific conscience that he can’t reproduce his own results. The fact that you can’t
reproduce those results either raises questions, but those are resolved with a shrug of
your shoulders and by giving the benefit of the doubt to Zigglebottom. He’s not a fraud;
there’s just some crucial detail that is neither recorded in the article nor in the software,
which can’t be installed and run in any case.

The problem here is not the Zigglebottom article; as a community we accept that
our publications don’t provide enough space to describe our elaborate 21st century
empirical methods in sufficient detail to allow for re-implementation and reproduction
of results. This is true despite the generous page allowances in Computational Linguistics
and even more so in our much more constrained conference proceedings.

What’s really missing is the software that produced the results that convinced the
reviewers the article should be published. This is particularly troubling given the highly
empirical nature of the work reported in so many of our publications. We publish
page after page of experimental results where apparently small differences determine
the perceived value of the work. In this climate, convenient reproduction of results
establishes a vital connection between authors and readers.

Our community expects published papers to be rigorously reviewed and made
available via open access as soon as possible (e.g., via the ACL Anthology1). We expect
the supporting corpora and lexical resources will be made available even if at some cost
(e.g., via the Linguistic Data Consortium2). Yet, we do not have the same expectations
regarding our software. While we have table after table of results to pore over, we
usually don’t have access to the software that would allow us to reproduce those results.
This cuts to the core of whether we are engaged in science, engineering, or theology:
Scientists reproduce results; engineers build impressive and enduring artifacts; and
theologians muse about what they believe but can’t see or prove.

Before you judge the analogy with theology as being too harsh, conduct the follow-
ing experiment. Randomly select one of your own publications from a year or two ago
and think about what would be involved in reproducing the results. How long would
it take, assuming you would be able to do it? If you can’t reproduce those results, why
do you believe them? Why should your readers?

Our inability to reproduce results leads to a debilitating paradox, where we as
reviewers and readers accept highly empirical results on faith. We do this routinely,
to the point where we seem to have given up on the idea of being able to reproduce
results. This is the natural consequence of faith-based empiricism, and the only way to
fight that movement is with a little bit of heresy. Let’s not accept large tables of empirical
results on faith, let’s insist that we be able to reproduce them exactly and conveniently.
Let’s insist that we are scientists first and foremost, and agree that this means that we
must be able to reproduce each other’s results.

1 www.aclweb.org/anthology/.
2 www.ldc.upenn.edu/.

466



Pedersen Empiricism Is Not a Matter of Faith

3. A Heretic’s Guide to Reproducibility

In many cases the failure to release software that allows results to be reproduced is
not a conscious decision, but rather unintentional fallout from how we manage projects
and set priorities in guiding our careers. What follows are a few simple ideas that any
researcher can adopt to make it much easier (and more likely) to produce software that
can not only be released but that will allow users to reproduce results with minimal
effort. As more of us use and release such software, our expectations as a community
will rise, and we’ll eventually see software releases as a natural part of the publication
process, much as we now view data sharing.

3.1 Release Early, Release Often

The single greatest barrier to releasing software is that we don’t think about doing it
early enough. It’s only when we get that first e-mail asking for the implementation of a
method discussed in Computational Linguistics that the issue arises, and by then it’s too
late. At that point the task of converting our code into a well-documented and easy to
use package is often nearly impossible.

Beyond difficulties caused by poor documentation, the passage of time, and
turnover in project members, there can even be legal concerns. When projects do not
plan to release software, it’s often the case that system development will include stages
based on helter-skelter cutting and pasting of code from other sources. The effect of this
is to erase all traces of the origin of that code and the terms under which it was made
available. Once you have gone down this route, it’s very hard to consider releasing the
resulting software.

However, if you plan from the start to distribute your software, you will inevitably
be guided by considerations that are important to your potential audience. You will
choose licenses, hardware platforms, and programming languages that avoid any obvi-
ous barriers to distribution and use. You will develop an infrastructure of Web services,
software repositories, andmailing lists that will evolve with your project. Youwill avoid
haphazard development methodologies that lead to disorganized and impossible-to-
maintain code. The prospect of having actual external users of your software will
inspire a discipline and orderliness on your development and deployment processes
that will likely result in much better software than if you developed it for internal use
only.

It is true that releasing software that is both usable and reliable requires a strong
hand to guide system development, and that’s a skill that many researchers don’t think
they have. However, it’s really quite simple to develop. All you must do is play the part
of a demanding yet naive client from time to time from the very start of the project.
Insist that the code be easy to install and use and that the results that come from it
be easy to understand and absolutely reproducible. If the project is too large for you
to play this role yourself, assign it to one or more members of your team, and make
sure they play the part as if they are a new user encountering the system for the first
time.

If you do this from the beginning of a project it takes surprisingly little time, and
you end up with much better documentation and software, and a system that can be
easily and conveniently used to reproduce results both by outside users and by yourself
after the passage of some time.

467



Computational Linguistics Volume 34, Number 3

3.2 Measure Your Career in Downloads and Users

Researchers sometimes fall into the trap of seeing software and reproduction of results
as frills, and not essential components in their career development: “Asmuch as I would
like to, I don’t have the time to produce distributable code. Besides, my promotion will
be based on publications and grants, not software releases . . . ”

This suggests that you can either spend your time creating and releasing software,
or you can spend it writing grant proposals and papers, but not both. This overlooks
a very happy side-effect that comes from creating releasable code—you will be more
efficient in producing newwork of your own since you can easily reproduce and extend
your own results.

There is also a danger that this attitudewill evolve over time into a self-perpetuating
cycle: “I’ve worked on this for X years, why would I just give it away?” This ignores the
fact that “giving it away” will make it easier for others to use your work, because if you
don’t make your code available, who is really going to spend years re-implementing
what you did?

Webber (2007) draws attention to the amount of time our community wastes in
writing and reviewing papers that are rejected and eventually abandoned. In a similar
vein, we should all think about the time we cost our community when we don’t release
software and make anyone who is interested in using or validating our work do their
own implementation.

If software is released publicly under one of the standard licenses that protects your
copyright (e.g., the GNU General Public License3 or the Mozilla Public License4) then
there is little danger of your work being misappropriated, and you will build a reservoir
of good will within our community. Most users don’t want to steal from you; they
simply want to use your code to build their own system while giving you all the credit
that is your due. As your software acquires a following, you can use that as a foundation
for offering tutorials andworkshops and othermeans of dissemination that will increase
your visibility in the research community, thereby enhancing the credibility and impact
of the work you have done.

3.3 Ensure Project Survivability By Releasing Software

Released software can allow your project to sustain itself despite turnover in personnel
and the passage of time. There is no greater satisfaction than opening up a software
release that has not been used for a few years and immediately being able to start
producing meaningful results, without having to reverse engineer it or trace through
code line by line. The more time passes, the more you become just like every other
potential user of your software; so, as you are creating it, remember that in a few years
your memory of all the details that now seem so obvious will have faded, and you will
be grateful for a job well done, and that will translate into time saved as you begin to
use that software again.

Imagine meeting with a new project member and being able to say: “Go download
this software, read the documentation, install it, run the script that reproduces our ACL
experiments, and thenwe can start talking tomorrow about how you are going to extend
that work . . . ” This lowers the bar for entry to your project for new colleagues, and saves

3 www.gnu.org/copyleft/gpl.html.
4 www.mozilla.org/MPL/.

468



Pedersen Empiricism Is Not a Matter of Faith

your existing team considerable time when introducing a new member to the work of
your group.

Although youwon’t spendmuch time thinking about it at the start of a project, your
students will graduate, post-docs will move on, employees will resign, and you might
even find a better job somewhere. Having publicly released software helps clarify what
rights former project members have once they have left a project. This is a painfully
murky area, and it can lead to many misunderstandings and bad feelings that take time
and energy to deal with as they arise.

That confusion can also cause former colleagues to distance themselves from a
project simply because they feel they don’t have the right to participate, and in fact
in some cases they may not even have access to or copies of the very system they spent
all those months or years working on. This difficult situation is absolutely avoided if
you release the software: Your former colleagues will have exactly the same rights as
anyone else. They can remain a part of the community of users, testers, and developers,
and can often provide valuable continuity in a project even if they have moved to a new
project or organization. The same is true for you. Suppose you move from the academic
world to a position in industry: If your project code has already been released prior to
this move, then you can safely continue to use it without fear of losing control of it to
your new employer.

3.4 Make The World A Better Place

Finally, although this viewpoint may seem quaint or naive, a great deal of our research is
funded by public tax dollars, by people who make ten dollars an hour waiting tables or
standing behind a counter in a convenience store for 12 hours at a time. We are fortunate
to do what we do: even if it takes many hours and causes great personal stress, in the
end the work is challenging and satisfying, and compared to how most people in the
world live and work, we are leading charmed and privileged lives.

Although most taxpayers won’t have much interest in reading our papers and run-
ning our code, they ought to have that opportunity. And who knows, maybe when their
children take a Computational Linguistics or Artificial Intelligence class they will run
across a piece of our publicly available code that will cause them to pause and think, and
maybe inspire them to try something new or different, maybe even make them think
about becoming one of our community. It’s not the most likely scenario, but it seems
like we really ought to try to give back as much as we can to the greater public good.

4. What should Computational Linguistics Do?

We seem as a community to have accepted a very curious state of affairs. As reviewers
and readers of Computational Linguistics and the proceedings of ACL conferences, we in-
sist upon extensive, rigorous, and fine-grained evaluations, where the difference in per-
formance between competing methods is sometimes rather small. However, we don’t
expect to be able to reproduce these results or modify these experiments in any way.

With the rise of search engines as a source of linguistic data, we may have even
reached a point where we don’t expect our data to be reproducible due to the arbitrary
results they provide. Kilgarriff (2007) argues, “Googleology is bad science,” to which
we would simply add “because it is not reproducible.”

But instead of insisting upon reproducibility, we tell ourselves to think about
the bigger picture, to focus on the ideas and not the software, as those are just “im-
plementation issues.” This is a debilitating paradox, because results must be supported

469



Computational Linguistics Volume 34, Number 3

experimentally with great precision and detail and are judged according to harsh em-
pirical standards, but we as readers and reviewers are asked to accept that these results
are accurate and reproducible on faith.

If we believe in empirical methods and the value of comparisons and experimental
studies, then we must also believe in having access to the software that produced those
results as a necessary and essential part of the evidentiary process. Without that we are
asked to re-implement methods that are often too complicated and underspecified for
this to be possible, or to accept the reported results as a matter of faith.

There are two courses of action open to us. One is to back away from the very
stringent standards that focus on evaluation and comparisons of empirical results; to
approach things more with a focus on bigger ideas, and less on statistically significant
empirical results. This is not necessarily a bad thing, and might address concerns such
as those raised by Chuch (2005) about very conservative reviewing in our field and the
resulting tendency to prefer incremental improvements.

However, the other path is to accept (and in fact insist) that highly detailed empirical
studies must be reproducible to be credible, and that it is unreasonable to expect that
reproducibility be possible based on the description provided in a publication. Thus,
releasing software that makes it easy to reproduce and modify experiments should be
an essential part of the publication process, to the point where we might one day only
accept for publication articles that are accompanied by working software that allows for
immediate and reliable reproduction of results.

Acknowledgments
I would like to thank Robert Dale for
suggesting this topic, and for his many
helpful comments and suggestions.

References
Chuch, Kenneth. 2005. Reviewing the

reviewers. Computational Linguistics,
31(4):575–578.

Kilgarriff, Adam. 2007. Googleology is bad
science. Computational Linguistics,
33(1):147–151.

Webber, Bonnie. 2007. Breaking news:
Changing attitudes and practices.
Computational Linguistics, 33(4):607–611.

470


