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This article focuses on the analysis and prediction of corrections, defined as turns where a
user tries to correct a prior error made by a spoken dialogue system. We describe our labeling
procedure of various corrections types and statistical analyses of their features in a corpus
collected from a train information spoken dialogue system. We then present results of machine-
learning experiments designed to identify user corrections of speech recognition errors. We
investigate the predictive power of features automatically computable from the prosody of the
turn, the speech recognition process, experimental conditions, and the dialogue history. Our
best-performing features reduce classification error from baselines of 25.70–28.99% to 15.72%.

1. Introduction

Compared to many other systems, spoken dialogue systems (SDS) tend to have more
difficulties in correctly interpreting user input. Whereas a car normally goes left if the
driver turns the steering wheel in that direction or a vacuum cleaner starts working if
one pushes the on button, interactions between a user and a spoken dialogue system
are often hampered by mismatches between the action intended by the user and the
action executed by the system. Such mismatches are mainly due to errors in the Auto-
matic Speech Recognition (ASR) and/or the Natural Language Understanding (NLU)
component of these systems; they can also be due to wrong default assumptions of the
system or the fact that a user asks out-of-topic questions for which the system was not
designed. To solve these mismatches, users often have to put considerable effort into
trying to make it clear to the system that there was a problem, and trying to correct it by
reentering misrecognized or misinterpreted information. Previous research has already
brought to light that it is not always easy for users to determine whether their intended
actions were carried out correctly or not, in particular when the dialogue system does
not give appropriate feedback about its internal representation at the right moment.
In addition, users’ corrections may miss their goal because corrections themselves are
more difficult for the system to recognize and interpret correctly, which may lead to
so-called cyclic (or spiral) errors.
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Given that current spoken dialogue systems are not sufficiently robust, there is
need for sophisticated error-handling strategies to gracefully solve communication
problems between the system and the user. Ideally, apart from strategies to prevent
errors, error handling would consist of steps to immediately detect an error when
it occurs and to interact with the user to correct the error in subsequent exchanges.
To date, attempts to improve system performance have largely focused on improv-
ing ASR accuracy or simplifying the task, either by further constraining the domain
and functionality of the system or by further restricting the vocabulary the system
must recognize. Such studies include work on improved acoustic and semantic con-
fidence scores (Ammicht, Potamianos, and Fosler-Lussier 2001; Andorno, Laface, and
Gemello 2002; Bouwman, Sturm, and Boves 1999; Falavigna, Gretter, and Riccardi
2002; Guillevic, Gandrabur, and Normandin 2002; Moreno, Logan, and Raj 2001; Wang
and Lin 2002; Zhang and Rudnicky 2001), on new system architectures for error han-
dling (McTear et al. 2005; Prodanov and Drygajlo 2005; Torres et al. 2005), on new
interfaces that are more user-friendly for error recovery (Bulyko et al. 2005; Karsenty
and Botherel 2005; Sturm and Boves 2005), and on the use of error-recovery strategies
that are based on analyses of human–human dialogues (Skantze 2005), including the
use of facial expressions (Barkhuysen, Krahmer, and Swerts 2005).

However, as ASR accuracy improves, dialogue systems will be called upon to
handle ever more complex tasks and ever less restricted vocabularies. So, it seems likely
that spoken dialogue systems will, for the foreseeable future, always require effective
error detection and repair strategies. In previous research (Hirschberg, Litman, and
Swerts 1999, 2004), we identified new procedures to detect recognition errors, which
perform well when tested on two different corpora, the TOOT and W99 corpora (train
information and conference registration dialogues) collected using two different ASR
systems (Sharp et al. 1997; Kamm et al. 1997). We found that prosodic features, in
combination with information already available to the recognizer, such as acoustic
confidence scores, grammar, and recognized string, can distinguish speaker turns that
are misrecognized far better than traditional methods for ASR rejection (the system
decision that its hypothesis is so weak that it should reprompt for fresh input), which
use acoustic confidence scores alone. Related work has been done by Lendvai (2004)
and Batliner et al. (2003). In the current study, we turn to the question of how people try
to correct ASR errors in their interactions with machines and the role that prosody may
play in identifying user corrections and in helping to analyze them.

Understanding how users attempt to correct system failures and why their attempts
succeed or fail is important to improve the design of future spoken dialogue systems.
For example, knowing whether they are more likely to repeat or rephrase their utter-
ances, add new information or shorten their input, and how system behavior influences
these choices can suggest appropriate on-line modifications to the system’s interaction
strategy or to the recognition procedure it employs. Determining which speaker behav-
iors are more successful in correcting system errors can also lead to improvements in the
help information such systems provide. There is growing evidence that there is much
variance in the way people react to system errors and that the variance can be explained
on the basis of particular properties of the dialogue system or the dialogue context. In
particular, dialogue confirmation strategies may hinder users’ ability to correct system
error. For instance, if a system wrongly presents information as being correct, as when it
verifies information implicitly, users become confused about how to respond (Krahmer
et al. 2001). Other studies have shown that speakers tend to switch to a prosodically
“marked” speaking style after communication errors, comparing repetition corrections
with the speech being repeated (Wade, Shriberg, and Price 1992; Oviatt et al. 1996;
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Levow 1998; Bell and Gustafson 1999). Although this speaking style may be effective in
problematic human–human communicative settings, there is evidence that suggests it
leads to further errors in human–machine interactions (Levow 1998; Soltau and Waibel
2000). That corrections are difficult for ASR systems is generally explained by the fact
that they tend to be hyperarticulated—higher, louder, longer—than other turns (Wade,
Shriberg, and Price 1992; Oviatt et al. 1996; Levow 1998; Bell and Gustafson 1999;
Shimojima, et al. 2001; Soltau and Waibel 1998, 2000; Soltau, Metze, and Waibel 2002),
where ASR models are not well adapted to handle this special speaking style, although
recent studies suggest that ASR systems are becoming less vulnerable to hyperarticula-
tion (Bulyko et al. 2005).

So, repair strategies in human–machine interactions can be more or less effective.
Therefore, increased knowledge about the efficiency of different correction strategies
can lead to a number of possible courses of action. System strategy might be chosen to
favor the type(s) of correction the system can most easily process. Or, having chosen a
particular interaction strategy, the system repair strategy might be tuned to handle the
correction types that that strategy is likely to produce. Alternatively, the system’s dia-
logue manager might use the detection of corrections as a signal that it should modify its
interaction strategy, either locally, by beginning a subdialogue for faster error recovery,
or globally, by changing its initiative or confirmation strategies, or even directing the
user to a human operator. Or, since corrections are often hyperarticulated, detection of
a correction could serve as a signal to the ASR engine to run a recognizer trained on
hyperarticulated speech in parallel with its normal processor, to better transcribe the
speech. All of these possibilities, however, assume that user corrections can be detected
by the system reliably during the dialogue.

In this article, we describe an analysis of user corrections of system error collected in
the TOOT spoken dialogue system. In the next section, we describe the corpus itself and
how it was collected and labeled. The corpus is suitable to gain insight into the different
correction strategies that speakers exploit in different dialogue contexts and interaction
styles. Then, we characterize the nature of corrections in this corpus in terms of when
they occur, how well they are handled by the system, what distinguishes their prosody
from other utterances, their relationship to the utterances they correct, and how they
differ according to dialogue strategy. Then we present results of some machine-learning
experiments designed to automatically distinguish corrections from other user input,
using features that we derived as potentially useful from our descriptive analyses.

2. The Data

2.1 The TOOT Corpus

Our corpus consists of dialogues between human subjects and TOOT, a spoken dialogue
system that allows access to train information from the Web via telephone. TOOT
was collected to study variations in dialogue strategy and in user-adapted interac-
tion (Litman and Pan 1999). It is implemented using an interactive voice response
(IVR) platform developed at AT&T, combining ASR and text-to-speech with a phone
interface (Kamm et al. 1997). The system’s speech recognizer is a speaker-independent,
hidden Markov model system with context-dependent phone models for telephone
speech and constrained (rule-based) grammars defining vocabulary at any dialogue
state. Whereas a “universal” grammar specifying all legal utterances was used at some
points in the dialogue, seven smaller grammars were also used at many points in the
dialogue (e.g., to recognize city names, days of the week, answers to yes/no questions,
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etc.). Grammars were only written for originally expected answers; in other words,
no specific grammar for corrections was built in.1 Confidence scores for recognition
were available only at the turn level and were based on acoustic likelihoods; thresh-
olds for rejecting an utterance based on confidence scores were specified manually by
the system designers and were set differently for different grammars. The platform
supports barge-in. Subjects performed four tasks with one of several versions of the
system that differed in terms of locus of initiative (system, user, or mixed), confirmation
strategy (explicit, implicit, or none), and whether these conditions could be changed
by the user during the task (adaptive vs. non-adaptive). In the adaptive version of
the system, users were allowed to say change strategy at any point(s) in the dialogue.
TOOT would then ask the user to specify new initiative and confirmation strategies,
for example, You are using the no confirmation strategy. Which confirmation strategy do
you want to change to? No confirmation, implicit confirmation, or explicit confirmation?
TOOT’s initiative strategy specifies who has control of the dialogue, whereas TOOT’s
confirmation strategy specifies how and whether TOOT lets the user know what it just
understood. The fragments in Figure 1 provide some illustrations of how dialogues
vary with strategy. For example, in user initiative mode, the system allows the user
to specify any number of attributes in a single utterance. Thus, the system will let the
user ignore specific questions. In the example in Figure 1, although the system asks for
the day of the week, the user answers with the time, which can be recognized due to the
use of the “universal grammar.” In contrast, in both mixed and system initiative mode,
when a specific question is asked, one of the restricted grammars is used to recognize
the response. Finally, in universal and mixed but not system initiative mode, the sys-
tem can ask both specific questions and open-ended questions (e.g., How may I help
you?). Subjects were 39 students: 20 native speakers and 19 non-native, 16 women
and 23 men. Dialogues were recorded and system and user behavior were logged
automatically. The concept accuracy (CA) of each turn was manually labeled. If the
ASR correctly captured all task-related information in the turn (e.g., time, departure,
and arrival cities), the turn’s CA score was 1 (semantically correct). Otherwise, the CA
score reflected the percentage of correctly recognized task information in the turn. The
dialogues were also transcribed and automatically scored in comparison to the ASR
recognized string (the best hypothesis output by the ASR engine) to produce a word
error rate (WER) for each turn. For the study described below, we examined 2,328 user
turns (all user input between two system inputs) from 152 dialogues.

2.2 Labeling

To identify corrections in the corpus two authors independently labeled each turn as
to whether or not it constituted a correction of a prior system failure (a rejection or CA
error, which were the only system failure subjects were aware of) and subsequently
decided upon a consensus label. Note that many of the discrepancies between labels
were due to tiredness or incidental sloppiness of individual annotators, rather than true
disagreement. Each turn labeled “correction” was further classified as belonging to one
of the following categories: REP (repetition, including repetitions with differences in
pronunciation or fluency), PAR (paraphrase), ADD (task-relevant content added), OMIT

1 Thus, if the system prompted for a single city, but the user also included a correction of a prior utterance
(e.g., No, at 10:30 p.m. I want to go to New York City), the turn would be out of grammar. Coding our
corpus for out of vocabulary turns and examining whether corrections are more likely to be out of
grammar is an area for future work.
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Figure 1
Illustrations of various dialogue strategies in TOOT.

(content omitted), and ADD/OMIT (content both added and omitted). Repetitions
were further divided into repetitions with pronunciation variation (PRON) (e.g., yes
correcting yeah) and repetitions where the correction was pronounced using the same
pronunciation as the original turn, but this distinction was difficult to make and turned
out not to be useful. User turns that included both corrections and other speech acts
were so distinguished by labeling them “2+.” For example, the turn I would like to go
to Chicago from Baltimore change strategies system contains not only an ADD correction,
but also a request to adapt the system’s dialogue strategies, followed by an inform
of the desired initiative value. As another example, the turn yes help contains a REP
correction, followed by a request for help. For user turns containing a correction plus
one or more additional dialogue acts, only the correction is used for purposes of analysis
below. We also labeled as “restarts” user corrections that followed non-initial system-
initial prompts (e.g., How may I help you? or What city do you want to go to?); in such
cases, system and user essentially started the dialogue over from the beginning.2 Table 1
shows examples of each correction type and additional label for corrections of system
failures on I want to go to Boston on Sunday. Note that the utterance on the last line of this
figure is labeled 2+PAR, given that this turn consists of two speech acts: The goal of the
no-part of this turn is to signal a problem, whereas the remainder of this turn serves to
correct a prior error.

Each correction was also indexed with an identifier representing the closest prior
turn it was correcting, so that we could investigate “chains” of corrections of a single
failed turn by tracing back through subsequent corrections of that turn. Figure 2 shows
a fragment of a TOOT dialogue with corrections labeled as discussed above.

3. Descriptive Analyses

This section presents the results of some descriptive analyses of the corrections we
labeled in the TOOT corpus. We provide data on the distribution of different correction

2 Restarts occurred when either the user said the phrase I’m done here at any point in the dialogue, or
answered no to the system’s request to perform a database query (e.g., Do you want me to find the trains
from Baltimore to Chicago on Tuesday around 8:45 now?).
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Table 1
Example corrections of I want to go to Boston on Sunday.

Corr Type Correction

REP I want to go to Boston on Sunday
PAR To Boston on Sunday
OMIT I want to go to Boston
ADD To Boston on Sunday at 8 p.m.
ADD/OMIT I want to arrive Sunday at 8 p.m.
2+PAR No, to Boston on Sunday

types, prosodic features of corrections, characteristics of correction chains, and variation
in features of corrections as a function of dialogue strategy.

3.1 Correction Types

Of the correction types we labeled, the largest numbers were REPs and OMITs, as
shown in Table 2, which shows overall distribution of correction types, and distri-
butions for each type of system failure corrected, following either a misrecognized
turn (with respect to concept accuracy) (Post-Misrec) or a rejected turn (Post-Rej) or
correcting an earlier system failure (Non-Immed). (The last group includes corrections
of earlier utterances that do not immediately follow a rejection or misrecognition.)
Table 2 shows that 39% of TOOT corrections were simple repetitions of a previously
rejected or misrecognized turn. Although this strategy is often suboptimal in correcting
ASR errors (Levow 1998), REPs (45% WER error) and OMITs (52% error) were better
recognized than ADDs (90% WER error) and PARs (72% WER error).

Figure 2
Toot dialogue fragment with correction labels.
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Table 2
Distribution of correction types.

Type ADD ADD/OMIT OMIT PAR REP N

Total 51 8% 14 2% 215 32% 127 19% 265 39% 672
Post-Misrec 39 7% 13 3% 203 40% 90 18% 173 32% 518
Post-Rej 8 6% 0 0% 9 7% 36 28% 75 59% 128
Non-Immed 4 15% 1 4% 3 12% 1 4% 17 65% 26

There was no significant difference either in the number of corrections produced
(χ = 2.44, p = .12) or in correction type (χ2 = 5.07, p = .28) between our native speaker
subjects and non-native speakers. However, what the user was correcting did influence
the type of correction chosen. Table 2 shows that corrections of misrecognitions (Post-
Misrec) were more likely to omit information present in the original turn (OMITs),
whereas corrections of rejections (Post-Rej) were more likely to be simple repetitions.
The latter finding is not surprising because the rejection message for tasks was always
a close paraphrase of Sorry, I can’t understand you. Can you please repeat your utterance?
However, it does suggest the surprising power of system directions and how impor-
tant it is to craft prompts to favor the type of correction most easily recognized by
the system.

3.2 Prosodic Features of Corrections

In part to test the hypothesis that corrections tend to be hyperarticulated (slower and
louder speech that contains wider pitch excursions and more internal silence), we
examined the following features for each user turn: maximum and mean fundamental
frequency values (f0 Max, f0 Mean); maximum and mean energy values (RMS Max,
RMS Mean); total duration; length of pause preceding the turn (Prior Pause); speaking
rate (Tempo), calculated in syllables per second (sps); and amount of silence within
the turn (% Silence).3 f0 and RMS values, representing measures of pitch excursion
and loudness, were calculated from the output of Entropic Research Laboratory’s pitch
tracker, get f0 (Talkin 1995), with no postcorrection. Timing variation was represented
by four features: Duration of turn and length of pause between turns was hand labeled.
Speaking rate was approximated in terms of syllables in the recognized string per
second. % Silence was defined as the percentage of zero frames in the turn, calculated
from the pitch track; this feature approximates the percentage of time within the turn
that the speaker was silent.

To ensure that our results were speaker independent, we calculated mean val-
ues for each speaker’s corrections and non-corrections for every feature. Then, for
each feature, we created vectors of speaker means for correction and non-correction
turns and performed paired t tests on the paired vectors. For example, for the feature
“f0 Max,” we calculated mean maxima for correction turns and for non-corrections
for each of our thirty-nine speakers. We then performed a paired t test on these

3 Although the features were automatically computed, turn beginnings and endings were hand segmented
in dialogue-level speech files, as the turn-level files created by TOOT were not available. Because of some
system/user overlap in the recordings, we were able to calculate prosodic features for only 1,975 user
turns.
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thirty-nine pairs of means to derive speaker-independent results for differences in
f0 maxima between corrections and non-corrections. Note, however, that there were
overall differences in the corrections produced by native and non-native speakers,
normalized by value of first turn in task: mean f0 was higher for native speakers than
for non-native speakers (t stat = −2.72, df = 602, p = .0067), tempo was faster (t stat =
−3.18, df = 670, p = .0015), and duration was shorter (t stat = 2.20, df = 670, p = .028).
These differences do not occur in non-correction utterances.

Our results provide some explanation for why corrections are more poorly re-
cognized than non-corrections because they indicate that corrections are indeed
characterized by prosodic features associated with hyperarticulation. Table 3 shows
that corrections differ from other turns in that they are longer, louder, higher in
pitch excursion, follow longer pauses, and contain less internal silence than non-
corrections. All but the latter difference supports the hypothesis that corrections tend
to be hyperarticulated.

To confirm this hypothesis, two of the authors labeled each turn in the corpus for
evidence of perceptual hyperarticulation, following (Wade, Shriberg, and Price 1992).
Fifty-two percent of corrections in the corpus have some perceptual hyperarticulation,
compared with only 12% of other turns. Too, hyperarticulated corrections are more
likely to be misrecognized than other corrections (70% misrecognitions vs. 52%). How-
ever, it is important to note that only 59% of misrecognized corrections in the corpus are
also hyperarticulated, so recognition failure for a considerable portion of corrections
must be explained in some other way. There is still a large number of misrecognized
corrections that show no perceptual evidence of hyperarticulation.

In our earlier analysis of prosodic differences between correct and incorrectly
recognized turns (Hirschberg, Litman, and Swerts 2004), we also found that misrecog-
nized turns differed from correctly recognized turns in f0, loudness, duration, and
timing—all features associated with hyperarticulation. In addition, more misrecogni-
tions are hyperarticulated than are correctly recognized turns. But when we excluded
perceptually hyperarticulated turns from our prosodic analysis, we found that mis-
recognized turns were still prosodically different from correctly recognized turns, in
the same ways. We hypothesized there that misrecognitions might exhibit tendencies
toward hyperarticulation that are imperceptible to human listeners, but not to ASR
engines. The same may also be true of non-hyperarticulated, but still prosodically
distinct corrections. When we exclude hyperarticulated utterances from our corpus

Table 3
Corrections versus non-corrections by prosodic feature.

Feature t stat Mean corr p
- non-corr

f0 Max* 3.79 17.76 Hz < .001
f0 Mean 0.23 −4.12 Hz .823
RMS Max* 4.88 347.75 < .001
RMS Mean* 2.57 63.44 .014
Duration* 6.68 1.16 sec < .001
Prior pause* 2.17 0.186 sec .036
Tempo 1.78 −0.15 sps .246
% Silence* 4.75 −0.05% < .001
*Significant at a 95% confidence level (p ≤ .05)
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and reanalyze prosodic features of corrections versus non-corrections, we find signif-
icant differences in duration, rms maximum, rms mean, tempo, and amount of turn-
internal silence as we did with the corpus as a whole. So, again, even when corrections
are not perceptibly hyperarticulated, they share some acoustic tendencies with turns
that are.

3.3 Correction Chains

As noted above, corrections in the TOOT corpus often take the form of chains of
corrections of a single original error. Looking back at Figure 2, for example, we see
two chains of corrections: In the first, which begins with the misrecognition of turn 776
(Um, tomorrow), the user repeats the original phrase and then provides a paraphrase
(Saturday), which is correctly recognized. In the second, beginning with turn 780, the
time of departure is misrecognized. The user omits some information (a.m.) in turn
781, but without success; an ADD correction follows, with the previously omitted
information restored, in turn 783.

Distance of a correction from the original misrecognized turn—whether calculated
as position in chain (e.g., Saturday in Figure 2 is the second in the chain correcting
turn 776) or further in number of turns from that original error (e.g., Saturday here is
also two turns from the original error)—correlates significantly with prosodic variation.
An analysis of the relationship between both distance measures and our prosodic
features (using Pearson’s product–moment correlation) shows significant correlations
of distance in chain or from original error with f0 maximum (r = .20, p < .001; r = .21,
p < .001) and mean (r = .27, p < .001; r = .29, p < .001), rms maximum (r = −.09, p < .02;
r = −.12, p < .005) and mean (r = −.12, p < .0025; r = −.16, p < .001), absolute duration
(r = .14, p < 0; r = .16, p < .001) and duration in number of words (r = .11, p < .01; r =
.12, p < .005), length of preceding pause (r = .11, p < .005; r = .10, p < .01), and speaking
rate (r = −.05, p < .01; r = −.10, p < .02). The more distant a correction is, in short, the
higher it is in pitch, the softer it is, the longer it is, the greater is its preceding pause, and
the more slowly it is spoken. In addition, more distant corrections are also more likely
to be misrecognized; for distance in turns there is a (negative) significant correlation for
concept accuracy (r = −.13, p < .001), whereas both word and concept accuracy decline
significantly by position in chain (r = −.08, p < .05; r = −.15, p < .001). Table 4 shows
the mean concept accuracy of corrections for chain position through 8 (higher numbers
are very small) in the corpus. So, as speakers must try again and again to correct an
error, their attempts appear to become ever less likely to succeed, perhaps because their
prosodic behavior changes in ways that do not help the recognition process. Curiously,
however, our perceptual measure of hyperarticulation is not significantly correlated
with either of these distance measures. So, although speakers modify their speech in
ways generally consistent with hyperarticulation, their corrections do not necessarily
become more hyperarticulated as their attempts to correct continue. Another curious

Table 4
Mean concept accuracy by correction position in Chain.

Position 1 2 3 4 5 6 7 8
N 311 143 84 49 25 15 10 4
Error .43 .57 .63 .51 .60 .87 .70 1.00
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finding is that corrections that are more distant from the turn they immediately correct
(e.g., in Figure 2, turn 783 is more distant from the turn it corrects (781) than turn 781 is
from the turn it corrects, which is 780) tend to be more accurately recognized than turns
that are closer. Yet, prosodically, these turns are very like distant turns in a chain or from
the original error, being higher in f0 maximum and mean, lower in rms maximum and
mean, and longer in seconds and number of words. So, in the one case these prosodic
changes might be thought to lead to recognition error, where in the other they occur
with better recognized corrections.

3.4 Variation by Dialogue Strategy

Dialogue strategy clearly affects the type of correction users make and whether it
is successful or not. For example, users more frequently repeat their misrecognized
utterance in the SystemExplicit (75% of corrections are repetitions) condition than in
the MixedImplicit or UserNoConfirm (both 37% REP); the latter conditions have larger
proportions of OMITs and paraphrases. Perhaps this disparity is partly explained by the
larger proportion of corrections that follow rejections in the SystemExplicit condition
(39% vs. 22% and 19%). Overall, SystemExplicit turns are rejected 6% of the time,
whereas the other conditions have about 10% rejections. Table 5 shows differences in
mean length of tasks, number of corrections, number of misrecognitions, and number
of misrecognized corrections by dialogue strategy. Again, misrecognitions were defined
in terms of concept accuracy (turns with CA < 1); misrecognized corrections refer to
the intersection of user terms that were coded as both corrections and misrecognitions.
The fewer misrecognitions, corrections, and misrecognized corrections per task in the
SystemExplicit condition may well explain user ratings of the various systems (non-
adapt) in the original experiments (Litman and Pan 1999): When asked to say whether
they would be likely to use such a system in the future, on a 1–5 scale, subjects scored
SystemExplicit 3.5, MixedImplicit 2.6, and UserNoConfirm 1.7. User satisfaction scores
were similar: Where 40 is the highest score, users gave SystemExplicit 31.25, Mixed-
Implicit 24, and UserNoConfirm 22.1. So, SystemExplicit is preferred by users, even
though MixedImplicit on average takes fewer turns to accomplish a task, suggesting
that the large number of misrecognitions and consequent need for correction has a large
impact on user preferences. This is consistent with performance functions derived from
evaluations of TOOT (Litman and Pan 1999).

Perhaps because correction chains often end unsuccessfully, users frequently
“restart” a task within a session. Most restarts occurred in the MixedImplicit and
UserNoConfirm conditions and were rarely successful. In non-adaptive tasks, 42% of
corrections in the MixedImplicit condition were restarts and 31% in the UserNoConfirm,

Table 5
Corrections by system strategy.

Means SystemExplicit MixedImplicit UserNoConfirm
per task

# Turns 13.4 11.7 16.2
# Corrs 1.3 4.6 7.1
# Misrecs 2.8 6.4 9.4
# Misrec’d Corrs 0.3 3.2 4.8
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whereas none occurred in the SystemExplicit condition. Restarts were misrecognized
77% of the time, compared to 65% of first turns in task. They thus seem to have been
a worse strategy than initiating a new task and might prove a useful diagnostic for
changing system strategy—or summoning a human operator.

4. Predicting Corrections

The previous section showed that corrections differ significantly from non-corrections
prosodically, being higher in pitch, louder, longer, with longer pauses preceding them
and less internal silence. In addition, they are misrecognized more frequently than
non-corrections—although they are no more likely to be rejected by the system. And
corrections more distant from the error they correct tend to exhibit greater prosodic
differences and are recognized more poorly, suggesting that users are not learning to
modify their own behavior to improve system performance. So, dealing with corrections
is a particularly difficult task for both users and systems. We also found that system dia-
logue strategy—the amount of initiative users are allowed to exercise in controlling the
flow of the dialogue and the type of confirmation strategy the system adopts—affects
users’ choice of correction type (e.g., directly repeating vs. paraphrasing misrecognized
information). In the following, we turn to the question of identifying user corrections
automatically, from prosodic features as well as other features that are readily available
to a spoken dialogue system. In Section 4.1, we describe the features we use for our
machine-learning experiments. Section 4.2 presents the results of those experiments.
Section 4.3 presents further experiments using additional classifications and features,
motivated by our descriptive results. In the final section, we summarize our conclusions
and describe future research directions.

4.1 Features

In this section we describe the features used in the machine-learning experiments
and the motivation behind their selection. The entire feature set is presented in
Figure 3 and includes only features that could be automatically available to a dialogue
system.

4.1.1 Prosodic Features. Above we showed that corrections were significantly longer,
louder, higher in pitch excursion, and followed longer pauses than other turns. Thus,
we expected that these features would be useful in identifying corrections automatically.
We examined maximum and mean fundamental frequency values (f0max, f0mn) as
indicators of pitch range; maximum and mean energy values (rmsmax, rmsmn) as in-
dicators of loudness; total duration of the speaker turn (dur); length of pause preceding
the turn (ppau); speaking rate (tempo); and amount of silence within the turn (zeros).
The features were measured as indicated above. Table 6 shows the overall means and
standard deviations for these features over the corpus.

4.1.2 ASR Features. Since corrections in our corpus were misrecognized more frequently
than non-corrections (Swerts, Litman, and Hirschberg 2000), we included a set of ASR
features that were derived from TOOT’s speech recognition component and its outputs:
the grammar used as the ASR language model at each dialogue state (gram), the string
recognized by the ASR system as its best hypothesis (str), and the turn-level acoustic
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Figure 3
Feature set for predicting corrections.

Table 6
Means and standard deviations for prosodic features over all turns.

f0max f0mn rmsmax rmsmn dur ppau tempo zeros
(Hz) (Hz) (sec) (sec) (sps) (%)

Mean 227 163 1612 396 1.92 .71 2.48 44
S.D. 77 44 1020 261 2.44 .79 1.37 17

confidence score it produced (conf).4 As subcases of the str feature, we included Boolean
features representing whether or not the recognized string included the strings yes or no
(ynstr), some variant of no, such as nope (nofeat), cancel (canc), or help (help), as these
lexical items often occurred during problem resolution. To estimate durational features,
we approximated the length of the user turn in words (wordsstr) and in syllables (syls)
from the str feature, and we added a Boolean feature identifying whether or not the turn
had been rejected by the system (rejbool).

4.1.3 System Experimental Features. Our descriptive study showed that differences in
dialogue strategy affect the type and success of user corrections. For example, TOOT
users more frequently repeat their misrecognized turns and produce the fewest cor-
rections per task when TOOT has the initiative and explicitly confirms all user input.
So, we hypothesized that system conditions might prove important in our learning
experiments. We thus include features representing the system’s current initiative
and confirmation strategies (inittype, conftype), whether users could adapt the sys-
tem’s dialogue strategies (adapt), and the combined initiative and confirmation setting
(realstrat).

4 Confidence scores ranged from −0.087662 to −9.884418.
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4.1.4 Dialogue Position and History Features. We also showed that the further a cor-
rection is from the original error, the less likely it is to be recognized correctly, and the
stronger the correlation with prosodic deviation from the mean values over a speaker’s
turns (e.g., more distant corrections are higher in pitch than closer corrections). As a first
approximation of this distance feature, we included the feature diadist—distance of the
current turn from the beginning of the dialogue.

In addition, previous research (Litman, Walker, and Kearns 1999; Walker et al.
2000) has shown that features of the dialogue as a whole and features of more local
context can be helpful in predicting “problematic” dialogues. So we looked at a set
of features summarizing aspects of the prior dialogue for both the absolute number
of times prior turns exhibited certain characteristics (e.g., contained a key word like
cancel—priorcancnum) and the percentage of the prior dialogue containing one of these
features (e.g., priorcancpct). We also examined means for all our continuous-valued
features over the entire dialogue preceding the turn to be predicted (pmn ), such as
pmnsyls, the mean length of prior turns calculated in number of syllables per turn.
Finally, we examined more local contexts, including all features of the preceding turn
(pre ) and for the turn preceding that (ppre ).

It seemed particularly likely that lexical features of the local context—such as
whether a user had asked for help recently, or tried to cancel out of an exchange, or
replied no to a system query—might prove useful in identifying corrections.5 Also,
whether a prior turn had been rejected was clearly a useful cue to the identification
of the current turn as a correction, since users generally supplied a correction when
explicitly asked.

4.2 Machine-learning Experiments

In this section we investigate whether the features described in Section 4.1 (or inter-
esting subsets of them) can in fact be used to accurately predict whether a turn will
be a correction or not. We describe experiments using the machine-learning program
RIPPER (Cohen 1996) to automatically induce such prediction models. RIPPER takes as
input the classes to be learned, the names and possible values of a set of features, and
training data specifying the class and feature values for each training example. For our
experiments, the features presented in Figure 3 comprise the independent variables for
our learning experiments. The dependent variable to be learned, correction (T) ver-
sus non-correction (F), corresponds to the hand-labeled observations described above.
Given a vector of values for the independent and dependent variables for each speaker
turn, RIPPER outputs a classification model for classifying future examples. The model
is learned using greedy search guided by an information gain metric and is expressed as
an ordered set of if-then rules. When multiple rules are applicable, RIPPER uses the first
rule it finds. When no rules are applicable, RIPPER classifies the turn as a non-correction
(F) by default.

Table 7 shows the performance of the learned classification models for some
of the feature sets we examined; all performance figures are estimated using 25-fold
cross-validation on the 2,328 turns in our corpus. The Features column identifies the
set of features (as defined in Figure 3) used to learn the model. The second column,
DIA, indicates which type of dialogue history features (PreTurn, PrepreTurn, Prior,

5 Recall that these are lexical features from the recognized string, not from the actual user transcript.
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Table 7
Estimated error, recall, precision, and Fβ = 1 for predicting corrections.

class = T class = F

Features DIA Error ± SE Rec. Prec. Fβ = 1 Rec. Prec. Fβ = 1

Raw+ASR+SYS+POS PreTurn 15.72 ± 0.80 70.61 74.96 .72 89.95 88.28 .89
Raw+ASR+SYS+POS all 16.16 ± 0.58 69.80 74.65 .72 90.12 87.82 .89
PROS+ASR+SYS+POS all 16.38 ± 0.61 69.01 74.05 .71 89.60 87.61 .88
ASR all 16.41 ± 0.93 69.93 72.39 .70 88.76 87.7 .88
ASR+SYS+POS all 17.01 ± 0.78 73.73 73.38 .73 88.68 89.00 .89
ASR+SYS+POS none 18.60 ± 0.81 56.48 72.79 .63 91.33 83.76 .87
Raw+ASR+SYS+POS none 18.68 ± 0.67 58.45 71.64 .64 90.37 84.17 .87
ASR+PROS none 19.29 ± 0.78 54.54 69.97 .61 90.25 82.90 .86
POS+PROS none 19.59 ± 0.73 52.96 69.70 .60 90.38 82.47 .86
Raw all 19.68 ± 0.78 55.62 70.89 .62 90.64 83.33 .87
PROS all 20.33 ± 0.90 56.45 69.23 .61 89.43 83.42 .86
ASR+POS none 20.40 ± 0.79 52.20 71.99 .60 91.43 82.41 .87
PROS none 20.53 ± 0.81 54.86 71.72 .62 90.78 83.07 .87
conf+rejbool all 21.23 ± 0.93 59.70 65.97 .62 87.05 84.05 .85
ASR+SYS none 23.46 ± 0.72 51.55 63.40 .56 87.53 81.65 .84
ASR none 24.19 ± 0.84 45.93 60.99 .52 87.80 79.90 .84
Raw none 25.35 ± 0.93 42.26 59.46 .48 88.29 78.97 .83
POS none 29.00 ± 1.02 0.00 – – 99.94 70.99 .83
SYS none 29.00 ± 1.02 0.00 – – 100.00 71.00 .83
Prerejbool baseline error = 25.70; majority baseline error = 28.99

and/or PMean) were also included in the feature set; these features represent the
same types of information (e.g., f0max) that the Features column denotes, but for one
or more previous turns in the dialogue. The third column shows the mean error and
standard error (SE) predicted for the model specified by the first two columns. When
error estimates in different rows differ by plus or minus twice the standard error,
they are significantly different (Cohen 1995). The remaining columns show the mean
recall, precision, and Fβ = 1 for corrections (focus class = T) and non-corrections (focus
class = F), respectively.6 For comparison purposes, we compare our predictions to two
potential baselines. The Majority baseline predicts that all turns are non-corrections
(the majority class of F), and has a classification error of 28.99%. The Prerejbool base-
line predicts that all turns following rejected turns (prerejbool = T) are corrections—
since after rejections, TOOT asks users to repeat their turn7—and all others are non-
corrections; this baseline gives a classification error of 25.70%.

The first question addressed in our experiments is whether or not corrections can be
predicted significantly better than our baselines. Table 7 shows that in fact they can. Our
best-performing feature set (Raw+ASR+SYS+POS, DIA = PreTurn) cuts the majority
baseline error almost in half, from 28.99% to 15.72%, and predicts significantly better
than the rejection-based baseline as well. This feature set includes raw versions of all our
prosodic features and all of the non-prosodic features, for both the turn being classified

6 Recall is the percentage of actual members of a class that are identified, whereas precision is the percentage

of predicted class members that are in fact members. The definition of Fβ is (β2+1)PrecisionRecall
β2Precicison+Recall

; β = 1
equally weights precision and recall. These values are computed using our own cross-validation
program, while error is computed using RIPPER’s cross-validation option.

7 Although users are asked to repeat their turn, 29% of the turns after rejections are not in fact corrections
(e.g., the user instead asks for help or asks the system to repeat the prompt).
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and the immediately prior turn. Note that even if all of the available features are used
for learning (i.e., the normalized versions of prosodic features and all of the various
history features (PROS+ASR+SYS+POS, DIA = all, error = 16.38%)), performance is
statistically comparable to this model.8 In addition, the recall, precision and Fβ = 1
values in Table 7 show that corrections are generally predicted with better precision
than recall whereas the reverse holds for non-corrections, and that non-corrections (the
majority class) are easier to accurately predict than corrections.

We next turn to an examination of the contribution of the different types of features
we used for prediction. First, we consider the utility of our non-prosodic features.
Table 7 shows that, using only non-prosodic features (ASR, SYS, POS), corrections can
still be predicted with an accuracy statistically equivalent to our best results. That is,
using all feature types (PROS+ASR+SYS+POS, DIA = all, error = 16.38%) is equivalent
to using only non-prosodic features (ASR+SYS+POS, DIA = all, error = 17.01%). Simi-
larly, restricting our feature set to the ASR-derived subset of our non-prosodic features
(ASR, DIA = all, error = 16.41%) or removing all dialogue history (ASR+SYS+POS,
DIA = none, error = 18.60%) yields results equivalent to our best-performing classifier.
However, when only those ASR features derived from the acoustic confidence score
(i.e., conf, preconf, ppreconf, pmnconf, rejbool, prerejbool, pprerejbool, priorrejbool-
num, priorrejboolpct) are used for prediction, then performance does significantly
degrade (conf+rejbool, DIA = all, error = 21.23%). So, it appears that there are numerous
ways to classify corrections successfully, using various combinations of feature types.
This finding is an important one because it suggests that systems that have access to
restricted kinds of information can still hope to identify user corrections with some
confidence. In particular, simply using information available to current ASR systems,
such as acoustic confidence score, recognized string, grammar, and features derived
from these, produces classification results equivalent to our best-performing classifier.
A caveat here is that some of the features in this ASR feature set (e.g., grammar and
recognized string) are less likely to generalize from task to task.

Turning now to the role of prosodic features in classifying corrections, Table 7 shows
that use of only non-prosodic features (ASR+SYS+POS, DIA = all, error = 17.01%)9

slightly (but not quite significantly) outperforms use of only raw prosodic features (Raw,
DIA = all, error = 19.68%). However, using raw prosodic features alone (error = 19.68%)
is comparable to using only ASR features alone (ASR, DIA = all, error = 16.41%). And
both significantly outperform the majority class and rejection-based baselines. Note
also that prediction from raw prosodic features alone (19.68%) is not improved by the
inclusion of their normalized versions (PROS, DIA = all, error = 20.33%). Thus, ASR-
derived features and prosodic features seem to provide equally successful classifications
of user corrections. Since ASR-derived features, in particular, acoustic confidence score,
are currently used by spoken dialogue systems to determine when to reject a turn,
our results suggest that such features can also be useful for identifying corrections.
Although prosodic features are rarely made use of in spoken dialogue systems, they
would, in fact, seem more likely to generalize across tasks and recognizers than the
ASR features.

Now we turn to the issue of how useful features of the dialogue history are in
classifying corrections. Recall that our best-performing ruleset used only a limited dia-

8 Note that removing features sometimes changes performance, which might indicate a weakness in
RIPPER’s feature selection process.

9 Recall that DIA = all includes only the same type of features as for the current utterance, in this case only
non-prosodic history features.
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Figure 4
Best performing ruleset (Raw+ASR+SYS+POS, DIA = PreTurn).

logue history—features from the preceding turn (Raw+ASR+SYS+POS, DIA = PreTurn,
error = 15.72%). While adding features of the turn two turns back (PrepreTurn ) and
of the dialogue as a whole (Prior and PMean ) does not significantly change the
error (Raw+ASR+SYS+POS, DIA = all, error = 16.16%), removing the features of the
immediately previous turn from the dialogue history does in fact cause a significant
increase in error rate (Raw+ASR+SYS+POS, DIA = none, error = 18.68%). However,
as discussed above, when only non-prosodic features are considered (ASR+SYS+POS),
there is no significant difference between DIA = all and DIA = none. So, it seems that
features of the immediate local context can improve our ability to classify corrections
accurately when prosodic features are included, but adding a larger local context win-
dow and a global context does not improve over these results. Contextual features seem
particularly important to performance when only raw prosodic features are considered
(Raw, DIA = all, error = 19.68%). When the raw prosodic features of the dialogue
history are removed, the error rate dramatically increases (Raw, DIA = none, error =
25.35%). However, if the normalized prosodic features (which themselves encode much
of the historical information) are also included, then removing the DIA versions of these
features does not significantly degrade performance (PROS, DIA = all, error = 20.33%
vs. PROS, DIA = none, error = 20.53%). We might explain the larger role that prosodic
context plays in classification by returning to the differences we found between prosodic
features of corrections and non-corrections, described in Section 3. In our descriptive
analyses we found that prosodic features such as pitch, duration, and loudness reliably
distinguish corrections based on relative differences between the two types of turns,
not absolute differences. In prediction also, it seems that some form of normalization by
context improves the performance of prosodic features.

When we examine which class of features performs best in the absence of contextual
information, we see that the prosodic features (PROS, DIA = none, error = 20.53%)
significantly outperform the ASR-derived features (ASR, DIA = none, error = 24.19%),
which in turn significantly outperform either of the remaining feature types (POS and
SYS). Table 7 also shows the cases in which the addition of new sources of knowl-
edge improves prediction performance. For DIA = none, the statistically significant
improvements involve adding the feature diadist (distance of the current turn from
the beginning of the dialogue): For example, ASR+POS (error = 20.4%) outperforms
both ASR (error = 24.19%) and POS (error = 29%), and ASR+SYS+POS (error = 18.6%)
outperforms ASR+SYS (error = 23.46%). Again, these are features that are easily made
available to current spoken dialogue systems.

The classification model learned from the best-performing feature set in Table 7 is
shown in Figure 4. Rules are presented in order of importance in classifying data. The
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first rule RIPPER finds with this feature set specifies that if the duration of the current
turn is ≥ 3.89046 seconds, and if the acoustic confidence score of the prior turn is
≤ −0.645234, and if the percentage of silence in the current turn is ≤ 53.9474%, then
predict that the turn is a correction; this rule correctly predicts 153 corrections and
incorrectly predicts that 10 non-corrections are corrections. So, this rule applies when
the previous turn has a low confidence score and the current turn exhibits some marked
prosodic features. The fourth rule predicts a correction after a previous rejection, but
only when the rejected turn was relatively short with a low confidence score. The
fifth rule predicts a correction when TOOT uses a particular confirmation strategy for
turns that are relatively long and far from the beginning of the dialogue. The sixth
rule predicts a correction when the previous turn is spoken soon after the prompt,
and contains the problem indicator help. Note that this use of the domain-independent
help is the only reference to a lexical item in this ruleset. This ruleset includes features
from all of the feature subsets in our inventory (PROS, ASR, SYS, POS, DIA). For the
current turn, the feature types that appear in the rules are PROS (dur, zeros), ASR (conf,
gram, syls), SYS (conftype), and POS (diadist). Of the previous turn’s features, only
two feature sets emerge as important: PROS (pref0mn, predur, preppau, pretempo)
and ASR (preconf, prestr, prewordstr, prerejbool). Furthermore, within a feature set
such as PROS, the useful features of the current and previous turns differ somewhat
(e.g., zeros is useful for the current turn, whereas tempo is useful for the prior turn),
suggesting important differences in the prosodic characteristics of corrections versus
the turns they follow.

When we look at a ruleset produced using only features commonly available to
current dialogue systems, such as ASR+SYS+POS (DIA = all), we see that creative use
of these features could in fact support correction classification (Figure 5). For example,
the fourth rule predicts that the current turn is a correction when it is not too short, and
when the pre turn indicates awareness (evidenced by the presence of no) of a problem
in the ppre turn (which was recognized with low confidence). This ruleset uses both
ASR (gram, nofeat, syls) and SYS (conftype) features of the current turn; although only
one rule in fact makes use of SYS features. For the contextual DIA features, only the
ASR features occur in the rule-set: PreTurn (preconf, prestr, prenofeat, prerejbool),
PrepreTurn (ppreconf, ppreynstr), and Prior and PMean (pmnconf, priorynstrpct,
pmnwordsstr, priorrejnum). Comparing this ruleset to the previous one (Figure 4), we
see that where timing features (dur, predur, zeros, pretempo, preppau) appear often
when prosodic features are available, related features such as syls and wordsstr (from
which, e.g., tempo is estimated) may be compensating in this ruleset. And of course the
rejection feature (prerejbool) itself is a function of the confidence score of the prior turn.
Note also that lexical features of the recognized string (nofeat, prenofeat, ppreynstr,

Figure 5
Ruleset for non-prosodic features (ASR+SYS+POS, DIA = all).
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prestr, priorynstrpct) emerge as quite useful in this ruleset—especially as contextual
features. So, what the system has recognized in prior turns is a good predictor of
whether the current turn is a correction. Also note that the overall verbosity of the
previous dialogue (pmnwordsstr) appears in two of the rules.

An example of a ruleset learned from only prosodic features (Raw, DIA = all, from
Table 7) is shown in Figure 6. This ruleset is notably terser than those shown in Figures 4
and 5 and includes primarily timing-based features (current turn features dur, zeros,
and tempo; local contextual feature pretempo; and dialogue-level features pmndur and
pmnppau). However, all prosodic feature types but f0 appear at least once in the ruleset,
and features specific to the current turn differ from those relevant to different types of
dialogue history. As with our previous descriptive findings discussed in Section 3, this
ruleset shows that corrections are longer, louder, follow longer pauses, and contain less
internal silence than non-corrections, and that these features can be used successfully to
identify them.

4.3 Other Experiments

The machine-learning experiments described in Section 4.2 were motivated by our
long-term goal to incorporate a correction predictor into future versions of our spoken
dialogue system. As such, the experiments were limited to a binary prediction task
(predicting whether a turn was a correction or a non-correction) and only considered
features readily available to our dialogue system. In this section we present additional
experiments removing some of these restrictions, with the goal of further investigating
some of the descriptive findings discussed in Section 3.

Recall from Section 3.2 that there were some differences in the prosodic features of
corrections produced by native versus non-native speakers when such features were
normalized by the first turn in the dialogue. We thus investigated whether adding a
native speaker feature (currently manually labeled) to the prosodic feature set Norm1
(DIA = all) would improve prediction accuracy. Although the error was reduced from
24.32% to 22.68%, this difference was not statistically significant. Furthermore, when
we added the native speaker feature to both the best-performing ruleset in Table 7
(Raw+ASR+SYS+POS, DIA = PreTurn) and the best-performing prosodic feature set
(Raw, DIA = all), the error rates actually increased; again, however, the differences were
not statistically significant.

Also, in Sections 3.1 and 3.4, we identified differences between different types of cor-
rections, which suggests that our features might be more effectively used to predict each
correction type differently. In other words, what would happen if instead of predicting
whether a turn was a correction (T) or not (F) (the binary classification task investigated
above), we predicted whether a turn was ADD, ADD/OMIT, OMIT, PAR, REP, or F (i.e.,
not a correction). Because, as Table 2 shows, we only have limited amounts of data for

Figure 6
Ruleset for raw prosodic features (Raw, DIA = all).
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several of our classes (e.g., only 2% of our corrections are ADD/OMIT); we performed a
simpler version of this experiment, combining our three lowest frequency classes (ADD,
ADD/OMIT, and PAR) into the single class MISC.

Using the best feature set from Table 7 (Raw+ASR+SYS+POS, DIA = PreTurn),
Table 8 shows our results using 25-fold cross-validation. First, note that our overall
estimated error is now 24.13% ± 0.89%. Although this is a huge increase compared to
the 15.72% error rate of our original binary classifier, it should be noted that considering
correction types separately makes our class distribution quite skewed, with the data
for our three correction classes much smaller than the majority class. Nevertheless,
our classifier yields a slight but significant decrease compared to the majority baseline
error, and a nonsignificant decrease compared to the Prerejbool baseline error (both
baselines remain the same as in Table 7). With respect to precision and recall, although
the absolute numbers for corrections are much lower than in Table 7, we again see
that predicting corrections yields higher precision than recall, whereas predicting non-
corrections yields higher recall than precision. Finally, an examination of the learned
ruleset (which contains four rules for predicting MISC, two rules for predicting OMIT,
and seven rules for predicting REP) does show that features are used differently across
correction types. For example, the feature prestr is only used to predict repetition correc-
tions (in particular, after a turn containing help). Our rules also show some overlap with
our earlier descriptive findings. For example, we noted that corrections of rejections
were more likely to be repetitions, and find the feature prerejbool in two of the rules
for predicting repetitions. These findings suggest that if more data were available,
predicting corrections by type might prove a useful strategy.

5. Conclusions

In this article we have presented results of an analysis of corrections in the TOOT
spoken dialogue corpus. We first introduced the TOOT spoken dialogue corpus and
our labeling scheme to identify different types of corrections. The TOOT corpus is
representative of many current research and commercial dialog systems in focusing on
the travel domain. Also, since data were collected using a variety of dialog strategies
with different types of initiative and confirmation, results obtained with this corpus
are more likely to have general usefulness for builders of other spoken dialogue
systems.

We next presented a statistical description of the corrections we labeled. In general,
it appears that corrections are a serious problem for ASR, being recognized much
more poorly than non-corrections but not being rejected any more frequently. Some
corrections types are more difficult to handle for systems than others, with repetitions

Table 8
Predicting correction types (error ± SE = 24.13 ± 0.89)

Class Recall Precision Fβ = 1

FALSE 93.30 82.37 .87
REP 33.86 56.00 .41
MISC 36.17 48.36 .38
OMIT 25.47 50.13 .32
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and corrections that omit information from the original turn being much better recog-
nized than corrections that add or paraphrase such information. Confirming previous
studies of repetition corrections, we found that corrections in general differ from non-
corrections prosodically: They are higher in f0, softer, longer, follow longer pauses, and
contain less internal silence than non-corrections. Also, corrections more distant from
the error they are correcting are louder, higher in pitch, longer, slower, and follow
longer pauses than closer corrections. Both findings suggest a correlation between
corrections and hyperarticulation; however, most prosodic differences persist even
when perceptually hyperarticulated turns are removed from the sample, and perceptual
hyperarticulation is not significantly correlated with distance from original error. We
hypothesize that recognizers may be more sensitive to hyperarticulatory tendencies
than humans.

The second part of this article discusses results of machine-learning experiments
designed to evaluate how well we can distinguish user corrections from non-corrections
using features automatically available to dialogue systems. Clearly, new techniques
must be developed to interpret such corrections, but such techniques can only be
effective if corrections can be reliably identified as such for special handling. Using a
large set of prosodic, ASR-derived, and system-specific features, both for the current
turn and for contextual windows, and using summary features of the prior dialogue, we
have demonstrated that it is possible to classify user corrections significantly better than
either of two baseline classifiers (15.72% error vs. 25.70–28.99%). More usefully perhaps
for current spoken dialogue systems, we have found that we can derive classifiers
that perform equivalently well using only features currently available to most speech
recognizers, such as acoustic confidence score, recognized string, grammar, and features
easily derived from these data. For example, using only such features, we can classify
user corrections with an estimated success rate of 16.41%. So, it does, in fact, seem quite
feasible for current systems to identify user corrections using data they typically do not
make use of.

Given that our findings show that corrections can be classified well using quite dis-
tinct feature sets, a possible future line of research would be to try classification combi-
nation schemes. For instance, one could envision a form of metalearning or boosting that
combines classifications using different feature sets (e.g., ASR vs. prosodic vs. context),
or that combines the output of different learning algorithms (e.g., Ripper combined
with memory-based learning; see, e.g., Lendvai 2004). Kirchhoff (2001) presents some
results of classifier combination schemes, showing some improvements in detection of
corrections when using cascading, but especially when using boosting.

The next steps, developing techniques to interpret these turns more accurately
and to use correction prediction to drive modifications in dialogue strategy, are both
subjects of our future research. Also, whereas our analyses so far have given us overall
information about the relative contribution of various feature sets for the automatic
classification of corrections, one interesting problem for the future is to get more specific
information about the cues that characterize corrections, especially for the development
of on-line error-correction detection. In this respect, an interesting observation has been
made by Kirchhoff (2001), who reports that correction classification using only features
of the first half of a turn performs equally well as a classification using features of the
turn as a whole; this could be explained by the fact that speakers tend to put character-
istic cue phrases, such as “no” or “help,” in the beginning of a turn. Additional research
is needed to find strategies that use the detection of corrections to look back in the
dialogue history to identify the utterance being corrected or even the actual problematic
words in these turns. Finally, it would be worthwhile to investigate speaker-specific
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correction strategies in more detail, the possible effect on such strategies of the user’s
experience with a system, and his or her linguistic background.
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