
Book Reviews

Representation and Inference for Natural Language:
A First Course in Computational Semantics

Patrick Blackburn and Johan Bos
(INRIA, France, and University of Edinburgh, Scotland)

Stanford: CSLI Publications (CSLI Studies in Computational Linguistics, edited by
Ann Copestake), distributed by the University of Chicago Press, 2005, xxv+350 pp;
paperbound, ISBN 1-58576-496-7, $30.00, £21.00

Reviewed by
Francis Jeffry Pelletier
Simon Fraser University

Computational semantics is the study of how to represent meaning in a way that comput-
ers can use. For the authors of this textbook, this study includes the representation of
the meaning of natural language in logic formalisms, the recognition of certain relations
that hold within this formalization (such as synonymy, consistency, and implication),
and the computational implementation of all this. I think that, while there probably are
not many courses devoted to computational semantics, this book could profitably be
incorporated into more traditional computational linguistics courses, especially when
two courses are offered serially. The material here could be spread out and integrated
into parts of a more standard pair of these courses, and it would result in a substantial
widening of the knowledge that students come away with from these courses.

The introduction of this book traces the history of computational semantics, with
a goal of justifying the enterprise in the face of the modern emphasis on statistical
natural language processing. Besides this introduction, the book contains six substantial
chapters and four short appendices. There is also a very extensive suite of material on-
line at a Web site maintained by the authors.

Chapter 1 is an introduction to first-order logic, but with a twist that underscores
the particular outlook taken in this book. There is a very short introduction to the
notion of a model of a set of quantifier-free sentences, followed by an equally short
discussion of the interpretation of quantifiers in a model. With respect to quantifier-free
sentences, students are referred to the three-page Appendix B on propositional logic,
where truth-tables are covered. The innovations start with the introduction of three
“inference tasks”: querying, consistency checking, and informativity checking. These
correspond to the logical concepts of satisfiability (of a given formula in a given model),
consistency (whether there is a model that satisfies a given formula), and validity
(whether a formula is true in all models, or, equivalently, whether a given argument
is valid). Although the notions of querying, etc., are thus merely renamings of standard
logical notions, it seems to me that the renaming is particularly apposite in the setting
of a textbook for non-logicians, especially since much is to be done computationally
with these notions in the enterprise of computational semantics. Much of the remainder
of chapter 1 consists of a gentle introduction to Prolog and using it to check formulas
for well-formedness and to build model checkers with the goal of implementing the
querying task.

Computational Linguistics Volume 32, Number 2

Chapter 1 closes with a short discussion of the shortcomings of first-order logic as
a representational language, which serves to motivate chapter 2, “Lambda calculus.”
This chapter starts with the question of whether we can automate associating semantic
representations with sentences of natural language. A “first pass” is made in terms of
definite-clause grammars, and some “experiments” are carried out to show students
the necessity of having some representational scheme similar to the lambda calculus.
This seems to me a very nice motivation for lambda calculus, and the remainder of
this chapter is developed with an eye to simultaneously doing “language engineering,”
“lexical development,” and “semantic rule manipulation.” Some interesting exercises
guide the student along this path.

Chapter 3 introduces underspecified representations, with particular attention to
scope ambiguity. Four methods are considered in turn: Montague’s original method,
Cooper storage, Keller storage (i.e., nested Cooper storage), and hole semantics.
Montague’s method of generating different scopes by generating their analysis trees
differently is described in some detail and found “inelegant.” This leads to the other
three methods, for which implementations in Prolog are built up, starting with Cooper
storage. The authors remark that Cooper storage is extremely easy to implement, but
runs into trouble with “nested NPs,” such as Every owner of a hash bar, where the Cooper
method inappropriately generates unbound variables for some retrievals of the NPs in
the store. This motivates the Keller method, which is essentially just Cooper storage
with a method for ensuring that the embedded NPs retain appropriate values for their
variables that are contributed from the embedding NPs. The authors remark that Keller
storage is “a very simple modification of our earlier code for Cooper storage.”

However, these storage mechanisms are found wanting. Sometimes we might want
to say that one NP must definitely outscope another, while at the same time saying that
they have no scoping relation to a third NP. Further, there are other constructs (e.g.,
negation and intensional verbs such as knows that—although the intensional construc-
tions are not considered in this book) that introduce scope ambiguities, and the NP
storage method seems unable to generalize to these cases. The authors thus motivate
the more general notion of underspecified semantic representation (USR). The particular
version of USR they adopt is (not surprisingly) Johan Bos’s hole semantics. This is the
longest (and most intricate) part of the chapter, and no doubt the place where students
will most easily stumble. The transition to hole semantics is aided by Prolog macros for
building USR trees with the appropriate labeling, and this is followed by a number of
plugging predicates, also written in Prolog. By the end of the chapter, and by using the
on-line materials, students can come to manipulate moderately complicated USRs.

Chapters 4 and 5 bring in a consideration not normally contemplated in computa-
tional linguistic courses: inference. Recall the authors’ desire to have (a) querying, (b)
consistency checking, and (c) informativity checking as a part of their computational
semantics. (Indeed, they seem to claim that this is a primary source of data against
which one can evaluate the worth of (computational) semantic theories.) These are
to be implemented as (a′) model checking, (b′) model building, and (c′) validity of
arguments. They therefore wish to involve automated methods of performing these
tasks. To these ends, they introduce automated theorem proving at length. (Automated
model checking is an easier task that was discussed in chapter 1.) With respect to the
propositional logic (chapter 4), signed tableau and resolution methods are introduced,
first in theory and then with respect to some Prolog macros. Students are encouraged to
experiment with some provers that the authors have on-line. The section concludes with
a discussion of some meta-theoretic properties of propositional logic and remarks about
issues of complexity. Chapter 5 expands both tableau and resolution to the first-order

284

Book Reviews

case. This chapter contains a lot of information about technical issues in automated
theorem proving. After developing all this machinery, the authors surprise the student
by tossing away all the theorem provers that have been built, on the twin grounds that
“they are too naı̈ve” and “they don’t handle equality.” Instead, the authors move to off-
the-shelf theorem provers, in particular to Otter and Bliksem, which are both resolution-
based. The authors have written interfaces that allow students to enter formulas in the
notation employed in the book and call up one or another of these provers (which
are on the book’s Web site). Also on the Web site are the model-building programs
Mace and Paradox, and although there was no discussion in the text about how
model building is automated, students can use these programs to build models for sets
of formulas.

Chapter 6 is entitled “Putting It All Together,” and it is here that the lambda
calculus, the USRs, the theorem-proving programs, the model-checking programs, and
the model-building programs are employed together to construct a system, “Clever Use
of Reasoning Tools” (Curt). Curt is developed in seven stages, each one adding some
aspect that was discussed earlier in the text to the preceding version. The final version,
Knowledgeable Curt, has a small fund of lexical knowledge, world knowledge, and
situational knowledge at its disposal. And like some of the earlier Curts, it can maintain
a model of the Discourse-So-Far. On the basis of all this, Knowledgeable Curt can accept
new information if it does not contradict what is already known or is not implied by
what is already in its store of information. And for simple dialogues, it does a credible
job. This leads into the last part of the book, which is a discussion of lexical knowledge,
world knowledge, ontologies, and the like. Despite its simplicity, Curt is a “proof of
concept” for the entire enterprise being undertaken in this textbook, and students who
actually get this far and can work with Curt will be interested in extending it. And isn’t
that what we would want out of any course?

I have not yet mentioned the “notes” sections at the end of each chapter. These
are always interesting and will give the instructor who uses this book a much broader
understanding of the topics under discussion in the chapters. They are also quite nice
for historical and bibliographic information.

Choosing material to put into a textbook is always a matter of juggling priori-
ties, and so it will always lead others to complain that certain things were omitted
that should not have been and that too much time was spent on some other things.
This book, with its unusual emphasis on (a) semantics without having any theoretical
discussions to motivate a firm syntactic base, (b) first-order logic without considering
any other framework, (c) underspecified semantics over other alternatives, (d) hole
semantics as the favored version of underspecified semantics, and (e) theorem-proving
technology in the service of semantics, is bound to generate complaints. I would have
liked to see some firm syntactic theory or other that would form the basis for generating
semantic representations, with thoughts on how to arrive at such a grammar. (This book
and its Web site present a small context-free grammar.) I would have liked to see at
least a mention of alternatives to underspecified semantics, and possibly some general
criticisms of underspecified forms (perhaps in the notes). And even though some of my
own work is in automated theorem proving and its use in semantics, it is not so clear
to me that the discussion of the inner workings of tableau and resolution methods is
really appropriate here, especially since the systems that are developed are discarded in
favor of off-the-shelf systems. Furthermore, the authors also employ automated model-
building programs, and these are not explained at all, in contrast to the theorem-proving
methods. In the model-building case, students are told from the beginning to just use
the off-the-shelf software; why not do the same with the theorem provers? Much could

285

Computational Linguistics Volume 32, Number 2

have been omitted from these chapters on theorem proving (and replaced with more
straightforward semantic information) if theorem proving weren’t covered so deeply.

Still, these are quibbles. We have here perhaps the only book in its class: an
exploration of computational semantics aimed at the senior undergraduate student
or beginning graduate student who has not taken any computational semantics. It
nicely introduces a current influential direction in the research field and might even
convince students that there is more to semantics than corpus-based studies of what
words are n-grams of some given word. It might also have some positive effect on
automated theorem proving, moving its current emphasis on mathematical issues to
include language-oriented topics.

Francis Jeffry Pelletier is a Canada Research Chair in Cognitive Science and Professor of Philosophy
and of Linguistics at Simon Fraser University. His research is in philosophy of language and logic,
with emphases on both human performance and on computational implementation. He has also
done work in automated theorem proving and ancient Greek philosophy. He has been editor,
associate editor, and on the editorial boards of a wide range of journals (including Computational
Linguistics), and is an editor of the Springer book series Studies in Linguistics and Philosophy.
Pelletier’s address is Department of Philosophy, Simon Fraser University, Burnaby, BC, Canada
V5A 1S6; e-mail: jeffpell@sfu.ca.

286

