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Choosing the wrong word in a machine translation or natural language generation system can
convey unwanted connotations, implications, or attitudes. The choice between near-synonyms
such as error, mistake, slip, and blunder—words that share the same core meaning, but differ
in their nuances—can be made only if knowledge about their differences is available.

We present a method to automatically acquire a new type of lexical resource: a knowledge
base of near-synonym differences. We develop an unsupervised decision-list algorithm that learns
extraction patterns from a special dictionary of synonym differences. The patterns are then used
to extract knowledge from the text of the dictionary.

The initial knowledge base is later enriched with information from other machine-readable
dictionaries. Information about the collocational behavior of the near-synonyms is acquired from
free text. The knowledge base is used by Xenon, a natural language generation system that shows
how the new lexical resource can be used to choose the best near-synonym in specific situations.

1. Near-Synonyms

Near-synonyms are words that are almost synonyms, but not quite. They are not fully
intersubstitutable, but vary in their shades of denotation or connotation, or in the com-
ponents of meaning they emphasize; they may also vary in grammatical or collocational
constraints. For example, the word foe emphasizes active warfare more than enemy does
(Gove 1984); the distinction between forest and woods is a complex combination of size,
proximity to civilization, and wildness (as determined by the type of animals and plants
therein) (Room 1981); among the differences between task and job is their collocational
behavior with the word daunting: daunting task is a better collocation than daunting job.
More examples are given in Table 1 (Hirst 1995).

There are very few absolute synonyms, if they exist at all. So-called dictionaries
of synonyms actually contain near-synonyms. This is made clear by dictionaries such
as Webster’s New Dictionary of Synonyms (Gove 1984) and Choose the Right Word (here-
after CTRW) (Hayakawa 1994), which list clusters of similar words and explicate the
differences between the words in each cluster. An excerpt from CTRW is presented in
Figure 1. These dictionaries are in effect dictionaries of near-synonym discrimination.
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Table 1
Examples of near-synonym variations.

Type of variation Example

Stylistic, formality pissed : drunk : inebriated
Stylistic, force ruin : annihilate
Expressed attitude skinny : thin : slim
Emotive daddy : dad : father
Continuousness seep : drip
Emphasis on different aspects of meaning enemy : foe
Fuzzy boundary woods : forest
Collocational task : job (in the context of daunting)

Writers often turn to such resources when confronted with a choice between near-
synonyms, because choosing the wrong word can be imprecise or awkward or convey
unwanted implications. These dictionaries are made for human use, and they are avail-
able only on paper, not in electronic format.

Understanding the differences between near-synonyms is important for fine-
grained distinctions in machine translation. For example, when translating the French
word erreur to English, one of the near-synonyms mistake, blooper, blunder, boner, con-
tretemps, error, faux pas, goof, slip, solecism could be chosen, depending on the context and
on the nuances that need to be conveyed. More generally, knowledge of near-synonyms
is vital in natural language generation systems that take a nonlinguistic input (semantic
representation) and generate text. When more than one word can be used, the choice
should be based on some explicit preferences. Another application is an intelligent
thesaurus, which would assist writers not only with lists of possible synonyms but also
with the nuances they carry (Edmonds 1999).

1.1 Distinctions among Near-Synonyms

Near-synonyms can vary in many ways. DiMarco, Hirst, and Stede (1993) analyzed
the types of differences adduced in dictionaries of near-synonym discrimination. They
found that there was no principled limitation on the types, but a small number of types
occurred frequently. A detailed analysis of the types of variation is given by Edmonds
(1999). Some of the most relevant types of distinctions, with examples from CTRW, are
presented below.

Denotational distinctions Near-synonyms can differ in the frequency with which
they express a component of their meaning (e.g., Occasionally, invasion suggests a large-
scale but unplanned incursion), in the latency (or indirectness) of the expression of the
component (e.g., Test strongly implies an actual application of these means), and in fine-
grained variations of the idea itself (e.g., Paternalistic may suggest either benevolent
rule or a style of government determined to keep the governed helpless and dependent). The
frequency is signaled in the explanations in CTRW by words such as always, usually,
sometimes, seldom, never. The latency is signaled by many words, including the obvious
words suggests, denotes, implies, and connotes. The strength of a distinction is signaled by
words such as strongly and weakly.

Attitudinal distinctions Near-synonyms can convey different attitudes of the
speaker toward an entity in the situation. Attitudes can be pejorative, neutral, or favor-
able. Examples of sentences in CTRW expressing attitudes, in addition to denotational
distinctions, are these: Blurb is also used pejoratively to denote the extravagant and insincere
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Figure 1
An excerpt from Choose the Right Word (CTRW) by S. I. Hayakawa. Copyright ©1987. Reprinted
by arrangement with HarperCollins Publishers, Inc.

praise common in such writing. Placid may have an unfavorable connotation in suggesting an
unimaginative, bovine dullness of personality.

Stylistic distinctions Stylistic variations of near-synonyms concern their level of
formality, concreteness, force, floridity, and familiarity (Hovy 1990). Only the first
three of these occur in CTRW. A sentence in CTRW expressing stylistic distinctions
is this: Assistant and helper are nearly identical except for the latter’s greater informality.
Words that signal the degree of formality include formal, informal, formality, and slang.
The degree of concreteness is signaled by words such as abstract, concrete, and concretely.
Force can be signaled by words such as emphatic and intensification.

1.1.1 The Class Hierarchy of Distinctions. Following the analysis of the distinctions
among near-synonyms of Edmonds and Hirst (2002), we derived the class hierarchy of
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distinctions presented in Figure 2. The top-level class DISTINCTIONS consists of DENO-
TATIONAL DISTINCTIONS, ATTITUDE, and STYLE. The last two are grouped together in
a class ATTITUDE-STYLE DISTINCTIONS because they are expressed by similar syntactic
constructions in the text of CTRW. Therefore the algorithm to be described in Section 2.2
will treat them together.

The leaf classes of DENOTATIONAL DISTINCTIONS are SUGGESTION, IMPLICATION,
and DENOTATION; those of ATTITUDE are FAVORABLE, NEUTRAL, and PEJORATIVE;
those of STYLE are FORMALITY, CONCRETENESS, and FORCE. All these leaf nodes have
the attribute STRENGTH, which takes the values low, medium, and high. All the leaf nodes
except those in the class STYLE have the attribute FREQUENCY, which takes the values
always, usually, sometimes, seldom, and never. The DENOTATIONAL DISTINCTIONS
have an additional attribute: the peripheral concept that is suggested, implied, or
denoted.

1.2 The Clustered Model of Lexical Knowledge

Hirst (1995) and Edmonds and Hirst (2002) show that current models of lexical
knowledge used in computational systems cannot account well for the properties of
near-synonyms.

The conventional view is that the denotation of a lexical item is represented as
a concept or a structure of concepts (i.e., a word sense is linked to the concept it
lexicalizes), which are themselves organized into an ontology. The ontology is often
language independent, or at least language neutral, so that it can be used in multilin-
gual applications. Words that are nearly synonymous have to be linked to their own
slightly different concepts. Hirst (1995) showed that such a model entails an awkward
taxonomic proliferation of language-specific concepts at the fringes, thereby defeating
the purpose of a language-independent ontology. Because this model defines words

Figure 2
The class hierarchy of distinctions: rectangles represent classes, ovals represent attributes that a
class and its descendants have.
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in terms of necessary and sufficient truth conditions, it cannot account for indirect
expressions of meaning or for fuzzy differences between near-synonyms.

Edmonds and Hirst (2002) modified this model to account for near-synonymy. The
meaning of each word arises out of a context-dependent combination of a context-
independent denotation and a set of explicit differences from its near-synonyms, much
as in dictionaries of near-synonyms. Thus the meaning of a word consists both of
necessary and sufficient conditions that allow the word to be selected by a lexical choice
process and a set of nuances of indirect meaning that may be conveyed with different
strengths. In this model, a conventional ontology is cut off at a coarse grain and the
near-synonyms are clustered under a shared concept, rather than linking each word to
a separate concept. The result is a clustered model of lexical knowledge. Thus, each cluster
has a core denotation that represents the essential shared denotational meaning of its
near-synonyms. The internal structure of a cluster is complex, representing semantic
(or denotational), stylistic, and expressive (or attitudinal) differences between the near-
synonyms. The differences or lexical nuances are expressed by means of peripheral
concepts (for denotational nuances) or attributes (for nuances of style and attitude).

The clustered model has the advantage that it keeps the ontology language neutral
by representing language-specific distinctions inside the cluster of near-synonyms. The
near-synonyms of a core denotation in each language do not need to be in separate
clusters; they can be part of one larger cross-linguistic cluster.

However, building such representations by hand is difficult and time-consuming,
and Edmonds and Hirst (2002) completed only nine of them. Our goal in the present
work is to build a knowledge base of these representations automatically by extracting
the content of all the entries in a dictionary of near-synonym discrimination. Un-
like lexical resources such as WordNet (Miller 1995), in which the words in synsets
are considered “absolute” synonyms, ignoring any differences between them, and
thesauri such as Roget’s (Roget 1852) and Macquarie (Bernard 1987), which contain
hierarchical groups of similar words, the knowledge base will include, in addition
to the words that are near-synonyms, explicit explanations of differences between
these words.

2. Building a Lexical Knowledge Base of Near-Synonym Differences

As we saw in Section 1, each entry in a dictionary of near-synonym discrimination
lists a set of near-synonyms and describes the differences among them. We will use
the term cluster in a broad sense to denote both the near-synonyms from an entry and
their differences. Our aim is not only to automatically extract knowledge from one such
dictionary in order to create a lexical knowledge base of near-synonyms (LKB of NS),
but also to develop a general method that could be applied to any such dictionary
with minimal adaptation. We rely on the hypothesis that the language of the entries
contains enough regularity to allow automatic extraction of knowledge from them.
Earlier versions of our method were described by Inkpen and Hirst (2001).

The task can be divided into two phases, treated by two consecutive modules, as
shown in Figure 3. The first module, the extraction module, will be described in this
section. The generic clusters produced by this module contain the concepts that near-
synonyms may involve (the peripheral concepts) as simple strings. This generic LKB
of NS can be adapted for use in any Natural Language Processing (NLP) application.
The second module customizes the LKB of NS so that it satisfies the requirements of
the particular system that is to employ it. This customization module transforms the
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Figure 3
The two modules of the task.

strings from the generic clusters into concepts in the particular ontology. An example of
a customization module will be described in Section 6.

The dictionary that we use is Choose the Right Word (Hayakawa 1994) (CTRW),1

which was introduced in Section 1. CTRW contains 909 clusters, which group 5,452
near-synonyms (more precisely, near-synonym senses, because a word can be in more
than one cluster) with a total of 14,138 sentences (excluding examples of usage), from
which we derive the lexical knowledge base. An example of the results of this phase,
corresponding to the second, third, and fourth sentence for the absorb cluster in Figure 1,
is presented in Figure 4.

This section describes the extraction module, whose architecture is presented in
Figure 5. It has two main parts. First, it learns extraction patterns; then it applies the
patterns to extract differences between near-synonyms.

2.1 Preprocessing the Dictionary

After OCR scanning of CTRW and error correction, we used XML markup to segment
the text of the dictionary into cluster name, cluster identifier, members (the near-
synonyms in the cluster), entry (the textual description of the meaning of the near-
synonyms and of the differences among them), cluster’s part of speech, cross-references
to other clusters, and antonyms list. Sentence boundaries were detected by using
general heuristics, plus heuristics specific for this particular dictionary; for example,
examples appear in square brackets and after a colon.

2.2 The Decision-List Learning Algorithm

Before the system can extract differences between near-synonyms, it needs to learn
extraction patterns. For each leaf class in the hierarchy (Figure 2) the goal is to learn
a set of words and expressions from CTRW—that is, extraction patterns—that charac-
terizes descriptions of the class. Then, during the extraction phase, for each sentence (or
fragment of a sentence) in CTRW the program will decide which leaf class is expressed,
with what strength, and what frequency. We use a decision-list algorithm to learn sets
of words and extraction patterns for the classes DENOTATIONAL DISTINCTIONS and
ATTITUDE-STYLE DISTINCTIONS. These are split further for each leaf class, as explained
in Section 2.3.

The algorithm we implemented is inspired by the work of Yarowsky (1995) on word
sense disambiguation. He classified the senses of a word on the basis of other words
that the given word co-occurs with. Collins and Singer (1999) classified proper names

1 We are grateful to HarperCollins Publishers, Inc. for permission to use CTRW in this project.
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Figure 4
Example of distinctions extracted from CTRW.

as PERSON, ORGANIZATION, or LOCATION using contextual rules (that rely on other
words appearing in the context of the proper names) and spelling rules (that rely on
words in the proper names). Starting with a few spelling rules (using some proper-name
features) in the decision list, their algorithm learns new contextual rules; using these
rules, it then learns more spelling rules, and so on, in a process of mutual bootstrapping.
Riloff and Jones (1999) learned domain-specific lexicons and extraction patterns (such
as shot in 〈x〉 for the terrorism domain). They used a mutual bootstrapping technique to
alternately select the best extraction pattern for a category and add its extractions to the
semantic lexicon; the newly added entries in the lexicon help in the selection of the next
best extraction pattern.

Our decision-list (DL) algorithm (Figure 6) is tailored for extraction from CTRW.
Like the algorithm of Collins and Singer (1999), it learns two different types of rules:
Main rules are for words that are significant for distinction classes; auxiliary rules are
for frequency words, strength words, and comparison words. Mutual bootstrapping in
the algorithm alternates between the two types. The idea behind the algorithm is that
starting with a few main rules (seed words), the program selects examples containing
them and learns a few auxiliary rules. Using these, it selects more examples and learns
new main rules. It keeps iterating until no more new rules are learned.

The rules that the program learns are of the form x → h(x), meaning that word
x is significant for the given class with confidence h(x). All the rules for that class
form a decision list that allows us to compute the confidence with which new patterns

Figure 5
The architecture of the extraction module.
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Figure 6
The decision-list learning algorithm.

are significant for the class. The confidence h(x) for a word x is computed with the
formula:

h(x) = count(x, E′) + α

count(x, E) + kα (1)

where E′ is the set of patterns selected for the class, and E is the set of all input data.
So, we count how many times x is in the patterns selected for the class versus the total
number of occurrences in the training data. Following Collins and Singer (1999), k =
2, because there are two partitions (relevant and irrelevant for the class). α = 0.1 is a
smoothing parameter.

In order to obtain input data, we replace all the near-synonyms in the text of the dic-
tionary with the term near syn; then we chunk the text with Abney’s chunker (Abney
1996). The training set E is composed of all the verb phrases, noun phrases, adjectival
phrases, and adverbial phrases (denoted vx, nx, ax, rx, respectively) that occur more
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than t times in the text of the dictionary (where t = 3 in our experiments). Phrases
that occur very few times are not likely to be significant patterns and eliminating them
makes the process faster (fewer iterations are needed).

We apply the DL algorithm for each of the classes DENOTATIONAL DISTINCTIONS
and ATTITUDE-STYLE DISTINCTIONS. The input to the algorithm is as follows: the set
E of all chunks, the main seed words, and the restrictions on the part of speech of
the words in main and auxiliary rules. For the class DENOTATIONAL DISTINCTIONS
the main seed words are suggest, imply, denote, mean, designate, connote; the words in
main rules are verbs and nouns, and the words in auxiliary rules are adverbs and
modals. For the class ATTITUDE-STYLE DISTINCTIONS the main seed words are formal,
informal, pejorative, disapproval, favorable, abstract, concrete; the words in main rules are
adjectives and nouns, and the words in auxiliary rules are adverbs. For example, for the
class DENOTATIONAL DISTINCTIONS, starting with the rule suggest → 0.99, the program
selects examples such as these (where the numbers give the frequency in the training
data):

[vx [md can] [vb suggest]]--150
[vx [rb sometimes] [vb suggest]]--12

Auxiliary rules are learned for the words sometimes and can, and using these rules, the
program selects more examples such as these:

[vx [md can] [vb refer]]--268
[vx [md may] [rb sometimes] [vb imply]]--3

From these, new main rules are learned for the words refer and imply. With these rules,
more auxiliary rules are selected—for the word may and so on.

The ATTITUDE and STYLE classes had to be considered together because both of
them use adjectival comparisons. Examples of ATTITUDE-STYLE DISTINCTIONS class are
these:

[ax [rbs most] [jj formal]]--54
[ax [rb much] [more more] [jj formal]]--9
[ax [rbs most] [jj concrete]]--5

2.3 Classification and Extraction

After we run the DL algorithm for the class DENOTATIONAL DISTINCTIONS, we split
the words in the list of main rules into its three sub-classes, as shown in Figure 2. This
sub-classification is manual for lack of a better procedure. Furthermore, some words can
be insignificant for any class (e.g., the word also) or for the given class; during the sub-
classification we mark them as OTHER. We repeat the same procedure for frequencies
and strengths with the words in the auxiliary rules. The words marked as OTHER and
the patterns that do not contain any word from the main rules are ignored in the next
processing steps. Similarly, after we run the algorithm for the class ATTITUDE-STYLE
DISTINCTIONS, we split the words in the list of main rules into its sub-classes and
sub-sub-classes (Figure 2). Frequencies are computed from the auxiliary rule list, and
strengths are computed by a module that resolves comparisons.

Once we had obtained the words and patterns for all the classes, we implemented
an automatic knowledge-extraction program that takes each sentence in CTRW and
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tries to extract one or more pieces of knowledge from it. Examples of results after this
stage are presented in Figure 4. The information extracted for denotational distinctions
is the near-synonym itself, the class, frequency, and strength of the distinction, and
the peripheral concept. At this stage, the peripheral concept is a string extracted from
the sentence. Strength takes the value low, medium, or high; frequency takes the value
always, usually, sometimes, seldom, or never. Default values (usually and medium)
are used when the strength or the frequency are not specified in the sentence. The
information extracted for attitudinal and stylistic distinctions is analogous.

The extraction program considers what near-synonyms each sentence fragment is
about (most often expressed as the subject of the sentence), what the expressed distinc-
tion is, and with what frequency and relative strength. If it is a denotational distinction,
then the peripheral concept involved has to be extracted too (from the object position in
the sentence). Therefore, our program looks at the subject of the sentence (the first noun
phrase before the main verb) and the object of the sentence (the first noun phrase after
the main verb). This heuristic works for sentences that present one piece of information.
There are many sentences that present two or more pieces of information. In such cases,
the program splits a sentence into coordinated clauses (or coordinated verb phrases) by
using a parser (Collins 1996) to distinguish when a coordinating conjunction (and, but,
whereas) is conjoining two main clauses or two parts of a complex verb phrase. From 60
randomly selected sentences, 52 were correctly dealt with (41 needed no split, 11 were
correctly split). Therefore, the accuracy was 86.6%. The eight mistakes included three
sentences that were split but should not have been, and five that needed splitting but
were not. The mistakes were mainly due to wrong parse trees.

When no information is extracted in this way, a few general patterns are matched
with the sentence in order to extract the near-synonyms; an example of such pattern
is: To NS1 is to NS2 .... There are also heuristics to retrieve compound subjects of
the form near-syn and near-syn and near-syn, near-syn, and near-syn. Once the class is
determined to be either DENOTATIONAL DISTINCTIONS or ATTITUDE-STYLE DISTINC-
TIONS, the target class (one of the leaves in the class hierarchy in Figure 2) is deter-
mined by using the manual partitions of the rules in the main decision list of the two
classes.

Sometimes the subject of a sentence refers to a group of near-synonyms. For ex-
ample, if the subject is the remaining words, our program needs to assert information
about all the near-synonyms from the same cluster that were not yet mentioned in the
text. In order to implement coreference resolution, we applied the same DL algorithm
to retrieve expressions used in CTRW to refer to near-synonyms or groups of near-
synonyms.

Sometimes CTRW describes stylistic and attitudinal distinctions relative to other
near-synonyms in the cluster. Such comparisons are resolved in a simple way by consid-
ering only three absolute values: low, medium, high. We explicitly tell the system which
words represent what absolute values of the corresponding distinction (e.g., abstract is
at the low end of Concreteness) and how the comparison terms increase or decrease
the absolute value (e.g., less abstract could mean a medium value of Concreteness).

2.4 Evaluation

Our program was able to extract 12,365 distinctions from 7,450 of the 14,138 sentences of
CTRW. (The rest of the sentences usually do not contain directly expressed distinctions;
for example: A terror-stricken person who is drowning may in panic resist the efforts of
someone who is trying to save him.)
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In order to evaluate the final results, we randomly selected 25 clusters as a de-
velopment set, and another 25 clusters as a test set. The development set was used
to tune the program by adding new patterns if they helped improve the results. The
test set was used exclusively for testing. We built by hand a standard solution for
each set. The baseline algorithm is to choose the default values whenever possible.
There are no defaults for the near-synonyms the sentence is about or for peripheral
concepts; therefore, for these, the baseline algorithm assigns the sentence subject and
object, respectively, using only tuples extracted by the chunker.

The measures that we used for evaluating each piece of information extracted from
a sentence fragment were precision and recall. The results to be evaluated have four com-
ponents for ATTITUDE-STYLE DISTINCTIONS and five components for DENOTATIONAL
DISTINCTIONS. There could be missing components (except strength and frequency,
which take default values). Precision is the total number of correct components found
(summed over all the sentences in the test set) divided by the total number of com-
ponents found. Recall is the total number of correct components found divided by the
number of components in the standard solution.

For example, for the sentence Sometimes, however, profit can refer to gains outside the
context of moneymaking, the program obtains 〈profit, usually, medium, Denotation,
gains outside the context of moneymaking〉, whereas the solution is 〈profit, some-
times, medium, Denotation, gains outside the context of money-making〉. The pre-
cision is .80 (four correct out of five found), and the recall is also .80 (four correct out of
five in the standard solution).

Table 2 presents the results of the evaluation.2 The first row of the table presents
the results as a whole (all the components of the extracted lexical knowledge base). Our
system increases precision by 36 percentage points and recall by 46 percentage points
over baseline on the development set.3 Recall and precision are both slightly higher still
on the test set; this shows that the patterns added during the development stage were
general.

The second row of the table gives the evaluation results for extracting only the
class of the distinction expressed, ignoring the strengths, frequencies, and peripheral
concepts. This allows for a more direct evaluation of the acquired extraction patterns.
The baseline algorithm attained higher precision than in the case when all the com-
ponents are considered because the default class Denotation is the most frequent in
CTRW. Our algorithm attained slightly higher precision and recall on the development
set than it did in the complete evaluation, probably due to a few cases in which the
frequency and strength were incorrectly extracted, and slightly lower on the test set,
probably due to some cases in which the frequency and strength were easy to extract
correctly.

2.5 Conclusion

The result of this stage is a generic lexical knowledge base of near-synonym differences.
In subsequent sections, it will be enriched with knowledge from other sources; informa-
tion about the collocational behavior of the near-synonyms is added in Section 3, and

2 The improvement over the baseline is statistically significant (at p = 0.005 level or better) for all the results
presented in this article, except in one place to be noted later. Statistical significance tests were done with
the paired t test, as described by Manning and Schütze (1999, pages 208–209).

3 These values are improved over those of earlier systems presented by Inkpen and Hirst (2001).
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Table 2
Precision and recall of the baseline and of our algorithm (for all the components and for the
distinction class only; boldface indicates best results).

Baseline algorithm Our system (dev. set) Our system (test set)

Precision Recall Precision Recall Precision Recall

All .40 .23 .76 .69 .83 .73
Class only .49 .28 .79 .70 .82 .71

more distinctions acquired from machine-readable dictionaries are added in Section 4.
To be used in a particular NLP system, the generic LKB of NS needs to be customized
(Section 6). Section 7 shows how the customized LKB of NS can actually be used in
Natural Language Generation (NLG).

The method for acquiring extraction patterns can be applied to other dictionaries
of synonym differences. The extraction patterns that we used to build our LKB of NS
are general enough to work on other dictionaries of English synonyms. To verify this,
we applied the extraction programs presented in Section 2.3, without modification, to
the usage notes in the Merriam-Webster Online Dictionary.4 The distinctions expressed in
these usage notes are similar to the explanations from CTRW, but the text of these notes
is shorter and simpler. In a sample of 100 usage notes, we achieved a precision of 90%
and a recall of 82%.

3. Adding Collocational Knowledge from Free Text

In this section, the lexical knowledge base of near-synonym differences will be enriched
with knowledge about the collocational behavior of the near-synonyms. We take col-
locations here to be pairs of words that appear together, consecutively or separated by
only a few non-content words, much more often than by chance. Our definition is purely
statistical, and we make no claim that the collocations that we find have any element of
idiomaticity; rather, we are simply determining the preferences of our near-synonyms
for combining, or avoiding combining, with other words. For example daunting task is a
preferred combination (a collocation, in our terms), whereas daunting job is less preferred
(it should not be used in lexical choice unless there is no better alternative), and daunting
duty is an anti-collocation (Pearce 2001) that sounds quite odd and must not be used in
lexical choice.

There are three main steps in acquiring this knowledge, which are shown in Fig-
ure 7. The first two look in free text—first the British National Corpus, then the World
Wide Web—for collocates of all near-synonyms in CTRW, removing any closed-class
words (function words). For example, the phrase defeat the enemy will be treated as defeat
enemy; we will refer to such pairs as bigrams, even if there were intervening words. The
third step uses the t-test (Church et al. 1991) to classify less frequent or unobserved
bigrams as less preferred collocations or anti-collocations. We outline the three steps
below; a more-detailed discussion is presented by Inkpen and Hirst (2002).

4 http://www.m-w.com/cgi-bin/dictionary
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Figure 7
The three steps in acquiring collocational knowledge for near-synonyms.

3.1 Extracting Collocations from the British National Corpus

In step 1 of our procedure, our data was the 100-million-word part-of-speech-tagged
British National Corpus (BNC).5 Only 2.61% of the near-synonyms are absent from the
BNC; and only 2.63% occur between one and five times. We first preprocessed the BNC
by removing all words tagged as closed-class and all the proper names, and then used
the Ngram Statistics Package6 (Pedersen and Banerjee 2003), which counts bigram (or
n-gram) frequencies in a corpus and computes various statistics to measure the degree
of association between two words: pointwise mutual information (MI), Dice, chi-square
(χ2), log-likelihood (LL), and Fisher’s exact test. (See Manning and Schütze [1999] for a
review of statistical methods that can be used to identify collocations.)

Because these five measures rank potential collocations in different ways and have
different advantages and drawbacks, we decided to combine them by choosing as a
collocation any bigram that was ranked by at least two of the measures as one of
that measure’s T most-highly ranked bigrams; the threshold T may differ for each
measure. Lower values for T increase the precision (reduce the chance of accepting
noncollocations) but may not get many collocations for some of the near-synonyms;
higher values increase the recall at the expense of lower precision. Because there is
no principled way of choosing these values, we opted for higher recall, with step 2
of the process (Section 3.2) filtering out many noncollocations in order to increase
the precision. We took the first 200,000 bigrams selected by each measure, except for
Fisher’s measure for which we took all 435,000 that were ranked equal top. From these
lists, we retained only those bigrams in which one of the words is a near-synonym
in CTRW.7

5 http://www.hcu.ox.ac.uk/BNC/
6 http://www.d.umn.edu/∼tpederse/nsp.html. We used version 0.4, known at the time as the Bigram

Statistics Package (BSP).
7 Collocations of a near-synonym with the wrong part of speech were not considered (the collocations are

tagged), but when a near-synonym has more than one major sense, collocations for senses other than the
one required in the cluster could be retrieved. For example, for the cluster job, task, duty, and so on, the
collocation import duty is likely to be for a different sense of duty (the tariff sense). Therefore
disambiguation is required (assuming one sense per collocation). We experimented with a simple
Lesk-style method (Lesk 1986). For each collocation, instances from the corpus were retrieved, and the
content words surrounding the collocations were collected. This set of words was then intersected with
the entry for the near-synonym in CTRW. A non-empty intersection suggests that the collocation and the
entry use the near-synonym in the same sense. If the intersection was empty, the collocation was not
retained. However, we ran the disambiguation algorithm only for a subset of CTRW, and then abandoned
it, because hand-annotated data are needed to evaluate how well it works and because it was very
time-consuming (due to the need to retrieve corpus instances for each collocation). Moreover, skipping
disambiguation is relatively harmless because including these wrong senses in the final lexical
knowledge base of near-synonym collocations will not hurt. For example, if the collocation import duty is
associated with the cluster job, duty, etc., it simply will not be used in practice because the concepts of
import and this sense of duty are unlikely to occur together in coherent interlingual input.
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3.2 Filtering with Mutual Information from Web Data

In the previous step we emphasized recall at the expense of precision: Because of
the relatively small size of the BNC, it is possible that the classification of a bigram
as a collocation in the BNC was due to chance. However, the World Wide Web (the
portion indexed by search engines) is big enough that a result is more reliable. So we
can use frequency on the Web to filter out the more dubious collocations found in the
previous step.8 We did this for each putative collocation by counting its occurrence on
the Web, the occurrence of each component word, and computing the pointwise mutual
information (PMI) between the words. Only those whose pointwise mutual information
exceeded a threshold Tpmi were retained.

More specifically, if w is a word that collocates with one of the near-synonyms x in
a cluster, a proxy PMIprox for the pointwise mutual information between the words can
be given by the ratio

P(w, x)
P(x) = nwx

nx

where nwx and nx are the number of occurrences of wx and x, respectively. The for-
mula does not include P(w) because it is the same for various x. We used an inter-
face to the AltaVista search engine to do the counts, using the number of hits (i.e.,
matching documents) as a proxy for the actual number of bigrams.9 The threshold
Tpmi for PMIprox was determined empirically by finding the value that optimized re-
sults on a standard solution, constructed as follows. We selected three clusters from
CTRW, with a total of 24 near-synonyms. For these, we obtained 916 candidate collo-
cations from the BNC. Two human judges (computational linguistics students, native
speakers of English) were asked to mark the true collocations (what they considered
to be good usage in English). The candidate pairs were presented to the judges in
random order, and each was presented twice.10 A bigram was considered to be a
true collocation only if both judges considered it so. We used this standard solution
to choose the value of Tpmi that maximizes the accuracy of the filtering program.
Accuracy on the test set was 68.3% (compared to approximately 50% for random
choice).

3.3 Finding Less Preferred Collocations and Anti-Collocations

In seeking knowledge of less preferred collocations and anti-collocations, we are look-
ing for bigrams that occur infrequently or not at all. The low frequency or absence of a

8 Why not just use the Web and skip the BNC completely? Because we would then have to count Web
occurrences of every near-synonym in CTRW combined with every content word in English. Using the
BNC as a first-pass filter vastly reduces the search space.

9 The collocations were initially acquired from the BNC with the right part of speech for the near-synonym
because the BNC is part-of-speech-tagged, but on the Web there are no part-of-speech tags; therefore a
few inappropriate instances may be included in the counts.

10 One judge was consistent (judged a collocation in the same way both times it appeared) in 90.4% of the
cases and the other in 88% of the cases. The agreement between the two judges was 78% (computed in a
strict way; i.e., we considered agreement only when the two judges had the same opinion including the
cases when they were not consistent), yielding κ = .51 with a 95% confidence interval of 0.47 to 0.55. (The
notion of confidence intervals for κ is defined, e.g., by Sim and Wright [2005]. The computations were
done with the PEPI statistical package [http://sagebrushpress.com/pepibook.html].) These figures show
that the task is not easy for humans.
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bigram in the BNC may be due to chance. However, the World Wide Web is big enough
that a negative result is more reliable. So we can again use frequency on the Web—this
time to determine whether a bigram that was infrequent or unseen in the BNC is truly
a less preferred collocation or anti-collocation.

The bigrams of interest now are those in which collocates for a near-synonym that
were found in step 1 and filtered in step 2 are combined with another member of the
same near-synonym cluster. For example, if the collocation daunting task was found,
we now look on the Web for the apparent noncollocations daunting job, daunting duty,
and other combinations of daunting with near-synonyms of task. A low number of
co-occurrences indicates a less preferred collocation or anti-collocation. We employ the
t-test, following Manning and Schütze (1999, pages 166–168), to look for differences.

The collocations of each near-synonym with a given collocate are grouped in three
classes, depending on the t values of pairwise collocations. A t value comparing each
collocation and the collocation with maximum frequency is computed, and so is the
t value between each collocation and the collocation with minimum frequency. Table 3
presents an example.

After the t-test scores were computed, a set of thresholds was determined to classify
the collocations in the three groups: preferred collocations, less preferred collocations,
and anti-collocations. Again, we used a standard solution in the procedure. Two judges
manually classified a sample of 2,838 potential collocations obtained for the same three
clusters of near-synonyms from 401 collocations that remained after filtering. They
were instructed to mark as preferred collocations all the potential collocations that
they considered good idiomatic use of language, as anti-collocations the ones that they
would not normally use, and as less preferred collocations the ones that they were not
comfortable classifying in either of the other two classes. When the judges agreed, the
class was clear. When they did not agree, we used simple rules, such as these: When
one judge chose the class-preferred collocation, and the other chose the class anti-
collocation, the class in the solution was less preferred collocation (because such cases
seemed to be difficult and controversial); when one chose preferred collocation, and the
other chose less preferred collocation, the class in the solution was preferred collocation;
when one chose anti-collocation, and the other chose less preferred collocation, the class
in the solution was anti-collocation. The agreement between judges was 84%, κ = 0.66
(with a 95% confidence interval of 0.63 to 0.68).

Table 3
Example of counts, mutual information scores, and t-test scores for the collocate daunting with
near-synonyms of task. The second column shows the number of hits for the collocation daunting
x, where x is the near-synonym in the first column. The third column shows PMIprox (scaled by
105 for readability), the fourth column, the t values between the collocation with maximum
frequency (daunting task) and daunting x, and the last column, the t-test between daunting x and
the collocations with minimum frequency (daunting stint and daunting hitch).

x Hits PMIprox t max t min

task 63,573 0.011662 – 252.07
job 485 0.000022 249.19 22.02
assignment 297 0.000120 250.30 17.23
chore 96 0.151899 251.50 9.80
duty 23 0.000022 251.93 4.80
stint 0 0 252.07 –
hitch 0 0 252.07 –
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Table 4
Example of results of our program for collocations of near-synonyms in the task cluster.

√
marks

preferred collocations, ? marks less preferred collocations, and ∗ marks anti-collocations. The
combined opinion of the judges about the same pairs of words is shown in parentheses.

Collocates

Near-synonyms daunting particular tough

task
√

(
√

)
√

(
√

)
√

(
√

)
job ? (

√
)

√
(
√

)
√

(
√

)
assignment ∗ (

√
)

√
(
√

)
√

(
√

)
chore ∗ ( ∗) ? (

√
) ∗ ( ?)

duty ∗ ( ?)
√

(
√

) ∗ ( ∗)
stint ∗ ( ∗) ∗ ( ?) ∗ ( ?)
hitch ∗ ( ∗) ∗ ( ?) ∗ ( ∗)

We used this standard solution as training data to C4.511 to learn a decision tree
for the three-way classifier. The features in the decision tree are the t-test between
each collocation and the collocation from the same group that has maximum frequency
on the Web, and the t-test between the current collocation and the collocation that
has minimum frequency (as presented in Table 3). We did 10-fold cross-validation to
estimate the accuracy on unseen data. The average accuracy was 84.1%, with a standard
error of 0.5%; the baseline of always choosing the most frequent class, anti-collocations,
yields 71.4%. We also experimented with including PMIprox as a feature in the decision
tree, and with manually choosing thresholds (without a decision tree) for the three-
way classification, but the results were poorer. The three-way classifier can fix some
of the mistakes of the PMI filter: If a wrong collocation remains after the PMI filter,
the classifier can classify it in the anti-collocations class. We conclude that the acquired
collocational knowledge has acceptable quality.

3.4 Results

We obtained 1,350,398 distinct bigrams that occurred at least four times. We selected col-
locations for all 909 clusters in CTRW (5,452 near-synonyms in total). Table 4 presents an
example of results for collocational classification of bigrams, where

√
marks preferred

collocations, ? marks less preferred collocations, and ∗ marks anti-collocations. This
gave us a lexical knowledge base of near-synonym collocational behavior. An example
of collocations extracted for the near-synonym task is presented in Table 5, where the
columns are, in order, the name of the measure, the rank given by the measure, and the
value of the measure.

4. Adding Knowledge from Machine-Readable Dictionaries

Information about near-synonym differences can be found in other types of dictionaries
besides those explicitly on near-synonyms. Although conventional dictionaries, unlike
CTRW, treat each word in isolation, they may nonetheless contain useful information

11 http://www.cse.unsw.edu.au/∼quinlan
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Table 5
Example of collocations extracted for the near-synonym task. The first collocation was selected
(ranked in the set of first T collocations) by four measures; the second collocation was selected
by two measures.

Collocation Measure Rank Score

daunting/A task/N MI 24,887 10.85
LL 5,998 907.96
χ2 16,341 122,196.82
Dice 2,766 0.02

repetitive/A task/N MI 64,110 6.77
χ2 330,563 430.40

about near-synonyms because some definitions express a distinction relative to another
near-synonym. From the SGML-marked-up text of the Macquarie Dictionary12 (Delbridge
et al. 1987), we extracted the definitions of the near-synonyms in CTRW for the expected
part of speech that contained another near-synonym from the same cluster. For example,
for the CTRW cluster burlesque, caricature, mimicry, parody, takeoff, travesty, one definition
extracted for the near-synonym burlesque was any ludicrous take-off or debasing caricature
because it contains caricature from the same cluster. A series of patterns was used
to extract the difference between the two near-synonyms wherever possible. For the
burlesque example, the extracted information was

〈burlesque, usually, medium, Denotation, ludicrous〉,
〈burlesque, usually, medium, Denotation, debasing〉.

The number of new denotational distinctions acquired by this method was 5,731.
We also obtained additional information from the General Inquirer13 (Stone et al.

1966), a computational lexicon that classifies each word in it according to an extendable
number of categories, such as pleasure, pain, virtue, and vice; overstatement and un-
derstatement; and places and locations. The category of interest here is Positiv/Negativ.
There are 1,915 words marked as Positiv (not including words for yes, which is a separate
category of 20 entries), and 2,291 words marked as Negativ (not including the separate
category of no in the sense of refusal). For each near-synonym in CTRW, we used
this information to add a favorable or unfavorable attitudinal distinction accordingly.
If there was more than one entry (several senses) for the same word, the attitude
was asserted only if the majority of the senses had the same marker. The number
of attitudinal distinctions acquired by this method was 5,358. (An attempt to use the
occasional markers for formality in WordNet in a similar manner resulted in only 11
new distinctions.)

As the knowledge from each source is merged with the LKB, it must be checked for
consistency in order to detect conflicts and resolve them. The algorithm for resolving
conflicts is a voting scheme based on the intuition that neutral votes should have less
weight than votes for the two extremes. The algorithm outputs a list of the conflicts
and a proposed solution. This list can be easily inspected by a human, who can change

12 http://www.macquariedictionary.com.au/
13 http://www.wjh.harvard.edu/∼inquirer/
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Figure 8
Fragment of the representation of the error cluster (prior to customization).

the solution of the conflict in the final LKB of NS, if desired. The consistency-checking
program found 302 conflicts for the merged LKB of 23,469 distinctions. After conflict
resolution, 22,932 distinctions remained. Figure 8 shows a fragment of the knowledge
extracted for the near-synonyms of error after merging and conflict resolution.

5. Related Work

5.1 Building Lexical Resources

Lexical resources for natural language processing have also been derived from other
dictionaries and knowledge sources. The ACQUILEX14 Project explored the utility of
constructing a multilingual lexical knowledge base (LKB) from machine-readable ver-
sions of conventional dictionaries. Ide and Véronis (1994) argue that it is not possible to
build a lexical knowledge base from a machine-readable dictionary (MRD) because the
information it contains may be incomplete, or it may contain circularities. It is possible
to combine information from multiple MRDs or to enhance an existing LKB, they say,
although human supervision may be needed.

Automatically extracting world knowledge from MRDs was attempted by projects
such as MindNet at Microsoft Research (Richardson, Dolan, and Vanderwende 1998),
and Barrièrre and Popowich’s (1996) project, which learns from children’s dictionaries.
IS-A hierarchies have been learned automatically from MRDs (Hearst 1992) and from
corpora (Caraballo [1999] among others).

14 http://www.cl.cam.ac.uk/Research/NL/acquilex/acqhome.html
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Research on merging information from various lexical resources is related to the
present work in the sense that the consistency issues to be resolved are similar. One
example is the construction of Unified Medical Language System (UMLS)15 (Lindberg,
Humphreys, and McCray 1993), in the medical domain. UMLS takes a wide range of
lexical and ontological resources and brings them together as a single resource. Most of
this work is done manually at the moment.

5.2 Acquiring Collocational Knowledge

There has been much research on extracting collocations for different applications. Like
Church et al. (1991), we use the t-test and mutual information (MI), but unlike them
we use the Web as a corpus for this task (and a modified form of mutual information),
and we distinguish three types of collocations. Pearce (2001) improved the quality of
retrieved collocations by using synonyms from WordNet (Pearce 2001); a pair of words
was considered a collocation if one of the words significantly prefers only one (or
several) of the synonyms of the other word. For example, emotional baggage is a good
collocation because baggage and luggage are in the same synset and ∗emotional luggage
is not a collocation. Unlike Pearce, we use a combination of t-test and MI, not just
frequency counts, to classify collocations.

There are two typical approaches to collocations in previous NLG systems: the
use of phrasal templates in the form of canned phrases, and the use of automatically
extracted collocations for unification-based generation (McKeown and Radev 2000).
Statistical NLG systems (such as Nitrogen [Langkilde and Knight 1998]) make good
use of the most frequent words and their collocations, but such systems cannot choose
a less-frequent synonym that may be more appropriate for conveying desired nuances
of meaning if the synonym is not a frequent word.

Turney (2001) used mutual information to choose the best answer to questions about
near-synonyms in the Test of English as a Foreign Language (TOEFL) and English as
a Second Language (ESL). Given a problem word (with or without context) and four
alternative words, the question is to choose the alternative most similar in meaning
to the problem word (the problem here is to detect similarities, whereas in our work
differences are detected). His work is based on the assumption that two synonyms are
likely to occur in the same document (on the Web). This can be true if the author needs
to avoid repeating the same word, but not true when the synonym is of secondary
importance in a text. The alternative that has the highest pointwise mutual information
for information retrieval (PMI-IR) with the problem word is selected as the answer. We
used the same measure in Section 3.3—the mutual information between a collocation
and a collocate that has the potential to discriminate between near-synonyms. Both
works use the Web as a corpus, and a search engine to estimate the mutual information
scores.

5.3 Near-Synonyms

As noted in the introduction, our work is based on that of Edmonds and Hirst (2002) and
Hirst (1995), in particular the model for representing the meaning of the near-synonyms
presented in Section 1.2 and the preference satisfaction mechanism used in Section 7.

15 http://www.nml.nih.gov/research/umls/
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Other related research involving differences between near-synonyms has a lin-
guistic or lexicographic, rather than computational, flavor. Apresjan built a bilin-
gual dictionary of synonyms, more specifically a dictionary of English synonyms
explained in Russian (Apresjan et al. 1980). It contains 400 entries selected from
the approximately 2,500 entries from Webster’s New Dictionary of Synonyms, but re-
organized by splitting or merging clusters of synonyms, guided by lexicographic
principles described by Apresjan (2000). An entry includes the following types of
differences: semantic, evaluative, associative and connotational, and differences in
emphasis or logical stress. These differences are similar to the ones used in our
work.

Gao (2001) studied the distinctions between near-synonym verbs, more specifically
Chinese physical action verbs such as verbs of cutting, putting, throwing, touching,
and lying. Her dissertation presents an analysis of the types of semantic distinctions
relevant to these verbs, and how they can be arranged into hierarchies on the basis of
their semantic closeness.

Ploux and Ji (2003) investigated the question of which words should be considered
near-synonyms, without interest in their nuances of meaning. They merged clusters of
near-synonyms from several dictionaries in English and French and represented them
in a geometric space. In our work, the words that are considered near-synonyms are
taken from CTRW; a different dictionary of synonyms may present slightly different
views. For example, a cluster may contain some extra words, some missing words, or
sometimes the clustering could be done in a different way. A different approach is to
automatically acquire near-synonyms from free text. Lin et al. (2003) acquire words that
are related by contextual similarity and then filter out the antonyms by using a small
set of manually determined patterns (such as “either X or Y”) to construct Web queries
for pairs of candidate words. The problem of this approach is that it still includes words
that are in relations other than near-synonymy.

6. Customizing the Lexical Knowledge Base of Near-Synonym Differences

The initial LKB of NS built in Sections 2 to 4 is a general one, and it could, in principle, be
used in any (English) NLP system. For example, it could be used in the lexical-analysis
or lexical-choice phase of machine translation. Figure 9 shows that during the analysis
phase, a lexical knowledge base of near-synonym differences in the source language
is used, together with the context, to determine the set of nuances that are expressed
in the source-language text (in the figure, the source language is French and the target
language is English). In the generation phase, these nuances become preferences for the
lexical-choice process. Not only must the target-language text express the same meaning
as the source-language text (necessary condition), but the choice of words should satisfy
the preferences as much as possible.

In order to be integrated with the other components of the NLP system, the LKB will
probably need some adaptation—in particular, the core denotations and the peripheral
concepts will need to be mapped to the ontology that the system employs. This might
be a general-purpose ontology, such as Cyc (Lenat 1995) and WordNet, or an ontology
built specially for the system (such as Mikrokosmos (Mahesh and Nirenburg 1995) or
domain-specific ontologies). In this section, we focus on the generation phase of an in-
terlingual machine translation system, specifically the lexical-choice process, and show
how the LKB was adapted for Xenon, a natural language generation system. Xenon
is a general-purpose NLG system that exploits our LKB of NS. To implement Xenon,
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Figure 9
Lexical analysis and choice in machine translation; adapted from Edmonds and Hirst (2002). The
solid lines show the flow of data: input, intermediate representations, and output; the dashed
lines show the flow of knowledge from the knowledge sources to the analysis and the generation
module. The rectangles denote the main processing modules; the rest of the boxes denote data or
knowledge sources.

we modified the lexical-choice component of a preexisting NLG system, HALogen
(Langkilde 2000; Langkilde and Knight 1998), to handle knowledge about the near-
synonym differences. (Xenon will be described in detail in Section 7.) This required
customization of the LKB to the Sensus ontology (Knight and Luk 1994) that HALogen
uses as its representation.

Customization of the core denotations for Xenon was straightforward. The core
denotation of a cluster is a metaconcept representing the disjunction of all the Sensus
concepts that could correspond to the near-synonyms in a cluster. The names of meta-
concepts, which must be distinct, are formed by the prefix generic, followed by the
name of the first near-synonym in the cluster and the part of speech. For example, if the
cluster is lie, falsehood, fib, prevarication, rationalization, untruth, the name of the cluster is
generic lie n.

Customizing the peripheral concepts, which are initially expressed as strings, could
include parsing the strings and mapping the resulting syntactic representation into a
semantic representation. For Xenon, however, we implemented a set of 22 simple rules
that extract the actual peripheral concepts from the initial peripheral strings. A trans-
formation rule takes a string of words part-of-speech tagged and extracts a main word,
several roles, and fillers for the roles. The fillers can be words or recursive structures. In
Xenon, the words used in these representations are not sense-disambiguated. Here are
two examples of input strings and extracted peripheral concepts:

"an embarrassing breach of etiquette"
=> (C / breach :GPI etiquette :MOD embarrassing)

"to an embarrassing or awkward occurrence"
=> (C / occurrence :MOD (OR embarrassing awkward))

The roles used in these examples are MOD (modifier) and GPI (generalized possession
inverse). The rules that were used for these two examples are these:

Adj Noun1 of Noun2 => (C / Noun1 :GPI Noun2 :MOD Adj)
Adj1 or Adj2 Noun => (C / Noun :MOD (OR Adj1 Adj2))
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We evaluated our customization of the LKB on a hand-built standard solution
for a set of peripheral strings: 139 strings to be used as a test set and 97 strings to
be used as a development set. The rules achieved a coverage of 75% on the test set
with an accuracy of 55%.16 In contrast, a baseline algorithm of taking the first word
in each string as the peripheral concept covers 100% of the strings, but with only 16%
accuracy.

Figure 10 shows the full customized representation for the near-synonyms of error,
derived from the initial representation that was shown earlier in Figure 8. (See Inkpen
[2003] for more examples of customized clusters.) The peripheral concepts are factored
out, and the list of distinctions contains pointers to them. This allows peripheral con-
cepts to be shared by two or more near-synonyms.

7. Xenon: An NLG System that Uses Knowledge of Near-Synonym Differences

This section presents Xenon, a large-scale NLG system that uses the lexical knowledge-
base of near-synonyms customized in Section 6. Xenon integrates a new near-synonym
choice module with the sentence realization system HALogen17 (Langkilde 2000;
Langkilde and Knight 1998). HALogen is a broad-coverage general-purpose natural
language sentence generation system that combines symbolic rules with linguistic
information gathered statistically from large text corpora. The internal architecture
of HALogen is presented in Figure 11. A forest of all possible sentences (combi-
nations of words) for the input is built, and the sentences are then ranked ac-
cording to an n-gram language model in order to choose the most likely one as
output.

Figure 12 presents the architecture of Xenon. The input is a semantic representation
and a set of preferences to be satisfied. The final output is a set of sentences and
their scores. A concrete example of input and output is shown in Figure 13. Note
that HALogen may generate some ungrammatical constructs, but they are (usually)
assigned lower scores. The first sentence (the highest ranked) is considered to be the
solution.

7.1 Metaconcepts

The semantic representation input to Xenon is represented, like the input to HAL-
ogen, in an interlingua developed at University of Southern California/Information
Sciences Institute (USC/ISI).18 As described by Langkilde-Geary (2002b), this lan-
guage contains a specified set of 40 roles, whose fillers can be either words, con-
cepts from Sensus (Knight and Luk 1994), or complex interlingual representations.
The interlingual representations may be underspecified: If some information needed
by HALogen is not present, it will use its corpus-derived statistical information to

16 We found that sometimes a rule would extract only a fragment of the expected configuration of concepts
but still provided useful knowledge; however, such cases were not considered to be correct in this
evaluation, which did not allow credit for partial correctness. For example, if the near-synonym command
denotes the/TD stated/VB demand/NN of/IN a/TD superior/JJ, the expected peripheral concept is
(C1 / demand :GPI superior :MOD stated). If the program extracted only (C1 / demand :GPI
superior), the result was not considered correct, but the information might still help in an NLP system.

17 http://www.isi.edu/licensed-sw/halogen/
18 http://www.isi.edu/licensed-sw/halogen/interlingua.html
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Figure 10
The final representation of the error cluster.

make choices. Xenon extends this representation language by adding metaconcepts
that correspond to the core denotation of the clusters of near-synonyms. For example,
in Figure 13, the metaconcept is generic lie n. As explained in Section 6, metacon-
cepts may be seen as a disjunction of all the senses of the near-synonyms of the
cluster.

7.2 Near-Synonym Choice

The near-synonym choice module has to choose the most appropriate near-synonym
from the cluster specified in the input. It computes a satisfaction score that becomes
a weight (to be explained in section 7.3) for each near-synonym in the cluster. HAL-
ogen makes the final choice by adding these weights to n-gram probabilities from its
language model (more precisely, the negative logarithms of these values) and choosing
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Figure 11
The architecture of the sentence realizer HALogen.

the highest-ranked sentence. For example, the expanded representation of the input
in Figure 13 is presented in Figure 14. The near-synonym choice module gives higher
weight to fib because it satisfies the preferences better than the other near-synonyms in
the cluster, lie, falsehood, fib, prevarication, rationalization, and untruth.

7.3 Preferences and Similarity of Distinctions

The preferences that are input to Xenon could be given by the user, or they could come
from an analysis module if Xenon is used in a machine translation system (correspond-
ing to nuances of near-synonyms in a different language, see Figure 9). The preferences,
like the distinctions expressed in the LKB of NS, are of three types: attitudinal, stylistic,
and denotational. Examples of each:

(low formality)
(disfavour :agent)
(imply (C / assessment :MOD ( M / (*OR* ignorant uninformed)).

The formalism for expressing preferences is from I-Saurus (Edmonds 1999). The
preferences are transformed internally into pseudodistinctions that have the same form
as the corresponding type of distinctions so that they can be directly compared with the
distinctions. The pseudodistinctions corresponding to the previous examples are these:

(-− low Formality)
(- always high Pejorative :agent)
(- always medium Implication

(C/assessment :MOD (M/(OR ignorant uninformed)).

Figure 12
The architecture of the natural language generation system Xenon.
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Figure 13
Example of input and output of Xenon.

Figure 14
The interlingual representation of the input in Figure 13 after expansion by the near-synonym
choice module.

For each near-synonym NS in a cluster, a weight is computed by summing the
degree to which the near-synonym satisfies each preference from the set P of input
preferences:

Weight(NS, P) =
∑
p∈P

Sat(p, NS). (2)

The weights are transformed through an exponential function so that numbers are
comparable with the differences of probabilities from HALogen’s language model:

f (x) = exk

e − 1 . (3)

We set k = 15 as a result of experiments with a development set.
For a given preference p ∈ P, the degree to which it is satisfied by NS is reduced to

computing the similarity between each of NS’s distinctions and a pseudodistinction d(p)
generated from p. The maximum value over i is taken (where di(w) is the ith distinction
of NS):

Sat(p, NS) = max
i

Sim(d(p), di(NS)). (4)
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where the similarity of two distinctions, or of a distinction and a preference (trans-
formed into a distinction), is computed with the three types of similarity measures that
were used by Edmonds and Hirst (2002) in I-Saurus:

Sim(d1, d2) =




Simden(d1, d2) if d1 and d2 are denotational distinctions
Simatt(d1, d2) if d1 and d2 are attitudinal distinctions
Simsty(d1, d2) if d1 and d2 are stylistic distinctions
0 otherwise

(5)

Distinctions are formed out of several components, represented as symbolic values
on certain dimensions, such as frequency (seldom, sometimes, etc.) and strength (low,
medium, high). In order to compute a numeric score, each symbolic value is mapped
into a numeric one. The numeric values are not as important as their relative difference.
If the two distinctions are not of the same type, they are incommensurate and their
similarity is zero. The formulas for Simatt and Simsty involve relatively straightforward
matching. However, Simden requires the matching of complex interlingual structures.
This boils down to computing the similarity between the main concepts of the two
interlingual representations, and then recursively mapping the shared semantic roles
(and compensating for the roles that appear in only one). When atomic concepts or
words are reached, we use a simple measure of word/concept similarity based on
the hierarchy of Sensus. All the details of these formulas, along with examples, are
presented by Inkpen and Hirst (2003).

7.4 Integrating the Knowledge of Collocational Behavior

Knowledge of collocational behavior is not usually present in NLG systems. Adding it
will increase the quality of the generated text, making it more idiomatic: The system
will give priority to a near-synonym that produces a preferred collocation and will not
choose one that causes an anti-collocation to appear in the generated sentence.

Unlike most other NLG systems, HALogen already incorporates some collocational
knowledge implicitly encoded in its language model (bigrams or trigrams), but this is
mainly knowledge of collocations between content words and function words. There-
fore, in its integration into Xenon, the collocational knowledge acquired in Section 3
will be useful, as it includes collocations between near-synonyms and other nearby
content words. Also, it is important whether the near-synonym occurs before or after
the collocate; if both positions are possible, both collocations are in the knowledge
base.

The architecture of Xenon extended with the near-synonym collocation module
is presented in Figure 15. The near-synonym collocation module intercepts the forest
structure, modifies its weights as necessary, and then forwards it to the statistical
ranking module. If a potential anti-collocation is seen in the forest structure, the weight
of the near-synonym is discounted by Wanti colloc; if a less preferred collocation is seen,
the weight of the near-synonym is discounted by Wless pref colloc. For preferred collo-
cations, the weight is unchanged. If the collocate is not the only alternative, the other
alternatives should be discounted, unless they also form a preferred collocation. Sec-
tion 7.5.2 explains how the discount weights were chosen.
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Figure 15
The architecture of Xenon extended with the near-synonym collocation module. In this figure,
the knowledge sources are not shown.

7.5 Evaluation of Xenon

The components of Xenon to be evaluated here are the near-synonym choice module
and the near-synonym collocation module. We evaluate each module in interaction with
the sentence-realization module HALogen,19 first individually and then both working
together.20

An evaluation of HALogen itself was presented by Langkilde-Geary (2002a) using
a section of the Penn Treebank as test set. HALogen was able to produce output for
80% of a set of 2,400 inputs (automatically derived from the test sentences by an input
construction tool). The output was 94% correct when the input representation was
fully specified, and between 94% and 55% for various other experimental settings. The
accuracy was measured using the BLEU score (Papineni et al. 2001) and the string
edit distance by comparing the generated sentences with the original sentences. This
evaluation method can be considered as English-to-English translation via meaning
representation.

7.5.1 Evaluation of the Near-Synonym Choice Module. For the evaluation of the near-
synonym choice module, we conducted two experiments. (The collocation module was
disabled for these experiments.) Experiment 1 involved simple monolingual generation.
Xenon was given a suite of inputs: Each was an interlingual representation of a sentence
and the set of nuances that correspond to a near-synonym in the sentence (see Figure 16).
The sentence generated by Xenon was considered correct if the expected near-synonym,
whose nuances were used as input preferences, is chosen. The sentences used in this
first experiment were very simple; therefore, the interlingual representations were easily
built by hand. In the interlingual representation, the near-synonym was replaced with
the corresponding metaconcept. There was only one near-synonym in each sentence.
Two data sets were used in Experiment 1: a development set of 32 near-synonyms of
the five clusters presented in Figure 17 in order to set the exponent k of the scaling
function in equation (3), and a test set of 43 near-synonyms selected from six clusters,
namely, the set of English near-synonyms shown in Figure 18.

19 All the evaluation experiments presented in this section used HALogen’s trigram language model. The
experiments were repeated with the bigram model, and the results were almost identical.

20 Preliminary evaluation experiments of only the near-synonym choice module were presented by Inkpen
and Hirst (2003).
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Figure 16
The architecture of Experiment 1.

Figure 17
Development data set used in Experiment 1.

Some of Xenon’s choices could be correct solely because the expected near-synonym
happens to be the default one (the one with the highest probability in the language
model). So as a baseline (the performance that can be achieved without using the LKB
of NS), we ran Xenon on all the test cases, but without input preferences.

The results of Experiment 1 are presented in Table 6. For each data set, the second
column shows the number of test cases. The column labeled “Total correct” shows the
number of answers considered correct (when the expected near-synonym was chosen).
The column labeled “Ties” shows the number of cases when the expected near-synonym
had weight 1.0, but there were other near-synonyms that also had weight 1.0 because
they happen to have identical nuances in the LKB of NS. The same column shows in
parentheses how many of these ties caused an incorrect near-synonym choice. In such
cases, Xenon cannot be expected to make the correct choice, or, more precisely, the other
choices are equally correct, at least as far as Xenon’s LKB is concerned. Therefore, the

Figure 18
Test data set used in Experiment 1 (English only) and Experiment 2 (English and French).
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Table 6
Results of Experiment 1 (boldface indicates best results).

No. Correct Base- Accuracy
of Total by line (no ties) Accuracy

Data set cases correct default Ties % % %

Development 32 27 5 5 (4) 15.6 84.3 96.4
Test 43 35 6 10 (5) 13.9 81.3 92.1

accuracies computed without considering these cases (the seventh column) are under-
estimates of the real accuracy of Xenon. The last column presents accuracies taking the
ties into account, defined as the number of correct answers divided by the difference
between the total number of cases and the number of incorrectly resolved ties.

Experiment 2 is based on machine translation. These experiments measure how
successful the translation of near-synonyms is, both from French into English and
from English into English. The experiments used pairs of French and English sen-
tences that are translations of one another (and that contain near-synonyms of interest),
extracted from sentence-aligned parallel text, the bilingual Canadian Hansard. Ex-
amples are shown in Figure 19.21 For each French sentence, Xenon should generate
an English sentence that contains an English near-synonym that best matches the nu-
ances of the French original. If Xenon chooses exactly the English near-synonym used
in the parallel text, then Xenon’s behavior is correct. This is a conservative evaluation
measure because there are cases in which more than one of the possibilities would be
acceptable.

As illustrated earlier in Figure 9, an analysis module is needed. For the evalua-
tion experiments, a simplified analysis module is sufficient. Because the French and
English sentences are translations of each other, we can assume that their interlingual
representation is essentially the same. So for the purpose of these experiments, we
can use the interlingual representation of the English sentence to approximate the
interlingual representation of the French sentence and simply add the nuances of the
French near-synonym to the representation. This is a simplification because there may
be some sentences for which the interlingual representation of the French sentence is
different because of translation divergences between languages (Dorr 1993). For the
sentences in our test data, a quick manual inspection shows that this happens very
rarely or not at all. This simplification eliminates the need to parse the French sen-
tence and the need to build a tool to extract its semantics. As depicted in Figure 20,
the interlingual representation is produced with a preexisting input construction tool
that was previously used by Langkilde-Geary (2002a) in her HALogen evaluation
experiments. In order to use this tool, we parsed the English sentences with Charniak’s
parser (Charniak 2000).22 The tool was designed to work on parse trees from the Penn
TreeBank, which have some extra annotations; it worked on parse trees produced
by Charniak’s parser, but it failed on some parse trees probably more often than it

21 The sentences were obtained from USC/ISI (http://www.isi.edu/natural-language/download/hansard/)
(approximately one million pairs of sentences). Other sources of parallel text, such as parallel translations
of the Bible (http://benjamin.umd.edu/parallel/) (Resnik 1999) and a collection of Web pages (Resnik,
Olsen, and Diab 1999), happened to contain very few occurrences of the near-synonyms of interest.

22 ftp://ftp.cs.brown.edu/pub/nlparser/
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Figure 19
Examples of parallel sentences used in Experiment 2.

Figure 20
The architecture of Experiment 2 (French to English).

did in HALogen’s evaluation experiments. We replaced each near-synonym with the
metaconcept that is the core meaning of its cluster. The interlingual representation for
the English sentence is semantically shallow; it does not reflect the meaning of the
French sentence perfectly, but in these experiments we are interested only in the near-
synonyms from the test set; therefore, the other words in the French sentence are not
important.

The analyzer of French nuances of Figure 20 needs to extract nuances from an
LKB of French synonyms. We created by hand an LKB for six clusters of French near-
synonyms (those from Figure 18) from two paper dictionaries of French synonyms,
Bénac (1956) and Bailly (1973). For each peripheral string, in French, an equivalent
concept is found in Sensus by looking for English translations of the words and then
finding Sensus concepts for the appropriate senses of the English words. Figure 21
presents a fragment of a cluster of French near-synonyms. For example, if we are
told that erreur denotes fausse opinion, the equivalent peripheral concept is (P8 (c8 /
|view<belief| :mod |false>untrue|)). If we are told that gaffe denotes bêvue
grossiere, then the equivalent peripheral concept is (P7 (c7 / |glaring,gross|)).

A similar experiment, translating not from French into English but from English
into English, is useful for evaluation purposes. An English sentence containing a near-
synonym is processed to obtain its semantic representation (where the near-synonym is
replaced with a metaconcept), and the lexical nuances of the near-synonym are input as
preferences to Xenon. Ideally, the same near-synonym as in the original sentence would
be chosen by Xenon (we consider it to be the correct choice). The percentage of times
this happens is an evaluation measure. The architecture of this experiment is presented
in Figure 22.

It happens that not all the near-synonyms in the test data set were found in Han-
sard—in fact, only 13 distinct pairs occur as translations of each other. Some of these
pairs are very frequent, and some are rare. In order to evaluate the system for all these
near-synonyms, both with and without regard to their frequency, we prepared two
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Figure 21
Fragment of a cluster of French near-synonyms.

Figure 22
The architecture of Experiment 2 (English to English).

data sets by sampling Hansard in two different ways. Sentence data set 1 contains,
for each French and English near-synonym pair in the test data set, two pairs of
sentences in which the English word appears as a translation of the French. The
sentences selected for each pair were the first two for which the input construction
tool produced a valid interlingual representation. Sentence data set 2 is similar to
set 1, but instead of having two sentences for a near-synonym pair, it contains all the
sentence pairs in a large fragment of Hansard in which the near-synonyms of interest
occurred. Therefore, this data set has the advantage of a natural frequency distribution.
It has the disadvantage that the results for the less-frequent near-synonyms, which
tend to be the “harder” and more-interesting cases (see below), may be swamped by
the more-frequent, relatively “easy” cases. Initially there were 564 pairs of sentences,
but the input construction tool worked successfully only on 298 English sentences. The
interlingual representations that it produced are quite complex, typically several pages
long.

The results of Experiment 2 are presented in Table 7;23 the interpretation of the
columns is the same as for Table 6. For each set of sentences, the baseline is the same

23 The improvement over baseline is statistically significant for all the results in Table 7, except the third line.
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Table 7
Results of Experiment 2 (boldface indicates best results).

Data set No. Correct Base- Accuracy
and of Total by line (no ties) Accuracy
condition cases correct default Ties % % %

Sentence set 1 26 13 10 5 (3) 38.4 50.0 56.5
French to English

Sentence set 1 26 26 10 2 (0) 38.4 100 100
English to English

Sentence set 2 298 217 214 7 (1) 71.8 72.8 73.0
French to English

Sentence set 2 298 296 214 2 (0) 71.8 99.3 99.3
English to English

for the French-to-English and English-to-English experiments because no nuances were
used as input for the baseline experiments. The baseline for data set 2 is quite high
(71.8%), because it contains sentences with frequent near-synonyms, which happen
to be the ones that Xenon chooses by default in the absence of input preferences.
Xenon’s performance is well above baseline, with the exception of the French-to-English
condition on sentence data set 2.

In the English-to-English experiments, there are two reasons to expect Xenon’s
accuracy to be less than 100% even if the input nuances are the nuances of a particular
English near-synonym. The first reason is that there are cases in which two or more
near-synonyms get an equal, maximal score because they do not have nuances that
differentiate them (either they are perfectly interchangeable, or the LKB of NS does not
contain enough knowledge) and the one chosen is not the expected one. The second
reason is that sometimes Xenon does not choose the expected near-synonym even if it is
the only one with maximal weight. This may happen because HALogen makes the final
choice by combining the weight received from the near-synonym choice module with
the probabilities from the language model that is part of HALogen. Frequent words may
have high probabilities in the language model. If the expected near-synonym is very
rare, or maybe was not seen at all by the language model, its probability is very low;
yet it is exactly those cases where a writer chooses a rare near-synonym over a more-
frequent alternative that the choice is the most telling. When combining the weights
with the probabilities, a frequent near-synonym may win even if it has a lower weight
assigned by the near-synonym choice module. In such cases, the default near-synonym
(the most frequent of the cluster) wins. Sometimes such behavior is justified because
there may be other constraints that influence HALogen’s choice.

In the French-to-English experiments, the performance of Xenon is lower than in the
English-to-English experiments. There are two explanations. First, there is some overlap
between the nuances of the French and the English near-synonyms, but less than one
would expect. For example, the English adjective alcoholic is close in nuances to the
French adjective alcoolique, but they have no nuance in common in Xenon’s knowledge
bases simply because of the incompleteness of the explanations given by lexicographers
in the dictionary entries.

The second explanation is related to what is considered the “correct” choice of near-
synonym. Sometimes more than one translation of a French near-synonym could be
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correct, but in this conservative evaluation, the solution is the near-synonym that was
used in the equivalent English sentence. Therefore, test cases that would be considered
correct by a human judge are harshly penalized. Moreover, the near-synonym choice
module always chooses the same translation for a near-synonym, even if the near-
synonym is translated in Hansard in more than one way, because Xenon does not
consider the context of the near-synonym in the sentence. (The context is taken into
account only when the collocation module is enabled and a preferred collocation is
detected in the sentences.) For example, the French noun erreur is translated in Hansard
sometimes as error, sometimes as mistake. Both have nuances in common with erreur,
but mistake happened to have higher overlap with erreur than error; as a result, the near-
synonym choice module always chooses mistake (except when the collocation module
is enabled and finds a preferred collocation such as administrative error). All the cases
in which error was used as translation of erreur in Hansard are penalized as incorrect
in the evaluation of the near-synonym choice module. A few of these cases could be
indeed incorrect, but probably many of them would be considered correct by a human
judge.

Another way to look at the performance of Xenon is to measure how many times it
makes appropriate choices that cannot be made by HALogen—that is, cases that make
good use of the nuances from the LKB of NS. This excludes the test cases with default
near-synonyms—those in which Xenon makes the right choice simply because of its
language model—and cases of ties in which Xenon cannot make the expected choice.
Accuracies for nondefault cases vary from 84.3% to 100%.

7.5.2 Evaluation of the Near-Synonym Collocation Module. For the evaluation of the
near-synonym collocation module, we collected sentences from the BNC that contain
preferred collocations from the knowledge base of near-synonym collocational behav-
ior. The BNC was preferred over Hansard for these evaluation experiments because it
is a balanced corpus and contains the collocations of interest, whereas Hansard does
not contain some of the collocations and near-synonyms of interest. The sentences were
collected from the first half of the BNC (50 million words). Sentence data sets 3 and 4
contain collocations for the development set of near-synonyms in Figure 17; sentence
data sets 5 and 6 contain collocations for the English near-synonyms in Figure 18.
Sets 3 and 5 include at most two sentences per collocation (the first two sentences from
the corpus, except in cases when the input construction tool failed to produce valid
interlingual representations); sets 4 and 6 include all the sentences with collocations
as they occurred in the fragment of the corpus (except the sentences for which the
input construction tool failed). For example, for set 4 there were initially 527 sentences,
and the input construction tool succeeded on 297 of them. Set 3 was used for develop-
ment—to choose the discount weights (see below)—and the others only for testing. The
architecture of this experiment is the same as that of the English-to-English experiments
(Figure 22), except that in this case it was the near-synonym choice module that was
disabled.

We observe that the sentence data sets may contain collocations for the wrong
senses of some near-synonyms because, as explained in Section 3.4, the near-synonym
collocations knowledge base may contain, for a cluster, collocations for a different sense.
For example, the collocation trains run appears in the cluster flow, gush, pour, run, spout,
spurt, squirt, stream, when it should appear only in another cluster. In this case the near-
synonym run should not be replaced with the metaconcept generic flow v because
it corresponds to a different metaconcept. These sentences should be eliminated from
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Table 8
The results of the evaluation of Xenon’s collocations module (boldface indicates best results).

HALogen only (baseline) HALogen + collocations

Sentence No. of Correct Pref. Anti- Correct Pref. Anti-
data set cases NS choice collocs collocs NS choice collocs collocs

Set 3 105 62% 88% 12% 70% 100% 0%
Set 4 297 83% 91% 9% 87% 99% 1%
Set 5 44 59% 80% 20% 75% 100% 0%
Set 6 185 58% 68% 32% 86% 99% 1%

the data sets, but this would involve disambiguation or manual elimination. However,
they do not affect the evaluation results because they are unlikely to produce anti-
collocations. This is because trains run is a frequent bigram, whereas trains flow is not;
Xenon will make the correct choice by default.

Sentence data set 3 was used to choose the best values of the discount weights
Wanti colloc and Wless pref colloc. In fact, the latter could be approximated by the former,
treating less preferred collocations as anti-collocations, because the number of less
preferred collocations is very small in the knowledge base. As the value of the dis-
count weight Wanti colloc increased (from 0.0 and 1.0), the number of anti-collocations
generated decreased; there were no anti-collocations left for Wanti colloc = 0.995.

Table 8 presents the results of the evaluation experiments. These results refer to
the evaluation of Xenon with the near-synonym collocations module enabled and the
near-synonym choice module disabled (lexical nuances are ignored in this experiment).
The baseline used for comparison is obtained by running HALogen only, without any
extension modules (no knowledge of collocations). For each test, the first four columns
contain the number of test cases, the number of near-synonyms correctly chosen by
the baseline system, the number of preferred collocations, and the number of anti-
collocations produced by the baseline system. The remainder of the columns present
results obtained by running Xenon with only the near-synonym collocations module
enabled (i.e., HALogen and the collocations module): the number of near-synonyms
correctly chosen, the number of preferred collocations produced, and the number of
anti-collocations produced. The number of anti-collocations was successfully reduced
to zero, except for sentence sets 4 and 6 where 1% of the anti-collocations remained. The
sixth column (correct choices or accuracy) differs from the seventh column (preferred
collocations) in the following way: The correct choice is the near-synonym used in the
original BNC sentence; sometimes the generated sentence can choose a different near-
synonym that is not the expected one but which participates in a preferred collocation
(this happens when more than one near-synonym from the same cluster collocates
well with the collocate word). For example, both serious mistake and serious blunder are
preferred collocations, while only one of mistake and blunder is the correct choice in any
particular context. The number of correct choices is relevant in this experiment only to
show that the collocations module does not have a negative effect on correctness; it even
increases the accuracy.24

24 The accuracy without ties was used here; therefore the numbers are conservative.
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7.5.3 Evaluation of the Two Modules in Interaction. The interaction between the near-
synonym choice module and the collocations module increases Xenon’s performance.
To prove this, we repeated the experiments of the previous section, but this time with
input preferences (the nuances of the near-synonym from the original sentence). The
architecture of this test is the same as that of the English-to-English experiments in
Section 7.5.1, depicted in Figure 22. Table 9 shows the number of correct near-synonym
choices (and the percent accuracy) for the baseline case (no nuances, no collocation
module; i.e., HALogen by itself), for the collocations module alone (i.e., HALogen and
the collocations module only; this column is also part of Table 8), for the near-synonym
choice module alone (i.e., HALogen and the nuances module only), and for Xenon with
both modules enabled. When both modules are enabled there is a slight increase in
accuracy on sentence data sets 4, 5, and 6; the accuracy on set 3 is the same as using the
near-synonyms module only.

7.6 Summary

This section presented Xenon, an NLG system capable of choosing the near-synonym
that best satisfies a set of input preferences (lexical nuances). The input preferences
could come from an analysis module for a different language; in this case the translation
into English would preserve not only the meaning but also nuances of meaning. The
evaluation of Xenon’s two new modules shows that they behave well, both indepen-
dently and in interaction.

The evaluation showed that we were successful in dealing with lexical nuances in
general. One weak point of the evaluation was the relatively small overlap in coverage
of the French and English knowledge bases. Another bottle-neck was the need for a
language-neutral ontology.

8. Conclusion

We have presented a method for extracting knowledge from dictionaries of near-
synonym discrimination. The method can potentially be applied to any dictionary

Table 9
Correct near-synonym choices for the baseline system (HALogen only), for HALogen with each
module of Xenon separately, and for HALogen with both modules of Xenon (boldface indicates
best results).

HALogen
(baseline) Xenon

Correct NS Correct NS Correct NS
Sentence Number collocations nuances nuances +
data set of cases Correct NS module module collocations

Set 3 105 62% 70% 93% 93%
Set 4 297 83% 87% 95% 95%
Set 5 44 59% 75% 93% 95%
Set 6 185 58% 86% 91% 95%
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of near-synonym discrimination for any language for which preprocessing tools,
such as part-of-speech taggers and parsers, are available. We built a new lexical re-
source, a lexical knowledge base of differences among English near-synonyms, by
applying the extraction method to Choose the Right Word. The precision and recall
of the extracted knowledge was estimated to be in the range of 70–80%. If higher
precision and recall are needed for particular applications, a human could vali-
date each extraction step. We enriched the initial lexical knowledge base of near-
synonyms with distinctions extracted from machine-readable dictionaries.

We have presented Xenon, a natural language generation system that uses the
LKB of NS to choose the near-synonym that best matches a set of input preferences.
Xenon extends a previous NLG system with two new modules: a module that chooses
near-synonyms on the basis of their lexical nuances, and a module that chooses near-
synonyms on the basis of their collocations. To evaluate Xenon, we manually built
a small LKB of French near-synonyms. The test set consisted of English and French
sentences that are mutual translations. An interlingual representation (with the near-
synonym replaced by the core denotation of its cluster) was input to Xenon, together
with the nuances of the near-synonym from the French sentence. The generated sen-
tence was considered correct if the chosen English near-synonym was the one from the
original English sentence. We also evaluated the near-synonym collocation module and
the interaction of the two modules.

Short-term future work includes overcoming some limitations and extending the
current work, such as extending the near-synonym representation with other types
of distinctions such as information about more general and more specific words, and
information about special meanings that some words have in particular contexts or
domains (e.g., in a legal context).

Longer-term future work directions include the following:
Analysis of lexical nuances A full-fledged analysis module could be developed.

Sense disambiguation would be required when a near-synonym is a member of more
than one cluster. It is more difficult to model the influence of the context and the
complex interaction of the lexical nuances. Such an analysis module could be used
in an Machine Translation (MT) system that preserves lexical nuances. It could also
be used to determine nuances of text for different purposes. For example, a system
could decide if a text is positive, neutral, or negative in its semantic orientation. Then
Xenon could be used to generate a new text that has the same meaning as the origi-
nal text but a different semantic orientation. This could be useful, for example, in an
application that sends letters to customers: If the initial draft of the text is found to be
too negative, it could be transformed into a more positive text before it is sent to the
customer.

Lexical and conceptual associations The method presented in Section 3 could
be extended to acquire lexical associations (i.e., longer-distance collocations) of near-
synonyms. Words that strongly associate with the near-synonyms can be useful,
especially those that associate with only one of the near-synonyms in the cluster.
These strong associations could provide additional knowledge about nuances of near-
synonyms.

An experiment similar to that presented in Section 3 could look for words that co-
occur in a window of size K > 2 to acquire lexical associations, which would include
the collocations extracted in Section 3.2. Church et al. (1991) presented associations for
the near-synonyms ship and boat; they suggest that a lexicographer looking at these
associations can infer that boats are generally smaller than ships because they are found
in rivers and lakes and are used for small jobs (e.g., fishing, police, pleasure), whereas
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ships are found in seas and are used for serious business (e.g., cargo, war). It could be
possible to automatically infer this kind of knowledge or to validate already acquired
knowledge.

Words that do not associate with a near-synonym but associate with all the other
near-synonyms in a cluster can tell us something about its nuances of meaning. For
example, terrible slip is an anti-association, whereas terrible associates with mistake,
blunder, error. This is an indication that slip is a minor error. By further generalization,
the associations could become conceptual associations. This may allow the automatic
learning of denotational distinctions between near-synonyms from free text. The con-
cepts that are common to all the near-synonyms in a cluster could be part of the core
denotation, whereas those that associate only with one near-synonym could be part of
a distinction.

Cross-lingual lexical nuances The method presented in Section 2 could be used to
automatically build a lexical knowledge base of near-synonym differences for other lan-
guages, such as French, for which dictionaries of synonym discriminations are available
(in paper form) along with other resources, such as part-of-speech taggers and parsers.
In order to use the French and the English knowledge bases in the same system, a study
of the cross-lingual lexical nuances will be needed.

Analysis of types of peripheral nuances Linguists and lexicographers have looked
at differences between particular types of near-synonyms. For example, Gao (2001)
studied the semantic distinctions between Chinese physical action verbs; one type of
distinctive peripheral nuance is the manner in which the movement is made for each
verb. This kind of study could help to develop a list of the main types of peripheral
nuances (peripheral concepts). In our work, the form that the peripheral nuances can
take is not restricted, because the list of peripheral nuances is open-ended. However,
it may be possible to keep the form unrestricted but add restrictions for the most
important types of peripheral nuances.

Intelligent thesaurus The acquired lexical knowledge base of near-synonym differ-
ences could be used to develop an intelligent thesaurus that assists a writer not only
with a list of words that are similar to a given word but also with explanations about
the differences in nuances of meaning between the possible choices. The intelligent
thesaurus could order the choices to suit a particular writing context. The knowledge
about the collocational behavior of near-synonyms can be used in determining the
order: Near-synonyms that produce anti-collocations would be ranked lower than near-
synonyms that produce preferred collocations.

Automatic acquisition of near-synonyms This work considered only the near-
synonyms and distinctions that were listed by the lexicographers of CTRW. Other
dictionaries of synonym discrimination may have slightly different views. Merging
clusters from different dictionaries is possible. Also, near-synonym clusters could be
acquired from free text. This would distinguish near-synonyms from the pool of re-
lated words. As mentioned in Section 5.3, Lin et al. (2003) acquired words that are
related by contextual similarity, and then filtered out the antonyms. Words that are
related by relations other than near-synonymy could also be filtered out. One way to
do this could be to collect signatures for each potential near-synonym—words that as-
sociate with it in many contexts. For two candidate words, if one signature is contained
in the other, the words are probably in an IS-A relation; if the signatures overlap totally,
it is a true near-synonymy relation; if the signatures overlap partially, it is a different
kind of relation. The acquisition of more near-synonyms, followed by the acquisition of
more distinctions, is needed to increase the coverage of our lexical knowledge base of
near-synonym differences.
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