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Techniques that exploit knowledge of distributional similarity between words have been proposed
in many areas of Natural Language Processing. For example, in language modeling, the sparse
data problem can be alleviated by estimating the probabilities of unseen co-occurrences of events
from the probabilities of seen co-occurrences of similar events. In other applications, distribu-
tional similarity is taken to be an approximation to semantic similarity. However, due to the wide
range of potential applications and the lack of a strict definition of the concept of distributional
similarity, many methods of calculating distributional similarity have been proposed or adopted.

In this work, a flexible, parameterized framework for calculating distributional similarity is
proposed. Within this framework, the problem of finding distributionally similar words is cast
as one of co-occurrence retrieval (CR) for which precision and recall can be measured by analogy
with the way they are measured in document retrieval. As will be shown, a number of popular
existing measures of distributional similarity are simulated with parameter settings within the
CR framework. In this article, the CR framework is then used to systematically investigate three
fundamental questions concerning distributional similarity. First, is the relationship of lexical
similarity necessarily symmetric, or are there advantages to be gained from considering it as an
asymmetric relationship? Second, are some co-occurrences inherently more salient than others
in the calculation of distributional similarity? Third, is it necessary to consider the difference in
the extent to which each word occurs in each co-occurrence type?

Two application-based tasks are used for evaluation: automatic thesaurus generation and
pseudo-disambiguation. It is possible to achieve significantly better results on both these tasks by
varying the parameters within the CR framework rather than using other existing distributional
similarity measures; it will also be shown that any single unparameterized measure is unlikely to
be able to do better on both tasks. This is due to an inherent asymmetry in lexical substitutability
and therefore also in lexical distributional similarity.

1. Introduction

Over recent years, approaches to a broad range of natural language processing (NLP)
applications have been proposed that require knowledge about the similarity of words.
The application areas in which these approaches have been proposed range from speech
recognition and parse selection to information retrieval (IR) and natural language
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generation. For example, language models that incorporate substantial lexical knowl-
edge play a key role in many statistical NLP techniques (e.g., in speech recognition
and probabilistic parse selection). However, they are difficult to acquire, since many
plausible combinations of events are not seen in corpus data. Brown et al. (1992) report
that one can expect 14.7% of the word triples in any new English text to be unseen in a
training corpus of 366 million English words. In our own experiments with grammatical
relation data extracted by a Robust Accurate Statistical Parser (RASP) (Briscoe and
Carroll 1995; Carroll and Briscoe 1996) from the British National Corpus (BNC), we
found that 14% of noun-verb direct-object co-occurrence tokens and 49% of noun-verb
direct-object co-occurrence types in one half of the data set were not seen in the other
half. A statistical technique using a language model that assigns a zero probability
to these previously unseen events will rule the correct parse or interpretation of the
utterance impossible.

Similarity-based smoothing (Hindle 1990; Brown et al. 1992; Dagan, Marcus, and
Markovitch 1993; Pereira, Tishby, and Lee 1993; Dagan, Lee, and Pereira 1999) provides
an intuitively appealing approach to language modeling. In order to estimate the prob-
ability of an unseen co-occurrence of events, estimates based on seen occurrences of
similar events can be combined. For example, in a speech recognition task, we might
predict that cat is a more likely subject of growl than the word cap, even though neither
co-occurrence has been seen before, based on the fact that cat is “similar” to words that
do occur as the subject of growl (e.g., dog and tiger), whereas cap is not.

However, what is meant when we say that cat is “similar” to dog? Are we referring to
their semantic similarity, e.g., the components of meaning they share by virtue of both
being carnivorous four-legged mammals? Or are we referring to their distributional
similarity, e.g., in keeping with the Firthian tradition,1 the fact that these words tend to
occur as the arguments of the same verbs (e.g., eat, feed, sleep) and tend to be modified
by the same adjectives (e.g., hungry and playful).

In some applications, the knowledge required is clearly semantic. In IR, documents
might be usefully retrieved that use synonymous terms or terms subsuming those speci-
fied in a user’s query (Xu and Croft 1996). In natural language generation (including text
simplification), possible words for a concept should be similar in meaning rather than
just in syntactic or distributional behavior. In these application areas, distributional sim-
ilarity can be taken to be an approximation to semantic similarity. The underlying idea is
based largely on the central claim of the distributional hypothesis (Harris 1968), that is:

The meaning of entities, and the meaning of grammatical relations among them, is
related to the restriction of combinations of these entities relative to other entities.

This hypothesized relationship between distributional similarity and semantic sim-
ilarity has given rise to a large body of work on automatic thesaurus generation (Hindle
1990; Grefenstette 1994; Lin 1998a; Curran and Moens 2002; Kilgarriff 2003). There
are inherent problems in evaluating automatic thesaurus extraction techniques, and
much research assumes a gold standard that does not exist (see Kilgarriff [2003] and
Weeds [2003] for more discussion of this). A further problem for distributional similarity
methods for automatic thesaurus generation is that they do not offer any obvious way to
distinguish between linguistic relations such as synonymy, antonymy, and hyponymy
(see Caraballo [1999] and Lin et al. [2003] for work on this). Thus, one may question

1 “You shall know a word by the company it keeps.”(Firth 1957)
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the benefit of automatically generating a thesaurus if one has access to large-scale
manually constructed thesauri (e.g., WordNet [Fellbaum 1998], Roget’s [Roget 1911], the
Macquarie [Bernard 1990] and Moby2). Automatic techniques give us the opportunity
to model language change over time or across domains and genres. McCarthy et al.
(2004) investigate using distributional similarity methods to find predominant word
senses within a corpus, making it possible to tailor an existing resource (WordNet) to
specific domains. For example, in the computing domain, the word worm is more likely
to be used in its ‘malicious computer program’ sense than in its ‘earthworm’ sense.
This domain knowledge will be reflected in a thesaurus automatically generated from
a computing-specific corpus, which will show increased similarity between worm and
virus and reduced similarity between worm and caterpillar.

In other application areas, however, the requirement for “similar” words to be
semantically related as well as distributionally related is less clear. For example, in
prepositional phrase attachment ambiguity resolution, it is necessary to decide whether
the prepositional phrase attaches to the verb or the noun as in the examples (1) and (2).

1. Mary ((visited their cottage) with her brother).

2. Mary (visited (their cottage with a thatched roof)).

Hindle and Rooth (1993) note that the correct decision depends on all four lexical
events (the verb, the object, the preposition, and the prepositional object). However, a
statistical model built on the basis of four lexical events must cope with extremely sparse
data. One approach (Resnik 1993; Li and Abe 1998; Clark and Weir 2000) is to induce
probability distributions over semantic classes rather than lexical items. For example, a
cottage is a type of building and a brother is a type of person, and so the co-occurrence of
any type of building and any type of person might increase the probability that the PP
in example (1) attaches to the verb.

However, it is unclear whether the classes over which probability distributions
are induced need to be semantic or whether they could be purely distributional. If
we know that two words tend to behave the same way with respect to prepositional
phrase attachment, does it matter whether they mean similar things? Other arguments
for using semantic classes over distributional classes can similarly be disputed (Weeds
2003). For example, it is not necessary for a class of objects to have a name or symbolic
label for us to know that the objects are similar and to exploit that information. Distri-
butional classes do conflate word senses, but in a task such as PP-attachment ambiguity
resolution, we are unlikely to be working with sense-tagged examples and therefore it
is for word forms that we will wish to estimate probabilities of different attachments.
Finally, distributional classes may be over-fitted to a specific corpus, but this may be
beneficial to the extent that the over-fitting reflects a specific domain or dialect.

Further, recent empirical evidence suggests that techniques based on distributional
similarity may perform as well on this task as those based on semantic similarity.
Li (2002) shows that using a fairly small corpus (126,084 sentences from the Wall
Street Journal) and a distributional similarity technique, it is possible to outperform a
state-of-the-art, WordNet-based technique in terms of accuracy, although not in terms
of coverage. Pantel and Lin (2000) report performance of 84.3% using an unsuper-
vised approach to prepositional phrase attachment based on distributional similarity

2 The Moby Thesaurus is a product of the Moby Project, which was released into the public domain by
Grady Ward in 1996.
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techniques. This significantly outperforms previous unsupervised techniques and is
drawing close to the state-of-the-art supervised techniques (88.2%).

Having discussed why distributional similarity is important, we now turn to how
to formulate it. As we have said, two words are distributionally similar if they appear in
similar contexts. We therefore need to consider what is meant by context. For example,
two words could be considered to appear in the same context if they appear in the
same sentence, the same document, or the same grammatical dependency relation. The
effect of the type of context used is discussed by Kilgarriff and Yallop (2000). They show
that the use of sentence-level and document-level context leads to “looser” thesauri
more akin to Roget’s, whereas the use of grammatical dependency relation level context
leads to “tighter” thesauri more akin to WordNet. The use of grammatical dependency
relations as context gives us a tighter thesaurus because it restricts distributionally
similar words to those that are plausibly inter-substitutable (Church et al. 1994), giving
us the following definition of distributional similarity:

The distributional similarity of two words is the extent to which they can be
inter-substituted without changing the plausibility3 of the sentence.

This concept of lexical substitutability highlights the relationship between distri-
butional similarity and semantic similarity, since semantic similarity can be thought of
as the degree of synonymy that exists between two words, where synonymy is defined
(Church et al. 1994) as follows:

Two words are absolute synonyms if they can be inter-substituted in all possible
contexts without changing the meaning.

In our empirical work, we focus on finding semantic relationships between words
such as synonymy, antonymy and hyponymy that might be found in a tighter thesaurus
such as WordNet. Hence, the proposed framework is based on the concept of substi-
tutability, and we use grammatical dependency relations as context. However, since the
framework is based on features, there is no reason why someone wishing to find topical
relationships between words, as might be found in Roget’s, could not use the framework.
We simply do not repeat the earlier work of Kilgarriff and Yallop (2000).

However, a number of questions still remain, which this work does investigate:

1. Is lexical substitutability and therefore distributional similarity
symmetric? The concept of substitution is inherently asymmetric. It is
possible to measure the appropriateness of substituting word A for word B
without measuring the appropriateness of substituting word B for word A.
Similarity has been defined in terms of inter-substitutability; but we ask
whether there is something in the inherent asymmetry of substitution that
can be exploited by an asymmetric measure of distributional similarity.

2. Are all contexts equally important? For example, some verbs, e.g., have and
get, are selectionally weak in the constraints they place on their arguments
(Resnik 1993). Should such contexts be considered on equal terms with
selectionally strong contexts in the calculation of distributional similarity?

3 We use “plausible sentence” to refer to a sentence that might be observed in naturally occurring
language data.
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3. Is it necessary to consider the difference in extent to which each word
appears in each context? Is it enough to know that both words can occur in
each context, or do similar words occur in similar contexts with similar
probabilities?

In order to answer these questions, we take a pragmatic, application-oriented ap-
proach to evaluation that is based on the assumption that we want to know which
words are distributionally similar because particular applications can make use of this
information.

However, high performance in one application area is not necessarily correlated
with high performance in another application area (Weeds and Weir 2003a). Thus, it
is not clear that the same characteristics that make a distributional similarity measure
useful in one application will make it useful in another. For example, with regard to the
question about symmetry, in some applications we may prefer a word A that can be
substituted for word B in all of the contexts in which B occurs. In other applications, we
may prefer a word A that can be substituted for word B in all of the contexts in which A
occurs. For example, asked for a semantically related word to dog, we might say animal,
since animal can generally be used in place of dog, whereas we might be less likely to
say dog for animal, since dog cannot generally be used in place of animal. This preference
in the direction of the relationship between the two words is not necessarily maintained
when one considers language modeling in the face of sparse data. If we want to learn
what other contexts animal can occur in, we might look at the co-occurrences of words
such as dog, since we know that dog can generally be replaced by animal. If we want to
learn what other contexts dog can occur in, we are less likely to look at the co-occurrences
of animal, since we know that animal can occur in contexts in which dog cannot.

Rather than attempt to find a single universally optimal distributional similarity
measure, or propose using a radically different distributional similarity measure in each
possible application, we propose a flexible, parameterized framework for calculating
distributional similarity (Section 2). Within this framework, we cast the problem of
finding distributionally similar words as one of co-occurrence retrieval (CR), for which
we can measure precision and recall by analogy with the way that they are measured
in document retrieval. Different models within this framework allow us to investigate
how frequency information is incorporated into the distributional similarity measure.
Different parameter settings within each model allow us to investigate asymmetry in
similarity. In Section 3 we discuss the data and the neighbor set comparison tech-
nique used throughout our empirical work. In Section 4 we discuss a number of
existing distributional similarity measures and discuss the extent to which these can
be simulated by settings within the CR framework. In Section 5 we evaluate the CR
framework on a semantic task (WordNet prediction) and on a language modeling task
(pseudo-disambiguation).

2. Co-occurrence Retrieval

In this section, we present a flexible framework for distributional similarity. This frame-
work directly defines a similarity function, does not require smoothing of the base
language model, and allows us to systematically explore the questions about similarity
raised in Section 1. In our approach, similarity between words is viewed as a measure
of how appropriate it is to use one word (or its distribution) in place of the other. Like
relative entropy (Cover and Thomas 1991), it is inherently asymmetric, since we can
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measure how appropriate it is to use word A instead of word B separately from how
appropriate it is to use word B instead of word A.

The framework presented here is general to the extent that it can be used to compute
similarities for any set of objects where each object has an associated set of features
or co-occurrence types and these co-occurrence types have associated frequencies
that may be used to form probability estimates. Throughout our discussion, the word
for which we are finding neighbors will be referred to as the target word. If we are
computing the similarity between the target word and another word, then the second
word is a potential neighbor of the target word. A target word’s nearest neighbors are
the potential neighbors that have the highest similarity with the target word.

2.1 Basic Concepts

Let us imagine that we have formed descriptions of each word in terms of the other
words with which they co-occur in various specified grammatical relations in some
corpus. For example, the noun cat might have the co-occurrence types 〈dobj-of, feed〉 and
〈ncmod-by, hungry〉. Now let us imagine that we have lost (or accidentally deleted) the
description for word w2, but before this happened we had noticed that the description
of word w2 was very similar to that of word w1. For example, the noun dog might also
have the co-occurrence types 〈dobj-of, feed〉 and 〈ncmod-by, hungry〉. Hence, we decide
that we can use the description of word w1 instead of the description of word w2 and
are hopeful that nobody will notice. How well we do will depend on the validity of
substituting w1 for w2, or, in other words, the similarity between w1 and w2.

The task we have set ourselves can be seen as co-occurrence retrieval (CR). By
analogy with information retrieval, where there is a set of documents that we would
like to retrieve and a set of documents that we do retrieve, we have a scenario where
there is a set of co-occurrences that we would like to retrieve, the co-occurrences of w2,
and a set of co-occurrences that we have retrieved, the co-occurrences of w1. Continuing
the analogy, we can measure how well we have done in terms of precision and recall,
where precision tells us how much of what was retrieved was correct and recall tells us
how much of what we wanted to retrieve was retrieved.

Our flexible framework for distributional similarity is based on this notion of co-
occurrence retrieval. As the distribution of word B moves away from being identical
to that of word A, its “similarity” with A can decrease along one or both of two
dimensions. When B occurs in contexts that word A does not, the result is a loss of
precision, but B may remain a high-recall neighbor. For example, we might expect the
noun animal to be a high-recall neighbor of the noun dog. When B does not occur in
contexts that A does occur in, the result is a loss of recall but B may remain a high-
precision neighbor. For example, we might expect the noun dog to be a high-precision
neighbor of the noun animal. We can explore the merits of symmetry and asymmetry in
a similarity measure by varying the relative importance attached to precision and recall.
This was the first question posed about distributional similarity in Section 1.

The remainder of this section is devoted to defining two types of co-occurrence
retrieval model (CRM). Additive models are based on the Boolean concept of two
objects either sharing or not sharing a particular feature (where objects are words and
features are co-occurrence types). Difference-weighted models incorporate the differ-
ence in extent to which each word has each feature. Exploring the two types of models,
both defined on the same concepts of precision and recall, allows us to investigate the
third question posed in Section 1: Is a shared context worth the same, regardless of the
difference in the extent to which each word appears in that context?
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We also use the CR framework to investigate the second question posed about
distributional similarity, “Should all contexts be treated equally?,” by using differ-
ent weight functions within each type of model. Weight functions decide which co-
occurrence types are features of a word and determine the relative importance of
features. In previous work (Weeds and Weir 2003b), we experimented with weight
functions based on combinatorial, probabilistic, and mutual information (MI). These
allow us to define type-based, token-based, and MI-based CRMs, respectively. This
work extends the previous work by also considering weighted mutual information
(WMI) (Fung and McKeown 1997), the t-test (Manning and Schütze 1999), the z-test
(Fontenelle et al. 1994), and an approximation to the log-likelihood ratio (Manning and
Schütze 1999) as weight functions.

2.2 Additive Models

Having considered the intuition behind calculating precision and recall for co-
occurrence retrieval, we now formulate this formally in terms of an additive model.

We first need to consider for each word w which co-occurrence types will be re-
trieved, or predicted, by it and, conversely, required in a description of it. We will refer
to these co-occurrence types as the features of w, F(w):

F(w) = {c : D(w, c) > 0} (1)

where D(w, c) is the weight associated with word w and co-occurrence type c. Possible
weight functions will be described in Section 2.3.

The shared features of word w1 and word w2 are referred to as the set of True
Positives, TP(w1, w2), which will be abbreviated to TP in the rest of this article:

TP(w1, w2) = F(w1) ∩ F(w2) (2)

The precision of w1’s retrieval of w2’s features is the proportion of w1’s features that
are shared by both words, where each feature is weighted by its relative importance
according to w1:

Padd(w1, w2) =
∑

TP D(w1, c)∑
F(w1 ) D(w1, c)

(3)

The recall of w1’s retrieval of w2’s features is the proportion of w2’s features that
are shared by both words, where each feature is weighted by its relative importance
according to w2:

Radd(w1, w2) =
∑

TP D(w2, c)∑
F(w2 ) D(w2, c)

(4)
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Table 1
Weight functions.

Dtype(w, c) =
{

1 if P(c|w) > 0
0 otherwise

Dtok(w, c) = P(c|w)

Dmi(w, c) = I(w, c) = log
(

P(c, w)
P(c)P(w)

)

Dwmi(w, c) = P(c, w) · log
(

P(c, w)
P(c)P(w)

)

Dt(w, c) = P(c, w)−P(c)·P(w)√
P(c, w)

N

Dz(w, c) = P(c, w)−P(c)·P(w)√
P(c).P(w)

N

Dallr(w, c) = −2 ·
(

log L
(

F(w, c), F(w), F(c)
N

)
− log L

(
F(w, c), F(w), F(w, c)

F(w)

))

Precision and recall both lie in the range [0,1] and are both equal to one when
each word has exactly the same features. It should also be noted that the recall of
w1’s retrieval of w2 is equal to the precision of w2’s retrieval of w1, i.e., Radd(w1, w2) =
Padd(w2, w1).

2.3 Weight Functions

The weight function plays two important roles. First, it determines which co-
occurrences of w1 and w2 are important enough to be considered part of their descrip-
tion, or by analogy with document retrieval, which co-occurrences we want to retrieve
for w2 and which co-occurrences we have retrieved using the description of w1. It is
then used to weight contexts by their importance. In the latter case, D(w1, c) tells us the
retrieval process’s perceived relevance of co-occurrence type c, and D(w2, c) tells us the
actual relevance of co-occurrence type c. The weight functions we have considered so
far are summarized in Table 1. Each weight function can be used to define its own CRM,
which we will now discuss in more detail.

Additive type-based CRM (Dtype). In this CRM, the precision of w1’s retrieval of w2 is the
proportion of co-occurrence types occurring with w1 that also occur with w2, and the
recall of w1’s retrieval of w2 is the proportion of verb co-occurrence types (or distinct
verbs) occurring with w2 that also occur with w1. In this case, the summed values of D
are always 1, and hence the expressions for precision and recall can be simplified:

Padd
type(w1, w2) =

∑
TP Dtype(w1, c)∑

F(w1 ) Dtype(w1, c)
=

|TP|
|F(w1)| (5)
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Radd
type(w1, w2) =

∑
TP Dtype(w2, c)∑

F(w2 ) Dtype(w2, c)
=

|TP|
|F(w2)| (6)

Additive token-based CRM (Dtok). In this CRM, the precision of w1’s retrieval of w2 is the
proportion of co-occurrence tokens occurring with w1 that also occur with w2, and the
recall of w1’s retrieval of w2 is the proportion of co-occurrence tokens occurring with w2
that also occur with w1. Hence, words have the same features as in the type-based CRM,
but each feature is given a weight based on its probability of occurrence. Since F(w) =
{c : D(w, c) > 0} = {c : P(c|w) > 0}, it follows that

∑
F(w) Dtok(w, c) = 1, and therefore

the expressions for precision and recall can be simplified:

Padd
tok (w1, w2) =

∑
TP Dtok(w1, c)∑

F(w1 ) Dtok(w1, c)
=

∑
TP

P(c, w1) (7)

Radd
tok (w1, w2) =

∑
TP Dtok(w2, c)∑

F(w2) Dtok(w2, c)
=

∑
TP

P(c, w2) (8)

Additive MI-based CRM (Dmi). Using pointwise mutual information (MI) (Church and
Hanks 1989) as the weight function means that a co-occurrence c is considered a feature
of word n if the probability of their co-occurrence is greater than would be expected if
words occurred independently. In addition, more informative co-occurrences contribute
more to the sums in the calculation of precision and recall and hence have more weight.

Additive WMI-based CRM (Dwmi). Weighted mutual information (WMI) (Fung and
McKeown 1997) has been proposed as an alternative to MI, particularly when MI might
lead to the over-association of low-frequency events. In this function, the pointwise
MI is multiplied by the probability of the co-occurrence; hence, reducing the weight
assigned to low-probability events.

Additive t-test based CRM (Dt). The t-test (Manning and Schütze 1999) is a standard
statistical test that has been proposed for collocation analysis. It measures the (signed)
difference between the observed probability of co-occurrence and the expected prob-
ability of co-occurrence, as would be observed if words occurred independently. The
difference is divided by the standard deviation in the observed distribution. Similarly
to MI, this score obviously gives more weight to co-occurrences that occur more than
would be expected, and its use as the weight function results in any co-occurrences that
occur less than would be expected being ignored.

Additive z-test based CRM (Dz). The z-test (Fontenelle et al. 1994) is almost identical
to the t-test. However, using the z-test, the (signed) difference between the observed
probability of co-occurrence and the expected probability of co-occurrence is divided
by the standard deviation in the expected distribution.

Additive log-likelihood ratio based CRM (Dallr). The log-likelihood ratio (Manning and
Schütze 1999) considers the difference (as a log ratio) in probability of the observed
frequencies of co-occurrences and individual words occurring under the null hypoth-
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esis, that words occur independently, and under the alternative hypothesis, that they
do not.

H0 : P(c|w) = p = P(c|¬w) (9)

H1 : P(c|w) = p1 
= p2 = P(c|¬n) (10)

If f (w, c) is the frequency of w and c occurring together, f (w) is the total frequency
of w occurring in any context, f (c) is the total frequency of c occurring with any
word, and N is the grand total of co-occurrences, then the log-likelihood ratio can
be written:

Logλ(w, c) = −2. log L(H0)
L(H1) (11)

= −2.




log L
(

f (w, c), f (w), f (c)
N

)

+ log L
(

f (c) − f (w, c), N − f (w), f (c)
N

)

− log L
(

f (w, c), f (w), f (w, c)
f (w)

)

− log L
(

f (c) − f (w, c), N − f (w), f (c)− f (w, c)
N− f (w)

)




(12)

where L(k, n, x) = xk(1 − x)n−k (13)

In our implementation (see Table 1), an approximation to this formula is used,
which we term the ALLR weight function. We use an approximation because the terms
that represent the probabilities of the other contexts (i.e., seeing f (c) − f (w, c) under each
hypothesis) tend towards −∞ as N increases (since the probabilities tend towards zero).
Since N is very large in our experiments (approximately 2,000,000), we found that using
the full formula led to many weights being undefined. Further, since in this case the
probability of seeing other contexts will be approximately equal under each hypothesis,
it is a reasonable approximation to make.

Another potential problem with using the log-likelihood ratio as the weight func-
tion is that it is always positive, since the observed distribution is always more
probable than the hypothesized distribution. All of the other weight functions assign
a zero or negative weight to co-occurrence types that do not occur with a given
word and thus these zero frequency co-occurrence types are never selected as features.
This is advantageous in the computation of similarity, since computing the sums
over all co-occurrence types rather than just those co-occurring with at least one of
the words is (1) very computationally expensive and (2) due to their vast number, the
effect of these zero frequency co-occurrence types tends to outweigh the effect of
those co-occurrence types that have actually occurred. Giving such weight to these
shared non-occurrences seems unintuitive and has been shown by Lee (1999) to be
undesirable in the calculation of distributional similarity. Hence, when using the
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ALLR as the weight function, we use the additional restriction that P(c, w) > 0 when
selecting features.

2.4 Difference-Weighted Models

In additive models, no distinction is made between features that have occurred to the
same extent with each word and features that have occurred to different extents with
each word. For example, if two words have the same features, they are considered
identical, regardless of whether the feature occurs with the same probability with each
word or not. Here, we define a type of model that allows us to capture the difference in
the extent to which each word has each feature.

We do this by defining the similarity of two words with respect to an individual
feature, using the same principles that we use to define the similarity of two words
with respect to all their features. First, we define an extent function, E(w, c), which is the
extent to which w1 goes with c and which may be, but is not necessarily, the same as
the weight function D(n, w). Possible extent functions will be discussed in Section 2.5.
Having defined this function, we can measure the precision and recall of individual
features. The precision of an individual feature c retrieved by w1 is the extent to which
both words go with c divided by the extent to which w1 goes with c. The recall of the
retrieval of c by w1 is the extent to which both words go with c divided by the extent to
which w2 goes with c.

P (w1, w2, c) = min(E(w1, c), E(w2, c))
E(w1, c) (14)

R(w2, w1, c) = min(E(w1, c), E(w2, c))
E(w2, c) (15)

Precision and recall of an individual feature, like precision and recall of a distrib-
ution, lie in the range [0,1]. We can now redefine precision and recall of a distribution
as follows:

Pdw(w1, w2) =
∑

TP D(w1, c) · P (w1, w2, c)∑
F(w1) D(w1, c)

(16)

Rdw(w1, w2) =
∑

TP D(w2, c) · R(w1, w2, c)∑
F(w2 ) D(w2, c)

(17)

Using precision and recall of individual features as weights in the definitions
of precision and recall of a distribution captures the intuition that retrieval of a
co-occurrence type is not a black-and-white matter. Features that are shared to a
similar extent are considered more important in the calculation of distributional
similarity.
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Table 2
Extent functions.

Etype(w, c) = P(c|w)

Etok(w, c) = P(c|w)

Emi(w, c) = I(w, c) = log
(

P(c, w)
P(c)P(w)

)

Ewmi(w, c) = P(c, w). log
(

P(c, w)
P(c)P(w)

)

Et(w, c) = P(c, w)−P(c).P(w)√
P(c, w)

N

Ez(w, c) = P(c, w)−P(c).P(w)√
P(c).P(w)

N

Eallr(w, c) = −2.
(

log L
(

f (w, c), f (w), f (c)
N

)
− log L

(
f (w, c), f (w), f (w, c)

f (w)

))

2.5 Extent Functions

The extent functions we have considered so far are summarized in Table 2. Note that
in general, the extent function is the same as the weight function, which leads to a
standard simplification of the expressions for precision and recall in the difference-
weighted CRMs. For example, in the difference-weighted MI-based model we get the
expressions:

Pdw
mi (w1, w2) =

∑
TP I(w1, c) · min(I(w1, c),I(w2, c))

I(w1, c)∑
F(w1 ) I(w1, c)

=
∑

TP min(I(w1, c), I(w2, c))∑
F(w1 ) I(w1, c)

(18)

Rdw
mi (w1, w2) =

∑
TP I(w2, c) · min(I(w2, c),I(w1, c))

I(w2, c)∑
F(w2 ) I(w2, c)

=
∑

TP min(I(w2, c), I(w1, c))∑
F(w2 ) I(w2, c)

(19)

Similar expressions can be derived for the WMI-based CRM, the t-test based CRM, the
z-test based CRM, and the ALLR-based CRM. An interesting special case is the difference-
weighted token-based CRM. In this case, since

∑
F(w) P(c|w) = 1, we derive the following

expressions for precision and recall:

Pdw
tok (w1, w2) =

∑
TP P(c|w1) · min(P(c|w1), P(c|w2))

P(c|w1)∑
F(w1 ) P(c|w1)

=
∑
TP

min(P(c|w1), P(c|w2)) (20)
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Rdw
tok(w1, w2) =

∑
TP P(c|w2) · min(P(c|w2), P(c|w1))

P(c|w2)∑
F(w2 ) P(c|w2)

=
∑
TP

min(P(c|w2), P(c|w1))

= Pdw
tok (w1, w2) (21)

Note that although we have defined separate precision and recall functions, we
have arrived at the same expression for both in this model. As a result, this model is
symmetric.

The only CRM in which we use a different extent and weight function is the
difference-weighted type-based CRM. This is because there is no difference between types
and tokens for an individual feature; i.e., their retrieval is equivalent. In this case, the
following expressions for precision and recall are derived:

Pdw
type(w1, w2) =

∑
TP Dtype(w1, c) · Ptype(w1, w2, c)∑

F(w1 ) Dtype(w1, c)
=

∑
TP

min(P(c|w1), P(c|w2))
P(c|w1)

|F(w1)| (22)

Rdw
type(w1, w2) =

∑
TP Dtype(w2, c) · Rtype(w1, w2, c)∑

F(w2 ) Dtype(w2, c)
=

∑
TP

min(P(c|w2), P(c|w1))
P(c|w2)

|F(w2)| (23)

Note that this is different from the additive token-based model because, although
every token is effectively considered in this model, tokens are not weighted equally.
In this model, tokens are treated differently according to which type they belong.
The importance of the retrieval (or non-retrieval) of a single token depends on the
proportion of the tokens for its particular type that it constitutes.

2.6 Combining Precision and Recall

We have, so far, been concerned with defining a pair of numbers that represents the
similarity between two words. However, in applications, it is normally necessary to
compute a single number in order to determine neighborhood or cluster membership.
The classic way to combine precision and recall in IR is to compute the F-score; that is,
the harmonic mean of precision and recall:

F = mh(P ,R) = 2 · P · R
P + R (24)

However, we do not wish to assume that a good substitute requires both high
precision and high recall of the target distribution. It may be that, in some situations,
the best word to use in place of another word is one that only retrieves correct co-
occurrences (i.e., it is a high-precision neighbor) or it may be one that retrieves all of
the required co-occurrences (i.e., it is a high-recall neighbor). The other factor in each
case may play only a secondary role or no role at all.

We can retain generality and investigate whether high precision or high recall or
high precision and high recall are required for high similarity by computing a weighted
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Table 3
Table of special values of β and γ.

β γ Special Case

- 1 harmonic mean of precision and recall (F-score)
β 0 weighted arithmetic mean of precision and recall
1 0 precision
0 0 recall
0.5 0 unweighted arithmetic mean

arithmetic mean of the harmonic mean and the weighted arithmetic mean of precision
and recall:4

mh(P (w1, w2),R(w1, w2)) = 2.P (w1, w2).R(w1, w2)
P (w1, w2) + R(w1, w2) (25)

ma(P (w1, w2),R(w1, w2)) = β.P (w1, w2) + (1 − β).R(w1, w2) (26)

sim(w1, w2) = γ.mh(P (w1, w2),R(w1, w2))

+ (1 − γ).ma(P (w1, w2),R(w1, w2)) (27)

where both β and γ lie in the range [0,1]. The resulting similarity, sim(w1, w2), will also
lie in the range [0,1] where 0 is low and 1 is high. This formula can be used in combi-
nation with any of the models for precision and recall outlined earlier. Precision and
recall can be computed once for every pair of words (and every model) whereas sim-
ilarity depends on the values of β and γ. The flexibility allows us to investigate em-
pirically the relative significance of the different terms and thus whether one (or more)
might be omitted in future work. Table 3 summarizes some special parameter settings.

2.7 Discussion

We have developed a framework based on the concept of co-occurrence retrieval
(CR). Within this framework we have defined a number of models (CRMs) that
allow us to systematically explore three questions about similarity. First, is similarity
between words necessarily a symmetric relationship, or can we gain an advantage by
considering it as an asymmetric relationship? Second, are some features inherently
more salient than others? Third, does the difference in extent to which each word takes
each feature matter?

The CRMs and the parameter settings therein correspond to alternative possibil-
ities. First, a high-precision neighbor is not necessarily a high-recall neighbor (and,
conversely, a high-recall neighbor is not necessarily a high-precision neighbor) and
therefore we are not constrained to a symmetric relationship of similarity between

4 This is as opposed to using a standard weighted F-score (Manning and Schütze 1999), which uses just one
parameter α: Fα = PR

αR+(1−α)P . We did not use this weighting because we wished to investigate the
differences between using an arithmetic mean and a harmonic mean.
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words. Second, the use of different weight functions varies the relative importance
attached to features. Finally, difference-weighted models contrast with additive models
in considering the difference in extent to which each word takes each feature.

3. Data and Experimental Techniques

The rest of this paper is concerned with evaluation of the proposed framework; first, by
comparing it to existing distributional similarity measures, and second, by evaluating
performance on two tasks. Throughout our empirical work, we use one data-set and one
neighbor set comparison technique, which we now discuss in advance of presenting any
of our actual experiments.

3.1 Data

The data used for all our experimental work was noun-verb direct-object data extracted
from the BNC by a Robust Accurate Statistical Parser (RASP) (Briscoe and Carroll 1995;
Carroll and Briscoe 1996). We constructed a list of nouns that occur in both our data set
and WordNet ordered by their frequency in our corpus data. Since we are interested
in the effects of word frequency on word similarity, we selected 1,000 high-frequency
nouns and 1,000 low-frequency nouns. The 1,000 high-frequency nouns were selected
as the nouns with frequency ranks of 1–1,000; this corresponds to a frequency range of
[586,20871]. The low-frequency nouns were selected as the nouns with frequency ranks
of 3,001–4,000; this corresponds to a frequency range of [72,121].

For each target noun, 80% of the available data was randomly selected as training
data and the other 20% was set aside as test data.5 The training data was used to
compute similarity scores between all possible pairwise combinations of the 2,000 nouns
and to provide (MLE) estimates of noun-verb co-occurrence probabilities in the pseudo-
disambiguation task. The test data provides unseen co-occurrences for the pseudo-
disambiguation task.

Although we only consider similarity between nouns based on co-occurrences
with verbs in the direct-object position, the generality of the techniques proposed
is not so restricted. Any of the techniques can be applied to other parts of speech,
other grammatical relations, and other types of context. We restricted the scope of our
experimental work solely for computational and evaluation reasons. However, we
could have chosen to look at the similarity between verbs or between adjectives.6 We
chose nouns as a starting point since nouns tend to allow less sense extensions than
verbs and adjectives (Pustejovsky 1995). Further, the noun hyponymy hierarchy in
WordNet, which will be used as a pseudo-gold standard for comparison, is widely
recognized in this area of research.

Some previous work on distributional similarity between nouns has used only a
single grammatical relation (e.g., Lee 1999), whereas other work has considered multiple
grammatical relations (e.g., Lin 1998a). We consider only a single grammatical relation
because we believe that it is important to evaluate the usefulness of each grammatical
relation in calculating similarity before deciding how to combine information from

5 This results in a single 80:20 split of the complete data set, in which we are guaranteed that the original
relative frequencies of the target nouns are maintained.

6 The use of grammatical relations to model context precludes finding similarities between words of
different parts of speech. Since we are looking at similarity in terms of substitutability, we would not
expect to find a word of one part of speech substitutable for a word of another part of speech.
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different relations. In previous work (Weeds 2003), we found that considering the
subject relation as well as the direct-object relation did not improve performance on
a pseudo-disambiguation task.

Our last restriction was to only consider 2,000 of the approximately 35,000 nouns
occurring in the corpus. This restriction was for computational efficiency and to avoid
computing similarities based on the potentially unreliable descriptions of very low-
frequency words. However, since our evaluation is comparative, we do not expect our
results to be affected by this or any of the other restrictions.

3.2 Neighbor Set Comparison Technique

In several of our experiments, we measure the overlap between two different similarity
measures. We use a neighbor set comparison technique adapted from Lin (1997).

In order to compare two neighbor sets of size k, we transform each neighbor set
so that each neighbor is given a rank score of k − rank. Potential neighbors not within
a given rank distance k of the noun score zero. This transformation is required since
scores computed on different scales are to be compared and because we wish to only
consider neighbors up to a certain rank distance. The similarity between two neighbor
sets S and S′ is computed as the cosine of the rank score vectors:

C(S, S′) =
∑

w∈S∩S′ s(w) · s′(w)∑k
i=1 i2

(28)

where s(w) and s′(w) are the rank scores of the words within each neighbor set S and S′

respectively.
In previous work (Weeds and Weir 2003b), having computed the similarity between

neighbor sets for each noun according to each pair of measures under consideration, we
computed the mean similarity across all high-frequency nouns and all low-frequency
nouns. However, since the use of the CR framework requires parameter optimization,
here, we randomly select 60% of the nouns to form a development set and use the
remaining 40% as a test set. Thus, any parameters are optimized over the development
set nouns and performance measured at these settings over the test set.

4. Alternative Distributional Similarity Measures

In this section, we consider related work on distributional similarity measures and the
extent to which some of these measures can be simulated within the CR framework.
However, there is a large body of work on distributional similarity measures; for a
more extensive review, see Weeds (2003). Here, we concentrate on a number of more
popular measures: the Dice Coefficient, Jaccard’s Coefficient, the L1 Norm, the α-skew
divergence measure, Hindle’s measure, and Lin’s MI-based measure.

4.1 The Dice Coefficient

The Dice Coefficient (Frakes and Baeza-Yates 1992) is a popular combinatorial similarity
measure adopted from the field of Information Retrieval for use as a measure of lexical
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distributional similarity. It is computed as twice the ratio between the size of the inter-
section of the two feature sets and the sum of the sizes of the individual feature sets:

simdice(w1, w2) =
2 · |F(w1) ∩ F(w2)|
|F(w1)| + |F(w2)|

where F(w) = {c : P(c|w) > 0} (29)

According to this measure, the similarity between words with no shared features
is zero and the similarity between words with identical feature sets is 1. However, as
shown below, this formula is equivalent to a special case in the CR framework: the
harmonic mean of precision and recall (or F-score) using the additive type-based CRM.

mh(Padd
type(w1, w2),Radd

type(w1, w2)) =
2 · Padd

type(w1, w2) · Radd
type(w1, w2)

Padd
type(w1, w2) + Radd

type(w1, w2)

=
2 · |TP|

|F(w1 )| ·
|TP|

|F(w2 )|
|TP|

|F(w1)| + |TP|
|F(w2 )|

=
2 · |TP| · |TP|

|TP| · |F(w1)| + |TP| · |F(w2)|

=
2 · |TP|

|F(w1)| + |F(w2)| =
2 · |F(w1) ∩ F(w2)|
|F(w1)| + |F(w2)|

= simdice(w1, w2) (30)

Thus, when γ is set to 1 in the additive type-based CRM, the Dice Coefficient is
exactly replicated.

4.2 Jaccard’s Coefficient

Jaccard’s Coefficient (Salton and McGill 1983), also known as the Tanimoto Coefficient
(Resnik 1993), is another popular combinatorial similarity measure. It can be defined as
the proportion of features belonging to either word that are shared by both words; that
is, the ratio between the size of the intersection of the feature sets and the size of the
union of feature sets:

simjacc(w1, w2) =
|F(w1) ∩ F(w2)|
|F(w1) ∪ F(w2)| (31)

As with the Dice Coefficient, the similarity between words with no shared co-
occurrences is zero and the similarity between words with identical features is 1. Fur-
ther, as shown by van Rijsbergen (1979), the Dice Coefficient and Jaccard’s Coefficient
are monotonic in one another. Thus, although in general the scores computed by each
will be different, the orderings or rankings of objects will be the same. In other words,
for all k and w, the k nearest neighbors of word w according to Jaccard’s Coefficient will
be identical to the k nearest neighbors of word w according to the Dice Coefficient and
the harmonic mean of precision and recall in the additive type-based CRM.
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4.3 The L1 Norm

The L1 Norm (Kaufman and Rousseeuw 1990) is a member of a family of measures
known as the Minkowski Distance, for measuring the distance7 between two points
in space. The L1 Norm is also known as the Manhattan Distance, the taxi-cab distance,
the city-block distance, and the absolute value distance, since it represents the distance
traveled between the two points if you can only travel in orthogonal directions. When
used to calculate lexical distributional similarity, the dimensions of the vector space are
co-occurrence types and the values of the vector components are the probabilities of
the co-occurrence types given the word. Thus the L1 distance between two words, w1
and w2, can be written as:

distL1 (w1, w2) =
∑

c

|P(c|w1) − P(c|w2)| (32)

However, noting the algebraic equivalence A + B − |A − B| ≡ 2 · min(A, B) and us-
ing basic probability theory, we can rewrite the L1 Norm as follows:

distL1 (w1, w2) =
∑

c

|P(c|w1) − P(c|w2)|

=
∑

c

P(c|w1) + P(c|w2) − 2 · min(P(c|w1), P(c|w2))

=
∑

c

P(c|w1) +
∑

c

P(c|w2) − 2 ·
∑

c

min(P(c|w1), P(c|w2))

= 2 − 2 ·
∑

c

min(P(c|w1), P(c|w2)) (33)

However, min(P(c|w1), P(c|w2)) > 0 if and only if c ∈ TP. Hence:

distL1 (w1, w2) = 2 − 2 ·
∑
TP

min(P(c|w1), P(c|w2) = 2 − 2 · simdw
tok(w1, w2) (34)

In other words, the L1 Norm is directly related to the difference-weighted token-
based CRM. The constant and multiplying factors are required, since the CRM defines
a similarity in the range [0,1], whereas the L1 Norm defines a distance in the range [0,2]
(where 0 distance is equivalent to 1 on the similarity scale).

4.4 The α-skew Divergence Measure

The α-skew divergence measure (Lee 1999, 2001) is a popular approximation to the
Kullback-Leibler divergence measure8 (Kullback and Leibler 1951; Cover and Thomas
1991). It is an approximation developed to be used when unreliable MLE probabilities

7 Distance measures, also referred to as divergence and dissimilarity measures, can be viewed as the
inverse of similarity measures; that is, an increase in distance correlates with a decrease in similarity.

8 The Kullback-Leibler divergence measure is also often referred to as “relative entropy.”
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would result in the actual Kullback-Leibler divergence measure being equal to ∞. It is
defined (Lee 1999) as:

distα(q, r) = D(r||α.q + (1 − α).r) (35)

for 0 ≤ α ≤ 1, and where:

D(p||q) =
∑

x

p(x) log
p(x)
q(x) (36)

In effect, the q distribution is smoothed with the r distribution, which results in it
always being non-zero when the r distribution is non-zero. The parameter α controls the
extent to which the measure approximates the Kullback-Leibler divergence measure.
When α is close to 1, the approximation is close while avoiding the problem with
zero probabilities associated with using the Kullback-Leibler divergence measure. This
theoretical justification for using a very high value of α (e.g., 0.99) is also borne out by
empirical evidence (Lee 2001).

The α-skew divergence measure retains the asymmetry of the Kullback-Leibler
divergence, and Weeds (2003) discusses the significance in the direction in which it
is calculated. For the purposes of this paper, we will find the neighbors of w2 by
optimizing:9

distα(P(c|w1), P(c|w2)) (37)

Due to the form of the α-skew divergence measure, we do not expect any of the
CRMs to exactly simulate it. However, this measure does take into account the differ-
ences between the probabilities of co-occurrences in each distribution (as a log ratio)
and therefore we might expect that it will be fairly closely simulated by the difference-
weighted token-based CRM. Further, the α-skew divergence measure is asymmetric.
distα(w1, w2) measures the cost of using the distribution of w1 instead of w2 and is
calculated over the verbs that occur with w2. As such, we might expect that distα will be
a high-recall measure, since recall is calculated over the co-occurrences of w2.

In order to determine how close any approximation is in practice, we compared
the 200 nearest neighbors according to distα and different parameter settings within
the CR framework for 1,000 high-frequency nouns and for 1,000 low-frequency nouns,
using the data and the neighbor set comparison technique described in Section 3. Table 4
shows the optimal parameters in each CRM for simulating distα, computed over the
development set, and the mean similarity at these settings over both the development
set and the test set. From these results, we can make the following observations.

First, the differences in mean similarities over the development set and the test
set are minimal. Thus, performance of the models with respect to different parameter
settings appears stable across different words.

Second, the differences between the models are fairly small. The difference-
weighted token-based CRM achieves a fairly close approximation to distα, but the

9 This is what Weeds (2003) refers to as distα1.
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Table 4
Optimized similarities between CRMs and distα and corresponding parameter settings.

Target Noun Frequency

high low

Optimal Devel. Test Optimal Devel. Test
Parameters Sim. Sim. Parameters Sim. Sim.

CRM γ β γ β

simadd
type 0.25 0.4 0.74 0.75 0.5 0.3 0.66 0.66

simadd
tok 0.5 0.0 0.77 0.78 0.5 0.0 0.67 0.66

simadd
mi 0.0 0.0 0.76 0.77 0.25 0.1 0.72 0.73

simadd
wmi 0.25 0.0 0.71 0.72 0.25 0.1 0.79 0.79

simadd
t 0.5 0.0 0.84 0.85 0.5 0.2 0.71 0.71

simadd
z 0.5 0.0 0.79 0.80 0.5 0.1 0.63 0.63

simadd
allr 0.25 0.0 0.70 0.71 0.5 0.0 0.64 0.63

simdw
type 0.0 0.25 0.70 0.71 0.0 0.0 0.52 0.53

simdw
tok — — 0.79 0.80 — — 0.58 0.58

simdw
mi 0.0 0.0 0.66 0.68 0.0 0.0 0.60 0.60

simdw
wmi 0.0 0.1 0.66 0.67 0.0 0.1 0.58 0.58

simdw
t 0.5 0.1 0.82 0.83 0.5 0.3 0.69 0.69

simdw
z 0.5 0.0 0.78 0.80 0.5 0.1 0.64 0.64

simdw
allr 0.75 0.0 0.53 0.54 0.75 0.0 0.48 0.48

overall best approximation is achieved by the additive t-test based CRM. Although
none of the CRMs are able to simulate distα exactly, the closeness of approximation
achieved in the best cases (greater than 0.7) is substantially higher than the degree
of overlap observed between other measures of distributional similarity. Weeds, Weir,
and McCarthy (2004) report an average overlap of 0.4 between neighbor sets produced
using distα and Jaccard’s Measure and an average overlap of 0.48 between neighbor sets
produced using distα and Lin’s similarity measure.

A third observation is that all of the asymmetric models get closest at high
levels of recall for both high- and low-frequency nouns. For example, Figure 1 illustrates
the variation in mean similarity between neighbor sets with the parameters β and
γ for the additive t-test based model. As can be seen, similarity between neighbor
sets is significantly higher at high recall settings (low β) within the model than at high-
precision settings (high β), which suggests that distα has high-recall CR characteristics.

4.5 Hindle’s Measure

Hindle (1990) proposed an MI-based measure, which he used to show that nouns could
be reliably clustered based on their verb co-occurrences. We consider the variant of
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Figure 1
Variation (with parameters β and γ) in development set mean similarity between neighbor sets
of the additive t-test based CRM and of distα.

Hindle’s Measure proposed by (Lin 1998a), which overcomes the problem associated
with calculating MI for word-feature combinations that do not occur:

simhind(w1, w2) =
∑

T(w1)∩T(w2)

min(I(c, w1), I(c, w2)) (38)

where T(w1) = {c : I(c, n) > 0}. This expression is the same as the numerator in the
expressions for precision and recall in the difference-weighted MI-based CRM:

Pdw
mi (w1, w2) =

∑
TP I(w1, c) · min(I(w1, c),I(w2, c))

I(w1, c)∑
F(w1) I(w1, c)

=
∑

TP min(I(w1, c), I(w2, c))∑
F(w1 ) I(w1, c)

(39)

Rdw
mi (w1, w2) =

∑
TP I(w2, c) · min(I(w2, c),I(w1, c))

I(w2, c)∑
F(w2 ) I(w2, c)

=
∑

TP min(I(w2, c), I(w1, c))∑
F(w2 ) I(w2, c)

(40)

since TP = T(w1) ∩ T(w2). However, we also note that the denominator in the expres-
sion for recall depends only on w2, and therefore, for a given w2, is a constant. Since w2 is
the target word, it will remain the same as we calculate each neighbor set. Accordingly,
the value of recall for each potential neighbor w1 of w2 will be the value of simhind
divided by a constant. Hence, neighbor sets derived using simhind are identical to those
obtained using recall (γ = 0, β = 0) in the difference-weighted MI-based CRM.

4.6 Lin’s Measure

Lin (1998a) proposed a measure of lexical distributional similarity based on his
information-theoretic similarity theorem (Lin 1997, 1998b):

The similarity between A and B is measured by the ratio between the amount of
information needed to state the commonality of A and B and the information needed to
fully describe what A and B are.
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If the features of a word are grammatical relation contexts, the similarity between
two words w1 and w2 can be written according to Lin’s measure as:

simlin(w1, w2) =

∑
T(w1)∩T(w2)(I(w1, c) + I(w2, c))∑
T(w1) I(w1, c) +

∑
T(w2 ) I(w2, c)

(41)

where T(w) = {c : I(w, c) > 0}. There are parallels between simlin and simdice in that both
measures compute a ratio between what is shared by the descriptions of both nouns and
the sum of the descriptions of each noun. The major difference appears to be the use of
MI, and hence we predicted that there would be a close relationship between simlin and
the harmonic mean in the additive MI-based CRM. This relationship is shown below:

mh(Padd
mi (w1, w2),Radd

mi (w1, w2)) =
2 · Padd

mi (w1, w2) · Radd
mi (w1, w2)

Padd
mi (w1, w2) + Radd

mi (w1, w2)
(42)

=
2 ·

∑
TP I(w1, c)∑

F(w1) I(w1, c) ·
∑

TP I(w2, c)∑
F(w2) I(w2, c)∑

TP I(w1, c)∑
F(w1) I(w1, c) +

∑
TP I(w2, c)∑

F(w2) I(w2, c)

(43)

=
2 ·

∑
TP I(w1, c) ·

∑
TP I(w2, c)∑

TP I(w2, c) ·
∑

F(w1 ) I(w1, c) +
∑

TP I(w1, c) ·
∑

F(w2 ) I(w2, c)
(44)

Now if
∑

TP I(w1, c) =
∑

TP I(w2, c), it follows:

mh(Padd
mi (w1, w2),Radd

mi (w1, w2)) =
2 ·

∑
TP I(w1, c)∑

F(w1 ) I(w1, c) +
∑

F(w2) I(w2, c)
(45)

=
∑

TP I(w1, c) + I(w2, c)∑
F(w1 ) I(w1, c) +

∑
F(w2 ) I(w2, c)

(46)

=

∑
T(w1)∩T(w2 )(I(w1, c) + I(w2, c))∑
T(w1 ) I(w1, c) +

∑
T(w2) I(w2, c)

since T(w) = F(w) (47)

= simlin(w1, w2) (48)

Thus, when the additive MI-based model is used, γ = 1 and the condition∑
TP I(w1, c) =

∑
TP I(w2, c) holds, the CR framework reduces to simlin. However, this

last necessary condition for equivalence is not one we can expect to hold for many (if
any) pairs of words. In order to investigate how good an approximation the harmonic
mean is to simlin in practice, we compared neighbor sets according to each measure
using the neighbor set comparison technique outlined earlier.

Figure 2 illustrates the variation in mean similarity between neighbor sets with the
parameters β and γ. At γ = 1, the average similarity between neighbor rankings was
0.967 for high-frequency nouns and 0.923 for low-frequency nouns. This is significantly
higher than similarities between other standard similarity measures. However, the
optimal approximation of simlin was found using γ = 0.75 and β = 0.5 in the additive
MI-based CRM. With these settings, the development set similarity was 0.987 for high-
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frequency nouns and 0.977 for low-frequency nouns. This suggests that simlin allows
more compensation for lack of recall by precision and vice versa than the harmonic
mean.

4.7 Discussion

We have seen that five of the existing lexical distributional similarity measures are (ap-
proximately) equivalent to settings within the CR framework and for one other, a weak
approximation can be made. The CR framework, however, more than simulates existing
measures of distributional similarity. It defines a space of distributional similarity mea-
sures that is already populated with a few named measures. By exploring the space, we
can discover the desirable characteristics of distributional similarity measures. It may be
that the most useful measure within this space has already been discovered, or it may
be that a new optimal combination of characteristics is discovered. The primary goal,
however, is to understand how different characteristics relate to high performance in
different applications and thus explain why one measure performs better than another.

With this goal in mind, we now turn to the applications of distributional similarity.
In the next section, we consider what characteristics of distributional similarity mea-
sures are desirable in two different application areas: (1) automatic thesaurus generation
and (2) language modeling.

5. Application-Based Evaluation

As discussed by Weeds (2003), evaluation is a major problem in this area of research.
In some areas of natural language research, evaluation can be performed against a
gold standard or against human plausibility judgments. The first of these approaches
is taken by Curran and Moens (2002), who evaluate a number of different distributional
similarity measures and weight functions against a gold standard thesaurus compiled
from Roget’s, the Macquarie thesaurus, and the Moby thesaurus. However, we argue that
this approach can only be considered when distributional similarity is required as an
approximation to semantic similarity and that, in any case, it is not ideal since it is not

Figure 2
Variation (with parameters β and γ) in development set mean similarity between neighbor sets
of the additive MI-based CRM and of simlin.
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clear that there is a single “right answer” as to which words are most distributionally
similar. The best measure of distributional similarity will be the one that returns the
most useful neighbors in the context of a particular application and thus leads to the
best performance in that application. This section investigates whether the desirable
characteristics of a lexical distributional similarity measure in an automatic thesaurus
generation task (WordNet prediction) are the same as those in a language modeling task
(pseudo-disambiguation).

5.1 WordNet Prediction Task

In this section, we evaluate the ability of distributional similarity measures to predict
semantic similarity by making comparisons with WordNet. An underlying assumption
of this approach is that WordNet is a gold standard for semantic similarity, which, as
is discussed by Weeds (2003), is unrealistic. However, it seems reasonable to suppose
that a distributional similarity measure that more closely predicts a semantic measure
based on WordNet is more likely to be a good predictor of semantic similarity. We chose
WordNet as our gold standard for semantic similarity since, as discussed by Kilgarriff
and Yallop (2000), distributional similarity scores calculated over grammatical relation
level context tend to be more similar to tighter thesauri, such as WordNet, than looser
thesauri such as Roget’s.

5.1.1 Experimental Set-Up. There are a number of ways to measure the distance be-
tween two nouns in the WordNet noun hierarchy (see Budanitsky [1999] for a review).
In previous work (Weeds and Weir 2003b), we used the WordNet-based similarity
measure first proposed in Lin (1997) and used in Lin (1998a):

wn simlin(w1, w2) =

max
c1∈S(w1 )∧c2∈S(w2 )

(
max

c∈sup(c1 )∩sup(c2 )

2 log P(c)
log (P(c1)) + log (P(c2))

)
(49)

where S(w) is the set of senses of the word w in WordNet, sup(c) is the set of possibly in-
direct super-classes of concept c in WordNet, and P(c) is the probability that a randomly
selected word refers to an instance of concept c (estimated over some corpus such as
SemCor [Miller et al. 1994]).

However, in other research (Budanitsky and Hirst 2001; Patwardhan, Banerjee, and
Pedersen 2003; McCarthy, Koeling, and Weeds 2004), it has been shown that the distance
measure of Jiang and Conrath (1997) (referred to herein as the “JC measure”) is a
superior WordNet-based semantic similarity measure:

wn distJC(w1, w2) =

max
c1∈S(w1 )∧c2∈S(w2 )

(
max

c∈sup(c1 )∩sup(c2 )
2 log(c) − log P(c1) − log P(c2)

)
(50)

In our work, we make an empirical comparison of neighbors derived using a
WordNet-based measure and each of the distributional similarity measures using the
technique discussed in Section 3. We have carried out the same experiments using both
the Lin measure and the JC measure. Correlation between distributional similarity mea-
sures and the WordNet measure tends to be slightly higher when using the JC measure

462



Weeds and Weir Co-occurrence Retrieval

Table 5
Optimized similarities between distributional neighbor sets and WordNet derived neighbor sets.

Noun Frequency

high low

Optimal Devel Test Optimal Devel Test
Parameters Corr. Corr. Parameters Corr. Corr.

Measure γ β (C) (C) γ β (C) (C)

simadd
type 0.25 0.5 0.323 0.327 0.5 0.25 0.281 0.275

simadd
tok 0.25 0.3 0.302 0.310 0.25 0.0 0.266 0.263

simadd
mi 0.25 0.2 0.334 0.342 0.25 0.2 0.290 0.283

simadd
wmi 0.25 0.2 0.282 0.293 0.25 0.0 0.274 0.266

simadd
t 0.5 0.2 0.330 0.338 0.5 0.2 0.292 0.286

simadd
z 0.5 0.1 0.324 0.332 0.5 0.1 0.280 0.276

simadd
allr 0.25 0.2 0.298 0.304 0.25 0.1 0.272 0.267

simdw
type 0.0 0.4 0.306 0.310 0.0 0.0 0.221 0.219

simdw
tok — — 0.285 0.294 — — 0.212 0.211

simdw
mi 0.0 0.2 0.324 0.333 0.0 0.0 0.266 0.261

simdw
wmi 0.0 0.1 0.273 0.281 0.0 0.1 0.223 0.220

simdw
t 0.5 0.2 0.328 0.333 0.5 0.3 0.289 0.282

simdw
z 0.5 0.1 0.324 0.329 0.5 0.2 0.280 0.276

simdw
allr 0.75 0.2 0.263 0.265 0.75 0.0 0.226 0.225

simdice 0.295 0.299 0.123 0.123

simjacc 0.295 0.299 0.123 0.123

distL1 0.285 0.294 0.212 0.211

distα 0.310 0.317 0.289 0.281

simhind 0.320 0.326 0.267 0.261

simlin 0.313 0.323 0.192 0.186

wnsimlin 0.907 0.907 0.884 0.883

(percentage increase in similarity of approximately 10%), but the relative differences
between distributional similarity measures remain approximately the same. Here, for
brevity, we present results just using the JC measure.

5.1.2 Results. As before, we present the results separately for the 1,000 high-frequency
target nouns and for the 1,000 low-frequency target nouns. Table 5 shows the optimal
parameter settings for each CRM (computed over the development set) and the mean
similarities with the JC measure at these settings in both the development set and the
test set. It also shows the mean similarities over the development set and the test set
for each of the existing similarity measures discussed in Section 4. For reference, we
also present the mean similarity for the WordNet-based measure wn simlin. For ease

463



Computational Linguistics Volume 31, Number 4

Figure 3
Bar chart illustrating test set similarity with WordNet for each distributional similarity measure.

of comparison, the test set correlation values for each distributional measure are also
illustrated in Figure 3.

We would expect a mean overlap score of 0.08 by chance. Standard deviations in
the observed test set mean similarities were all less than 0.1, and thus any difference
between mean scores of greater than 0.016 is significant at the 99% level, and differences
greater than 0.007 are significant at the 90% level. Thus, from the results in Table 5 we
can make the following observations.

First, the best-performing distributional similarity measures, in terms of WordNet
prediction, for both high- and low-frequency nouns, are the MI-based and the t-test
based CRMs. The additive MI-based CRM performs the best for high-frequency nouns
and the additive t-test based CRM performs the best for low-frequency nouns. How-
ever, the differences between these models are not statistically significant. These CRMs
perform substantially better than all of the unparameterized distributional similarity
measures, of which the best performing are simhind and simlin for high-frequency nouns
and distα1 for low-frequency nouns. Second, the difference-weighted versions of each
model generally perform slightly worse than their additive counterparts. Thus, the
difference in extent to which each word occurs in each context does not appear to be
a factor in determining semantic similarity. Third, all of the measures perform signifi-
cantly better for high-frequency nouns than for low-frequency nouns. However, some of
the measures (simlin, simjacc and simdice) perform considerably worse for low-frequency
nouns.

We now consider the effects of β and γ in the CRMs on performance. The pattern
of variation across the CRMs was very similar. This pattern is illustrated using one of
the best-performing CRMs (simadd

mi ) in Figure 4. With reference to this figure and to the
results for the other models (not shown), we make the following observations.
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Figure 4
Variation in similarity with WordNet with respect to β and γ for the additive MI-based CRM.

First, for high- and low-frequency nouns, similarity with WordNet is higher for
low values of β than for high values of β. In other words, neighbors according to
the WordNet based measure tend to have high-recall retrieval of the target noun’s
co-occurrences. Second, a high value of γ leads to high performance for high-frequency
nouns but poor performance for low-frequency nouns. This suggests that WordNet-
derived neighbors of high-frequency target nouns also have high-precision retrieval
of the target noun’s co-occurrences, whereas the WordNet-derived neighbors of low-
frequency target nouns do not. This also explains why particular existing measures
(Jaccard’s / the Dice Coefficient and Lin’s Measure), which are very similar to a γ = 1
setting in the CR framework, perform well for high-frequency nouns but poorly for
low-frequency nouns.

5.1.3 Discussion. Our results in this section are comparable to those of Curran and
Moens (2002), who showed that combining the t-test with Jaccard’s coefficient outper-
formed combining MI with Jaccard’s coefficient by approximately 10% in a comparison
against a gold-standard thesaurus. However, we do not find a significant difference
between using the t-test and MI in similarity calculation. Further, we found that using
a combination of precision and recall weighted towards recall performs substantially
better than using the harmonic mean (which is equivalent to Jaccard’s measure). In our
experiments, the development-set similarity using the harmonic mean in the additive
MI-based CRM was 0.312 for high-frequency nouns and 0.153 for low-frequency nouns,
and the development-set similarity using the harmonic mean in the additive t-test based
CRM was 0.294 for high-frequency nouns and 0.129 for low-frequency nouns.

5.2 Pseudo-Disambiguation Task

Pseudo-disambiguation tasks have become a standard evaluation technique (Gale,
Church, and Yarowsky 1992; Schütze 1992; Pereira, Tishby, and Lee 1993; Schütze 1998;
Lee 1999; Dagan, Lee, and Pereira 1999; Golding and Roth 1999; Rooth et al. 1999; Even-
Zohar and Roth 2000; Lee 2001; Clark and Weir 2002) and, in the current setting, we
may use a noun’s neighbors to decide which of two co-occurrences is the most likely.
Although pseudo-disambiguation is an artificial task, it has relevance in at least two
application areas. First, by replacing occurrences of a particular word in a test suite with
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a pair of words from which a technique must choose, we recreate a simplified version
of the word sense disambiguation task; that is, we choose between a fixed number
of homonyms based on local context. The second is in language modeling where we
wish to estimate the probabilities of co-occurrences of events but, due to the sparse
data problem, it is often the case that a possible co-occurrence has not been seen in the
training data.

5.2.1 Experimental Set-up. A typical approach to performing pseudo-disambiguation
is as follows. A large set of noun-verb direct-object pairs is extracted from a corpus,
of which a portion is used as test data and another portion is used as training data.
The training data can be used to construct a language model and/or determine the
distributionally nearest neighbors of each noun. Noun-verb pairs (n, v1) in the test data
are replaced with noun-verb-verb triples (n, v1, v2) and the task is to decide which of the
two verbs is the most likely to take the noun as its direct object. Performance is usually
measured as error rate. We will now discuss the details of our own experimental set-up.

As already discussed (Section 3), 80% of the noun-verb direct-object data extracted
from the BNC for each of 2,000 nouns was used to compute the similarity between
nouns and is also used as the language model in the pseudo-disambiguation task, and
20% of the data was set aside as test data, providing unseen co-occurrences for this
pseudo-disambiguation task.

In order to construct the test set from the test data, we took all10 of the test data set
aside for each target noun and modified it as follows. We converted each noun-verb pair
(n, v1) in the test data into a noun-verb-verb triple (n, v1, v2). v2 was randomly selected
from the verbs that have the same frequency, calculated over all the training data, as
v1 plus or minus 1. If there are no other verbs within this frequency range, then the
test instance is discarded. This method ensures that there is no systematic bias towards
v2 being of a higher or lower frequency than v1. We also ensured that (n, v2) has not
been seen in the test or training data. Ten test instances11 were then selected for each
target noun in a two-step process of (1) while more than ten triples remained, discarding
duplicate triples and (2) randomly selecting ten triples from those remaining after
step 1. At this point, we have 10,000 test instances pertaining to high-frequency nouns
and 10,000 test instances pertaining to low-frequency nouns, and there are no biases
towards the higher-frequency or lower-frequency nouns within these sets. Each of these
sets was split into five disjoint subsets, each containing two instances for each target
noun. We use these five subsets in two ways. First, we perform five-fold cross validation.
In five-fold cross validation, we compute the optimal parameter settings in four of the
subsets and the error rate at this optimal parameter setting in the remaining subset. This
is repeated five times with a different subset held out each time. We then compute an
average optimal error rate. We cannot, however, compute an average optimal parameter
setting, since this would assume a convex relationship between parameter settings and
error rate. In order to study the relationship between parameter settings and error
rate, we combine three of the sets to form a development set and two of the sets to
form a test set. The development set is used to optimize parameters and the test set

10 Unlike Lee (1999), we do not delete instances from the test data that occur in the training data. This
is discussed in detail in (Weeds 2003), but our main justification for this approach is that a single
co-occurrence of (n, v1) compared to zero co-occurrences of (n, v2) is not necessarily sufficient evidence
to conclude that the population probability of (n, v1) is greater than that of (n, v2).

11 Ten being less than the minimum number (14) of (possibly) indistinct co-occurrences for any target noun
in the original test data.
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to determine error rates at the optimal settings. In graphs showing the relationship
between error rate and parameter settings, it is the error rate in this development set
that is shown. In the case of the CRMs, the parameters that are optimized are β, γ, and
k (the number of nearest neighbors).12 For the existing measures, the only parameter
to be optimized is k.

Having constructed the test sets, the task is to take each test instance (n, v1, v2) and
use the nearest neighbors of noun n (as computed from the training data) to decide
which of (n, v1) and (n, v2) was the original co-occurrence. Each of n’s neighbors, m, is
given a vote that is equal to the difference in frequencies of the co-occurrences (m, v1)
and (m, v2) and that it casts to the verb with which it occurs most frequently. Thus,
we distinguish between cases where a neighbor occurs with each verb approximately
the same number of times and where a neighbor occurs with one verb significantly
more often than the other. The votes for each verb are summed over all of the k nearest
neighbors of n, and the verb with the most votes wins. Performance is measured as
error rate.

Error rate = 1
T

(
# of incorrect choices + # of ties

2

)
(51)

where T is the number of test instances and a tie results when the neighbors cannot
decide between the two alternatives.

5.2.2 Results. In this section, we present results on the pseudo-disambiguation task for
all of the CRMs described in Section 2. We also compare the results with the six existing
distributional similarity measures (Section 4) and the two WordNet-based measures
(Section 5.1).

A baseline for these experiments is the performance obtained by a technique that
backs-off to the unigram probabilities of the verbs being disambiguated. By construction
of the test set, this should be approximately 0.5. The actual empirical figures are 0.553
for the high-frequency noun test set and 0.586 for the low-frequency noun test set. The
deviation from 0.5 is due to the unigram probabilities of the verbs not being exactly
equal and to their being calculated over a larger data set than just the training data
for the 2,000 target nouns. These baseline error-rates are also different from what is
observed when all 1,999 potential neighbors are considered. In this case, we obtain
an error rate of 0.6885 for the high-frequency noun test set and 0.6178 for the low-
frequency noun test set. These differences are due to the fact that the correct choice
verb, but not the incorrect choice verb, has occurred, possibly many times, with the
target noun in the training data, but a noun is not considered as a potential neighbor of
itself.

The results are summarized in Table 6. The table gives the average optimal error
rates for each measure, and for high- and low-frequency nouns, calculated using five-
fold cross validation. For ease of comparison, the cross-validated average optimal error
rates are illustrated in Figure 5. Standard deviation in the mean optimal error rate across
the five folds was always less than 0.15 and thus differences greater than 0.028 are
significant at the 99% level and differences greater than 0.012 are significant at the 90%
level. From the results, we make the following observations.

12 We also experimented with optimizing a similarity threshold t, but found that optimizing k gave better
results (Weeds 2003).
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Table 6
Mean optimal error rates using five-fold cross-validation (when optimizing k, γ and β).

Noun Frequency Measure Noun Frequency

Measure high low high low

simadd
type 0.196 0.197 simdw

type 0.214 0.185

simadd
tok 0.219 0.241 simdw

tok 0.234 0.202

simadd
mi 0.178 0.169 simdw

mi 0.187 0.176

simadd
wmi 0.173 0.192 simdw

wmi 0.171 0.192

simadd
t 0.154 0.172 simdw

t 0.163 0.186

simadd
z 0.164 0.183 simdw

z 0.167 0.193

simadd
allr 0.170 0.211 simdw

allr 0.171 0.215

simdice 0.215 0.204 simjacc 0.215 0.204

distL1
0.234 0.202 distα1 0.230 0.192

simhind 0.201 0.18 simlin 0.193 0.181

wn simlin 0.295 0.294 wn distJC 0.302 0.295

baseline 0.553 0.586

First, the best measure appears to be the additive t-test based CRM. This signifi-
cantly outperforms all but one (the z-test based CRM) of the other measures for high-
frequency nouns. For low-frequency nouns, slightly higher performance is obtained
using the additive MI-based CRM. This difference, however, is not statistically signifi-
cant. Second, all of the distributional similarity measures perform considerably better
than the WordNet-based measures13 at this task for high- and low-frequency nouns.
Third, for many measures, performance over high-frequency nouns is not significantly
higher (and is in some cases lower) than over low-frequency nouns. This suggests that
distributional similarity can be used in language modeling even when there is relatively
little corpus data over which to calculate distributional similarity.

We now consider the effects of the different parameters on performance. Since we
use the development set to determine the optimal parameters, we consider performance
on the development set as each parameter is varied. Table 7 shows the optimized pa-
rameter settings in the development set, error rate at these settings in the development
set, and error rate at these settings in the test set. For the CRMs, we considered how the
performance varies with each parameter when the other parameters are held constant
at their optimum values. Figure 6 shows how performance varies with β, and Figure 7
shows how performance varies with γ for the additive and difference-weighted t-test
based and MI-based CRMs. For reference, the optimal error rates for the best performing
existing distributional similarity measure (simlin) is also shown as a straight line on each
graph.

We do not show the variation with respect to k for any of the measures, but this was
fairly similar for all measures and is as would be expected. To begin with, considering

13 However, for this task, in contrast to earlier work, wn simlin gives slightly, although insignificantly, better
performance than wn distJC.
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Figure 5
Bar chart illustrating cross-validated optimal error rates for each measure when k is optimised.

more neighbors increases performance, since more neighbors allow decisions to be
made in a greater number of cases. However, when k increases beyond an optimal
value, a greater number of these decisions will be in the wrong direction, since these
words are not very similar to the target word, leading to a decrease in performance. In a
small number of cases (when using the ALLR-based CRMs or the WMI-based CRMs for
high frequency nouns), performance peaks at k = 1. This suggests that these measures
may be very good at finding a few very close neighbors.

The majority of models, including the additive t-test based and additive MI-based
CRMs, perform significantly better at low values of γ (0.25-0.5) and high values of β

(around 0.8). This indicates that a potential neighbor with high-precision retrieval of
informative features is more useful than one with high-recall retrieval. In other words,
it seems that it is better to sacrifice being able to make decisions on every test instance
with a small number of neighbors in favor of not having neighbors that predict incorrect
verb co-occurrences. This also suggests why we saw fairly low performance by the α-
skew divergence measure on this task, since it is closest to a high-recall setting in the
additive t-test based model. The low values of γ indicate that a combination of precision
and recall that is closer to a weighted arithmetic mean is generally better than one that
is closer to an unweighted harmonic mean. However, this does not hold for the t-test
based CRMs for low-frequency nouns. Here a higher value of γ is optimal, indicating
that, in this case, requiring both recall and precision results in high performance.

6. Conclusions and Future Directions

Our main contribution is the development of a framework, first presented in a prelim-
inary form in Weeds and Weir (2003b), that is based on the concept of lexical substi-
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Table 7
Summary of results on pseudo-disambiguation task when optimizing β, γ and k.

Noun Frequency

high low

Optimal Devel. Test Optimal Devel. Test
Parameters Error Error Parameters Error Error

Measure γ β k γ β k

simadd
type 0.25 0.8 150 0.193 0.193 0.25 0.75 100 0.192 0.200

simadd
tok 0 0.8 250 0.211 0.224 0.5 0.1 130 0.234 0.233

simadd
mi 0.25 0.8 170 0.175 0.186 0.5 0.8 120 0.169 0.178

simadd
wmi 0.0 1.0 1 0.175 0.169 0.75 0.0 100 0.183 0.182

simadd
t 0.25 0.8 190 0.153 0.155 0.5 0.7 110 0.165 0.176

simadd
z 0.25 0.7 40 0.165 0.163 0.5 1.0 250 0.174 0.188

simadd
allr 0.0 0.9 1 0.170 0.169 0.25 0.6 90 0.204 0.210

simdw
type 0 0.6 50 0.208 0.215 0.25 0.3 190 0.177 0.188

simdw
tok n/a n/a 60 0.227 0.234 n/a n/a 50 0.194 0.206

simdw
mi 0.25 0.8 100 0.181 0.193 0.5 0.7 160 0.172 0.173

simdw
wmi 0.0 0.0 1 0.172 0.170 0.25 0.1 450 0.183 0.190

simdw
t 0.5 0.8 120 0.156 0.165 0.75 0.6 250 0.179 0.187

simdw
z 0.5 0.7 50 0.166 0.171 0.75 0.9 400 0.187 0.199

simdw
allr 0.0 0.9 1 0.171 0.169 0.5 1.0 180 0.208 0.212

simlin n/a n/a 50 0.190 0.199 n/a n/a 80 0.179 0.186

tutability. Here, we cast the problem of measuring distributional similarity as one of
co-occurrence retrieval (CR), for which we can measure precision and recall by analogy
with the way they are measured in document retrieval. This CR framework has then
allowed us to systematically explore various characteristics of distributional similarity
measures.

First, we asked whether lexical substitutability is necessarily symmetric. To this
end, we have explored the merits of symmetry and asymmetry in a similarity measure
by varying the relative importance attached to precision and recall. We have seen that
as the distribution of word B moves away from being identical to that of word A, its
similarity with A can decrease along one or both of two dimensions. When B occurs in
contexts that word A does not, precision is lost but B may remain a high-recall neighbor
of word A. When B does not occur in contexts that A does, recall is lost but B may remain
a high-precision neighbor of word A. Through our experimental work, which is more
thorough than that presented in Weeds and Weir (2003b), we have shown that the kind
of neighbor preferred appears to depend on the application in hand. High-precision
neighbors were more useful in the language modeling task of pseudo-disambiguation
and high-recall neighbors were more highly correlated with WordNet-derived neighbor
sets. Thus, similarity appears to be inherently asymmetric. Further, it would seem
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Figure 6
Performance of CRMs with respect to β (at optimal values of k and γ).

unlikely that any single, unparameterized measure of distributional similarity would
be able to do better on both tasks.

Second, we asked whether all contexts are equally important in the calculation of
distributional similarity. To this end, we have explored the way in which frequency
information is utilized using different co-occurrence retrieval models (CRMs). Using
different weight functions, we have investigated the relative importance of different
co-occurrence types. In earlier work (Weeds and Weir 2003b), we saw that using MI
to weight features gave improved performance on the two evaluation tasks over type-
based or token-based CRMs. Here, we have seen that further gains can be made by using
the t-test as a weight function. This leads to significant improvements on the pseudo-
disambiguation task for all nouns and marginal improvements on the WordNet predic-
tion task for low-frequency nouns. To some extent, this supports the findings of Curran
and Moens (2002), who investigated a number of weight functions for distributional
similarity and showed that the t-test performed better than a number of other weight
functions including MI.

Third, we asked whether it is necessary to consider the difference in extent to which
each word appears in each context. To this end, we have herein proposed difference-

Figure 7
Performance of CRMs with respect to γ (at optimal values of k and β).
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weighted versions of each model in which the similarity of two words in respect
of an individual feature is defined using the same principles that we use to define
the similarity of two words in respect of all their features. We have compared these
difference-weighted CRMs to their additive counterparts and shown that difference-
weighting does not seem to be a major factor and does not improve results when using
the best-performing CRMs.

Another important contribution of this work on co-occurrence retrieval is a better
understanding of existing distributional similarity measures. By comparing existing
measures with the CR framework, we can analyze their CR characteristics. As discussed
in Weeds and Weir (2003b), the Dice Coefficient and Jaccard’s Coefficient are exactly
simulated by γ = 1 in the additive type-based model and Lin’s Measure is almost
equivalent to the harmonic mean of precision and recall in the additive MI-based
model. Here, we also show that the L1 Norm is exactly simulated by the (unparame-
terized) difference-weighted token-based model, Hindle’s Measure is exactly simulated
by γ = 0, β = 0 in the additive MI-based model, and the α-skew divergence measure
is most similar to high-recall settings in the additive t-test based CRM. Knowing that
Lin’s Measure is almost equivalent to the harmonic mean of precision and recall in
the additive MI-based model explains why this measure does badly on the WordNet
prediction task for low-frequency nouns. We have seen that recall is more important
than precision in the WordNet prediction task, whereas the nearest neighbors of a target
noun according to Lin’s Measure have both high precision and high recall. Conversely,
knowing that the α-skew divergence measure is most closely approximated by high-
recall settings in the additive t-test based model explains why this measure performs
poorly on the pseudo-disambiguation task, since we have seen that high precision is
required for optimal performance on this task.

Finally, our evaluation of measures has been performed over a set of 2,000 nouns,
and we have shown that the performance of distributional similarity techniques for
low-frequency nouns is not significantly lower than for high-frequency nouns. This
suggests that distributional techniques might be used even when there is relatively little
data available. In the distributional domain, this means that we can use probability
estimation techniques for rare words with greater confidence. In the semantic domain,
we might be able to use distributional techniques to extend existing semantic resources
to cover rare or new words or automatically generate domain-, genre-, or dialect-specific
resources.

There are a number of major directions in which this work can be extended. First,
although the set of CRMs defined here is more extensive than that defined in Weeds and
Weir (2003b), it is still not exhaustive, and other models might be proposed. Further,
it would be interesting to combine CRMs with the feature reweighting scheme of
Geffet and Dagan (2004). These authors compare distributional similarity scores with
human judgments of semantic entailment and show that substantial (approximately
10%) improvements over using Lin’s Measure can be achieved by first calculating
similarity using Lin’s Measure and then recalculating similarity using a relative feature
focus score, which indicates how many of a word’s nearest neighbors shared that
feature.

Second, there are other potential application-based tasks that could be used to
evaluate CRMs and distributional similarity methods in general. In particular, we see
potential for the use of distributional similarity methods in prepositional phrase attach-
ment ambiguity resolution. This task has been previously tackled using semantic classes
to predict what is ultimately distributional information. Accordingly, we believe that it
should be possible to do better using the CR framework.
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Finally, in order to be able to truly rival manually generated thesauri, distri-
butional techniques need to be able to distinguish between different semantic relations
such as synonymy, antonymy, and hyponymy. These are important linguistic distinc-
tions, particularly in the semantic domain, since we are unlikely, say, to want to replace
a word with its antonym. Weeds, Weir, and McCarthy (2004) give preliminary results on
the the use of precision and recall to distinguish between hypernyms and hyponyms in
sets of distributionally related words.
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