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Sample Selection for Statistical Parsing
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Corpus-based statistical parsing relies on using large quantities of annotated text as training
examples. Building this kind of resource is expensive and labor-intensive. This work proposes to
use sample selection to find helpful training examples and reduce human effort spent on annotating
less informative ones. We consider several criteria for predicting whether unlabeled data might
be a helpful training example. Experiments are performed across two syntactic learning tasks
and within the single task of parsing across two learning models to compare the effect of different
predictive criteria. We find that sample selection can significantly reduce the size of annotated
training corpora and that uncertainty is a robust predictive criterion that can be easily applied to
different learning models.

1. Introduction

Many learning tasks for natural language processing require supervised training; that
is, the system successfully learns a concept only if it has been given annotated train-
ing data. For example, while it is difficult to induce a grammar with raw text alone,
the task is tractable when the syntactic analysis for each sentence is provided as a
part of the training data (Pereira and Schabes 1992). Current state-of-the-art statisti-
cal parsers (Collins 1999; Charniak 2000) are all trained on large annotated corpora
such as the Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993). However,
supervised training data are difficult to obtain; existing corpora might not contain the
relevant type of annotation, and the data might not be in the domain of interest. For
example, one might need lexical-semantic analyses in addition to the syntactic anal-
yses in the treebank, or one might be interested in processing languages, domains,
or genres for which there are no annotated corpora. Because supervised training de-
mands significant human involvement (e.g., annotating the syntactic structure of each
sentence by hand), creating a new corpus is a labor-intensive and time-consuming en-
deavor. The goal of this work is to minimize a system’s reliance on annotated training
data.

One promising approach to mitigating the annotation bottleneck problem is to
use sample selection, a variant of active learning. Sample selection is an interactive
learning method in which the machine takes the initiative in selecting unlabeled data
for the human to annotate. Under this framework, the system has access to a large pool
of unlabeled data, and it has to predict how much it can learn from each candidate in
the pool if that candidate is labeled. More quantitatively, we associate each candidate
in the pool with a training utility value (TUV). If the system can accurately identify
the subset of examples with the highest TUV, it will have located the most beneficial
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training examples, thus freeing the annotators from having to label less informative
examples.

In this article, we apply sample selection to two syntactic learning tasks: training
a prepositional-phrase attachment (PP-attachment) model and training a statistical
parsing model. We are interested in addressing two main questions. First, what are
good predictors of a candidate’s training utility? We propose several predictive criteria
and define evaluation functions based on them to rank the candidates’ utility. We
have performed experiments comparing the effect of these evaluation functions on
the size of the training corpus. We find that, with a judiciously chosen evaluation
function, sample selection can significantly reduce the size of the training corpus. The
second main question is: Are the predictors consistently effective for different types of
learners? We compare the predictive criteria both across tasks (between PP-attachment
and parsing) and within a single task (applying the criteria to two parsing models:
an expectation-maximization-trained parser and a count-based parser). We find that
the learner’s uncertainty is a robust predictive criterion that can be easily applied to
different learning models.

2. Learning with Sample Selection

Unlike traditional learning systems that receive training examples indiscriminately,
a sample selection learning system actively influences its own progress by choosing
new examples to incorporate into its training set. There are two types of selection algo-
rithms: committee-based and single learner. A committee-based selection algorithm
works with multiple learners, each maintaining a different hypothesis (perhaps per-
taining to different aspects of the problem). The candidate examples that lead to the
most disagreements among the different learners are considered to have the highest
TUV (Cohn, Atlas, and Ladner 1994; Freund et al. 1997). For computationally intensive
problems, such as parsing, keeping multiple learners may be impractical.

In this work, we focus on sample selection using a single learner that keeps one
working hypothesis. Without access to multiple hypotheses, the selection algorithm
can nonetheless estimate the TUV of a candidate. We identify the following three
classes of predictive criteria:

1. Problem-space: Knowledge about the problem space may provide
information about the type of candidates that are particularly plentiful or
difficult to learn. This criterion focuses on the general attributes of the
learning problem, such as the distribution of the input data and
properties of the learning algorithm, but it ignores the current state of
the hypothesis.

2. Performance of the hypothesis: Testing the candidates on the current
working hypothesis shows the type of input data on which the
hypothesis may perform weakly. That is, if the current hypothesis is
unable to label a candidate or is uncertain about it, then the candidate
might be a good training example (Lewis and Catlett 1994). The
underlying assumption is that an uncertain output is likely to be wrong.

3. Parameters of the hypothesis: Estimating the potential impact that the
candidates will have on the parameters of the current working
hypothesis locates those examples that will change the current
hypothesis the most.
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U is a set of unlabeled candidates.
L is a set of labeled training examples.
C is the current hypothesis.
Initialize:

C← Train(L).
Repeat

N ← Select(n, U, C, f ).
U← U −N.
L← L ∪ Label(N).
C← Train(L).

Until (C is good enough) or (U = ∅) or (cutoff).

Figure 1
Pseudo code for the sample selection learning algorithm.

Figure 1 outlines the single-learner sample selection training loop in pseudocode.
Initially, the training set, L, consists of a small number of labeled examples, based on
which the learner proposes its first hypothesis of the target concept, C. Also available
to the learner is a large pool of unlabeled training candidates, U. In each training
iteration, the selection algorithm, Select(n, U, C, f ), ranks the candidates of U according
to their expected TUVs and returns the n candidates with the highest values. The
algorithm predicts the TUV of each candidate, u ∈ U, with an evaluation function,
f (u, C). This function may rely on the hypothesis concept C to estimate the utility of a
candidate u. The n chosen candidates are then labeled by human experts and added
to the existing training set. Running the learning algorithm, Train(L), on the updated
training set, the system proposes a new hypothesis regarding the target concept that
is the most compatible with the examples seen thus far. The loop continues until one
of three stopping conditions is met: The hypothesis is considered to perform well
enough, all candidates are labeled, or an absolute cutoff point is reached (e.g., no
more resources).

3. Sample Selection for Prepositional-Phrase Attachment

One common source of structural ambiguities arises from syntactic constructs in which
a prepositional phrase might be equally likely to modify the verb or the noun pre-
ceding it. Researchers have proposed many computational models for resolving PP-
attachment ambiguities. Some well-known approaches include rule-based models (Brill
and Resnik 1994), backed-off models (Collins and Brooks 1995), and a maximum-
entropy model (Ratnaparkhi 1998). Following the tradition of using learning PP-
attachment as a way to gain insight into the parsing problem, we first apply sample
selection to reduce the amount of annotation used in training a PP-attachment model.
We use the Collins-Brooks model as the basic learning algorithm and experiment with
several evaluation functions based on the types of predictive criteria described earlier.
Our experiments show that the best evaluation function can reduce the number of
labeled examples by nearly half without loss of accuracy.

3.1 A Summary of the Collins-Brooks Model
The Collins-Brooks model takes prepositional phrases and their attachment classifica-
tions as training examples: each is represented as a quintuple of the form (v, n, p, n2, a),
where v, n, p, and n2 are the head words of the verb phrase, the object noun phrase, the
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subroutine Train(L)
foreach ex ∈ L do

extract (v, n, p, n2, a) from ex
foreach tuple ∈ {(v, n, p, n2), (v, p, n2), (n, p, n2), (v, n, p), (v, p), (n, p), (p, n2), (p)} do

Count(tuple)← Count(tuple) + 1
if a = noun then

CountNP(tuple)← CountNP(tuple) + 1

subroutine Test(U)
foreach u ∈ U do

extract (v, n, p, n2) from u
if Count(v, n, p, n2) > 0 then

prob← CountNP(v,n,p,n2)
Count(v,n,p,n2)

elsif Count(v, p, n2) + Count(n, p, n2) + Count(v, n, p) > 0 then
prob← CountNP(v,p,n2)+CountNP(n,p,n2)+CountNP(v,n,p)

Count(v,p,n2)+Count(n,p,n2)+Count(v,n,p)
elsif Count(v, p) + Count(n, p) + Count(p, n2) > 0 then

prob← CountNP(v,p)+CountNP(n,p)+CountNP(p,n2)
Count(v,p)+Count(n,p)+Count(p,n2)

elsif Count(p) > 0 then
prob← CountNP(p)

Count(p)
else prob← 1
if prob ≥ .5 then

output noun
else output verb

Figure 2
The Collins-Brooks PP-attachment classification algorithm.

preposition, and the prepositional noun phrase, respectively, and a specifies the attach-
ment classification. For example, (wrote a book in three days, attach-verb) would be anno-
tated as (wrote, book, in, days, verb). The head words can be automatically extracted using
a heuristic table lookup in the manner described by Magerman (1994). For this learning
problem, the supervision is the one-bit information of whether p should attach to v or
to n. In order to learn the attachment preferences of prepositional phrases, the system
builds attachment statistics for each the characteristic tuple of all training examples. A
characteristic tuple is some subset of the four head words in the example, with the con-
dition that one of the elements must be the preposition. Each training example forms
eight characteristic tuples: (v, n, p, n2), (v, n, p), (v, p, n2), (n, p, n2), (v, p), (n, p), (p, n2), (p).
The attachment statistics are a collection of the occurrence frequencies for all the char-
acteristic tuples in the training set and the occurrence frequencies for the characteristic
tuples of those examples determined to attach to nouns. For some characteristic tuple
t, Count(t) denotes the former and CountNP(t) denotes the latter. In terms of the sample
selection algorithm, the collection of counts represents the learner’s current hypothesis
(C in Figure 1). Figure 2 provides the pseudocode for the Train routine.

Once trained, the system can be used to classify test cases based on the statistics of
the most similar training examples and back off as necessary. For instance, to determine
the PP-attachment for a test case, the classifier would first consider the ratio of the
two frequency counts for the four-word characteristic tuple of the test case. If the tuple
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Figure 3
In this example, the classification of the test case preposition is backed off to the
two-word-tuple level. In the diagram, each circle represents a characteristic tuple. A filled
circle denotes that the tuple has occurred in the training set. The dashed rectangular box
indicates the back-off level on which the classification is made.

never occurred in the training example, the classifier would then back off to look at the
test case’s three three-word characteristic tuples. It would continue to back off further,
if necessary. In the case that the model has no information on any of the characteristic
tuples of the test case, it would, by default, classify the test case as an instance of noun
attachment. Figure 3 shows using the back-off scheme on a test case. We describe in
the Test pseudocode routine in Figure 2 the model’s classification procedure for each
back-off level.

3.2 Evaluation Functions
Based on the three classes of predictive criteria discussed in Section 2, we propose
several evaluation functions for the Collins-Brooks model.

3.2.1 The Problem Space. One source of knowledge to exploit is our understanding of
the PP-attachment model and properties of English prepositional phrases. For instance,
we know that the most problematic test cases for the PP-attachment model are those
for which it has no statistics at all. Therefore, those data that the system has not
yet encountered might be good candidates. The first evaluation function we define,
fnovel(u, C), equates the TUV of a candidate u with its degree of novelty, the number
of its characteristic tuples that currently have zero counts:1

fnovel(u, C) =
∑

t∈Tuples(u)

{
1 : Count(t) = 0
0 : otherwise

This evaluation function has some blatant defects. It may distort the data distribution
so much that the system will not be able to build up a reliable collection of statistics.
The function does not take into account the intuition that those data that rarely occur,
no matter how novel, probably have overall low training utility. Moreover, the scoring
scheme does not make any distinction between the characteristic tuples of a candidate.

1 Note that the current hypothesis C is ignored in evaluation functions of this class because they depend
only on the knowledge about the problem space.
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Figure 4
If candidate u1 is selected, a total of 22 tuples can be ignored. The dashed rectangles show the
classification level before training, and the solid rectangles show the classification level after
the statistics of u1 have been taken. The obviated tuples are represented by the filled black
circles.

We know, however, that the PP-attachment classifier is a back-off model that makes
its decision based first on statistics of the characteristic tuple with the most words. A
more sophisticated sampling of the data domain should consider not only the novelty
of the data, but also the frequency of its occurrence, as well as the quality of its charac-
teristic tuples. We define a back-off-model-based evaluation function, fbackoff(u, C), that
scores a candidate u by counting the number of characteristic tuples that would be
obviated in all candidates if u were included in the training set. For example, suppose
we have a small pool of five candidates, and we are about to pick the first training
example:

u1 = (put, book, on, shelf)
u2 = (put, book, on, shelf)
u3 = (put, idea, on, shelf)
u4 = (wrote, book, on, shelf)
u5 = (had, idea, on, topic)

According to fbackoff, either u1 or u2 would be the best choice. By selecting either as
the first training example, we could ignore all but the four-word characteristic tuple
for both u1 and u2 (a saving of seven tuples each); since u3 and u4 each have three
words in common with the first two candidates, they would no longer depend on
their lower four tuples; and although we would also improve the statistics for one
of u5’s tuples (on), nothing could be pruned from u5’s characteristic tuples. Thus,
fbackoff(u1, C) = fbackoff(u2, C) = 7 + 7 + 4 + 4 = 22 (see Figure 4).

Under fbackoff, if u1 were chosen as the first example, u2 would lose all its utility,
because we could not prune any extra characteristic tuples by using u2. That is, in
the next round of selection, fbackoff(u2, C) = 0. Candidate u5 would be the best second
example because it would now have the most tuples to prune (7 tuples).

The evaluation function fbackoff improves upon fnovel in two ways. First, novel can-
didates that occur frequently are favored over those that rarely come up. As we have
seen in the above example, a candidate that is similar to other candidates can elimi-
nate more characteristic tuples all at once. Second, the evaluation strategy follows the
working principle of the back-off model and discounts lower-level characteristic tuples
that do not affect the classification process, even if they were “novel.” For instance,
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after selecting u1 as the first training example, we would no longer care about the
two-word tuples of u4 such as (wrote, on), even though we have no statistics for them.

A potential problem with fbackoff is that after all the obvious candidates have been
selected, the function is not very good at differentiating between the remaining can-
didates that have about the same level of novelty and occur infrequently.

3.2.2 The Performance of the Hypothesis. The evaluation functions discussed in the
previous section score candidates based on prior knowledge alone, independent of the
current state of the learner’s hypothesis and the annotation of the selected training
examples. To attune the selection of training examples to the learner’s progress, an
evaluation function might factor in its current hypothesis in predicting a candidate’s
TUV.

One way to incorporate the current hypothesis into the evaluation function is
to score each candidate using the current model, assuming its hypothesis is right.
An error-driven evaluation function, ferr, equates the TUV of a candidate with the
hypothesis’ estimate of its likelihood to misclassify that candidate (i.e., one minus the
probability of the most-likely class). If the hypothesis predicts that the likelihood of a
prepositional phrase to attach to the noun is 80%, and if the hypothesis is accurate,
then there is a 20% chance that it has misclassified.

A related evaluation function is one that measures the hypothesis’s uncertainty
across all classes, rather than focusing on only the most likely class. Intuitively, if the
hypothesis classifies a candidate as equally likely to attach to the verb as to the noun, it
is the most uncertain of its answer. If the hypothesis assigns a candidate to a class with
a probability of one, then it is the most certain of its answer. For the binary-class case,
the uncertainty-based evaluation function, func, can be expressed in the same way as
the error-driven function, as a function that is symmetric about 0.5 and monotonically
decreases if the hypothesis prefers one class over another:2

func(u, C) = ferr(u, C)

=

{
1− P(noun | u, C) : P(noun | u, C) ≥ 0.5
P(noun | u, C) : otherwise

= 0.5− abs(0.5− P(noun | u, C)) (1)

In the general case of choosing between multiple classes, ferr and func are different from
one another. We shall return to this point in Section 4.1.2 when we consider training
parsers.

The potential drawback of the performance-based evaluation functions is that they
assume that the hypothesis is correct. Selecting training examples based on a poor hy-
pothesis is prone to pitfalls. On the one hand, the hypothesis may be overly confident
about the certainty of its decisions. For example, the hypothesis may assign noun to
a candidate with a probability of one based on parameter estimates computed from a
single previous observation in which a similar example was labeled as noun. Despite
the unreliable statistics, this candidate would not be selected, since the hypothesis
considers this a known case. Conversely, the hypothesis may also direct the selec-
tion algorithm to chase after undecidable cases. For example, consider prepositional
phrases (PPs) with in as the head. These PPs occur frequently, and about half of them
should attach to the object noun. Even though training on more labeled in examples

2 As long as it adheres to these criteria, the specific form of the function is irrelevant, since the selection
is not determined by the absolute scores of the candidates, but by their scores relative to each other.
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does not improve the model’s performance on future in PPs, the selection algorithm
will keep on requesting more in training examples because the hypothesis remains un-
certain about this preposition.3 With an unlucky starting hypothesis, these evaluation
functions may select uninformative candidates initially.

3.2.3 The Parameters of the Hypothesis. The potential problems with performance-
based evaluation function stems from their trust in the model’s diagnosis of its own
progress. Another way to incorporate the current hypothesis is to determine how good
it is and what type of examples will improve it the most. In this section we propose
an evaluation function that scores candidates based on their utilities in increasing the
confidence about the parameters of the hypothesis (i.e., the collection of statistics over
the characteristic tuples of the training examples).

Training the parameters of the PP-attachment model is similar to empirically de-
termining the bias of a coin. We measure the coin’s bias by repeatedly tossing it and
keeping track of the percentage of times it lands on heads. The more trials we perform,
the more confident we become about our estimation of the bias. Similarly, in estimating
p, the likelihood of a PP’s attaching to its object noun, we are more confident about the
classification decision based on statistics with higher counts than based on statistics
with lower counts. A quantitative measurement of our confidence in a statistic is the
confidence interval. This is a region around the measured statistic, bounding the area
within which the true statistic may lie. More specifically, the confidence interval for p,
a binomial parameter, is defined as

conf int(p̄, n) =
1

1 + t2

n

(
p̄ +

t2

2n
± t

√
p̄(1− p̄)

n
+

t2

4n2

)

where p̄ is the expected value of p based on n trials, and t is a threshold value that
depends on the number of trials and the level of confidence we desire. For instance,
if we want to be 90% confident that the true statistic p lies within the interval, and p̄
is based on n = 30 trials, then we set t to be 1.697.4 Applying the confidence interval
concept to evaluating candidates for the back-off PP-attachment model, we define
a function fconf that scores a candidate by taking the average of the lengths of the
confidence interval of each back-off level. That is,

fconf(u, C) =

4∑
l=1
|conf int(p̄l(u, C), nl(u, C))|

4

where p̄l(u, C) is the probability that model C will attach u to noun at back-off level l,
and nl(u, C) is the number of training examples upon which this classification is based.

The confidence-based evaluation function has several potential problems. One of
its flaws is similar to that of fnovel. In the early stage, fconf picks the same examples

3 This phenomenon is particularly acute in the early stages of refining the hypothesis because most
decisions are based on statistics of the head preposition alone; in the later stages, the hypothesis can
usually rely on higher-ordered characteristic tuples that tend to be better classifiers.

4 For n ≤ 120, the values of t can be found in standard statistic textbooks; for n ≥ 120, t = 1.6576.
Because the derivation for the confidence interval equation makes a normality assumption, the
equation does not hold for small values of n (cf Larsen and Marx [1986], pp. 277–278). When n is large,

the contributions from the terms in t2

n are negligible. Dropping these terms, we have the t statistic for

large n, p̄ ± t
√

p̄(1 − p̄)/n.
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as fnovel, because we have no confidence in the statistics of novel examples. Therefore,
fconf is also prone to chase after examples that rarely occur to build up the confidence
of some unimportant parameters. A second problem is that fconf ignores the output of
the model. Thus, if candidate A has a confidence interval around [0.6, 1] and candidate
B has a confidence interval around [0.4, 0.7], then fconf will prefer candidate A, even
though training on A will not change the hypothesis’s performance, since the entire
confidence interval is already in the noun zone.

3.2.4 Hybrid Function. The three categories of predictive criteria discussed above are
complementary, each focusing on a different aspect of the learner’s weakness. There-
fore, it may be beneficial to combine these criteria into one evaluation function. For
instance, the deficiency of the confidence-based evaluation function described in the
previous section can be avoided if the confidence interval covering the region around
the uncertainty boundary (candidate B in the example just discussed) is weighed more
heavily than one around the end points (candidate A).

In this section, we introduce a new function that tries to factor in both the uncer-
tainty of the model performance and the confidence of the model parameters. First, we
define a function, called area(p̄, n), that computes the area under a Gaussian function
N(x,µ,σ) with a mean of 0.5 and a standard deviation of 0.1 that is bounded by the
confidence interval as computed by conf int(p̄, n) (see Figure 5).5 That is, suppose p̄
has a confidence interval of [a, b]; then

area(p̄, n) =

∫ b

a
N(x, 0.5, 0.1)dx

Computing area for each back-off level, we define an evaluation function, farea(u, C),
as their average. This function can be viewed as a product of fconf and func.6

3.3 Experimental Comparison
To determine the relative merits of the proposed evaluation functions, we compare the
learning curve of training with sample selection according to each function against a
baseline of random selection in an empirical study. The corpus for this comparison is
a collection of phrases extracted from the Wall Street Journal (WSJ) Treebank. We use
Section 00 as the development set and Sections 2-23 as the training and test sets. We
perform 10-fold cross-validation to ensure the statistical significance of the results. For
each fold, the training candidate pool contains about 21,000 phrases, and the test set
contained about 2,000 phrases.

As shown in Figure 1, the learner generates an initial hypothesis based on a small
set of training examples, L. These examples are randomly selected from the pool of
unlabeled candidates and annotated by a human. Random sampling ensures that the
initial trained set reflects the distribution of the candidate pool and thus that the
initial hypothesis is unbiased. Starting with an unbiased hypothesis is important for
those evaluation functions whose scoring metrics are affected by the accuracy of the
hypothesis. In these experiments, L initially contains 500 randomly selected examples.

In each selection iteration, all the candidates are scored by the evaluation function,
and n examples with the highest TUVs are picked out from U to be labeled and added

5 The standard deviation value for the Gaussian is chosen so that more than 98% of the mass of the
distribution is between 0.25 and 0.75.

6 Note that we can replace the function in equation (1) with the N(x, 0.5,σ) without affecting func,
because it is also symmetric about 0.5 and monotonically decreasing as the input value moves further.
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0.4

Likelihood of Attach NP

1.00

Figure 5
An example: Suppose that the candidate has a likelihood of 0.4 for noun attachment and a
confidence interval of width 0.1. Then area computes the area bounded by the confidence
interval and the Gaussian curve.

to L. Ideally, we would like to have n = 1 for each iteration. In practice, however, it is
often more convenient for the human annotator to label data in larger batches rather
than one at a time. In these experiments, we use a batch size of n = 500 examples.

We make note of one caveat to this kind of n-best batch selection. Under a
hypothesis-dependent evaluation function, identical examples will receive identical
scores. Because identical (or very similar) examples tend to address the same defi-
ciency in the hypothesis, adding n very similar examples to the training set is unlikely
to lead to big improvements in the hypothesis. To diversify the examples in each batch,
we simulate single-example selection (whenever possible) by reestimating the scores
of the candidates after each selection. Suppose we have just chosen to add candidate
x to the batch. Then, before selecting the next candidate, we estimate the potential
decrease in scores of candidates similar to x once it belongs to the annotated training
set. The estimation is based entirely on the knowledge that x is chosen, but not on
the classification of x. Thus, only certain types of evaluation functions are amenable
to the reestimation process. For example, if scores have been assigned by fconf, then
we know that the confidence intervals of the candidates similar to x must decrease
slightly after learning x. On the other hand, if scores have been assigned by func, then
we cannot perceive any changes in the scores of similar candidates without knowing
the true classification of x.

3.3.1 Results and Discussion. This section presents the empirical measurements of
the model’s performances using training examples selected by different evaluation
functions. We compare each proposed function with the baseline of random selection
(frand). The results are graphically depicted from two perspectives. One (e.g., Figure
6(a)–6(c)) plots the learning curves of the functions, showing the relationship between
the number of training examples (x-axis) and the performance of the model on test
data (y-axis). We deem one evaluation function to be better than another if its learning
curve envelopes the other’s. An alternative way to interpret the results is to focus on
the reduction in training size offered by one evaluation function over another for some
particular performance level. Figure 6(d) is a bar graph comparing all the evaluation
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Figure 6
A comparison of the performance of different evaluation functions: (a) compares the learning
curves of the functions that use knowledge about the problem space (fnovel and fbackoff) with
that of the baseline; (b) compares the learning curves of performance-based function (func and
fconf ) with the baseline; (c) compares the learning curve of farea, which combines uncertainty
and confidence, with func, fconf, and the baseline; (d) compares all the functions for the number
of training examples selected at the final performance level (83.8%).

functions at the highest performance level. The graph shows that in order to train a
model that attaches PPs with an accuracy rate of 83.8%, sample selection with fnovel
requires 2,500 fewer examples than the baseline.

Compared to fnovel, fbackoff selects more helpful training examples in the early stage.
As shown in Figure 6(a), the improvement rate of the model under fbackoff is always
at least as fast that for as fnovel. However, the differences between these two functions
become smaller for higher performance levels. This outcome validates our predictions.
Scoring candidates by a combination of their novelty, occurrence frequencies, and the
qualities of their characteristic tuples, fbackoff selects helpful early (the first 4,000 or so)
training examples. Then, just as in fnovel, the learning rate remains stagnant for the
next 2,000 poorly selected examples. Finally, when the remaining candidates all have
similar novelty values and contain mostly characteristic tuples that occur infrequently,
the selection becomes random.

Figure 6(b) compares the two evaluation functions that score candidates based on
the current state of the hypothesis. Although both functions suffer a slow start, they
are more effective than fbackoff at reducing the training set when learning high-quality
models. Initially, because all the unknown statistics are initialized to 0.5, selection based
on func is essentially random sampling. Only after the hypothesis becomes sufficiently
accurate (after training on about 5,000 annotated examples) does it begin to make
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informed selections. Following a similar but more exaggerated pattern, the confidence-
based function, fconf, also improves slowly at the beginning before finally overtaking
the baseline. As we noted earlier, because the hypothesis is not confident about novel
candidates, fconf and fnovel tend to select the same early examples. Therefore, the early
learning rate of fconf is as poor as that of fnovel. In the later stage, while fnovel continues
to flounder, fconf can select better candidates based on a more reliable hypothesis.

Finally, the best-performing evaluation function is the hybrid approach. Figure
6(c) shows that the learning curve of farea combines the earlier success of func and the
later success of fconf to always outperform the other functions. As shown in Figure
6(d), it requires the least number of examples to achieve the highest performance level
of 83.8%. Compared to the baseline, farea requires 47% fewer examples to achieve this
performance level. From these comparison studies, we conclude that involving the
hypothesis in the selection process is a key factor in reducing the size of the training
set.

4. Sample Selecting for Statistical Parsing

In applying sample selection to training a PP-attachment model, we have observed
that all effective evaluation functions make use of the model’s current hypothesis in
estimating the training utility of the candidates. Although knowledge about the prob-
lem space seems to help sharpening the learning curve initially, overall, it is not a good
predictor. In this section, we investigate whether these observations hold true for train-
ing statistical parsing models as well. Moreover, in order to determine whether the
performances of the predictive criteria are consistent across different learning models
within the same domain, we have performed the study on two parsing models: one
based on a context-free variant of tree-adjoining grammars (Joshi, Levy, and Taka-
hashi 1975), the Probabilistic Lexicalized Tree Insertion Grammar (PLTIG) formalism
(Schabes and Waters 1993; Hwa 1998), and Collins’s Model 2 parser (1997). Although
both models are lexicalized, statistical parsers, their learning algorithms are different.
The Collins Parser is a fully supervised, history-based learner that models the pa-
rameters of the parser by taking statistics directly from the training data. In contrast,
PLTIG’s expectation-maximization-based induction algorithm is partially supervised;
the model’s parameters are estimated indirectly from the training data.

As a superset of the PP-attachment task, parsing is a more challenging learning
problem. Whereas a trained PP-attachment model is a binary classifier, a parser must
identify the correct syntactic analysis out of all possible parses for a sentence. This
classification task is more difficult than PP-attachment, since the number of possible
parses for a sentence grows exponentially with respect to its length. Consequently,
the annotator’s task is more complex. Whereas the person labeling the training data
for PP-attachment reveals one unit of information (always choosing between noun or
verb), the annotation needed for parser training is usually greater than one unit,7 and
the type of labels varies from sentence to sentence. Because the annotation complexity
differs from sentence to sentence, the evaluation functions must strike a balance be-
tween maximizing potential informational gain and minimizing the expected amount

7 We consider each pair of brackets in the training sentence to be one unit of supervised information,
assuming that the number of brackets correlates linearly with the amount of effort spent by the human
annotator. This correlation is an approximation, however; in real life, adding one pair of brackets to a
longer sentence may require more effort than adding a pair of brackets to a shorter one. To capture
bracketing interdependencies at this level, we would need to develop a model of the annotation
decision process and incorporate it as an additional factor in the evaluation functions.
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of annotation exerted. We propose a set of evaluation functions similar in spirit to those
for the PP-attachment learner, but extended to accommodate the parsing domain.

4.1 Evaluation Functions
4.1.1 Problem Space. Similarly to scoring a PP candidate based on the novelty and
frequencies of its characteristic tuples, we define an evaluation function, flex(w, G) that
scores a sentence candidate, w, based on the novelty and frequencies of word pair
co-occurrences:

flex(w, G) =

∑
wi,wj∈w new(wi, wj)× coocc(wi, wj)

length(w)

where w is the unlabeled sentence candidate, G is the current parsing model (which
is ignored by problem-space-based evaluation functions), new(wi, wj) is an indicator
function that returns one if we have not yet selected any sentence in which wi and wj

co-occurred, and coocc(wi, wj) is a function that returns the number of times that wi co-
occurs8 with wj in the candidate pool. We expect these evaluation functions to be less
relevant for the parsing domain than for the PP-attachment domain for two reasons.
First, because we do not have the actual parses, the extraction of lexical relationships
is based on co-occurrence statistics, not syntactic relationships. Second, because the
distribution of words that form lexical relationships is wider and more uniform than
that of words that form PP characteristic tuples, most word pairs will be novel and
appear only once.

Another simple evaluation function based on the problem space is one that esti-
mates the TUV of a candidate from its sentence length:

flen(w, G) = length(w)

The intuition behind this function is based on the general observation that longer
sentences tend to have complex structures and introduce more opportunities for am-
biguous parses. Although these evaluation functions may seem simplistic, they have
one major advantage: They are easy to compute and require little processing time.
Because inducing parsing models demands significantly more time than inducing PP-
attachment models, it becomes more important that the evaluation functions for pars-
ing models be as efficient as possible.

4.1.2 The Performance of the Hypothesis. We previously defined two performance-
based evaluation functions: ferr, the model’s estimate of the likelihood that is has
made a classification error, and func, the model’s estimate of its uncertainty in making
the classification. We have shown the two functions to have similar performance for
the PP-attachment task. This is not the case for statistical parsing, however, because
the number of possible classes (parse trees) differs from sentence to sentence. For
example, suppose we wish to compare one candidate for which the current parsing
model generated four equally likely parses with another candidate for which the model
generated 1 parse with probability of 0.2 and 99 other parses with a probability of
0.01 (such that they sum to 0.98). The error-driven function, ferr, would score the latter
candidate higher because its most likely parse has a lower probability than that of the
most likely parse of the former candidate; the uncertainty-based function, func, would
score the former candidate higher because the model does not have a strong preference

8 We consider two words to be co-occuring if their log-likelihood ratio is greater than some threshold
value determined with held-out data.
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for one parse over any other. In this section, we provide a formal definition for both
functions.

Suppose that a parsing model G generates a candidate sentence w with probability
P(w | G), and that the set V contains all possible parses that G generated for w. Then,
we denote the probability of G’s generating a single parse, v ∈ V , as P(v | G) such that∑
v∈V

P(v | G) = P(w | G). The parse chosen for w is the most likely parse in V , denoted

as vmax, where
vmax = argmaxv∈VP(v | G)

Note that P(v | G) reflects the probability of one particular parse tree, v, out of all
possible parse trees for all possible sentences that G can generate. To compute the
likelihood of a parse’s being the correct parse out of the possible parses of w according
to G, denoted as P(v | w, G), we need to normalize the tree probability by the sentence
probability. So according to G, the likelihood that vmax is the correct parse for w is9

P(vmax | w, G) =
P(vmax | G)

P(w | G)

=
P(vmax | G)∑

v∈V P(v | G)
. (2)

Therefore, the error-driven evaluation function is defined as

ferr(w, G) = 1− P(vmax | w, G)

Unlike the error-driven function, which focuses on the most likely parse, the
uncertainty-based function takes the probability distribution of all parses into account.
To quantitatively characterize its distribution, we compute the entropy of the distri-
bution. That is,

H(V) = −
∑
v∈V

p(v) lg(p(v)) (3)

where V is a random variable that can take any possible outcome in set V , and p(v) =
Pr(V = v) is the density function. Further details about the properties of entropy can
be found in textbooks on information theory (e.g., Cover and Thomas 1991).

Determining the parse tree for a sentence from a set of possible parses can be
viewed as assigning a value to a random variable. Thus, a direct application of the
entropy definition to the probability distribution of the parses for sentence w in G
computes its tree entropy, TE(w, G), the expected number of bits needed to encode
the distribution of possible parses for w. However, we may not wish to compare
two sentences with different numbers of parses by their entropy directly. If the parse
probability distributions for both sentences are uniform, the sentence with more parses
will have a higher entropy. Because longer sentences typically have more parses, using
entropy directly would result in a bias toward selecting long sentences. To normalize
for the number of parses, the uncertainty-based evaluation function, func, is defined as
a measurement of similarity between the actual probability distribution of the parses
and a hypothetical uniform distribution for that set of parses. In particular, we divide

9 Note that P(w|v, G) = 1 for any v ∈ V , where V is the set of all possible parses for w, because v exists
only when w is observed.
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the tree entropy by the log of the number of parses:10

func(w, G) =
TE(w, G)

lg(‖V‖)

We now derive the expression for TE(w, G). Recall from equation (2) that if G
produces a set of parses, V , for sentence w, the set of probabilities P(v | w, G) (for all
v ∈ V) defines the distribution of parsing likelihoods for sentence w:

∑
v∈V

P(v | w, G) = 1

Note that P(v | w, G) can be viewed as a density function p(v) (i.e., the probability of
assigning v to a random variable V). Mapping it back into the entropy definition from
equation (3), we derive the tree entropy of w as follows:

TE(w, G) = H(V)

= −
∑
v∈V

p(v) lg(p(v))

= −
∑
v∈V

P(v | G)

P(w | G)
lg(

P(v | G)

P(w | G)
)

= −
∑
v∈V

P(v | G)

P(w | G)
lg(P(v | G)) +

∑
v∈V

P(v | G)

P(w | G)
lg(P(w | G))

= − 1
P(w | G)

∑
v∈V

P(v | G) lg(P(v | G)) +
lg(P(w | G))

P(w | G)

∑
v∈V

P(v | G)

= − 1
P(w | G)

∑
v∈V

P(v | G) lg(P(v | G)) + lg(P(w | G))

Using the bottom-up, dynamic programming technique (see the appendix for de-
tails) of computing inside probabilities (Lari and Young 1990), we can efficiently com-
pute the probability of the sentence, P(w | G). Similarly, the algorithm can be modified
to compute the quantity

∑
v∈V

P(v | G) lg(P(v | G)).

4.1.3 The Parameters of the Hypothesis. Although the confidence-based function
gives good TUV estimates to candidates for training PP-attachment models, it is not
clear how a similar technique can be applied to training parsers. Whereas binary
classification tasks can be described by binomial distributions, for which the confi-
dence interval is well defined, a parsing model is made up of many multinomial
classification decisions. We therefore need a way to characterize the confidence for
each decision as well as a way to combine them into an overall confidence. Another
difficulty is that the complexity of the induction algorithm deters us from reestimat-
ing the TUVs of the remaining candidates after selecting each new candidate. As we

10 When func(w, G) = 1, the parser is considered to be the most uncertain about a particular sentence.
Instead of dividing tree entropies, one could have computed the Kullback-Leibler distance between the
two distributions (in which case a score of zero would indicate the highest level of uncertainty).
Because the selection is based on relative scores, as long as the function is monotonic, the exact form of
the function should not have much impact on the outcome.
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discussed in Section 3.3, reestimation is important for batched annotation. Without
some means of updating the TUVs after each selection, the learner will not realize that
it has already selected a candidate to train some parameter with low confidence until
the retraining phase, which occurs only at the end of the batch selection; therefore, it
may continue to select very similar candidates to train the same parameter. Even if we
assume that the statistics can be updated, reestimating the TUVs is a computationally
expensive operation. Essentially, all the remaining candidates that share some param-
eters with the selected candidate will need to be re-parsed. For these practical rea-
sons, we do not include an evaluation function measuring confidence for the parsing
experiment.

4.2 Experiments and Results
We compare the effectiveness of sample selection using the proposed evaluation func-
tions against a baseline of random selection (frand(w, G) = rand()). Similarly to previous
experimental designs, the learner is given a small set of annotated seed data from the
WSJ Treebank and a large set of unlabeled data (also from the WSJ Treebank but with
the labels removed) from which to select new training examples. All training data are
from Sections 2–21 of the treebank. We monitor the learning progress of the parser by
testing it on unseen test sentences. We use Section 00 for development and Section
23 for testing. This study is repeated for two different models, the PLTIG parser and
Collins’s Model 2 parser.

4.2.1 An Expectation-Maximization-Based Learner. In the first experiment, we use
an induction algorithm (Hwa 2001a) based on the expectation-maximization (EM)
principle that induces parsers for PLTIGs. The algorithm performs heuristic search
through an iterative reestimation procedure to find local optima: sets of values for
the grammar parameters that maximizes the grammar’s likelihood of generating the
training data. In principle, the algorithm supports unsupervised learning; however,
because the search space has too many local optima, the algorithm tends to converge
on a model that is unsuitable for parsing. Here, we consider a partially supervised
variant in which we assume that the learner is given the phrasal boundaries of the
training sentences but not the label of the constituent units. For example, the sentence
Several fund managers expect a rough market this morning before prices stabilize. would be
labeled as “((Several fund managers) (expect ((a rough market) (this morning)) (before
(prices stabilize))).)” Our algorithm is similar to the approach taken by Pereira and
Schabes (1992) for inducing PCFG parsers.

Because the EM algorithm itself is an iterative procedure, performing sample se-
lection on top of an EM-based learner is an extremely computational-intensive process.
Here, we restrict the experiments for the PLTIG parsers to a smaller-scale study in the
following two aspects. First, the lexical anchors of the grammar rules are backed off to
part-of-speech tags; this restricts the size of the grammar vocabulary to 48. Second, the
unlabeled candidate pool is set to contain 3,600 sentences, which is sufficiently large
for inducing a grammar of this size. The initial model is trained on 500 labeled seed
sentences. For each selection iteration, an additional 100 sentences are moved from
the unlabeled pool to be labeled and added to the training set. After training, the
updated parser is then tested on unseen sentences (backed off to their part-of-speech
tags) and compared to the gold standard. Because the induced PLTIG produces binary-
branching parse trees, which have more layers than the gold standard, we measure
parsing accuracy in terms of the crossing-bracket metric. The study is repeated for
10 trials, each using a different portion of the full training set, to ensure statistical
significance (using pairwise t-test at 95% confidence).
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Figure 7
PLTIG parser: (a) A comparison of the evaluation functions’ learning curves. (b) A comparison
of the evaluation functions for a test performance score of 80%.

The results of the experiment are graphically shown in Figure 7. As with the
PP-attachment studies, Figure 7(a) compares the learning curves of the proposed eval-
uation functions to that of the baseline. Note that even though these functions select
examples in terms of entire sentences, the amount of annotation is measured in the
graphs (x-axis) in terms of the number of brackets rather than sentences. Unlike in
the PP-attachment case, the amount of effort from the annotators varies significantly
from example to example. A short and simple sentence takes much less time to an-
notate than a long and complex sentence. We address this effect by approximating
the amount of effort as the number of brackets the annotator needs to label. Thus,
we deem one evaluation function more effective than another if, for the desired level
of performance, the smallest set of sentences selected by the function contains fewer
brackets than that of the other function. Figure 7(b) compares the evaluation functions
at the final test performance level of 80%.
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Qualitatively comparing the learning curves in the figure, we see that with the ap-
propriate evaluation function, sample selection does reduce the amount of annotation.
Similarly to our findings in the PP-attachment study, the simple problem-space-based
evaluation function, flen, offers only little savings; its performance is nearly indistin-
guishable from that of the baseline, for the most part.11 The evaluation functions based
on hypothesis performances, on the other hand, do reduce the amount of annotation in
the training data. Of the two that we proposed for this category, the tree entropy eval-
uation function, func, has a slight edge over the error-driven evaluation function, ferr.

For a quantitative comparison, let us consider the set of grammars that achieve
an average parsing accuracy of 80% on the test sentences. We consider a grammar to
be comparable to that of the baseline if its mean test score is at least as high as that
of the baseline and if the difference between the means is not statistically significant.
The baseline case requires an average of about 38,000 brackets in the training data. In
contrast, to induce a grammar that reaches the same 80% parsing accuracy with the
examples selected by func, the learner requires, on average, 19,000 training brackets.
Although the learning rate of ferr is slower than that of func overall, it seems to have
caught up in the end; it needs 21,000 training brackets, slightly more than func. While
the simplistic sentence length evaluation function, flen, is less helpful, its learning rate
still improves slightly faster than that of the baseline. A grammar of comparable quality
can be induced from a set of training examples selected by flen containing an average
of 28,000 brackets.12

4.2.2 A History-Based Learner. In the second experiment, the basic learning model
is Collins’s (1997) Model 2 parser, which uses a history-based learning algorithm that
takes statistics directly over the treebank. As a fully supervised algorithm, it does not
have to iteratively reestimate its parameters and is computationally efficient enough
for us to carry out a large-scale experiment. For this set of studies, the unlabeled
candidate pool consists of around 39,000 sentences. The initial model is trained on
500 labeled seed sentences, and at each selection iteration, an additional 100 sentences
are moved from the unlabeled pool into the training set. The parsing performance on
the test sentences is measured in terms of the parser’s F-score, the harmonic average
of the labeled precision and labeled recall rates over the constituents (Van Rijsbergen
1979).13

We plot the comparisons between different evaluation functions and the baseline
for the history-based parser in Figure 8. The examples selected by the problem-space-
based functions do not seem to be helpful. Their learning curves are, for the most part,
slightly worse than the baseline. In contrast, the parsers trained on data selected by
the error-driven and uncertainty-based functions learn faster than the baseline; and as
before, func performs slightly better than ferr.

For the final parsing performance of 88%, the parser requires a baseline training set
of 30,500 sentences annotated with about 695,000 constituents. The same performance
can be achieved with a training set of 20,500 sentences selected by ferr, which contains
about 577,000 annotated constituents; or with a training set of 17,500 sentences selected
by func, which contains about 505,000 annotated constituents, reducing the number of
annotated constituents by 27%. Comparing the outcome of this experiment with that of

11 In this experiment, we have omitted the evaluation function for selecting novel lexical relationships,
flex, because the grammar does not use actual lexical anchors.

12 In terms of the number of sentences, the baseline frand selected 2,600 sentences; flen selected 1,300
sentences; and ferr and func each selected 900 sentences.

13 F = 2×LR×LP
LR+LP , where LR is the labeled recall score and LP is the labeled precision score.
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Figure 8
Model 2 parser: (a) A comparison of the learning curves of the evaluation functions. (b) A
comparison of all the evaluation functions at the test performance level of 88%.

the experiment involving the EM-based learner, we see that the training data reduction
rates are less dramatic than before. This may be because both func and ferr ignore lexical
items and chase after sentences containing words that rarely occur. Recent work by
Tang, Luo, and Roukos (2002) suggests that a hybrid approach that combines features
of the problem space and the uncertainty of the parser may result in better performance
for lexicalized parsers.

5. Related Work

Sample selection benefits problems in which the cost of acquiring raw data is cheap but
the cost of annotating them is high, as is certainly the case for many supervised learn-
ing tasks in natural language processing. In addition to PP-attachment, as discussed
in this article, sample selection has been successfully applied to other classification
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applications. Some examples include text categorization (Lewis and Catlett 1994), base
noun phrase chunking (Ngai and Yarowsky 2000), part-of-speech tagging (Engelson
Dagan 1996), spelling confusion set disambiguation (Banko and Brill 2001), and word
sense disambiguation (Fujii et al. 1998).

More challenging are learning problems whose objective is not classification, but
generation of complex structures. One example in this direction is applying sample
selection to semantic parsing (Thompson, Califf, and Mooney 1999), in which sentences
are paired with their semantic representation using a deterministic shift-reduce parser.
A recent effort that focuses on statistical syntactic parsing is the work by Tang, Lou,
and Roukos (2002). Their results suggest that the number of training examples can be
further reduced by using a hybrid evaluation function that combines a hypothesis-
performance-based metric such as tree entropy (“word entropy” in their terminology)
with a problem-space-based metric such as sentence clusters.

Aside from active learning, researchers have applied other learning techniques
to combat the annotation bottleneck problem in parsing. For example, Henderson
and Brill (2002) consider the case in which acquiring additional human-annotated
training data is not possible. They show that parser performance can be improved by
using boosting and bagging techniques with multiple parsers. This approach assumes
that there are enough existing labeled data to train the individual parsers. Another
technique for making better use of unlabeled data is cotraining (Blum and Mitchell
1998), in which two sufficiently different learners help each other learn by labeling
training data for one another. The work of Sarkar (2001) and Steedman, Osborne, et
al. (2003) suggests that co-training can be helpful for statistical parsing. Pierce and
Cardie (2001) have shown, in the context of base noun identification, that combining
sample selection and cotraining can be an effective learning framework for large-scale
training. Similar approaches are being explored for parsing (Steedman, Hwa, et al.
2003; Hwa et al. 2003).

6. Conclusion

In this article, we have argued that sample selection is a powerful learning technique
for reducing the amount of human-labeled training data. Our empirical studies suggest
that sample selection is helpful not only for binary classification tasks such as PP-
attachment, but also for applications that generate complex outputs such as syntactic
parsing.

We have proposed several criteria for predicting the training utility of the unla-
beled candidates and developed evaluation functions to rank them. We have conducted
experiments to compare the functions’ ability to select the most helpful training exam-
ples. We have found that the uncertainty criterion is a good predictor that consistently
finds helpful examples. In our experiments, evaluation functions that factor in the
uncertainty criterion consistently outperform the baseline of random selection across
different tasks and learning algorithms. For learning a PP-attachment model, the most
helpful evaluation function is a hybrid that factors in the prediction performance of the
hypothesis and the confidence for the values of the parameters of the hypothesis. For
training a parser, we found that uncertainty-based evaluation functions that use tree
entropy were the most helpful for both the EM-based learner and the history-based
learner.

The current work points us in several future directions. First, we shall continue
to develop alternative formulations of evaluation functions to improve the learn-
ing rates of parsers. Under the current framework, we did not experiment with any
hypothesis-parameter-based evaluation functions for the parser induction task; how-
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ever, hypothesis-parameter-based functions may be feasible under a multilearner set-
ting, using parallel machines. Second, while in this work we focused on selecting
entire sentences as training examples, we believe that further reduction in the amount
of annotated training data might be possible if the system could ask the annotators
more-specific questions. For example, if the learner is unsure only of a local decision
within a sentence (such as a PP-attachment ambiguity), the annotator should not have
to label the entire sentence.

In order to allow for finer-grained interactions between the system and the an-
notators, we have to address some new challenges. To begin with, we must weigh
in other factors in addition to the amount of annotations. For instance, the learner
may ask about multiple substrings in one sentence. Even if the total number of la-
bels were fewer, the same sentence would still need to be mentally processed by the
annotators multiple times. This situation is particularly problematic when there are
very few annotators, as it becomes much more likely that a person will encounter the
same sentence many times. Moreover, we must ensure that the questions asked by the
learner are well-formed. If the learner were simply to present the annotator with some
substring that it could not process, the substring might not form a proper linguistic
constituent for the annotator to label. Additionally, we are interested in exploring the
interaction between sample selection and other semisupervised approaches such as
boosting, reranking, and cotraining. Finally, based on our experience with parsing, we
believe that active-learning techniques may be applicable to other tasks that produce
complex outputs such as machine translation.

Appendix: Efficient Computation of Tree Entropy

As discussed in Section 4.1.2, for learning tasks such as parsing, the number of possi-
ble classifications is so large that it may not be computationally efficient to calculate
the degree of uncertainty using the tree entropy definition. In the equation for the tree
entropy of w (TE(w, G)) presented in Section 4.1.2, the computation requires summing
over all possible parses, but the number of possible parses for a sentence grows ex-
ponentially with respect to the sentence length. In this appendix, we show that tree
entropy can be efficiently computed using dynamic programming.

For illustrative purposes, we describe the computation process using a PCFG ex-
pressed in Chomsky normal form.14 The basic idea is to compose the tree entropy of
the entire sentence from the tree entropy of the subtrees. The process is similar to
that for computing the probability of the entire sentence from the probabilities of sub-
strings (called Inside Probabilities). We follow the notation convention of Lari and
Young (1990).

The inside probability of a nonterminal X generating the substring wi . . .wj is
denoted as e(X, i, j); it is the sum of the probabilities of all possible subtrees that have
X as the root and wi . . .wj as the leaf nodes. We define a new function h(X, i, j) to
represent the corresponding entropy for the substring:

h(X, i, j) = −
∑

x∈X
∗⇒wi...wj

P(x | G) lg(P(x | G))

where G is the current model. Under this notation, the tree entropy of a sentence,∑
v∈V

P(v | G) lg P(v | G), is denoted as h(S, 1, n).

14 That is, every production rule must be in one of two forms: a nonterminal expands into two more
nonterminals, or a nonterminal expands into a terminal.
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Analogously to the computation of inside probabilities, we compute h(X, i, j) re-
cursively. The base case is when the nonterminal X generates a single token substring
wi. The only possible tree has X at the root, immediately dominating the leaf node wi.
Therefore, the tree entropy is

h(X, i, i) = e(X, i, i) lg(e(X, i, i))

For the general case, h(X, i, j), we must find all rules of the form X→ YZ, where Y and
Z are nonterminals, that have contributed toward X ∗⇒ wi . . .wj. To do so, we consider
all possible ways dividing up wi . . .wj into two pieces such that Y ∗⇒ wi . . .wk and
Z ∗⇒ wk+1 . . .wj:

h(X, i, j) =

j−1∑
k=i

∑
(X→YZ)

hY,Z,k(X, i, j)

The function hY,Z,k(X, i, j) is a portion of h(X, i, j) that accounts for those parses in which
the rule X→ YZ is used and the division point is at word wk. The nonterminals Y and
Z may, in turn, generate their substrings with multiple parses. Let Y represent the set
of parses for Y ∗⇒ wi . . .wk; let Z represent the set of parses for Z ∗⇒ wk+1 . . .wj; and
let x represent the parse step of X→ YZ. Then, there are a total of ‖Y‖ × ‖Z‖ parses,
and the probability of each parse is P(x)P(y)P(z), where y ∈ Y and z ∈ Z . To compute
hY,Z,k, we need to sum over all possible parses:

hY,Z,k(X, i, j) = −
∑

y∈Y ,z∈Z
P(x)P(y)P(z) lg(P(x)P(y)P(z))

= −
∑

y∈Y ,z∈Z
P(x)P(y)P(z)(lg P(x) + lg P(y) + lg P(z))

= −P(x) lg(P(x))e(Y, i, k)e(Z, k + 1, j) + P(x)h(Y, i, k)e(Z, k + 1, j)

+P(x)e(Y, i, k)h(Z, k + 1, j)

Thus, the tree entropy of the entire sentence can be recursively computed from the
entropy values of the substrings.
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