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Machine Translation with Inferred
Stochastic Finite-State Transducers
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Universidad Politécnica de Valencia Universidad Politécnica de Valencia

Finite-state transducers are models that are being used in different areas of pattern recognition and
computational linguistics. One of these areas is machine translation, in which the approaches that
are based on building models automatically from training examples are becoming more and more
attractive. Finite-state transducers are very adequate for use in constrained tasks in which training
samples of pairs of sentences are available. A technique for inferring finite-state transducers is
proposed in this article. This technique is based on formal relations between finite-state transducers
and rational grammars. Given a training corpus of source-target pairs of sentences, the proposed
approach uses statistical alignment methods to produce a set of conventional strings from which
a stochastic rational grammar (e.g., an n-gram) is inferred. This grammar is finally converted
into a finite-state transducer. The proposed methods are assessed through a series of machine
translation experiments within the framework of the EuTrans project.

1. Introduction

Formal transducers give rise to an important framework in syntactic-pattern recogni-
tion (Fu 1982; Vidal, Casacuberta, and Garcı́a 1995) and in language processing (Mohri
1997). Many tasks in automatic speech recognition can be viewed as simple translations
from acoustic sequences to sublexical or lexical sequences (acoustic-phonetic decod-
ing) or from acoustic or lexical sequences to query strings (for database access) or
(robot control) commands (semantic decoding) (Vidal, Casacuberta, and Garcı́a 1995;
Vidal 1997; Bangalore and Ricardi 2000a, 2000b; Hazen, Hetherington, and Park 2001;
Mou, Seneff, and Zue 2001; Segarra et al. 2001; Seward 2001).

Another similar application is the recognition of continuous hand-written char-
acters (González et al. 2000). Yet a more complex application of formal transducers
is language translation, in which input and output can be text, speech, (continuous)
handwritten text, etc. (Mohri 1997; Vidal 1997; Bangalore and Ricardi 2000b, 2001;
Amengual et al. 2000).

Rational transductions (Berstel 1979) constitute an important class within the field
of formal translation. These transductions are realized by the so-called finite-state
transducers. Even though other, more powerful transduction models exist, finite-state
transducers generally entail much more affordable computational costs, thereby mak-
ing these simpler models more interesting in practice.

One of the main reasons for the interest in finite-state machines for language
translation comes from the fact that these machines can be learned automatically from
examples (Vidal, Casacuberta, and Garcı́a 1995). Nowadays, only a few techniques
exist for inferring finite-state transducers (Vidal, Garcı́a, and Segarra 1989; Oncina,
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Garcı́a, and Vidal 1993; Mäkinen 1999; Knight and Al-Onaizan 1998; Bangalore and
Ricardi 2000b; Casacuberta 2000; Vilar 2000). Nevertheless, there are many techniques
for inferring regular grammars from finite sets of learning strings which have been
used successfully in a number of fields, including automatic speech recognition (Vi-
dal, Casacuberta, and Garcı́a 1995). Some of these techniques are based on results from
formal language theory. In particular, complex regular grammars can be built by infer-
ring simple grammars that recognize local languages (Garcı́a, Vidal, and Casacuberta
1987).

Here we explore this idea further and propose methods that use (simple) finite-
state grammar learning techniques, such as n-gram modeling, to infer rational trans-
ducers which prove adequate for language translation.

The organization of the article is as follows. Sections 2 and 3 give the basic defini-
tions of a finite-state transducer and the corresponding stochastic extension, presented
within the statistical framework of language translation. In Section 4, the proposed
method for inferring stochastic finite-state transducers is presented. The experiments
are described in Section 5. Finally, Section 6 is devoted to general discussion and
conclusions.

2. Finite-State Transducers

A finite-state transducer, T , is a tuple 〈Σ, ∆, Q, q0, F, δ〉, in which Σ is a finite set of
source symbols, ∆ is a finite set of target symbols (Σ ∩ ∆ = ∅), Q is a finite set of
states, q0 is the initial state, F ⊆ Q is a set of final states, and δ ⊆ Q × Σ × ∆� × Q is
a set of transitions.1 A translation form φ of length I in T is defined as a sequence of
transitions:

φ = (qφ0 , sφ1 , t̄φ1 , qφ1 )(qφ1 , sφ2 , t̄φ2 , qφ2 )(qφ2 , sφ3 , t̄φ3 , qφ3 ) . . . (qφI−1, sφI , t̄φI , qφI ) (1)

where (qφi−1, sφi , t̄φi , qφi ) ∈ δ, qφ0 = q0, and qφI ∈ F. A pair (s, t) ∈ Σ� ×∆� is a translation

pair if there is a translation form φ of length I in T such that I =|s | and t = t̄φ1 t̄φ2 . . . t̄φI .
By d(s, t) we will denote the set of translation forms2 in T associated with the pair (s, t).
A rational translation is the set of all translation pairs of some finite-state transducer T .

This definition of a finite-state transducer is similar to the definition of a regular
or finite-state grammar G. The main difference is that in a finite-state grammar, the set
of target symbols ∆ does not exist, and the transitions are defined on Q × Σ × Q. A
translation form is the transducer counterpart of a derivation in a finite-state gram-
mar, and the concept of rational translation is reminiscent of the concept of (regular)
language, defined as the set of strings associated with the derivations in the grammar
G.

Rational translations exhibit many properties similar to those shown for regular
languages (Berstel 1979). One of these properties can be stated as follows (Berstel 1979):

Theorem 1
T ⊆ Σ� ×∆� is a rational translation if and only if there exist an alphabet Γ, a regular language
L ⊂ Γ�, and two morphisms hΣ : Γ� → Σ� and h∆ : Γ� → ∆�, such that T = {(hΣ(w), h∆(w)) |
w ∈ L}.

1 By ∆∗ and Σ∗, we denote the set of finite-length strings on ∆ and Σ, respectively.
2 To simplify the notation, we will remove the superscript φ from the components of a translation form

if no confusion is induced.
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As will be discussed later, this theorem directly suggests the transducer inference
methods proposed in this article.

3. Statistical Translation Using Finite-State Transducers

In the statistical translation framework, the translation of a given source string s in
Σ� is a string t̂ ∈ ∆�, such that3

t̂ = argmax
t∈∆�

Pr(t | s) = argmax
t∈∆�

Pr(s, t) (2)

Pr(s, t) can be modeled by the stochastic extension of a finite-state transducer. A
stochastic finite-state transducer, TP, is defined as a tuple 〈Σ, ∆, Q, q0, p, f 〉, in which
Q, q0, Q, Σ, and ∆ are as in the definition of a finite-state transducer and p and f are
two functions p : Q × Σ × ∆� × Q → [0, 1] and f : Q → [0, 1] that satisfy, ∀q ∈ Q,

f (q) +
∑

(a,ω,q′)∈Σ×∆�×Q

p(q, a,ω, q′) = 1

In this context, T will denote the natural finite-state transducer associated with a
stochastic finite-state transducer TP (characteristic finite-state transducer). The set of
transitions of T is the set of tuples (q, s, t, q′) in TP with probabilities greater than zero,
and the set of final states is the set of states with nonzero final-state probabilities.

The probability of a translation pair (s, t) ∈ Σ� × ∆� according to TP is the sum
of the probabilities of all the translation forms of (s, t) in T :

PTP(s, t) =
∑

φ∈d(s,t)

PTP(φ)

where the probability of a translation form φ (as defined in equation (1)) is

PTP(φ) =

I∏
i=0

p(qi−1, si, t̄i, qi) · f (qI) (3)

that is, the product of the probabilities of all the transitions involved in φ.
We are interested only in transducers without useless states, that is, those in which

for every state in T , there is a path leading to a final state. If we further assume that
PTP(s, t) is zero when no translation form exists for (s, t) in T , it can be easily verified
that ∑

(s,t)∈Σ�×∆�

PTP(s, t) = 1

That is, PTP is a joint distribution on Σ� × ∆� which will be called the stochastic
translation defined by TP. 4

Finally, the translation of a source string s ∈ Σ� by a stochastic finite-state trans-
ducer TP is

t̂ = argmax
t∈∆�

PTP(s, t) (4)

3 For the sake of simplicity, we will denote Pr(X = x) as Pr(x) and Pr(X = x | Y = y) as Pr(x | y).
4 This concept is similar to the stochastic regular language for a stochastic regular grammar. In that

case, the probability distribution is defined on the set of finite-length strings rather than on the set of
pairs of strings.
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A stochastic finite-state transducer has stochastic source and target regular languages
embedded (Pi and Po, respectively.):

Pi(s) =
∑

t∈∆�

PTP(s, t), Po(t) =
∑

s∈Σ�

PTP(s, t)

In practice, these source or target regular languages are obtained, by dropping the
target or the source symbols, respectively, from each transition of the finite-state trans-
ducer.

The following theorem naturally extends Theorem 1 to the stochastic framework
(Casacuberta, Vidal, and Picó 2004):

Theorem 2
A distribution PT : Σ� × ∆� → [0, 1] is a stochastic rational translation if and only if there
exist an alphabet Γ, two morphisms hΣ : Γ� → Σ� and h∆ : Γ� → ∆�, and a stochastic regular
language PL such that, ∀(s, t) ∈ Σ� × ∆�,

PT(s, t) =
∑

ω ∈ Γ� :
(hΣ(ω), h∆(ω)) = (s, t)

PL(ω) (5)

3.1 Search with Stochastic Finite-State Transducers
The search for an optimal t̂ in Equation (4) has proved to be a difficult computational
problem (Casacuberta and de la Higuera 2000). In practice, an approximate solution
can be obtained (Casacuberta 2000) on the basis of the following approximation to the
probability of a translation pair (Viterbi score of a translation):

PTP(s, t) ≈ VTP(s, t) = max
φ∈d(s,t)

PTP(φ) (6)

An approximate translation can now be computed as

t̃ = argmax
t∈∆�

VTP(s, t) = argmax
t∈∆�

max
φ∈d(s,t)

PTP(φ) (7)

This computation can be carried out efficiently (Casacuberta 1996) by solving the
following recurrence by means of dynamic programming:

max
t∈∆∗

VTP(s, t) = max
q∈Q

(
V(|s|, q) · f (q)

)
(8)

V(i, q) = max
q′∈Q,w∈∆�

(
V(i − 1, q′) · p(q′, si, w, q)

)
if i �= 0, q �= q0 (9)

V(0, q0) = 1 (10)

Finally, the approximate translation t̃ is obtained as the concatenation of the target
strings associated with the translation form

φ̃ = (q0, s1, t̄1, q1)(q1, s2, t̄2, q2) . . . (qI−1, sI−1, t̄I, qI),

corresponding to the optimal sequence of states involved in the solution to Equa-
tion (8); that is,

t̃ = t̄1 t̄2 . . . t̄I
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0 1una / a  (1.0)

2camera / double (0.3)

4camera / λ   (0.3)

6

camera / room (0.4)

3doppia / room (1.0)

5doppia / double room (1.0)

7doppia / with two beds (1.0)

Figure 1
Example of Viterbi score-based suboptimal result. The probability PTP of the pair una camera
doppia/a double room is (1.0 · 0.3 · 1.0) + (1.0 · 0.3 · 1.0) = 0.6. This is greater than the probability
PTP of the pair una camera doppia/a room with two beds, 1.0 · 0.4 · 1.0 = 0.4. However, the Viterbi
score VTP for the first pair is 1.0 · 0.3 · 1.0 = 0.3, which is lower than the Viterbi score VTP for
the second pair, 1.0 · 0.4 · 1.0 = 0.4. Therefore this second pair will be the approximate result
given by equation (7).

The computational cost of the iterative version of this algorithm is O(| s | · |Q| · B),
where B is the (average) branching factor of the finite-state transducer.

Figure 1 shows a simple example in which Viterbi score maximization (7) leads to
a suboptimal result.

4. A Method for Inferring Finite-State Transducers

Theorems 1 and 2 establish that any (stochastic) rational translation T can be obtained
as a homomorphic image of certain (stochastic) regular language L over an adequate
alphabet Γ. The proofs of these theorems are constructive (Berstel 1979; Casacuberta,
Vidal, and Picó 2004) and are based on building a (stochastic) finite-state transducer T
for T by applying certain morphisms hΣ and h∆ to the symbols of Γ that are associated
with the rules of a (stochastic) regular grammar that generates L.

This suggests the following general technique for learning a stochastic finite-state
transducer, given a finite sample A of string pairs (s, t) ∈ Σ�×∆� ( a parallel corpus):

1. Each training pair (s, t) from A is transformed into a string z from an
extended alphabet Γ (strings of Γ-symbols) yielding a sample S of
strings S ⊂ Γ�.

2. A (stochastic) regular grammar G is inferred from S.

3. The Γ-symbols of the grammar rules are transformed back into pairs of
source/target symbols/strings (from Σ� × ∆�).

This technique, which is very similar to that proposed in Garcı́a, Vidal, and Casacu-
berta (1987) for the inference of regular grammars, is illustrated in Figure 2.

The first transformation is modeled by the labeling function L : Σ� × ∆� → Γ�,
while the last transformation is carried out by an “inverse labeling function” Λ(·), that
is, one such that Λ(L(A)) = A. Following Theorems 1 and 2, Λ(·) consists of a couple
of morphisms, hΣ, h∆, such that for a string z ∈ Γ�, Λ(z) = (hΣ(z), h∆(z)).

Without loss of generality, we assume that the method used in the second step of
the proposed method consists of the inference of n-grams (Ney, Martin, and Wessel
1997) with final states, which are particular cases of stochastic regular grammars. This
simple method automatically derives, from the strings in S, both the structure of G
(i.e., the rules—states and transitions) and the associated probabilities.

Since Λ is typically the inverse of L, the morphisms hΣ and h∆ needed in the
third step of the proposed approach are determined by the definition of L. So a key
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Figure 2
Basic scheme for the inference of finite-state transducers. A is a finite sample of training pairs.
S is the finite sample of strings obtained from A using L. G is a grammar inferred from S such
that S is a subset of the language, L(G), generated by the grammar G. T is a finite-state
transducer whose translation (T(T )) includes the training sample A.

point in this approach is its first step, that is, how to conveniently transform a parallel
corpus into a string corpus. In general, there are many possible transformations, but
if the source–target correspondences are complex, the design of an adequate transfor-
mation can become difficult. As a general rule, the labeling process must capture these
source–target word correspondences and must allow for a simple implementation of
the inverse labeling needed in the third step.

A very preliminary, nonstochastic version of this finite-state transducer inference
technique was presented in Vidal, Garcı́a, and Segarra (1989) An important drawback
of that early proposal was that the methods proposed for building the Γ� sentences
from the training pairs did not adequately cope with the dependencies between the
words of the source sentences and the words of the corresponding target sentences. In
the following section we show how this drawback can be overcome using statistical
alignments (Brown et al. 1993).

The resulting methodology is called grammatical inference and alignments for
transducer inference (GIATI).5 A related approach was proposed in Bangalore and
Ricardi (2000b). In that case, the extended symbols were also built according to pre-
viously computed alignments, but the order of target words was not preserved. As a
consequence, that approach requires a postprocess to try to restore the target words
to a proper order.

4.1 Statistical Alignments
The statistical translation models introduced by Brown et al. (1993) are based on the
concept of alignment between source and target words (statistical alignment mod-
els). Formally, an alignment of a translation pair (s, t) ∈ Σ� × ∆� is a function
a : {1, . . . , |t|} → {0, . . . , | s |}. The particular case a(j) = 0 means that the position j
in t is not aligned with any position in s. All the possible alignments between t and
s are denoted by A(s, t), and the probability of translating a given s into t by an
alignment a is Pr(t, a | s).

Thus, an optimal alignment between s and t can be computed as

â = argmax
a∈A(s,t)

Pr(t, a | s) (11)

5 In previous work, this idea was often called morphic generator transducer inference.
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Different approaches for estimating Pr(t, a | s) were proposed in Brown et al. (1993).
These approaches are known as models 1 through 5. Adequate software packages are
publicly available for training these statistical models and for obtaining good align-
ments between pairs of sentences (Al-Onaizan et al. 1999; Och and Ney 2000). An
example of Spanish-English sentence alignment is given below:

Example 1
¿ Cuánto cuesta una habitación individual por semana ?

how (2) much (2) does (3) a (4) single (6) room (5) cost (3) per (7) week (8) ? (9)

Each number within parentheses in the example represents the position in the source
sentence that is aligned with the (position of the) preceding target word. A graphical
representation of this alignment is shown in Figure 3.

4.2 First Step of the GIATI Methodology: Transformation of Training Pairs into
Strings

The first step of the proposed method consists in a labeling process (L) that builds a
string of certain extended symbols from each training string pair and its corresponding
statistical alignment. The main idea is to assign each word from t to the corresponding
word from s given by the alignment a. But sometimes this assignment produces a
violation of the sequential order of the words in t. To illustrate the GIATI methodology
we will use example 2:

Figure 3
Graphical representation of the alignment between a source (Spanish) sentence (¿ Cuánto cuesta
una habitación individual por semana ?) and a target (English) sentence (How much does a single
room cost per week ?). Note the correspondence between the Spanish cuesta and the English does
and cost. Note also that the model does not allow for alignments between sets of two or more
source words and one target word.
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Example 2
Let A be a training sample composed by the following pairs (Italian/English):

una camera doppia # a double room
una camera # a room
la camera singola # the single room
la camera # the room

Suitable alignments for these pairs are

una camera doppia # a (1) double (3) room (2)
una camera # a (1) room (2)
la camera singola # the (1) single (3) room (2)
la camera # the (1) room (2)

In the first pair of this example, the English word double could be assigned to
the third Italian word (doppia) and the English word room to the second Italian word
(camera). This would imply a “reordering” of the words double and room, which is not
appropriate in our finite-state framework.

Given s, t, and a (source and target strings and associated alignment, respectively),
the proposed transformation z = L1(s, t) avoids this problem as follows:

| z | = | s |

1 ≤ i ≤ | z |

zi =




(si , tj tj+1 . . . tj+l) if ∃j : a(j) = i and ∃| j′ < j : a(j′) > a(j)
and for j′′ : j ≤ j′′ ≤ j + l, a(j′′) ≤ a(j)

(si , λ) otherwise

Each word from t is joined with the corresponding word from s given by the alignment
a if the target word order is not violated. Otherwise, the target word is joined with
the first source word that does not violate the target word order.

The application of L1 to example 2 generates the following strings of extended
symbols:

(una , a) (camera , λ) (doppia , double room)
(una , a) (camera , room)
(la , the) (camera , λ) (singola , single room)
(la , the) (camera , room)

As a more complicated example, the application of this transformation to example 1
generates the following string:

(¿ , λ) (Cuánto , how much) (cuesta , does) (una , a) (habitación , λ)
(individual , single room cost) (por , per) (semana , week) (? , ?)

In this case the unaligned token ? has an associated empty target string, and the
target word cost, which is aligned with the source word cuesta, is associated with the
nearby source word individual. This avoids a “reordering” of the target string and
entails an (apparently) lower degree of nonmonotonicity. This is achieved, however,
at the expense of letting the method generalize from word associations which can be
considered improper from a linguistic point of view (e.g., (cuesta, does), (individual, single
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room cost)). While this would certainly be problematic for general language translation,
it proves not to be so harmful when the sentences to be translated come from limited-
domain languages.

Obviously, other transformations are possible. For example, after the application of
the above procedure, successive isolated source words (without any target word) can
be joined to the first extended word which has target word(s) assigned. Let z = L1(s, t)
be a transformed string obtained from the above procedure and let

(sk−1 , tj tj+1 . . . tj+m)(sk , λ) . . . (sk+l−1 , λ)(sk+l , tj+m+1 . . . tj+n)

be a subsequence within z. Then the subsequence

(sk , λ) . . . (sk+l−1 , λ)(sk+l , tj+m+1 . . . tj+n)

is transformed by L2 into

(sk . . . sk+l−1 sk+l , tj+m+1 . . . tj+n)

The application of L2 to example 2 leads to

(una , a) (camera doppia , double room)
(una , a) (camera , room)
(la , the) (camera singola , single room)
(la , the) (camera , room)

Although many other sophisticated transformations can be defined following the
above ideas, only the simple L1 will be used in the experiments reported in this article.

4.3 Second Step of the GIATI Methodology: Inferring a Stochastic Regular Grammar
from a Set of Strings

Many grammatical inference techniques are available to implement the second step
of the proposed procedure. In this work, (smoothed) n-grams are used. These models
have proven quite successful in many areas such as language modeling (Clarkson and
Rosenfeld 1997; Ney, Martin, and Wessel 1997).

Figures 4 and 5 show the (nonsmoothed) bigram models inferred from the sample
obtained using L1 and L2, respectively, in example 2. Note that the generalization
achieved by the first model is greater than that of the second.

The probabilities of the n-grams are computed from the corresponding counts in
the training set of extended strings. The probability of an extended word zj = (si, t̄i)
given the sequence of extended words zi−n+1, . . . , zi−1 = (si−n+1, t̄i−n+1) . . . (si−1, t̄i−1)

0

1(una , a)

4
(la , the)

2
(camera , λ  )

5

(camera , room)

3(doppia , double room)

6
(singola , single room)

(camera , λ  )

(camera , room)

Figure 4
Bigram model inferred from strings obtained by the transformation L1 in example 2.
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0

1(una , a)

4
(la , the)

2(camera doppia , double room)

3

(camera , room)

(camera , room)

5

(camera singola , single room)

Figure 5
Bigram model inferred from strings obtained by the transformation L2 in example 2.

is estimated as

pn(zi | zi−n+1 . . . zi−1) =
c(zi−n+1, . . . , zi−1, zi)

c(zi−n+1, . . . , zi−1)
(12)

where c(·) is the number of times that an event occurs in the training set. To deal with
unseen n-grams, the back-off smoothing technique from the CMU Statistical Language
Modeling (SLM) Toolkit (Rosenfeld 1995) has been used.

The (smoothed) n-gram model obtained from the set of extended symbols is repre-
sented as a stochastic finite-state automaton (Llorens, Vilar, and Casacuberta 2002). The
states of the automaton are the observed (n − 1)-grams. For the n-gram (zi−n+1 . . . zi),
there is a transition from state (zi−n+1 . . . zi−1) to state (zi−n+2 . . . zi) with the associ-
ated extended word zi and a probability pn(zi | zi−n+1 . . . zi−1). The back-off smoothing
method supplied by the SLM Toolkit is represented by the states corresponding to k-
grams (k < n) and by special transitions between k-gram states and (k − 1)-gram
states (Llorens, Vilar, and Casacuberta 2002). The final-state probability is computed
as the probability of a transition with an end-of-sentence mark.

4.4 Third Step of the GIATI Methodology: Transforming a Stochastic Regular Gram-
mar into a Stochastic Finite-State Transducer

In order to obtain a finite-state transducer from a grammar of L1–transformed symbols,
an “inverse transformation” Λ(·) is used which is based on two simple morphisms:

if (a, b1b2 . . . bk) ∈ Γ with a ∈ Σ and b1, b2, . . . , bk ∈ ∆,
hΣ((a, b1b2 . . . bk)) = a
h∆((a, b1b2 . . . bk)) = b1 b2 . . . bk

It can be verified that this constitutes a true inverse transformation; that is, for every
training pair ∀(s, t) ∈ A

s = hΣ(L1(s, t)), t = h∆(L1(s, t))

If zi is a transition of the inferred regular grammar, where zi = (a, b1b2 . . . bk) ∈ Γ, the
corresponding transition of the resulting finite-state transducer is (q, a, b1b2 · · · bk, q′).

This construction is illustrated in Figures 6 and 7 for the bigrams of Figures 4 and 5,
respectively. Note that in the second case, this construction entails the trivial addition of
a few states which did not exist in the corresponding bigram. As previously discussed,
the first transformation (L1) definitely leads to a greater translation generalization than
the second (L2) (Casacuberta, Vidal, and Picó 2004). The probabilities associated with
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0

1una / a

4
la / the

2
camera / λ

5

camera / room

3doppia / double room

6
singola / single room

camera / λ

camera / room

Figure 6
A finite-state transducer built from the n-gram of Figure 4.

0

1una / a

4
la / the

camera  / λ  

3

camera / room

2doppia / double room

camera / room

camera  / λ  

5singola / single room

Figure 7
A finite-state transducer built from the n-gram of Figure 5.

the transitions and the final states of the finite-state transducer are the same as those
of the original stochastic regular grammar.

Since we are using n-grams in the second step, a transition (q, a, b1b2 · · · bk, q′) is in
the finite-state transducer if the states q and q′ are (zi−n+1 . . . zi−1), (zi−n+2 . . . zi), respec-
tively, and (a, b1b2 · · · bk) is zi. The probability of the transition is pn(zi | zi−n+1 . . . zi−1).
The transitions associated with back-off are labeled with a special source symbol (not
in the source vocabulary) and with an empty target string. The number of states is
the overall number of k-grams (k < n) that appear in the training set of extended
strings plus one (the unigram state). The number of transitions is the overall num-
ber of k-grams (k ≤ n) plus the number of states (back-off transitions). The actual
number of these k-grams depends on the degree of nonmonotonicity of the original
bilingual training corpus. If the corpus if completely monotone, this number would be
approximately the same as the number of k-grams in the source or target parts of the
training corpus. If the corpus in not monotone, the vocabulary of expanded strings
becomes large, and the number of k-grams can be much larger than the number of
training source or target k-grams. As a consequence, an interesting property of this
type of transformations is that the source and target languages embedded in the final
finite-state transducer are more constrained than the corresponding n-gram models
obtained from either the source or the target strings, respectively, of the same training
pairs (Casacuberta, Vidal, and Picó 2004).

While n-grams are deterministic (hence nonambiguous) models, the finite-state
transducers obtained after the third-step inverse transformations (hΣ, h∆) are often
nondeterministic and generally ambiguous; that is, there are source strings which can
be parsed through more than one path. This is in fact a fundamental property, directly
coming from expression (5) of Theorem 2, on which the whole GIATI approach is
essentially based. As a consequence, all the search issues discussed in Section 3.1 do
apply to GIATI-learned transducers.
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5. Experimental Results

Different translation tasks of different levels of difficulty were selected to assess the
capabilities of the proposed inference method in the framework of the EuTrans
project (ITI et al. 2000): two Spanish-English tasks (EuTrans-0 and EuTrans-I),
an Italian-English task (EuTrans-II) and a Spanish-German task (EuTrans-Ia). The
EuTrans-0 task, with a large semi-automatically generated training corpus, was used
for studying the convergence of transducer learning algorithms for increasingly large
training sets (Amengual et al. 2000). In this article it is used to get an estimation of per-
formance limits of the GIATI technique by assuming an unbounded amount of training
data. The EuTrans-I task was similar to EuTrans-0 but with a more realistically sized
training corpus. This corpus was defined as a first benchmark in the EuTrans project,
and therefore results with other techniques are available. The EuTrans-II task, with a
quite small and highly spontaneous natural training set, was a second benchmark of
the project. Finally, EuTrans-Ia was similar to EuTrans-I, but with a higher degree
of nonmonotonicity between corresponding words in input/output sentence pairs.

Tables 1, 4, and 7 show some important features of these corpora. As can be seen in
these tables, the training sets of EuTrans-0, EuTrans-I and EuTrans-Ia contain non-
negligible amounts of repeated sentence pairs. Most of these repetitions correspond
to simple and/or usual sentences such as good morning, thank you, and do you have a
single room for tonight. The repetition rate is quite significant for EuTrans-0, but it was
explicitly reduced in the more realistic benchmark tasks EuTrans-I and EuTrans-Ia.
It is worth noting, however, that no repetitions appear in any of the test sets of these
tasks. While repetitions can be helpful for probability estimation, they are completely
useless for inducing the transducer structure. Moreover, since no repetitions appear
in the test sets, the estimated probabilities will not be as useful as they could be if
test data repetitions exhibited the same patterns as those in the corresponding training
materials.

In all the experiments reported in this article, the approximate optimal translations
(equation (7)) of the source test strings were computed and the word error rate (WER),
the sentence error rate (SER), and the bilingual evaluation understudy (BLEU) metric
for the translations were used as assessment criteria. The WER is the minimum number
of substitution, insertion, and deletion operations needed to convert the word string
hypothesized by the translation system into a given single reference word string (ITI
et al. 2000). The SER is the result of a direct comparison between the hypothesized and
reference word strings as a whole. The BLEU metric is based on the n-grams of the
hypothesized translation that occur in the reference translations (Papineni et al 2001).
The BLEU metric ranges from 0.0 (worst score) to 1.0 (best score).

5.1 The Spanish-English Translation Tasks
A Spanish-English corpus was semi-automatically generated in the first phase of the
EuTrans project (Vidal 1997). The domain of the corpus involved typical human-to-
human communication situations at a reception desk of a hotel.

A summary of this corpus (EuTrans-0) is given in Table 1 (Amengual et al 2000;
Casacuberta et al. 2001). From this (large) corpus, a small subset of ten thousand
training sentence pairs (EuTrans-I) was randomly selected in order to approach more
realistic training conditions (see also Table 1). From these data, completely disjoint
training and test sets were defined. It was guaranteed, however, that all the words in
the source test sentences were contained in both training sets (closed vocabulary).

Results for the EuTrans-0 and EuTrans-I corpora are presented in Tables 2 and 3,
respectively. The best results obtained using the proposed technique were 3.1% WER
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Table 1
The Spanish-English corpus. There was no overlap between
training and test sentences, and the test set did not contain
out-of-vocabulary words with respect to any of the training sets.

Spanish English

EuTrans-0 Train: Sentence pairs 490,000
Distinct pairs 168,629
Running words 4,655,000 4,802,000
Vocabulary 686 513

EuTrans-I Train: Sentence pairs 10,000
Distinct pairs 6,813
Running words 97,131 99,292
Vocabulary 683 513

Test: Sentences 2,996
Running words 35,023 35,590

EuTrans-0 Bigram test perplexity 6.8 5.8
EuTrans-I Bigram test perplexity 8.6 6.3

Table 2
Results with the standard corpus EuTrans-0. The
underlying regular models were smoothed n-grams for
different values of n.

n-grams States Transitions WER % SER % BLEU

2 4,056 67,235 8.8 50.0 0.86
3 33,619 173,500 4.7 27.2 0.94
4 110,321 364,373 4.2 23.2 0.94
5 147,790 492,840 3.8 20.5 0.95
6 201,319 663,447 3.6 19.0 0.96
7 264,868 857,275 3.4 18.0 0.96
8 331,598 1,050,949 3.3 17.4 0.96
9 391,812 1,218,367 3.3 17.2 0.96
10 438,802 1,345,278 3.2 16.8 0.96
11 471,733 1,432,027 3.1 16.4 0.96
12 492,620 1,485,370 3.1 16.4 0.96

Table 3
Results with the standard corpus EuTrans-I. The
underlying regular models were smoothed n-grams for
different values of n.

n-grams States Transitions WER % SER % BLEU

2 1,696 17,121 9.0 53.7 0.86
3 8,562 36,763 6.7 38.9 0.90
4 21,338 64,856 6.7 37.9 0.91
5 23,879 72,006 6.6 37.1 0.91
6 25,947 77,531 6.6 37.0 0.91
7 27,336 81,076 6.6 37.0 0.91
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for EuTrans-0 and 6.6% WER for EuTrans-I. These results were achieved using the
statistical alignments provided by model 5 (Brown et al. 1993; Och and Ney 2000) and
smoothed 11-grams and 6-grams, respectively.

These results were obtained using the first type of transformation described in
Section 4.2 (L1). Similar experiments with the second type of transformation (L2) pro-
duced slightly worse results. However, L2 is interesting because many of the extended
symbols obtained in the experiments involve very good relations between some source
word groups and target word groups which could be useful by themselves. Conse-
quently, more research work has to be done with this second type of transformation.

The results on the (benchmark) EuTrans-I corpus can be compared with those
obtained using other approaches. GIATI outperforms other finite-state techniques in
similar experimental conditions (with a best result of 8.3% WER, using another trans-
ducer inference technique called OMEGA [ITI et al. 2000]). On the other hand, the
best result achieved by the statistical templates technique (Och and Ney 2000) was
4.4% WER (ITI et al. 2000). However, this result cannot be exactly compared with
that achieved by GIATI, because the statistical templates approach used an explicit
(automatic) categorization of the source and the target words, while only the raw
word forms were used in GIATI. Although GIATI is compatible with different forms
of word categorization, the required finite-state expansion is not straightforward, and
some work is still needed in order to actually allow this technique to be taken advan-
tage of.

5.2 The Italian-English Task
The Italian-English translation task of the EuTrans project (ITI et al. 2000) consisted
of spoken person-to-person telephone communications in the framework of a hotel
reception desk. A text corpus was collected with the transcriptions of dialogues of this
type, along with the corresponding (human-produced) translations. A summary of the
corpus used in the experiments (EuTrans-II) is given in Table 4. There was a small
overlap of seven pairs between the training set and the test set, but in this case, the
vocabulary was not closed (there were 107 words in the test set that did not exist in
the training-set vocabulary). The processing of words out of the vocabulary was very
simple in this experiment: If the word started with a capital letter, the translation was
the source word; otherwise it was the empty string.

The same translation procedure and evaluation criteria used for EuTrans-0 and
EuTrans-I were used for EuTrans-II. The results are reported in Table 5.

Table 4
The EuTrans-II corpus. There was a small
overlap of seven pairs between the training and
test sets, but 107 source words in the test set were
not in the (training-set-derived) vocabulary.

Italian English

Train: Sentence pairs 3,038
Running words 55,302 64,176
Vocabulary 2,459 1,712

Test: Sentences 300
Running words 6,121 7,243
Bigram test perplexity 31 25
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Table 5
Results with the standard EuTrans-II corpus. The
underlying regular models were smoothed
n-grams (Rosenfeld 1995) for different values of n.

n-grams States Transitions WER % SER % BLEU

2 5,909 49,701 27.2 96.7 0.56
3 24,852 97,893 27.3 96.0 0.56
4 54,102 157,073 27.4 96.0 0.56

Table 6
Results with the standard EuTrans-II corpus. The
underlying regular models were smoothed n-grams
(Rosenfeld 1994) for different values of n. The training
set was (automatically) segmented using a priori
knowledge. The statistical alignments were constrained
to be within each parallel segment.

n-grams States Transitions WER % SER % BLEU

2 6,300 52,385 24.9 93.0 0.62
3 26,194 102,941 25.5 93.3 0.61
4 56,856 164,972 25.5 93.3 0.61

This corpus contained many long sentences, most of which were composed of
rather short segments connected by punctuation marks. Typically, these segments can
be monotonically aligned with corresponding target segments using a simple dynamic
programming procedure (prior segmentation) (ITI et al. 2000). We explored computing
the statistical alignments within each pair of segments rather than in the entire sen-
tences. Since the segments were shorter than the whole sentences, the alignment prob-
ability distributions were better estimated. In the training phase, extended symbols
were built from these alignments, and the strings of extended symbols corresponding
to the segments of the same original string pair were concatenated. Test sentences
were directly used, without any kind of segmentation.

The translation results using prior segmentation are reported in Table 6. These
results were clearly better than those of the corresponding experiments with nonseg-
mented training data.

The accuracy of GIATI in the EuTrans-II experiments was significantly worse
than that achieved in EuTrans-I, and best performance is obtained with a lower-order
n-gram. One obvious reason for this behavior is that this corpus is far more sponta-
neous than the first one, and consequently, it has a much higher degree of variability.
Moreover, the training data set is about three times smaller than the corresponding
data of EuTrans-I, while the vocabularies are three to four times larger.

The best result achieved with the proposed technique on EuTrans-II was 24.9%
WER, using prior segmentation of the training pairs and a smoothed bigram model.
This result was comparable to the best among all those reported in RWTH Aachen and
ITI (1999). The previously mentioned statistical templates technique achieved 25.1%
WER in this case. In this application, in which categories are not as important as in
EuTrans-I, statistical templates and GIATI achieved similar results.
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Table 7
The Spanish-German corpus. There was no overlap
between training and test sets and no
out-of-vocabulary words in the test set.

Spanish German

Train: Sentence pairs 10,000
Distinct pairs 6,636
Running words 96,043 90,099
Vocabulary 6,622 4,890

Test: Sentences 2,862
Running words 33,542 31,103
Bigram test perplexity 8.3 6.6

Table 8
Results with the standard corpus EuTrans-Ia. The
underlying regular models were smoothed n-grams for
different values of n.

n-grams States Transitions WER % SER % BLEU

2 2,441 21,181 16.0 78.1 0.74
3 10,592 43,294 11.3 65.3 0.82
4 24,554 74,412 10.6 62.3 0.83
5 27,748 83,553 10.6 62.5 0.83
6 30,501 91,055 10.6 62.4 0.83
7 32,497 96,303 10.7 62.7 0.83

5.3 The Spanish-German Task
The Spanish-German translation task is similar to EuTrans-I, but here the target
language is German instead of English. It should be noted that Spanish syntax is
significantly more different from that of German than it is from that of English, and
therefore, the corresponding corpus exhibited a higher degree of nonmonotonicity. The
features of this corpus (EuTrans-Ia) are summarized in Table 7. There was no overlap
between training and test sets, and the vocabulary was closed.

The translation results are reported in Table 8. As expected from the higher degree
of nonmonotonicity of the present task, these results were somewhat worse than those
achieved with EuTrans-I. This is consistent with the larger number of states and
transitions of the EuTrans-Ia models: The higher degree of word reordering of these
models is achieved at the expense of a larger number of extended words.

The way GIATI transducers cope with these monotonicity differences can be more
explicitly illustrated by estimating how many target words are produced after some
delay with respect to the source. While directly determining (or even properly defin-
ing) the actual production delay for each individual (test) word is not trivial, an
approximation can be indirectly derived from the number of target words that are
preceded by sequences of λ symbols (from target-empty transitions) in the parsing of
a source test text with a given transducer. This has been done for the EuTrans-I and
EuTrans-Ia test sets with GIATI transducers learned with n = 6. On the average, the
EuTrans-I transducer needed to introduce delays ranging from one to five positions
for approximately 15% of the English target words produced, while the transducer
for EuTrans-Ia had to introduce similar delays for about 20% of the German target
words produced.



221

Casacuberta and Vidal Translation with Finite-State Transducers

5.4 Error Analysis
The errors reported in the previous sections can be attributed to four main factors:

1. Correct translations which differ from the given (single) reference

2. Wrong alignments of training pairs

3. Insufficient or improper generalization of n-gram-based GIATI learning

4. Wrong approximate Viterbi score–based search results

An informal inspection of the target sentences produced by GIATI in all the experi-
ments reveals that the first three factors are responsible for the vast majority of errors.
Table 9 shows typical examples for the results of the EuTrans-I experiment with
6-gram-based GIATI transducers.

The first three examples correspond to correct translations which have been wrong-
ly counted as errors (factor 1). Examples 4 and 5 are probably due to alignment prob-
lems (factor 2). In fact, more than half of the errors reported in the EuTrans-I experi-
ments are due to misuse or misplacement of the English word please. Examples 6–8 can
also be considered minor errors, probably resulting from factors 2 and 3. Examples 9
and 10 are clear undergeneralization errors (factor 3). These errors could have been
easily overcome through an adequate use of bilingual lexical categorization. Examples
11 and 12, finally, are more complex errors that can be attributed to (a combination of)
factors 2, 3, and 4.

6. Conclusions

A method has been proposed in this article for inferring stochastic finite-state trans-
ducers from stochastic regular grammars. This method, GIATI, allowed us to achieve
good results in several language translation tasks with different levels of difficulty. It
works better than other finite-state techniques when the training data are scarce and
achieves similar results with sufficient training data.

The GIATI approach produces transducers which generalize the information pro-
vided by the (aligned) training pairs. Thanks to the use of n-grams as a core learning
procedure, a wide range of generalization degrees can be achieved. It is well-known
that a 1-gram entails a maximum generalization, allowing (extended) words to follow
one another. On the other hand, for sufficiently large m, a (nonsmoothed) m-gram is just
an exact representation of the training strings (of extended words, in our case). Such a
representation can thus be considered a simple “translation memory” that just contains
the (aligned) training pairs. For any new source sentence, this “memory” can be eas-
ily and quite efficiently searched through finite-state parsing. For other intermediate
values of n, 1<n<m, GIATI obtains increasing degrees of generalization. As in the
case of language modeling, the generalization degree (n) has to be tuned so as to take
maximum advantage of the available training data. As training pairs become scarce,
more generalization is needed to allow GIATI to adequately accept new test sentences.
This behavior can be clearly observed throughout the results presented in this article.

Another feature of the GIATI approach is the use of smoothed n-grams of extended
words as the basic mechanism for producing smoothed transducers. The combination
of this feature with the intrinsic generalization provided by the n-gram modeling itself
has proved very adequate to deal with the problem of unseen source (sub)strings.

Obviously, the overall quality of the generalizations achieved by GIATI strongly
relies on the quality of the statistical alignments used and on the way word order
is preserved in the source-target strings of each training pair. Taking into account the
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Table 9
Examples of typical errors produced by a 6-gram-based GIATI
transducer in the the EuTrans-I task. For each Spanish source sentence,
the corresponding target reference and GIATI translations are shown in
successive lines.

1 ¿ les importarı́a bajarnos nuestras bolsas a recepción ?
would you mind sending our bags down to reception ?
would you mind sending down our bags to reception ?

2 explique la cuenta de la habitación cuatro dieciséis .
explain the bill for room number four one six .
explain the bill for room number four sixteenth .

3 ¿ cuánto vale una habitación doble para cinco dı́as incluyendo desayuno ?
how much is a double room including breakfast for five days ?
how much is a double room for five days including breakfast ?

4 por favor , deseo una habitación individual para esta semana .
I want a single room for this week , please .
I want a single room for this week .

5 ¿ le importarı́a despertarnos a las cinco ?
would you mind waking us up at five ?
would you mind waking us up at five , please ?

6 ¿ hay televisión , aire acondicionado y caja fuerte en las habitaciones ?
are there a tv , air conditioning and a safe in the rooms ?
is there a tv , air conditioning and a safe in the rooms ?

7 ¿ tiene habitaciones libres con teléfono ?
do you have any rooms with a telephone available ?
do you have any rooms with a telephone ?

8 ¿ querrı́a llamar a mi taxi ?
would you call my taxi , please ?
would you call my taxi for me , please ?

9 hemos de marcharnos el veintiséis de marzo por la tarde .
we should leave on March the twenty-sixth in the afternoon .
we should leave on March the twenty-seventh in the afternoon

10 por favor , ¿ nos podrı́a dar usted la llave de la ochocientos ochenta y uno ?
could you give us the key to room number eight eight one , please ?
could you give us the key to room number eight oh eight one , please ?

11 quiero cambiarme de habitación .
I want to change rooms .
I want to move .

12 ¿ tiene televisión nuestra habitación ?
does our room have a tv ?
does our room ?
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finite-state nature of GIATI transducers, certain heuristics have been needed in order to
avoid a direct use of too-long-distance alignments (L1 in Section 4.2). This has proved
adequate for language pairs with not too different (syntactic) structure and more so
if the domains are limited. As we relax these restrictions, we might have to relax the
not-too-long-distance assumption correspondingly. In this respect, the bilingual word
reordering ideas of Vilar, Vidal, and Amengual (1996), Vidal (1997), and Bangalore and
Ricardi (2000a) may certainly prove useful in future developments.
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David Llorens, Andrés Marzal, Moisés
Pastor, Federico Prat, Enrique Vidal, and
Juan-Miguel Vilar. 2000. The EUTRANS-I
speech translation system. Machine
Translation Journal, 15(1–2):75–103.

Bangalore, Srinivas and Giuseppe Ricardi.
2000a. Finite-state models for lexical
reordering in spoken language
translation. In Proceedings of the
International Conference on Speech and
Language Processing, Beijing, China,
October.

Bangalore, Srinivas and Giuseppe Ricardi.
2000b. Stochastic finite-state models for
spoken language machine translation. In
Proceedings of the Workshop on Embedded
Machine Translation Systems, North
American Association for Computational
Linguistics, pages 52–59, Seattle, May.

Bangalore, Srinivas and Giuseppe Ricardi.
2001. A finite-state approach to machine
translation. In Proceedings of the Second
Meeting of the North American Chapter of the
Association for Computational Linguistics
2001, Pittsburgh, May.

Berstel, Jean. 1979. Transductions and
context-free languages. B. G. Teubner,
Stuttgart.

Brown, Peter F., Stephen A. Della Pietra,
Vincent J. Della Pietra, and Robert L.

Mercer. 1993. The mathematics of
statistical machine translation: Parameter
estimation. Computational Linguistics,
19(2):263–310.

Casacuberta, Francisco. 1996. Maximum
mutual information and conditional
maximum likelihood estimation of
stochastic regular syntax-directed
translation schemes. In Grammatical
Inference: Learning Syntax from Sentences
(volume 1147 of Lecture Notes on
Computer Science). Springer-Verlag,
Berlin and Heidelberg, pages 282–291.

Casacuberta, Francisco. 2000. Inference of
finite-state transducers by using regular
grammars and morphisms. In Grammatical
Inference: Algorithms and Applications
(volume 1891 of Lecture Notes in
Artificial Intelligence). Springer-Verlag,
Berlin and Heidelberg, pages 1–14.

Casacuberta, Francisco and Colin de la
Higuera. 2000. Computational complexity
of problems on probabilistic grammars
and transducers. In Grammatical Inference:
Algorithms and Applications (volume 1891
of Lecture Notes in Artificial Intelligence).
Springer-Verlag, Berlin and Heidelberg,
pages 15–24.

Casacuberta, Francisco, David Llorens,
Carlos Martı́nez, Sirko Molau, Francisco
Nevado, Hermann Ney, Moiseés Pastor,
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