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Automatic summarization of open-domain spoken dialogues is a relatively new research area. This
article introduces the task and the challenges involved and motivates and presents an approach
for obtaining automatic-extract summaries for human transcripts of multiparty dialogues of four
different genres, without any restriction on domain.

We address the following issues, which are intrinsic to spoken-dialogue summarization and
typically can be ignored when summarizing written text such as news wire data: (1) detection and
removal of speech disfluencies; (2) detection and insertion of sentence boundaries; and (3) detection
and linking of cross-speaker information units (question-answer pairs).

A system evaluation is performed using a corpus of 23 dialogue excerpts with an average
duration of about 10 minutes, comprising 80 topical segments and about 47,000 words total. The
corpus was manually annotated for relevant text spans by six human annotators. The global eval-
uation shows that for the two more informal genres, our summarization system using dialogue-
specific components significantly outperforms two baselines: (1) a maximum-marginal-relevance
ranking algorithm using TF*IDF term weighting, and (2) a LEAD baseline that extracts the first
n words from a text.

1. Introduction

Although the field of summarizing written texts has been explored for many decades,
gaining significantly increased attention in the last five to ten years, summarization
of spoken language is a comparatively recent research area. As the number of spoken
audio databases is growing rapidly, however, we predict that the need for high-quality
summarization of information contained in this medium will increase substantially.
Summarization of spoken dialogues, in particular, may aid in the archiving, indexing,
and retrieval of various records of oral communication, such as corporate meetings,
sales interactions, or customer support.

The purpose of this article is to explore the issues of spoken-dialogue summa-
rization and to describe and evaluate an implementation addressing some of the core
challenges intrinsic to the task. We will use an implementation of a state-of-the-art
text summarization method (maximum marginal relevance, or MMR) as the main
baseline for comparative evaluations, and then add a set of components addressing
issues specific to spoken dialogues to this MMR module to create our spoken dialogue
summarization system, which we call DIASUMM.

We consider the following dimensions to be relevant for our research; the combi-
nation of these dimensions distinguishes our work from most other work in the field
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of summarization:

• spoken versus written language

• multiparty dialogues versus texts written by one author

• unrestricted versus restricted domains

• diverse genres versus a single genre

The main challenges this work has to address, in addition to the challenges of written-
text summarization, are as follows:

• coping with speech disfluencies

• identifying the units for extraction

• maintaining cross-speaker coherence

• coping with speech recognition errors

We will discuss these challenges in more detail in the following section. Although
we have addressed the issue of speech recognition errors in previous related work
(Zechner and Waibel 2000b), for the purpose of this article, we exclusively use human
transcripts of spoken dialogues.

Intrinsic evaluations of text summaries usually use sentences as their basic units.
For our data, however, sentence boundaries are typically not available in the first place.
Thus we devise a word-based evaluation metric derived from an average relevance
score from human relevance annotations (section 6.2).

The organization of this article is as follows: Section 2 provides the motivation
for our research, introducing and discussing the main challenges of spoken-dialogue
summarization, followed by a section on related work (section 3). Section 4 describes
the corpus we use to develop and evaluate our system, along with the procedures
employed for corpus annotation. The system architecture and its components are de-
scribed in detail in section 5, along with evaluations thereof. Section 6 presents the
global evaluation of our approach, before we conclude the article with a discussion
of our results, contributions, and directions for future research in this field (sections 7
and 8).

2. Motivation

Consider the following example from a phone conversation drawn from the English
CALLHOME database (LDC 1996). It is a transcript of a conversation between two
native speakers of American English; one person is in the New York area (speaker
a), the other one (speaker b) in Israel. It was recorded about a month after Yitzhak
Rabin’s assassination (1995). This dialogue segment is about one minute of real time.
The audio is segmented into speaker turns using silence heuristics,1 and each turn
is marked with a turn number and with the speaker label. Noises are removed to
increase readability.2

1 Therefore, in some cases, we can find several turns of one speaker following each other.
2 Hence there can be “missing” turns (e.g., turn 37), in case they contain only noises and no actual words.
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28 a: oh

29 b: they didn’t know he was going to get shot but it

was at a peace rally so i mean it just worked out

30 b: i mean it was a good place for the poor guy to die

i mean because it was you know right after the rally

and everything was on film and everything

31 a: yeah

32 b: oh the whole country we just finished the thirty days

mourning for him now you know it’s uh oh everybody’s

still in shock it’s

33 a: oh

34 a: i know

35 b: terrible what’s going on over here

36 b: and this guy that killed him they show him on t v

smiling he’s all happy he did it and everything he

isn’t even sorry or anything

38 a: there are i

39 b: him him he and his brother you know the two of

them were in it together and there’s a whole group

now it’s like a a conspiracy oh it’s eh

40 a: mm

41 a: with the kahane chai

42 b: unbelievable

43 b: yeah yeah it’s all those people yeah you probably see

them running around new york don’t you they’re all

44 a: yeah

45 a: oh yeah they’re here

46 b: new york based yeah

47 a: oh there’s

48 a: all those fanatics

49 a: like the extreme

50 b: oh but

51 b: but wh- what’s the reaction in america really i mean

i mean do people care you know i mean you know do they

52 a: yeah mo- most pe- i mean uh

53 a: i don’t know what commu- i mean like the jewish community

54 a: a lot e- all of us were

55 a: very upset and there were lots all the

56 b: yeah

57 a: like two days after did it happen like on a sunday

58 b: yeah it hap- it happened on it happened on a saturday night

By looking at this transcript we can readily identify some of the phenomena that
would cause difficulties for conventional summarizers of written texts:

• Some turns (e.g., turn 51) contain many disfluencies that (1) make them
hard to read and (2) reduce the relevance of the information contained
therein.

• Some (important) pieces of information are distributed over a sequence
of turns (e.g., turns 53–54–55, 45–47–48–49); this is due to a silence-based
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segmentation algorithm that causes breaks in logically connected clauses.
A traditional summarizer might render these sequences incompletely.

• Some turns are quite long (e.g., 36, 39) and contain several sentences; a
within-turn segmentation seems necessary to avoid the extraction of too
much extraneous information when only parts of a turn contain relevant
information.

• Some of the information is constructed interactively by both speakers;
the prototypical cases are question-answer pairs (e.g., turns 51–52ff.,
turns 57–58). A traditional text summarizer might miss either question or
answer and hence produce a less meaningful summary.

We shall discuss these arising issues along with an indication of our computational
remedies in the following subsections. We want to stress beforehand, though, that
the originality of our system should not be seen in the particular implementation of
its individual components, but rather in their selection and specific composition to
address the issues at hand in an effective and also efficient way.

2.1 Disfluency Detection
The two main negative effects speech disfluencies have on summarization are that they
(1) decrease the readability of the summary and (2) increase its noncontent noise. In
particular for informal conversations, the percentage of disfluent words is quite high,
typically around 20% of the total words spoken.3 This means that this issue should,
in our opinion, be addressed to improve the quality (readability and conciseness) of
the generated summaries.

In section 5.3 we shall present three components for identifying most of the major
classes of speech disfluencies in the input of the summarization system, such as filled
pauses, repetitions, and false starts. All detected disfluencies are marked in this process
and can be selectively excluded during summary generation.

2.2 Sentence Boundary Detection
Unlike written texts, in which punctuation markers clearly indicate clause and sen-
tence boundaries, spoken language is generated as a sequence of streams of words, in
which pauses (silences between words) do not always match linguistically meaningful
segments: A speaker can pause in the middle of a sentence or even a phrase, or, on
the other hand, might not pause at all after the end of a sentence or clause.

This mismatch between acoustic and linguistic segmentation is reflected in the
output of a speech recognizer, which typically generates a sequence of speaker turns
whose boundaries are marked by periods of silence (or nonspeech). As a result, one
speaker’s turn may contain multiple sentences, or, on the other hand, a speaker’s
sentence might span more than one turn. In a test corpus of five English CALLHOME
dialogues with an average length of 320 turns, we found on average of about 30 such
continuations of logical clauses over automatically determined acoustic segments per
dialogue.

The main problems for a summarizer would thus be (1) the lack of coherence and
readability of the output because of incomplete sentences and (2) extraneous infor-
mation due to extracted units consisting of more than one sentence. In section 5.4 we

3 Although other studies have found percentages lower than this figure, we included content-less
categories such as discourse markers or rhetorical connectives, which are often not regarded as
disfluencies per se.
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describe a component for sentence segmentation that addresses both of these prob-
lems.

2.3 Distributed Information
Since we have multiparty conversations as opposed to monologues, sometimes the
crucial information is found in a sequence of turns from several speakers, the proto-
typical case of this being a question-answer pair. If the summarizer were to extract
only the question or only the answer, the lack of the corresponding answer or question
would often cause a severe reduction of coherence in the summary.

In some cases, either the question or the answer is very short and does not contain
any words with high relevance that would yield a substantial weight in the summa-
rizer. In order not to lose these short sentences at a later stage, when only the most
relevant sentences are extracted, we need to identify matching question-answer pairs
ahead of time, so that the summarizer can output the matching sentences during sum-
mary generation as one unit. We describe our approach to cross-speaker information
linking in section 5.5.

2.4 Other Issues
We see the work reported in this article as the first in-depth analysis and evaluation
in the area of open-domain spoken-dialogue summarization. Given the large scope of
this undertaking, we had to restrict ourselves to those issues that are, in our opinion,
the most salient for the task at hand.

A number of other important issues for summarization in general and for speech
summarization in particular are either simplified or not addressed in this article and
left for future work in this field. In the following, we briefly mention some of these
issues, indicating their potential relevance and promise.

2.4.1 Topic Segmentation. In many cases, spoken dialogues are multitopical. For the
English CALLHOME corpus, we determined an average topic length of about one to two
minutes’ speaking time (or about 200–400 words). Summarization can be accomplished
faster and more concisely if it operates on smaller topical segments rather than on long
pieces of input consisting of diverse topics.

Although we have implemented a topic segmentation component as part of our
system for these reasons, all of the evaluations are based on the topical segments
determined by human annotators. Therefore, this component will not be discussed
in this article. Furthermore, topical segmentation is not an issue intrinsic to spoken
dialogues, which in our opinion justifies this simplification.

2.4.2 Anaphora Resolution. An analogous reasoning holds for the issue of anaphora
resolution: Although it would certainly be desirable, for the sake of increased coher-
ence and readability, to employ a well-working anaphora resolution component, this
issue is not specific to the task at hand, either. One could argue that particularly for
summarization of more informal conversations, in which personal pronouns are rather
frequent, anaphora resolution might be more helpful than for, say, summarization of
written texts. But we conjecture that this task might also prove more challenging than
written-text anaphora resolution. In our system, we did not implement a module for
anaphora resolution.

2.4.3 Discourse Structure. Previous work indicates that information about discourse
structure from written texts can help in identifying the more salient and relevant
sentences or clauses for summary generation (Marcu 1999; Miike et al. 1994). Much
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less exploration has been done, however, in the area of automatic analysis of dis-
course structure for non-task-oriented spoken dialogues in unrestricted domains, such
as CALLHOME (LDC 1996). Research for those kinds of corpora reported in Jurafsky et
al. (1998), Stolcke et al. (2000), Levin et al. (1999), and Ries et al. (2000) focuses more on
detecting localized phenomena such as speech acts, dialogue games, or functional ac-
tivities. We conjecture that there are two reasons for this: (1) free-flowing spontaneous
conversations have much less structure than task-oriented dialogues, and (2) the au-
tomatic detection of hierarchical structure would be much harder than it is for written
texts or dialogues based on a premeditated plan.

Although we believe that in the long run attempts to automatically identify the
discourse structure of spoken dialogues may benefit summarization, in this article, we
greatly simplify this matter and exclusively look at local contexts in which speakers
interactively construct shared information (the question-answer pairs).

2.4.4 Speech Recognition Errors. Throughout this article, our simplifying assumption
is that our input comes from a perfect speech recognizer; that is, we use human
textual transcripts of the dialogues in our corpus. Although there are cases in which
this assumption is justifiable, such as transcripts provided by news services in parallel
to the recorded audio data, we believe that in general a spoken dialogue summarizer
has to be able to accept corrupted input from an automatic speech recognizer (ASR),
as well. Our system is indeed able to work with ASR output; it is integrated in a larger
system (Meeting Browser) that creates, summarizes, and archives meeting records and
is connected to a speech recognition engine (Bett et al. 2000). Further, we have shown
in previous work how we can use ASR confidence scores (1) to reduce the word error
rate within the summary and (2) to increase the summary accuracy (Zechner and
Waibel 2000b).

2.4.5 Prosodic Information. A further simplifying assumption of this work is that
prosodic information is not available, with the exception of start and end times of
speaker turns. Considering the results reported by Shriberg et al. (1998) and Shriberg
et al. (2000), we conjecture that future work in this field will demonstrate the addi-
tional benefit of incorporating prosodic information, such as stress, pitch, and intra-
turn pauses, into the summarization system. In particular, we would expect improved
system performance when speech recognition hypotheses are used as input: In that
case, the prosodic information could compensate to some extent for incorrect word
information.

3. Related Work

The vast majority of summarization research in the past clearly has focused exclu-
sively on written text. A good selection of both early seminal papers and more recent
work can be found in Mani and Maybury (1999). In general, most summarization
approaches can be classified as either corpus-based, statistical summarization (such
as Kupiec, Pedersen, and Chen [1995]), or knowledge-based summarization (such as
Reimer and Hahn [1988]) in which the text domain is restricted. (The MMR method
[Carbonell, Geng, and Goldstein 1997], which we are using as the summarization
engine for our DIASUMM system, belongs to the first category.) More recently, Marcu
(1999) presented work on using automatically detected discourse structure for summa-
rization. Knight and Marcu (2000) and Berger and Mittal (2000) presented approaches
in which summarization can be reformulated as a problem of machine translation:
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translating a long sentence into a shorter sentence, or translating a Web page into a
brief gist, respectively.

Two main areas are exceptions to the focus on text summarization in past work:
(1) summarization of task-oriented dialogues in restricted domains and (2) summa-
rization of spoken news in unrestricted domains. We shall discuss both of these areas
in the following subsections, followed by a discussion of prosody-based emphasis de-
tection in spoken language, and finally by a summary of research most closely related
to the topic of this work.

3.1 Summarization of Dialogues in Restricted Domains
During the past decade, there has been significant progress in the area of closed-
domain spoken-dialogue translation and understanding, even with automatic speech
recognition input. Two examples of systems developed in that time frame are JANUS
(Lavie et al. 1997) and VERBMOBIL (Wahlster 1993).

In that context, several spoken-dialogue summarization systems have been de-
veloped whose goal it is to capture the essence of the task-based dialogues at hand.
The MIMI system (Kameyama and Arima 1994; Kameyama, Kawai, and Arima 1996)
deals with the travel reservation domain and uses a cascade of finite-state pattern rec-
ognizers to find the desired information. Within VERBMOBIL, a more knowledge-rich
approach is used (Alexandersson and Poller 1998; Reithinger et al. 2000). The domain
here is travel planning and negotiation of a trip. In addition to finite-state transducers
for content extraction and statistical dialogue act recognition, VERBMOBIL also uses a
dialogue processor and a summary generator that have access to a world knowledge
database, a domain model, and a semantic database. The abstract representations built
by this summarizer allow for summary generation in multiple languages.

3.2 Summarization of Spoken News
Within the context of the Text Retrieval Conference (TREC) spoken document retrieval
(SDR) conferences (Garofolo et al. 1997; Garofolo et al. 1999) as well as the recent
Defense Advanced Research Project Agency (DARPA) broadcast news workshops, a
number of research groups have been developing multimedia browsing tools for text,
audio, and video data, which should facilitate the access to news data, combining
different modalities.

Hirschberg et al. (1999) and Whittaker et al. (1999) present a system that supports
local navigation for browsing and information extraction from acoustic databases,
using speech recognizer transcripts in tandem with the original audio recording. Al-
though their interface helps users in the tasks of relevance ranking and fact finding,
it is less helpful in the creating of summaries, partly because of imperfect speech
recognition.

Valenza et al. (1999) present an audio summarization system that combines acous-
tic confidence scores with relevance scores to obtain more accurate and reliable sum-
maries. An evaluation showed that human judges preferred summaries with a com-
pression rate of about 15% (30 words per minute at a speaking rate of about 200 words
per minute) and that the summary word error rate was significantly smaller than the
word error rate for the full transcript.

Hori and Furui (2000) use salience features in combination with a language model
to reduce Japanese broadcast news captions by about 30–40% while keeping the mean-
ing of about 72% of all sentences in the test set. Another speech-related reduction ap-
proach was presented recently by Koumpis and Renals (2000), who summarize voice
mail in the Small Message format.
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3.3 Prosody-Based Emphasis Detection in Spoken Audio
Whereas most approaches to summarizing acoustic data rely on the word informa-
tion (provided by a human or ASR transcript), there have been attempts to generate
summaries based on emphasized regions in a discourse, using only prosodic features.
Chen and Withgott (1992) train a hidden Markov model on transcripts of spontaneous
speech, labeled for different degrees of emphasis by a panel of listeners. Their “au-
dio summaries” on an unseen (but rather small) test set achieve a remarkably good
agreement with human annotators (κ > 0.5). Stifelman (1995) uses a pitch-based em-
phasis detection algorithm developed by Arons (1994) to find emphasized passages
in a 13-minute discourse. In her analysis, she finds good agreement between these
emphasized regions and the beginnings of manually marked discourse segments (in
the framework of Grosz and Sidner [1986]). Although these are promising results, be-
ing suggestive of the role of prosody for determining emphasis, relevance, or salience
in spoken discourse, in this work we restrict the use of prosody to the turn length
and interturn pause features. We conjecture, however, that the integration of prosodic
and word level information would be a fruitful research area that would have to be
explored in future work.

3.4 Spoken Dialogue Summarization in Unrestricted Domains
Waibel, Bett, and Finke (1998) report results of their summarizer on automatically
transcribed SWITCHBOARD (SWBD) data (Godfrey, Holliman, and McDaniel 1992), the
word error rate being about 30%. Their implementation used an algorithm inspired
by MMR, but they did not address any dialogue- or speech-related issues in their
summarizer. In a question-answer test with summaries of five dialogues, participants
could identify most of the key concepts using a summary size of only five turns.
These results varied widely (between 20% and 90% accuracy) across the five different
dialogues tested in this experiment.

Our own previous work (Zechner and Waibel 2000a) addressed for the first time
the combination of challenges of dialogue summarization with summarization of spo-
ken language in unrestricted domains. We presented a first prototype of DIASUMM
that addressed the issues of disfluency detection and removal and sentence boundary
detection, as well as cross-speaker information linking.

This work extends and expands these initial attempts substantially, in that we are
now focusing on (1) a systematic training of the major components of the DIASUMM
system, enabled by the recent availability of a large corpus of disfluency-annotated
conversations (LDC 1999b), and (2) the exploration of three more genres of spoken
dialogues in addition to the English CALLHOME corpus (NEWSHOUR, CROSSFIRE, GROUP
MEETINGS). Further, the relevance annotations are now performed by a set of six human
annotators, which makes the global system evaluation more meaningful, considering
the typical divergence among different annotators’ relevance judgments.

4. Data Annotation

4.1 Corpus Characteristics
Table 1 provides the statistics on the corpus used for the development and evaluation
of our system. We use data from four different genres, two being more informal, two
more formal:

• English CALLHOME and CALLFRIEND: from the Linguistic Data
Consortium (LDC) collections, eight dialogues for the devtest set
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Table 1
Data characteristics for the corpus (average over dialogues). 8E-CH, 4E-CH: English
CallHome; NHOUR: NewsHour; XFIRE: CrossFire; G-MTG: Group Meetings.

Data Set 8E-CH 4E-CH NHOUR XFIRE G-MTG

Formal/informal informal informal formal formal informal
Topics predetermined no no yes yes yes
Dialogue excerpts (total) 8 4 3 4 4
Topical segments (total) 28 23 8 14 7
Different speakers 2.1 2 2 6 7.5
Turns 242 276 25 96 140
Sentences 280 366 101 281 304
Sentences per turn 1.2 1.3 4.1 2.9 2.2
Questions (in %) 3.7 6.4 6.3 9.8 4.0
False starts (in %) 12.1 11.0 2.0 7.2 13.9
Words 1685 1905 1224 3165 2355
Words per sentence 6.0 5.2 12.1 11.3 7.7
Disfluent (in %) 16.0 16.3 5.1 4.2 13.2
Disfluencies 222 259 48 95 266
Disfluencies per sentence 0.79 0.71 0.48 0.34 0.87
Empty coordinating conjunctions (in %) 30.3 30.4 64.8 50.7 24.3
Lexicalized filled pauses (in %) 18.8 21.0 17.2 23.5 13.9
Editing terms (in %) 3.6 1.6 3.4 5.7 3.3
Nonlexicalized filled pauses (in %) 20.8 29.9 0.7 2.3 29.5
Repairs (in %) 26.6 17.1 13.8 17.8 29.0

(8E-CH) and four dialogues for the eval set (4E-CH).4 These are
recordings of phone conversations between two family members or
friends, typically about 30 minutes in length; the excerpts we used were
matched with the transcripts, which typically represent 5–10 minutes of
speaking time.

• NEWSHOUR (NHOUR): Excerpts from PBS’s NewsHour television show
with Jim Lehrer (recorded in 1998).

• CROSSFIRE (XFIRE): Excerpts from CNN’s CrossFire television show with
Bill Press and Robert Novak (recorded in 1998).

• GROUP MEETINGS (G-MTG): Excerpts from recordings of project group
meetings in the Interactive Systems Labs at Carnegie Mellon University.

Furthermore, we used the Penn Treebank distribution of the SWITCHBOARD corpus,
annotated with disfluencies, to train the major components of the system (LDC 1999b).

From Table 1 we can see that the two more formal corpora, NEWSHOUR and
CROSSFIRE, have longer sentences, more sentences per turn, and fewer disfluencies
(particularly nonlexicalized filled pauses and false starts) than English CALLHOME
and the GROUP MEETINGS. This means that their flavor is more like that of written text
and not so close to the conversational speech typically found in the SWITCHBOARD or
CALLHOME corpora.

4 We used the devtest set corpus for system development and tuning and set aside the eval set for the
final global system evaluation. For the other three genres, two dialogue excerpts each were used for the
devtest set, the remainder for the eval set.
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4.2 Corpus Annotation
4.2.1 First Annotation Phase. All the annotations were performed on human-gener-
ated transcripts of the dialogues. The CALLHOME and GROUP MEETINGS dialogues
were automatically partitioned into speaker turns (by means of a silence heuristic);
the other corpora were segmented manually (based on the contents and flow of the
conversation).5

There were six naive human annotators performing the task;6 only four, however,
completed the entire set of dialogues. Thus, the number of annotations available for
each dialogue varies from four to six. Prior to the relevance annotations, the annotators
had to mark topical boundaries, because we want to be able to define and then create
summaries for each topical segment separately (as opposed to a whole conversation
consisting of multiple topics). The notion of a topic was informally defined as a region
in the text that ends, according to the annotation manual, “when the speakers shift
their topic of discussion.”

Once the topical segments were marked, for each such segment, each annota-
tor had to identify the most relevant information units (IUs), called nucleus IUs, and
somewhat relevant IUs, called satellite IUs. IUs are often equivalent to sentences but
can span longer or shorter contiguous segments of text, dependent on the annotator’s
choice. The overall goal of this relevance markup was to create a concise and readable
summary containing the main information present in the topical segment. Annotators
were also asked to mark the most salient words within their annotated IUs with a +,
which would render a summary with a somewhat more telegraphic style (+-marked
words).

We also asked that the human annotators stay within a preset target length for
their summaries: The +-marked words in all IUs within a topical segment should
be 10–20% of all the words in the segment. The guideline was enforced by a checker
program that was run during and after annotation of a transcript and that also ensured
that no markup errors and no accidental word deletions occurred. We provide a brief
example here (n[, n] mark the beginning and end of a nucleus IU, the phrase they fly
to Boston was +-marked as the core content within this IU):

B: heck it might turn out that you know n[ if

+they +fly in +to +boston i can n]

4.2.2 Creation of Gold-Standard Summaries. After the first annotation phase, in
which each coder worked independently according to the guidelines described above,
we devised a second phase, in which two coders from the initial group were asked
to create a common-ground annotation, based on the majority opinion of the whole
group. To construct such a majority opinion guideline automatically, we assigned
weights to all words in nucleus IUs and satellite IUs and added all weights for all
marked words of all coders for every turn.7 The total turn weights were then sorted by
decreasing value to provide a guide for the two coders in the second phase as to which
turns they should focus their annotations on for the common-ground or gold-standard
summaries.

5 This fact may partially account for NEWSHOUR and CROSSFIRE turns being longer than CALLHOME and
GROUP MEETING turns.

6 Naive in this context means that they were nonexperts in linguistics or discourse analysis.
7 The weights were set as follows: nucleus IUs: 3.0 if +-marked, 2.0 otherwise; satellite IUs: 1.0 if

+-marked, 0.5 otherwise.
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Table 2
Nuclei and satellites: Length in tokens and relative frequency (in % of all tokens).

Annotator/ Avg. Nuc. Avg. Sat. Nuc-Tokens Nuc-+-Marked Sat-Tokens Sat-+-Marked
Data Set Length Length (in %) (in %) (in %) (in %)

LB 12.993 13.732 11.646 8.558 5.363 3.818
BR 16.507 14.551 11.978 8.339 10.558 7.645
SC 20.720 14.093 29.412 18.045 6.517 4.796
RW 22.899 19.576 19.352 11.332 2.757 1.718
RC 23.741 18.553 43.573 15.434 12.749 0.333
JK 39.203 9.794 26.355 11.204 0.711 0.465
Gold 21.763 6.462 13.934 6.573 0.179 0.000
CALLHOME 17.108 13.099 21.962 11.003 5.126 1.932
NEWSHOUR 25.828 16.733 29.536 13.530 4.300 2.947
CROSSFIRE 33.923 22.132 21.705 10.615 1.853 0.976
MEETINGS 37.674 23.413 23.034 9.222 7.456 1.123
All Dialogues 23.152 16.173 22.796 10.807 4.665 1.636

Other than this guideline, the requirements were almost exactly identical to those
in phase 1, except that (1) the pair of annotators was required to work together on this
task to be able to reach a consensus opinion, and (2) the preset relative word length
of the gold summary (10–20%) applied only to the nucleus IUs.

As for the topical boundaries, which obviously vary among coders, a list of bound-
ary positions chosen by the majority (at least half) of the coders in the first phase was
provided. In this gold-standard phase, the two coders mostly stayed with these sug-
gestions and changed less than 15% of the suggested topic boundaries, the majority
of which were minor (less than two turns’ difference in boundary position).

4.2.3 General Annotation Analysis. Table 2 provides the statistics on the frequencies
of the annotated nucleus and satellite IUs. We make the following observations:

• On average, about 23% of all tokens were assigned to a nucleus IU and
5% to a satellite IU; counting only the +-marked tokens, this reduces to
about 11% and 2% of all tokens, respectively.

• The average total lengths of nuclei and satellites vary widely across
corpora: between 17.1 (13.1) tokens for CALLHOME and 37.7 (23.4) tokens
for GROUP MEETINGS data. This is most likely a reflection on the typical
length of turns in the different subcorpora.

• A similar variation is also observed across annotators: between 12 and 40
tokens for nucleus-IUs and between 9 and 20 tokens for satellites. The
granularity of IUs is quite different across annotators.

• Since some annotators mark a larger number of IUs than others, there is
an even larger discrepancy in the relative number of words assigned to
nucleus IUs and satellite IUs among the different annotators: 11–44%
(nucleus IUs) and 0–13% (satellite IUs).

• The ratio of nucleus versus satellite tokens also varies greatly among the
annotators: from about 1:1 to 40:1.
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• The ratio of nucleus and satellite tokens that are +-marked varies greatly:
between 36 and 77% for nucleus IUs and between 2 and 80% for
satellite IUs.

From these observations, we conclude that merging the nucleus and satellite IUs
into one class would yield a more consistent picture than keeping them separate. A
similar argument can be made for the +-marked passages, in which we also find a
quite high intercoder variation in relative +-marking. This led us to the decision of
giving equal weight to any word in an IU, irrespective of IU type or marking, for the
purpose of global system evaluation.

Finally, we conjecture that the average length of our extraction units should be
in the 10–40 words range, which roughly corresponds to about 3–12 seconds of real
time, assuming an average word length of 300 milliseconds. As a comparison, we
note that Valenza et al. (1999) found summaries with 30-grams8 working well in their
experiments, a finding that is in line with our observations here on typical human IU
lengths.

4.2.4 Intercoder Agreement. Agreement between coders (and between automatic meth-
ods and coders) has been measured in the summarization literature with quite a wide
range of methods: Rath, Resnick, and Savage (1961) use Kendall’s τ ; Kupiec, Ped-
ersen, and Chen (1995) (among many others) use percentage agreement; and Aone,
Okurowski, and Gorlinsky (1997) (among others) use the notions of precision, recall,
and F1-score, which are commonly employed in the information retrieval community.
Similarly, in the literature on discourse segmentation and labeling, a variety of differ-
ent agreement measures have been used, including precision and recall (Hearst 1997;
Passonneau and Litman 1997), Krippendorff’s (1980) α (Passonneau and Litman 1997)
and Cohen’s (1960) κ (Carletta et al. 1997).

In this work, we use the two following metrics: (1) the κ-statistic in its extension for
more than two coders (Davies and Fleiss 1982); and (2) precision, recall, and F1-score.9

We will discuss the κ-statistic first.
For intercoder agreement with respect to topical boundaries, agreement is found

if boundaries fall within the same 50-word bin of a dialogue. Relevance agreements
are computed at the word level. For relevance markings, we compute κ both for the
three-way case (nucleus IUs, satellite IUs, unmarked) and the two-way case (any IUs,
unmarked).10 Topical-boundary agreement was not evaluated for two of the GROUP
MEETINGS dialogues, in which only one of four annotators marked any text-internal
topic boundary. We compute agreements for each dialogue separately and report the
arithmetic means for the five subcorpora in Table 3. We observe that agreement for top-
ical boundaries is much higher than for relevance markings. Furthermore, agreement
is generally higher for CALLHOME and comparatively low for the GROUP MEETINGS
corpus.

As a second evaluation metric, we compute precision, recall, and F1-scores for the
same four annotators and the same sets of subcorpora as before. For topical boundaries,
a match means that the boundaries fall within ±3 turns of each other, and for relevant

8 A 30-gram is a passage of text containing 30 adjacent words.
9 Precision is the ratio of correctly matched items over all items (boundaries, marked words); recall is the

ratio of correctly matched items over all items that need to be matched; and the F1-score combines
precision (P) and recall (R) in the following way: F1 = 2PR

P+R .
10 These computations were performed for those four (out of six) annotators who completed the entire

corpus markup.
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Table 3
Intercoder annotation κ agreement for topical boundaries and relevance markings.

8E-CH 4E-CH NHOUR XFIRE G-MTG Overall

Topical boundaries 0.503 0.402 0.256 0.331 0.174 0.384
Relevance markings (3 way) 0.147 0.161 0.123 0.089 0.040 0.117
Relevance markings (2 way) 0.157 0.169 0.124 0.100 0.046 0.126

Table 4
Intercoder annotation F1-agreement for topical boundaries and relevance markings.

8E-CH 4E-CH NHOUR XFIRE G-MTG Overall

Topical boundaries .54 .44 .53 .38 .18 .45
Relevance markings (2 way) .38 .39 .38 .32 .32 .36

words a match means that the two words to be compared are both in a nucleus or
satellite IU. The results can be seen in Table 4.

4.2.5 Disfluency and Sentence Boundary Annotation. In addition to the annotation
for topic boundaries and relevant text spans, the corpus was also annotated for speech
disfluencies in the same style as the Penn Treebank SWITCHBOARD corpus (LDC 1999b).
One coder (different from the six annotators mentioned before) manually tagged the
corpus for disfluencies and sentence boundaries following the SWITCHBOARD disflu-
ency annotation style book (Meteer et al. 1995).

4.2.6 Question-Answer Annotation. A final type of annotation was performed on the
entire corpus to mark all questions and their answers, for the purpose of training and
evaluation of the question-answer linking system component. Questions and answers
were annotated in the following way: Every sentence that is a question was marked as
either a Yes-No-question or a Wh-question. Exceptions were back-channel questions,
such as “Is that right?”; rhetorical questions, such as “Who would lie in public?”; and
other questions that do not refer to a propositional content. These were not supposed
to be marked (even if they have an apparent answer), since we see the latter class
of questions as irrelevant for the purpose of increasing the local coherence within
summaries. For each Yes-No-question and Wh-question that has an answer, the answer
was marked with its relative offset to the question to which it belongs. Some answers
are continued over several sentences, but only the core answer (which usually consists
of a single sentence) was marked. This decision was made to bias the answer detection
module toward brief answers and to avoid the question-answer regions’ getting too
lengthy, at the expense of summary conciseness.

5. Dialogue Summarization System

5.1 System Architecture
The global system architecture of the spoken-dialogue summarization system pre-
sented in this article (DIASUMM) is depicted in Figure 1. The input data are a time-
ordered sequence of speaker turns with the following quadruple of information: start
time, end time, speaker label, and word sequence. The seven major components are
executed sequentially, yielding a pipeline architecture.
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False Start Detection
(+ Chunk Parser)

Sentence Boundary Detection

POS Tagger

Repetition Filter

Question & Answer Detection

Sentence Ranking & Selection

Topic Segmentation

Disfluency
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Extraction Unit
Identification

dialogue transcript

dialogue summary

Figure 1
Global system architecture.

The following subsections describe the components of the system in more detail.
As argued earlier, the topic detection component is not relevant for the way we con-
duct the global system evaluation and hence is not discussed here. (We implemented a
variant of Hearst’s [1997] TextTiling algorithm.) The three components involved in dis-
fluency detection are the part-of-speech (POS) tagger, the false-start detection module,
and the repetition filter. They are discussed in subsection 5.3, followed by a subsection
on sentence boundary detection (5.4). The question-answer pair detection is described
in subsection 5.5, and the sentence selection module, performing relevance ranking,
in subsection 5.6.

5.2 Input Tokenization
We eliminate all human and nonhuman noises and incomplete words from the in-
put transcript. Further, we eliminate all information on case and punctuation, since
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we emulate the ASR output in that regard, which does not provide this informa-
tion.

Contractions such as don’t or I’ll are divided and treated as separate words—in
these examples we would obtain do n’t and I ’ll.

5.3 Disfluency Detection
5.3.1 Motivation. Conversational, informal spoken language is quite different from
written language in that a speaker’s utterances are typically much less well-formed
than a writer’s sentences. We can observe a set of disfluencies such as false starts, hes-
itations, repetitions, filled pauses, and interruptions. Additionally, in speech there is
no good match between linguistically motivated sentence boundaries and turn bound-
aries or recognition hypotheses from automatic speech recognition.

5.3.2 Types of Disfluencies. The classification of disfluencies in this work follows
Shriberg (1994), Meteer et al. (1995), and Rose (1998). It is worth noting, however,
that any disfluency classification will be only an approximation of the assumed real
phenomena and that often boundaries between different classes are fuzzy and hard
to decide for human annotators (cf. Meteer et al. [1995] on annotators’ problems with
the classification of the word so).

• Filled pauses: We follow Rose’s (1998) classification of nonlexicalized
filled pauses (typically uh, um) and lexicalized filled pauses (e.g., like, you
know). Whereas the former are usually nonambiguous and hence easy to
detect, the latter are ambiguous and much harder to detect accurately.

• Restarts or repairs: These are fragments that are resumed, but without
completely abandoning the first attempt. We follow the notation in
Meteer et al. (1995) and Shriberg (1994), which has these parts:
(1) reparandum, (2) interruption point (+), (3) interregnum (editing
phase, {. . . }), and (4) repair.

• Repetition: A restart with a verbatim repetition of a word or a
sequence of words: [ she is + she is ] happy.

• Insertion: A repetition of the reparandum, with some word(s)
inserted: [ she liked + {um} she really liked ] it.

• Substitution: The reparandum is not repeated: [ she + {uh} my
wife ] liked it.

• False starts: These are abandoned, incomplete clauses. In some cases,
they may occur at the end of an utterance, and they can be due to
interruption by another speaker. Example: so we didn’t—they have not
accepted our proposal.

5.3.3 Related Work. The past decade has produced a substantial amount of research in
the area of detecting intonational and linguistic boundaries in conversational speech,
as well as in the area of detecting and correcting speech disfluencies. Whereas earlier
work tended to look at these phenomena in isolation (Nakatani and Hirschberg 1994;
Stolcke and Shriberg 1996), more recent work has attempted to solve several tasks
within one framework (Heeman and Allen 1999; Stolcke et al. 1998).

Most approaches use some kind of prosodic information, such as duration of
pauses, stress, and pitch contours, and most of them combine this prosodic informa-
tion with information about word identity and sequence (n-grams, hidden Markov
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models). In the study of Stolcke et al. (1998), the goal was to detect sentence bound-
aries and a variety of speech disfluencies on a large portion of the SWITCHBOARD
corpus. An explicit comparison was made between prosodic and word-based models,
and the results showed that an n-gram model, enhanced with segmental informa-
tion about turn boundaries, significantly outperformed the prosodic model. Model
combination improved the overall results, but only to a small extent. In more recent
research, Shriberg et al. (2000) reported that for sentence boundary detection in two
different corpora (BROADCAST NEWS and SWITCHBOARD), prosodic models outperform
word-based language models and a model combination yields additional performance
gains.

5.3.4 Overview. In the following, we will discuss the three components of the DIASUMM
system that perform disfluency detection:

• a POS tagger that tags, in addition to the standard SWITCHBOARD
Treebank-3 tag set (LDC 1999b), the following disfluent regions or words:

1. coordinating conjunctions that don’t serve their usual connective
role, but act more as links between subsequent speech acts of a
speaker (e.g., and then; we call these empty coordinating
conjunctions in this work)

2. lexicalized filled pauses (labeled as discourse markers in the
Treebank-3 corpus; e.g., you know, like)

3. editing terms within speech repairs (e.g., I mean)
4. nonlexicalized filled pauses (e.g., um, uh)

• a decision tree (supported by a shallow chunk parser) that decides
whether to label a particular sentence as a false start

• a repetition detection script (for repeated sequences of up to four words)

5.3.5 Training Corpus. For training, we used a part of the SWITCHBOARD transcripts
that was manually annotated for sentence boundaries, POS, and the following types
of disfluent regions (LDC 1999b):

• {A. . . }: asides (very rare; we ignore them in our experiments)

• {C. . . }: empty coordinating conjunctions (e.g., and then)

• {D. . . }: discourse markers (i.e., lexicalized filled pauses in our terminology,
e.g., you know)

• {E. . . }: editing terms (within repairs; e.g., I mean)

• {F. . . }: filled pauses (nonlexicalized; e.g., uh)

• [. . . + . . .]: repairs: the part before the + is called reparandum (to be
removed), the part after the + repair (proper)

Sentence boundaries can be at the end of completed sentences (E S) or of noncompleted
sentences, such as false starts or abandoned clauses (N S).
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Table 5
Precision, recall and F1-scores of the four disfluency tag categories for the SWITCHBOARD test
set.

Description Count Tag Precision Recall F1

Empty coordinating conjunctions 5,990 CO 0.84 0.93 0.88
Lexicalized filled pauses 5,787 DM 0.95 0.90 0.93
Editing terms 1,004 ET 0.98 0.94 0.96
Nonlexicalized filled pauses 12,926 UH 0.98 0.98 0.98

Table 6
POS tagging accuracy on five subcorpora (evaluated on 500-word samples).

8E-CH 4E-CH NHOUR XFIRE G-MTG

Known words 92.8 90.6 92.7 90.6 93.2
Unknown words (total) 48.0 (25) 44.4 (9) 69.6 (23) 86.4 (22) 92.6 (27)
Overall 90.6 89.8 91.6 90.4 93.2

5.3.6 POS Tagger. We are using Brill’s rule-based POS tagger (Brill 1994). Its basic
algorithm at run time (after training) can be described as follows:

1. Tag every word with its most likely tag, predicting tags of unknown
words based on rules.

2. Change every tag according to its right and left context (both words and
tags are considered), following a list of rules.

For preprocessing, we replaced the tags in the regions of {C. . . }, {D. . . }, and {E. . . }
with the tags CO (coordinating), DM (discourse marker), and ET (editing term), re-
spectively. (The filler regions {F. . . } are already tagged with UH in the corpus.) Lines
that contain typographical errors were excluded from the training corpus. We further
eliminated all incomplete words (XX tag) and combined multiwords, marked by a GW
tag, into a single word (hence eliminating the GW tag).11 The entire resulting new tag
set had 42 tags.12

Training of the POS tagger proceeded in three stages, using about 250,000 tagged
words for each stage. The trained POS tagger’s performance on an unseen test set of
about 185,000 words is 94.1% tag accuracy (untrained baseline: 84.8% accuracy).

Table 5 shows precision, recall, and F1-scores for the four categories of disfluency
tags, measured on the test set after the last training phase. We see that the nonlexical-
ized filler words are almost perfectly tagged (F1 = 0.98), whereas the hardest task for
the tagger is the empty coordinating conjunctions (F1 = 0.88): There are a few highly
ambiguous words in that set, such as and, so, and or.

Table 6 shows the POS tagging accuracy on the five subcorpora of our dialogue
corpus, evaluated on a sample of 500 words per subcorpus. We see that the POS-
tagging accuracy is slightly lower than for the SWITCHBOARD set that was used for

11 The sole function of the GW tag is to label words that are considered to be parts of other words but
were transcribed separately, such as: drug/GW testing/NN.

12 For a description of the POS tags used in that database see Santorini (1990) and LDC (1999a).
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Table 7
Disfluency tag detection (F1) for five subcorpora (results in parentheses: less than 10 tags to be
detected).

8E-CH 4E-CH NHOUR XFIRE G-MTG

CO .89 .89 .38 .77 .54
DM .93 .73 .90 .82 .30
ET .95 .95 (.94) .85 .88
UH .56 .62 (.14) (.28) .45

training (approximately 90–93%; global average: 91.1%). Further we observe that with
the exception of the CALLHOME corpora, the majority of unknown words were actually
tagged correctly. The most frequent errors were (1) conjunctions tagged as empty
coordinated conjunctions, (2) proper names tagged as regular nouns, and (3) adverbs
tagged as adjectives.

Finally, we look at the POS tagger’s performance for the four disfluency tags CO,
DM, ET, and UH in our five subcorpora; the results of this evaluation are presented in
Table 7. We can see that the detection accuracy is generally lower than for the corpus
on which we trained the tagger (SWITCHBOARD), but still quite good in general. The
major exceptions are the UH tags, on which the F1-scores are comparatively low for all
subcorpora. The reason for this can be found mostly in words like yes, no, uh-huh, right,
okay, and yeah, which are often tagged with UH in SWITCHBOARD but frequently are not
considered to be irrelevant words in our corpus and hence not marked as disfluent
(e.g., if they are considered to be the answer to a question or a summary-relevant
acknowledgment). We circumvent potential exclusion from the summary output of
these and other words that might be erroneously tagged as nonlexicalized filled pauses
(UH) by marking a small set of words as exempt from removal (see section 5.5.6).

5.3.7 False Start Detection. False starts are quite frequent in spontaneous speech,
occurring at a rate of about 10–15% of all sentences (SWITCHBOARD, CALLHOME). They
involve less than 10% of the total words of a dialogue; about 34% of the words in
these incomplete sentences are part of some other disfluencies, such as filled pauses
or repairs. (In complete sentences, only about 15% of the words are part of these
disfluencies.) For CALLHOME, the average length of complete sentences is about 6
words, of incomplete sentences about 4.1 words (including disfluencies).

We trained a C4.5 decision tree (Quinlan 1992) on 8,000 sentences of SWITCHBOARD.
As features we use the first and last four trigger words (words that have a high
incidence around sentence boundaries) and POS of every sentence, as well as the first
and last four chunks from a POS-based chunk parser. This chunk parser is based
on a simple context-free POS grammar for English. It outputs a phrasal bracketing
of the input string (e.g., noun phrases or prepositional phrases). Further, we encode
the length of the sentence in words and the number of the words not parsed by the
chunk parser. We observed that whereas the chunk information itself does not improve
performance over the baseline of using trigger words and POS information only, the
derived feature of “number of not parsed words” actually does improve the results.

We ran the decision tree on data with perfect POS tags (for SWITCHBOARD only),
disfluency tags (except for repairs), and sentence boundaries. The evaluations were
performed on independent test sets of about 3,000 sentences for SWITCHBOARD and of
our complete dialogue corpus. Table 8 shows the results of these experiments. Typical
errors, where complete sentences were classified as incomplete, are inverted forms or
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Table 8
False start classification results for different corpora (F1).

SWBD 8E-CH 4E-CH NHOUR XFIRE G-MTG

False start frequency (in %) 12.3 12.1 11.0 2.0 7.2 13.9
False start detection (F1) .611 .545 .640 .286 .352 .557

Table 9
Detection accuracy for repairs on the basis of individual word tokens using the repetition filter.

8E-CH 4E-CH NHOUR XFIRE G-MTG

Repair tokens (%) 4.7 3.8 2.2 1.3 7.9
Precision .88 .78 .25 .35 .91
Recall .41 .32 .01 .04 .27
F1-score .56 .45 .02 .08 .41

ellipsis at the end of a sentence (e.g., neither do I, it seems to). The performance for
the informal corpora (CALLHOME, GROUP MEETINGS) is better than that for the formal
corpora (NEWSHOUR, CROSSFIRE); this is related to the fact that the relative frequency
of false starts is markedly lower in these latter data sets and that these corpora are
more dissimilar to the training corpus (SWITCHBOARD).

5.3.8 Repetition Detection. The repetition detection component is concerned with
(verbatim) repetitions within a speaker’s turn, the most frequently occurring case of all
speech repairs for informal dialogues (insertions and substitutions are comparatively
less frequent). Repeated phrases can potentially be interrupted by other disfluencies,
such as filled pauses or editing terms. Repetition detection is performed with a script
that can identify repetitions of word/POS sequences of length one to four (longer
repetitions are extremely rare: on average, less than 1% of all repetitions). Words that
have been marked as disfluent by the POS tagger are ignored when the repeated
sequences are considered, so we can correctly detect repetitions such as [ he said uh to
+ he said to ] him. . . .

We are evaluating the precision, recall, and F1-scores for this component at the
level of individual words when the POS tagger and the sentence boundary detection
component are used. Table 9 shows the results. We see that for the informal subcor-
pora, we get very good precision (only a few repetitions detected are incorrect), and
recall is in the 25–45% range (since we cannot detect substitution or insertion type of
repairs). The results for the formal subcorpora are considerably worse, so this filter
should probably not be used for corpora with as few repetitions as NEWSHOUR or
CROSSFIRE. We checked all of the 95 false positives of this evaluation and observed that
in the majority of cases (41%), the repetition was correctly detected but was not marked
by the human annotator, since it might be considered a case of emphasis. We believe
that although some nuances of the sentence(s) might be lost, for the purpose of sum-
marization it makes perfect sense to reduce this information. Sometimes, individual
words are repeated for emphasis, sometimes whole sentences (e.g., “Good./ Good./”).
In the following example from English CALLHOME, the emphasis is rather extreme:

203 B: [...] How is the new person doing? q/

204 A: Very very very very very well. / [...]
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Further, about 19% of false positives were correct but not annotated because they span
multiple turns, and about 14% were erroneously missed by the human annotator. Only
the remaining cases (26%) were actual false positives, caused by incorrect POS tags
(5%, typically an incorrectly tagged “that/WDT that/DT” sequence at the beginning
of a relative clause) or incorrect sentence boundaries (21%).

There have been attempts to get a more complete coverage of detection and cor-
rection of all types of speech repairs (Heeman and Allen 1999). We decided, however,
to use a simple method here that works well for a large subset of cases and is very
efficient at the same time.

5.3.9 Disfluency Correction in DIASUMM. After detection, the correction of disfluen-
cies is straightforward. When DIASUMM generates its output from the ranked list of
sentences, it skips the false starts, the repetitions, and the words that were tagged with
CO, DM, ET, or UH by the POS tagger.

5.4 Sentence Boundary Detection
5.4.1 Introduction. The purpose of the sentence boundary detection component is to
insert linguistically meaningful sentence boundaries in the text, given a POS-tagged
input. We consider all intraturn and interturn boundary positions for every speaker
in a conversation. We use the abbreviations EOS for end of complete sentence (E S in the
SWITCHBOARD corpus) and NEOS for end of noncomplete sentence (N S in the SWITCHBOARD
corpus). The frequency of sentence boundaries (with respect to the total number of
words) is about 13.3%, most of the boundaries (almost 90%) being end markers of
completed sentences (SWITCHBOARD).

5.4.2 Training and Testing. We trained a C4.5 decision tree and computed its input
features from a context of four words before and after a potential sentence boundary,
motivated by the results of Gavaldà, Zechner, and Aist (1997). Also following Gavaldà,
Zechner, and Aist (1997), we used 60 trigger words with high predictive potential,
employing the score computation method described in this article.

The decision tree input features for every word position are as follows:

• POS tag (42 different tags)

• trigger word (60 different trigger words)

• turn boundary before this word?

• if turn boundary: length of pause after last turn of same speaker

Since NEOS boundaries occur very infrequently (only about 10% of all boundaries,
which is only about 1% of all potential boundaries), we decided to merge this class
with the EOS class and report results for this combined class only (CEOS). (We relied on
the false-start detection module described above to identify the NEOS sentences within
this merged class of sentences after the sentence boundary classification.)

For training, we used 25,000 words from the Treebank-3 corpus; the test set size
was 1,000 words. Table 10 shows the results in detail for the various parameter com-
binations. We see that for good performance we need to know about one of these two
features: “is there a turn boundary before this word?” or “pause duration after last
turn from same speaker.”
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Table 10
Sentence boundary detection accuracy (F1-score).

With Interturn Pause Duration? Yes No
With Turn Boundary Info? Yes No Yes No

Training set .904 .903 .900 .884
Test set .887 .884 .884 .825

Table 11
Inter- and intraturn boundary detection (BD) results on 1,000-word test set.

Occurrence (%) Detection Accuracy (F1)

Interturn non-BD 12 (1.2) .56
Interturn BD 112 (11.3) .95
Intraturn non-BD 809 (81.4) .99
Intraturn BD 61 (6.1) .77

5.4.3 Effect of Imperfect POS Tagging. To see how much influence an imperfect POS
tagging might have on these results, we POS-tagged the test set data using the POS
tagger described above. For this and the following experiments, we increased the
training corpus for the decision tree to 40,000 words. The POS tagger accuracy for this
test set was about 95.3%, and the F1-score for CEOS was .882, which is 98.9% of .892 on
perfect POS-tagged input. This is encouraging, since it shows that the decision tree is
not very sensitive to the majority of POS errors.

5.4.4 Interturn and Intraturn Boundaries. In this analysis, we are interested in com-
paring the detection of sentence boundaries between turns (interturn) to the detection
of boundaries within a turn (intraturn). Table 11 shows the results of this analysis (same
test set as above). As might be expected, the performance is very good for the two
frequent classes: sentence boundaries at the end of turns and nonboundaries within
turns (F1 > .95), but considerably worse for the two more infrequent cases. The very
rare cases (around 1% only) of non–sentence boundaries at the end of turns (i.e. turn–
continuations) show the lowest performance (F1 = .56).

5.4.5 Sentence Boundary Detection on Dialogue Corpus. To get a picture of the realis-
tic performance of the sentence boundary detection component, using the (imperfect)
POS tagger and a faster, but slightly less accurate, decision tree,13 we evaluate the
sentence boundary detection accuracy for all five subcorpora of our dialogue corpus.
Table 12 provides the results of these experiments. The results reflect a trend very
similar to that for the SWITCHBOARD corpus, in that the two more frequent classes (in-
terturn boundaries and intraturn nonboundaries) have high detection scores, whereas
the two more infrequent classes are less well detected. Furthermore, we observe that
in cases in which the relative frequency of rare classes is further reduced, the classi-
fication accuracy declines overproportionally (particularly for the rarest class of the
interturn nonboundaries). Also, overall boundary detection is better for the two more
informal corpora, CALLHOME and GROUP MEETINGS (F1 > .72).

13 This decision tree uses a different type of encoding, but the same input features.
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Table 12
Boundary detection (BD) accuracy (F1) for five subcorpora (in parentheses: relative frequency
of class in percent).

8E-CH 4E-CH NHOUR XFIRE G-MTG

Interturn non-BD .51 (2.9) .31 (1.4) [0] (0.0) .10 (0.1) .06 (0.1)
Interturn BD .84 (9.9) .89 (12.3) .93 (2.0) .89 (2.9) .93 (5.4)
Intraturn non-BD .97 (80.7) .97 (79.5) .97 (91.8) .97 (91.2) .97 (87.6)
Intraturn BD .60 (6.5) .65 (6.8) .56 (6.2) .42 (5.8) .56 (6.9)
Overall BD .75 (16.4) .80 (19.1) .66 (8.2) .58 (8.7) .72 (12.4)
Overall non-BD .95 (83.6) .96 (80.9) .97 (91.8) .97 (91.3) .96 (87.6)

5.5 Cross-Speaker Information Linking
5.5.1 Introduction. One of the properties of multiparty dialogues is that shared infor-
mation is created between dialogue participants. The most obvious interactions of this
kind are question-answer (Q-A) pairs. The purpose of this component is to create au-
tomatically such coherent pieces of relevant information, which can then be extracted
together while generating the summary. The effects of such linkings on actual sum-
maries can be seen in two dimensions: (1) increased local coherence in the summary
and (2) a potentially higher informativeness of the summary. Since Q-A linking has a
side effect in that other information will be lost with respect to a summary of the same
length without Q-A linking, the second claim is much less certain to hold than the
first. We investigated these questions in related work (Zechner and Lavie 2001) and
found that although Q-A linking does not significantly change the informativeness
of summaries on average, it does increase summary coherence (fluency) significantly.
In this section, we will be concerned with the following two intuitive subtasks of
Q-A linking: (1) identifying questions (Qs) and (2) finding their corresponding an-
swers.

5.5.2 Related Work. Detecting a question and its corresponding answer can be seen
as a subtask of the speech act detection and classification task. Recently, Stolcke et al.
(2000) presented a comprehensive approach to dialogue act modeling with statistical
techniques. A good overview and comparison of recent related work can also be found
in Stolcke et al.’s article. Results from their evaluations on SWITCHBOARD data show
that word-based speech act classifiers usually perform better than prosody-based clas-
sifiers, but that a model combination of the two approaches can yield an improvement
in classification accuracy.

5.5.3 Corpus Statistics. For training of the question detection module, we used the
manually annotated set of about 200,000 SWITCHBOARD speech acts14 (SAs);15 for train-
ing of the answer detection component, we used the eight English CALLHOME dia-
logues (8E-CH), which were manually annotated for Q-A pairs. Although we were
aiming to detect all questions in the question detection module, the answer detection
module focuses on Q-A pairs only: We exclude all questions from consideration that
are not Yes-No- (YN) or Wh-questions (such as rhetorical or back-channel questions),

14 In this work, the notions of speech acts and sentences can be considered equivalent.
15 From the Johns Hopkins University Large Vocabulary Continuous Speech Recognition (LVCSR)

Summer Workshop 1997. Thanks to Klaus Ries for providing the data, which are also available from
http://www.colorado.edu/ling/jurafsky/ws97/.
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Table 13
Frequency of different types of questions in the 8E-CH data set.

Sentences 2,211

Wh-questions total 20
. . .With immediate answers 15 (75%)
YN-questions total 48
. . .With immediate answers 38 (79%)
Qs excluded for Q-A detection 15
Questions total 83 (3.75%)

as well as those that do not have an answer in the dialogue. Thus we employ only
68 pf the 83 questions marked in the 8E-CH data set for these evaluations. Table 13
provides the statistics concerning questions and answers for the 8E-CH subcorpus
and shows that for a small but significant number of questions, the answer does not
immediately follow the question speech act (delayed answers).

5.5.4 Automatic Question Detection. We used two different methods, both trained on
SWITCHBOARD data: (1) a speech act tagger16 and (2) a decision tree based on trigger
word and part-of-speech information.

Speech act tagger. The speech act tagger tags one speech act at a time and hence can
make use only of speech act unigram information. Within a speech act, it uses a lan-
guage model based on POS and the 500 most frequent word/POS pairs. It was trained
on the aforementioned SWITCHBOARD speech act training set. It was not optimized for
the task of question detection. Its typical run time for speech act classification is about
10 speech acts per second.

Decision tree question classifier. The decision tree classifier (C4.5) uses the following
set of features: (1) POS and trigger word information for the first and last five tokens
of each speech act;17 (2) speech act length, and (3) occurrence of POS bigrams. The set
of trigger words is the same as for the sentence boundary detection module. The POS
bigrams were designed to be most discriminative between question speech acts (q-SAs)
and non–question speech acts (non-q-SAs). The bigrams were obtained as follows:

1. For a balanced set of q-SAs and non-q-SAs (about 9,000 SAs each):
Count all the POS bigrams in positions 1 . . . 5 and (n − 4) . . .n (using
START and END for the first and last bigrams, respectively) and memorize
position (beginning or end of SA) and type (q-SA vs. non-q-SA).

2. For all bigrams:

(a) Add one to the count (to prevent division by zero).
(b) Divide the q-SA count by the non-q-SA count.
(c) If the ratio is smaller than one, invert it (ratio := 1/ratio).
(d) Multiply the result of (c) by the sum of q-SA count and

non-q-SA count.18

3. Extract the 100 bigrams with the highest value.

16 Thanks to Klaus Ries for providing us with the software.
17 Shorter speech acts are padded with dummies.
18 Leaving out this step favors low-frequency, high-discriminative bigrams too much and causes a slight

reduction in overall Q-detection performance.
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Table 14
Question detection on the 8E-CH corpus using two different classifiers.

SA Tagger Decision Tree

Overall error 3.2% 4.7%
Precision .57 .63
Recall .61 .51
F1 .59 .56
Typical classification time (SAs/sec) 10 1,000

Experiments and results. The question detection decision tree was trained on a set of
about 20,000 speech acts from the SWITCHBOARD corpus. We first evaluated the speech
act tagger and the decision tree classifier on the 8E-CH data set. Whereas in the later
stage of answer detection, questions without answers and nonpropositional questions
are ignored, at this point we are interested in the detection of all annotated questions
in the corpus. This also reflects the fact that the training set contains all possible types
of questions.

Table 14 reports the results of the question detection experiments with the two
classifiers used on the 8E-CH subcorpus. We note that whereas the decision tree is
performing only slightly worse than the speech act tagger, its typical classification
time is two orders of magnitude faster. Based on these observations, we decided to
use the question detection decision tree in the Q-A linking component of the DIASUMM
system.

5.5.5 Detecting the Answers. After identifying which sentences are questions, the
next step is to identify the answers to them. From the 8E-CH statistics of Table 13
we observe that for more than 75% of the YN- and Wh-questions, the answer is to
be found in the first sentence of the speaker talking after the speaker uttering the
question. In the remainder of cases, the majority of answers are in the second (instead
of the first) sentence of the responding speaker. Further, the speaker who has posed a
question usually utters no (or only very few) sentences after the question is asked and
before the next speaker starts talking.

In addition to detecting sequential Q-A pairs, we also want to be able to detect
simple embedded questions, as shown in this example of a brief clarification dialogue:

Q 1 A: When are we meeting then?

Q 2 B: You mean tomorrow?

3 A: Yes.

4 B: At 4pm.

We devise the following heuristics to detect answers to question speech acts which
have been previously identified:

• If the first speaker change after the question occurs more than maxChg
sentences after the question, the search is stopped and no Q-A pair is
returned.

• Answer hypotheses are sought for maximally maxSeek sentences after the
first speaker change following the question, but not over interruptions
by any other speaker; that is, we check within a single speaker region



471

Zechner Automatic Summarization of Dialogues

(this is the stopping criterion for the following two heuristics). An
exception occurs if there is an embedded question in the first single
speaker region: In that case, we look at the next region where a speaker
different from the initial Q-speaker is active.19

• Answers have to be minimally minAns words long; if they are shorter,
we add the next sentence to the current answer hypothesis.

• Even if the minimum answer length is reached, the answer can be
optionally extended if at least one word in the answer matches a word
from the question (one of two different stop lists (StopShort, StopLong) or
no stop list is used to remove function words from consideration).20

We have these further restrictions for the case of embedded questions:

1. If we detect a potential embedded Q-A pair, the answer to the
surrounding question must immediately follow the answer to the
embedded question (i.e., the region following the potential answer
region of the embedded question—sentence 4 in our above
example—must (1) not contain a question itself and (2) be from a
different speaker than the surrounding question).

2. A crossover is prohibited; that is, we eliminate all pairs 〈Qj, Al〉 when a
pair 〈Qi, Ak〉 was already detected, with i < j < k < l (k, l being start
indices of answer spans).

The output of the algorithm is a list of triples 〈Q, Astart , Aend〉, where Q is the
sentence ID of the question and Astart the first and Aend the last sentence of the
answer. As mentioned above, we use only 68 of the 83 questions marked in the 8E-
CH data set for these evaluations, since only these are YN- or Wh-questions that
actually have answers in the dialogue. There are four possible outcomes for each triple:
(1) irrelevant: a Q-A pair with an incorrectly hypothesized question (this is the fault
of the question detection module, not of this heuristic); (2) missed: the answer was
missed entirely; (3) completely correct: Aend coincides with the correct answer sentence
ID; and (4) correct range: the answer is contained in the interval [Astart , Aend ] but
does not coincide with Aend . For the calculation of precision, recall, and F1-score, we
count classes (3) and (4) as correct and use the sum of all classes for the denominator
of precision and the total number of Q-A pairs (68 in this development set) as the
denominator of recall.

To determine the best parameters, we varied them across a reasonable set of values
and ran the answer detection script for all combinations of parameters. The best results
(with respect to F1-score) using questions detected by the speech act tagger and the
decision tree are reported in Table 15. In the DIASUMM system, we use the following
optimal parameter settings for the answer detection heuristics: maxChg = 2, maxSeek =
4, minAns = 10, sim = on , stop = no.

Finally, we evaluated the performance of both the Q-detection module and the
combined Q-A detection on all five subcorpora, using the decision tree for question
detection; the results are reported in Table 16. Except for the rather small NEWSHOUR

19 This would be sentence 4 in the example above.
20 StopLong contains 571 words, StopShort only 89 words, most of which are auxiliary verbs and filler

words.
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Table 15
Q-A detection results using two different classifiers for question detection (68 Q-A pairs to be
detected).

SA Tagger Decision Tree

All hypothesized Q-A pairs 80 54
Correct [(3) and (4)] 42 31
maxChg (1–5) 4 2
maxSeek (2–4) 3–4 2–4
minAns (1–10) 5–10 2–10
Similarity extension (on/off) on on
Stop list (no/short/long) no/short no/short
Precision .53 .57
Recall .62 .46
F1-score .57 .51

Table 16
Performance comparison for Q- and Q-A detection (Q-detection with the decision tree
question classifier).

8E-CH 4E-CH NHOUR XFIRE G-MTG

Q to detect 83 94 19 110 49
Q-hypotheses 67 60 16 71 52
Q-detection (F1) .56 .58 .80 .60 .59
Q-A pairs to detect 68 69 18 79 32
Q-A pair hypotheses 54 54 14 54 33
Q-A detection (F1) .51 .60 .81 .51 .51

corpus (with fewer than 20 questions or Q-A pairs to identify), the typical Q-detection
F1-score is around .6 and the Q-A detection F1-score around .5. In two cases, the Q-A
detection performance is slightly better than the Q-detection performance. This can be
explained by the fact that the answer detection algorithm prunes away a number of
Q-hypotheses, reducing the space for potential Q-A hypotheses.

5.5.6 Q-A Detection within DIASUMM. When we use the Q-A detection module as
part of the DIASUMM system, we want to ensure that (1) there are no Q-A pairs con-
taining Q-sentences that are false starts and that (2) the initial part of an answer is
not lost in case the disfluency detection component marks some indicative words as
disfluencies. To satisfy the first constraint, we block Q-detection of sentences that have
been previously classified as false starts; as for the second constraint, we create a list
of indicative words (relevant for YN-questions) that are not to be removed by the
summary generator if they appear in the beginning (leading five words) of answers.21

5.6 Sentence Ranking and Selection
5.6.1 Introduction. The sentence ranking and selection component is an implementa-
tion of the MMR algorithm (Carbonell, Geng, and Goldstein 1997), applied to extract-
ing the most relevant sentences from a topical segment of a dialogue. The component’s
output in isolation serves as the MMR baseline for the global system evaluation. Its

21 The current list comprises the following words: no, yes, yeah, yep, sure, uh-huh, mhm, nope.
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purpose is to determine weights for terms and sentences, to rank the sentences ac-
cording to their relevance within each topical segment of the dialogue, and finally
to select the sentences for the summary output according to their rank, as well as to
other criteria, such as question-answer linkages, established by previous components.
The selected sentences are presented to the user in text order.

5.6.2 Tokenization. In addition to the tokenization rules for the global system (sec-
tion 5.2), we apply a simple six-character truncation for stemming and use a stop word
list to eliminate frequent noncontent words. In the experiments, we used the following
five different stop word lists:

• the original SMART list (Salton 1971) (SMART-O)

• a manually edited stop list based on SMART (SMART-M)

• a stop list with all closed-class words from the POS tagger’s lexicon
(POS-O)

• a manually edited stop list based on the POS tagger’s lexicon and
frequent closed-class words in the CALLHOME training corpus (POS-M)

• an empty stop list (EMPTY)

5.6.3 Term and Sentence Weighting. The basic idea for determining the most relevant
sentences within a topical segment is as follows: First, we compute a vector of word
weights for the segment �tfq (including all stemmed non–stop words) and do the same
for each sentence (�tft), then we compute the similarity between sentence and segment
vectors for each sentence. That way, sentences that have many words in common with
the segment vector are rewarded and receive a higher relevance weight.

Whereas we compose the sentence vectors �tft using direct term frequency counts,
the weights for segment terms are determined according to one of the three formulae
in equation (1) (freq, smax, and log), inspired by Cornell University’s SMART system
(Salton 1971):

tfi,s = fi,s or 0.5 + 0.5
fi,s

fsmax
or 1 + log fi,s, (1)

where fi,s are the in-segment frequencies of a stem and fsmax are maximal segment
frequencies of any stem in the segment. Finally, we multiply an inverse document fre-
quency (IDF) weight to �tfs to obtain the segment vectors �tfq, as shown in equations (2)
and (3):

tfi,q = tfi,sIDFi,s (2)

IDFi,s = 1 + log
Nseg

iseg
or

Nseg

iseg
. (3)

IDF values are computed with respect to a collection of topical segments, either the
current dialogue (DIALOGUE) or a set of dialogues (CORPUS). Nseg is the total number
of topical segments in the IDF corpus, and iseg is the number of segments in which the
token i appears at least once. The effect of using IDF values is to boost those words
that are (relatively) unique to any given segment over those that are more evenly
distributed across the corpus.

As stated above, the main algorithm is a version of the MMR algorithm (Carbonell,
Geng, and Goldstein 1997; Carbonell and Goldstein 1998), which emphasizes sentences
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that contain many highly weighted terms for the current segment (salience) and are
sufficiently dissimilar to previously ranked sentences (diversity or antiredundancy).
The MMR formula is given in equation (4):

nextsentence = arg max
tnr,j

(λsim1(query , tnr,j) − (1 − λ) max
tr,k

sim2(tnr ,j , tr,k)). (4)

The MMR formula describes an iterative algorithm and states that the next sentence to
be put in the ranked list will be taken from the sentences that have not yet been ranked
(tnr ). This sentence is (1) maximally similar to a query and (2) maximally dissimilar
to the sentences that have already been ranked (tr). We use the topical segment word
vector �tfq as query vector. The λ parameter (0.0 ≤ λ ≤ 1.0) is used to trade off the
influence of salience against that of redundancy.

Both similarity metrics (sim1, sim2) are inner vector products of stemmed-term
frequencies (equations (5) and (6)). sim1 can be normalized in different ways: (1) to
yield a cosine vector product (division by product of vector lengths), (2) division by
number of content words,22 and (3) no normalization:

sim1 =
�tfq

�tft

| �tfq||�tft|
or

�tfq
�tft

1 +
∑

i tfi,t
or �tfq

�tft (5)

sim2 =
�tft1

�tft2

| �tft1|| �tft2|
(6)

Emphasis factors. Every sentence’s similarity weight (sim1) can be (de)emphasized,
based on a number of its properties. We implemented optional emphasis factors for:

• Lead emphasis: for the leading n% of a segment’s sentences: sim ′
1 = sim1l,

with l being the lead factor.

• Q-A emphasis: for all sentences that belong to a question-answer pair:
sim ′

1 = sim1q, with q being the Q-A emphasis factor.

• False-start deemphasis: for all sentences that are false starts: sim ′
1 = sim1f ,

with f being the false-start factor.

• Speaker emphasis: for each individual speaker s, an emphasis factor se can
be defined: sim ′

1 = sim1se for all sentences of speaker s.23

These parameters can serve to fine-tune the system for particular applications or user
preferences. For example, if the false starts are deemphasized, they are less likely
to trigger a question’s being linked to them in the linking process. If questions and
answers are emphasized, more of them will show up in the summary, increasing its
coherence and readability. In a situation in which a particular speaker’s statements are
of higher interest than those of other speakers, his sentences can be emphasized, as
well.

Since sim2 is a cosine vector product and hence in [0,1], we have to normalize
sim1 to [0,1] as well to enable a proper application of the MMR formula. For this
normalization of sim1, we divide each sim1 score by the maximum of all sim1 scores
in a segment after initial computation and application of the various emphasis factors
described here.

22 To avoid division by zero, we add one to every sentence length.
23 Speaker emphasis is not used in our evaluations.
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5.6.4 Q-A Linking. While generating the output summary from the MMR-ranked
list of sentences, whenever a question or an answer is encountered (detected previ-
ously by the Q-A detection module), the corresponding answer/question is linked to
it and moved up the relevance ranking list to immediately follow the current ques-
tion/answer. If the question-answer pair consists of more than two sentences, the link-
ages are repeated until no further questions or answers can be added to the current
linkage cluster.

5.6.5 Summary Types. DIASUMM can generate several different types of summaries,
the two main versions being (1) the CLEAN summary, which is based on the output
of all DIASUMM components (disfluency detection, sentence boundary detection, Q-A
linking), and (2) the TRANS summary, in which all dialogue specific components are
ignored (essentially, this is an MMR summary of the original dialogue transcript).
For the purpose of the global system evaluation, we use only these two versions of
summaries, as well as LEAD baseline summaries, where the summary is formed by
extracting the first n words from a topical segment.24

Furthermore, the system can generate phrasal summaries, which render the sen-
tences in the same ranking order as the CLEAN summary but reduce the output to
noun phrases and potentially other phrases, depending on the setting of parameters.25

In Figure 2 we show an example of a set of LEAD, TRANS, CLEAN, and PHRASAL
summaries. The set was generated from the CALLHOME transcript presented in sec-
tion 2.

5.6.6 System Tuning. This section describes how we arrive at an optimal parameter
setting for each subcorpus (CALLHOME, NEWSHOUR, CROSSFIRE, GROUP MEETINGS). We
want to establish an MMR baseline for the global system evaluations with which we
can then compare the results of the entire DIASUMM system. Note that for all the tuning
experiments described in this subsection, we did not make use of any other DIASUMM
components, namely, disfluency detection, sentence boundary detection, and question-
answer linking. All experiments were based on the human gold standard with respect
to topical segments. We used only the devtest set for the four subcorpora here (8E-
CH = CALLHOME, DT-NH = NEWSHOUR, DT-XF = CROSSFIRE, and DT-MTG = GROUP
MEETINGS).

Since the length of turns varies widely, one could argue that an easy way to in-
crease performance for the MMR baseline (which does not use automatic sentence
boundary detection) might be to split overly long turns evenly into shorter chunks.
This was done by Valenza et al. (1999), who experimented with lengths of 10–30 words
per extract fragment. We add this option as an additional parameter to the MMR base-
line. If the parameter is set to n words, turns with a length l ≥ 1.5n get cut into pieces
of lengths n iteratively until the last remaining piece is l < 1.5n.

Evaluation metric. To evaluate the performance of this component, we use the
word-based evaluation metric described in section 6.2, which gives the highest scores
to summaries containing words with the highest average relevance scores, as marked
by human annotators. We then average these scores over all topical segment sum-
maries of a particular subcorpus.

24 Note that LEAD summaries are to be distinguished from summaries in which lead emphasis is used, as
described above. In the latter case, the segment-initial sentence weights are increased, whereas in the
former case, we strictly extract the leading n words from a given segment.

25 To determine these constituents, we use the output of the chunk parser employed by the false start
detection component.
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LEAD:

1 a: Oh

2 b: They didn’t know he was going to get shot but

it was at a peace rally so I mean it just worked out

3 b: I mean it was a good place for the poor guy to die I mean

because it was you know right after the rally and

everything was on film and everything [...]

TRANS:

2 b: They didn’t know he was going to get shot but

it was at a peace rally so I mean it just worked out

3 b: I mean it was a good place for the poor guy to die

I mean because it was you know right after the

rally and everything was on film and everything

11 b: Him [...]

CLEAN:

7 b: We just finished the thirty days mourning for him now

it’s everybody’s still in shock it’s terrible what’s

going on over here

31 b: What’s the reaction in america really do people care [...]

34 a: Most I don’t know what I mean like the jewish community

a lot all of us were very upset

PHRASAL:

4 b: it just worked ... it was a good

place for the poor guy to die ... it was [...]

7 b: we just finished the thirty days mourning

for him ... it’s ... everybody’s ...

in shock it’s ... going ...

31 b: ’s the reaction in america ... do people care ...

34 a: i don’t know ... mean like the jewish

community a lot ... of us were

Note: The turn IDs are just indicating the relative position of the turns within the original text and do not
always correspond to the turn numbers of the original or to the turn numbers of the other summaries. The
. . . marks the position in those sentences where the length threshold for a summary was reached.

Figure 2
Example summaries of 20% length: LEAD, TRANS, CLEAN and PHRASAL.

Parameter tuning. The system tuning proceeded in three phases, in which we held
the summary size constant to 15% and optimized the following set of parameters:

1. Term weight type: freq, smax, log

2. Normalization: cos, length, none

3. IDF type: corpus, dialogue, none

4. IDF method: log, mult

5. Extract span: 10–30 or original turn (orig)
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Table 17
Optimally tuned parameters for MMR baseline system (tuning on devtest set subcorpora).

8E-CH DT-NH DT-XF DT-Mtg

Term weight type smax smax smax smax
Normalization cos none cos none
IDF type corpus corpus corpus corpus
IDF method log log mult log
Extract span 20 orig 25 orig
MMR-λ 0.85 0.8 1.0 0.8
Stop list SMART-M POS-M POS-M POS-M
Lead factor 1.0 1.0 1.0 2.0

6. MMR-λ: 0.8–1.0

7. Stop lists: SMART-O, SMART-M, POS-O, POS-M, EMPTY

8. Lead factor: 1.0–5.0 (applied to first 20% of sentences)

Table 17 shows the parameter settings that were determined to be optimal for the
MMR baseline system (TRANS summaries).

5.7 System Performance
The majority of the system components are implemented in Perl5, except for the
C4.5 decision tree (Quinlan 1992), the chunk parser (Ward 1991), and the POS tagger
(Brill 1994), which were implemented in C by the respective authors. We measured the
system runtime on a 300 MHz Sun Ultra60 dual-processor workstation with 1 GB main
memory, summarizing all 23 dialogue excerpts from our corpus. The average runtime
for the whole system, including all of its components except for the topic segmentation
module, was 17.8 seconds, and for the sentence selection component alone 7.0 seconds
(per-dialogue average). The average ratio of system runtime to dialogue duration was
0.029 (2.9% of real speaking time).

6. Evaluation

6.1 Introduction
Traditionally, summarization systems have been evaluated in two major ways: (1) in-
trinsically, measuring the amount of the core information preserved from the original
text (Kupiec, Pedersen, and Chen 1995; Teufel and Moens 1997), and (2) extrinsically,
measuring how much the summary can benefit in accomplishing another task (e.g.,
finding a document relevant to a query or classifying a document into a topical cate-
gory) (Mani et al. 1998).

In this work, we focus on intrinsic evaluation exclusively. That is, we want to
assess how well the summaries preserve the essential information contained in the
original texts. As other studies have shown (Rath, Resnick, and Savage 1961; Marcu
1999), the level of agreement between human annotators about which passages to
choose to form a good summary is usually quite low. Our own findings, reported in
section 4.2.4, support this in that the intercoder agreement, here measured on a word
level, is rather low.

We decided to minimize the bias that would result from selecting either a par-
ticular human annotator, or even the manually created gold standard, as a reference



478

Computational Linguistics Volume 28, Number 4

for automatic evaluation; instead, we weigh all annotations from all human coders
equally. Intuitively, we want to reward summaries that contain a high number of
words considered to be relevant by most annotators. We formalize this notion in the
following subsection.

6.2 Evaluation Metric
All evaluations are based on topically coherent segments from the dialogue excerpts
of our corpus. As mentioned before, the segment boundaries were chosen from the
human gold standard for the purpose of the global system evaluation.

For each segment s, for each annotator a, and for each word position wi, we define
a boolean word vector of annotations �ws,a, each component ws,a,i being 1 if the word
wi is part of a nucleus IU or a satellite IU for that annotator and segment, and 0
otherwise. We then sum over all annotators’ annotation vectors and normalize them
by the number of annotators per segment (A) to obtain the average relevance vector
for segment s, �rs:

rs,i =

∑A
a=1 ws,a,i

A
. (7)

To obtain the summary accuracy score sas,n for any segment summary with length n,
we multiply the boolean summary vector �summs

26 by the average relevance vector �rs,
and then divide this product by the sum of the n highest scores within �rs (maximum
achievable score), �rsorts being the vector �rs sorted by relevance weight in descending
order:

sas,n =
�summs�rs

∑n
i=1 rsorts,i

(8)

It is easy to see that the summary accuracy score always is in the interval [0.0, 1.0].

6.3 Global System Evaluation
Whereas section 5 was concerned with the design and evaluation of the individual
system components, the goal here is to describe and analyze the quality of the global
system, with all its components combined. In this section, we compare our DIASUMM
system with the MMR baseline system, which operates without any dialogue-specific
components, and with the LEAD baseline. We described the optimization and fine-
tuning of the MMR system in subsection 5.6.6. The second column of Table 18 presents
the average relevance scores for this MMR baseline, averaged over the five summary
sizes of 5%, 10%, 15%, 20%, and 25% length, for the four devtest set and the four eval
set subcorpora; the first column of this table shows the results for the LEAD baseline.

We used the optimized baseline MMR parameters and varied only the emphasis
parameters for (1) false starts, (2) lead factor, and (3) Q-A sentences, to optimize the
CLEAN summaries further. (Again, for this step, we used only the devtest subcorpora.)
For each corpus in the devtest set, we determined the optimal parameter settings and
report the corresponding results also for the eval set subcorpora. Column 3 in Table 18
provides the results for this optimized DIASUMM system. Further, in column 4, we pro-
vide the summary accuracy averages for the human gold standard (nucleus IUs only,
fixed-length summaries). Table 19 shows the best emphasis parameter combinations
for the DIASUMM summaries used in these evaluations.

We determined the statistical differences between the DIASUMM system and the
two baselines for the eval set, using the Wilcoxon rank sum test for each of the four

26 Definition: 1 if summs,i is contained in the summary, 0 otherwise.
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Table 18
Average summary accuracy scores: devtest set and eval set subcorpora on optimized
parameters, comparing LEAD, MMR baseline, DIASUMM, and the human gold standard.

Subcorpus LEAD MMR DIASUMM Gold [Nucleus IUs] (Size in %)

8E-CH 0.463 0.545 0.597 0.709 (13.1)
DT-NH 0.386 0.637 0.554 0.791 (20.9)
DT-XF 0.516 0.595 0.541 0.764 (11.4)
DT-MTG 0.488 0.594 0.606 0.705 (14.9)
4E-CH 0.438 0.526 0.614 0.793 (12.9)
EVAL-NH 0.692 0.526 0.506 0.850 (14.4)
EVAL-XF 0.378 0.564 0.566 0.790 (13.9)
EVAL-MTG 0.324 0.449 0.583 0.704 (16.0)

Table 19
Best emphasis parameters for the DIASUMM system, trained on the devtest set.

Corpus False Start Q-A Lead Factor

CALLHOME 0.5 1.0 2.0
NEWSHOUR 0.5 2.0 1.0
CROSSFIRE 0.5 1.0 1.0
GROUP MEETINGS 0.5 1.0 3.0

Table 20
Average summary accuracy scores for different system configurations for the four different
subcorpora.

Corpus LEAD MMR DFF-ONLY SB-ONLY NO-QA DIASUMM

4E-CH .438 .526 .599 .547 .603 .614
EVAL-NH .692 .526 .551 .608 .619 .506
EVAL-XF .378 .564 .528 .525 .537 .566
EVAL-GMTG .324 .449 .488 .513 .584 .583

subcorpora. Comparisons were made for each of the five summary sizes within each
topical segment. For the CALLHOME and GROUP MEETINGS subcorpora, our DIASUMM
system is significantly better than the MMR baseline (p < 0.01); for the two more formal
subcorpora, NEWSHOUR and CROSSFIRE, the differences between the performance of
the two systems are not significant. Except for on the NEWSHOUR subcorpus, both the
MMR baseline and the DIASUMM system perform significantly better than the LEAD
baseline.

6.4 Discussion
Table 20 shows the average performance of the following six system configurations,
averaged over all topical segments and all summary sizes (5–25% length summaries;
in configurations 3–5 below, components used are in addition to the core MMR sum-
marizer):

1. LEAD: using the first n% of the words in a segment

2. MMR: the MMR baseline (tuned; see above)
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3. DFF-ONLY: using the disfluency detection components (POS tagger,
false-start detection, repetition detection), but no sentence boundary
detection or question-answer linking

4. SB-ONLY: using the sentence boundary detection module, but no other
dialogue-specific modules

5. NO-QA: a combination of DFF-ONLY and SB-ONLY (all preprocessing
components used except for question-answer linking)

6. DIASUMM: complete system with all components (all disfluency detection
components, sentence boundary detection, and Q-A linking)

We observe that in all subcorpora, except for CROSSFIRE, the addition of either
the disfluency components or the sentence boundary component improves the sum-
mary accuracy over that of the MMR baseline. As we would expect, given the much
higher frequency of disfluencies in the two informal subcorpora (CALLHOME, GROUP
MEETINGS), the relative performance increase of DFF-ONLY over the MMR baseline is
much higher here (about 10–15%) than for the two more formal subcorpora (5% and
below). Looking at the performance increase of SB-ONLY, we find marked improve-
ments over the MMR baseline for those two subcorpora that use the true original turn
boundaries in the MMR baseline: GROUP MEETINGS and NEWSHOUR (>10%); for the
two other subcorpora, the improvement is below 5%. Furthermore, the combination
of the disfluency detection and sentence boundary detection components (NO-QA)
improves the results over the configurations DFF-ONLY and SB-ONLY.

The situation is much less uniform when we add the question-answer detection
component (this then corresponds to the full DIASUMM system): In the CROSSFIRE
corpus, we have the largest performance increase (we also have the highest relative
frequency of question speech acts here). For the two informal corpora, the change
is only minor; for NEWSHOUR, the performance decreases substantially. We showed
in Zechner and Lavie (2001), however, that in general, for dialogues with relatively
frequent Q-A exchanges, the accuracy of a summary (informativeness) does not change
significantly when the Q-A detection component is applied. On the other hand, the
(local) coherence of the summary does increase significantly, but we cannot measure
this increase with the evaluation criterion of summary accuracy used here.

To conclude, we have shown that using dialogue-specific components, with the
possible exception of the Q-A detection module, can help in creating more accurate
summaries for more informal, casual, spontaneous dialogues. When more formal con-
versations (which may even be partially scripted), containing relatively few disfluen-
cies, are involved, either a simple LEAD method or a standard MMR summarizer will
be much harder to improve upon.

7. Discussion and Directions for Future Work

The problem of how to generate readable and concise summaries automatically for
spoken dialogues of unrestricted domains involves many challenges that need to be
addressed. Some of the research issues are similar or identical to those faced in summa-
rizing written texts (such as topic segmentation, determining the most salient/relevant
information, anaphora resolution, summary evaluation), but other additional dimen-
sions are added on top of this list, including speech disfluency detection, sentence
boundary detection, cross-speaker information linking, and coping with imperfect
speech recognition. The line of argument of this article has been that whereas using a
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traditional approach for written text summarization (such as the MMR-based sentence
selection component within DIASUMM) may be a good starting point, addressing the
dialogue-specific issues is key for obtaining better summaries for informal genres.

We decided to focus on the three problems of (1) speech disfluency detection,
(2) sentence boundary detection, and (3) cross-speaker information linking and im-
plemented trainable system components to address each of these issues. Both the
evaluations of the individual components of our spoken-dialogue summarization sys-
tem and the global evaluations as well have shown that we can successfully make use
of the SWITCHBOARD corpus (LDC 1999b) to train a system that works well on two
other genres of informal dialogues, CALLHOME and GROUP MEETINGS. We conjecture
that the reasons why the DIASUMM system was not able to improve over the MMR
baseline for the two other corpora, which are more formal, lies in their very nature of
being of a quite different genre: the NEWSHOUR and CROSSFIRE corpora have longer
turns and sentences, as well as fewer disfluencies. We would also conjecture that their
sentence structures are more complex than what we typically find in the other corpora
of more colloquial, spontaneous conversations.

Future work will have to address the issue of whether the availability of train-
ing data for more formal dialogues (in size and annotation style comparable to the
SWITCHBOARD corpus, though) could lead to an improvement in performance on those
data sets, as well, or if even then a standard written-text-based summarizer would be
hard to improve upon.

Given the complexity of the task, we had to make a number of simplifying assump-
tions, most notably about the input data for our system: We use perfect transcripts by
humans instead of ASR transcripts, which, for these genres, typically show word error
rates (WERs) ranging from 15% to 35%. Previous related work (Valenza et al. 1999;
Zechner and Waibel 2000b) demonstrated that the actual WERs in summaries gen-
erated from ASR output are usually substantially lower than the full-ASR-transcript
WER and can further be reduced by taking acoustically derived confidence scores into
account.

We further did not explore the potential improvements of components as well as
of the system overall when prosodic information such as stress and pitch is added as
an input feature. Past work in related fields (Shriberg et al. 1998; Shriberg et al. 2000)
suggests that particularly for ASR input, noticeable improvements might be achievable
when such input is provided.

Although presegmentation of the input into topically coherent segments certainly
is a useful step in summarization for any kind of texts (written or spoken), we have
not addressed and discussed this issue in this article.

Finally, we think that there is more work needed in the area of automatically
deriving discourse structures for spoken dialogues in unrestricted domains, even if
the text spans covered might be only local (because of a lack of global discourse
plans). We believe that a summarizer, in addition to knowing about the interactively
constructed and coherent pieces of information (such as in question-answer pairs),
could make good use of such structured information and be better guided in making
its selections for summary generation. In addition, this discourse structure might aid
modules that perform automatic anaphora detection and resolution.

8. Conclusions

We have motivated, implemented, and evaluated an approach for automatically cre-
ating extract summaries for open-domain spoken dialogues in informal and formal
genres of multiparty conversations. Our dialogue summarization system DIASUMM
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uses trainable components to detect and remove speech disfluencies (making the out-
put more readable and less noisy), to determine sentence boundaries (creating suitable
text spans for summary generation), and to link cross-speaker information units (al-
lowing for increased summary coherence).

We used a corpus of 23 dialogue excerpts from four different genres (80 topical seg-
ments, about 47,000 words) for system development and evaluation and the disfluency-
annotated SWITCHBOARD corpus (LDC 1999b) for training of the dialogue-specific com-
ponents. Our corpus was annotated by six human coders for topical boundaries and
relevant text spans for summaries. Additionally, we had annotations made for disflu-
encies, sentence boundaries, question speech acts, and the corresponding answers to
those question speech acts.

In a global system evaluation we compared the MMR-based sentence selection
component with the DIASUMM system using all of its components discussed in this arti-
cle. The results showed that (1) both a baseline MMR system as well as DIASUMM create
better summaries than a LEAD baseline (except for NEWSHOUR) and that (2) DIASUMM
performs significantly better than the baseline MMR system for the informal dialogue
corpora (CALLHOME and GROUP MEETINGS).
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